WO2015053311A1 - Wire rod, hypereutectoid bainite steel wire, and method for manufacturing same - Google Patents

Wire rod, hypereutectoid bainite steel wire, and method for manufacturing same Download PDF

Info

Publication number
WO2015053311A1
WO2015053311A1 PCT/JP2014/076938 JP2014076938W WO2015053311A1 WO 2015053311 A1 WO2015053311 A1 WO 2015053311A1 JP 2014076938 W JP2014076938 W JP 2014076938W WO 2015053311 A1 WO2015053311 A1 WO 2015053311A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
bath
molten salt
molten
salt bath
Prior art date
Application number
PCT/JP2014/076938
Other languages
French (fr)
Japanese (ja)
Inventor
達誠 多田
高橋 幸弘
宜孝 西川
大輔 平上
敏之 真鍋
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/027,181 priority Critical patent/US20160244858A1/en
Priority to JP2015541609A priority patent/JP6079894B2/en
Priority to EP14851484.7A priority patent/EP3056580A4/en
Priority to KR1020167008667A priority patent/KR101789949B1/en
Priority to CN201480055078.1A priority patent/CN105612269B/en
Publication of WO2015053311A1 publication Critical patent/WO2015053311A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/46Salt baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/48Metal baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/607Molten salts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/58Continuous furnaces for strip or wire with heating by baths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the present invention relates to a wire for a hypereutectoid bainite steel wire excellent in wire drawing characteristics and delayed fracture resistance, a hypereutectoid bainite steel wire produced from the wire, and a production method thereof.
  • Wire is a material for various machine parts such as steel wire.
  • final products various machine parts (hereinafter referred to as final products) are manufactured from a wire
  • the wire is subjected to mechanical processing such as wire drawing and annealing.
  • the tensile strength of the final product is mainly influenced by the component composition of the wire, particularly the C content of the wire.
  • the metal structure of the wire changes due to transformation during annealing. Therefore, when the final product is manufactured by a process including annealing, the metal structure of the wire does not affect the tensile strength of the final product.
  • the component composition of the wire needs to be in accordance with the tensile strength required for the final product.
  • the tensile strength of the wire is low regardless of the tensile strength of the final product.
  • a wire with high tensile strength has low machinability and wire drawing characteristics.
  • a wire with high tensile strength is highly sensitive to delayed fracture (fracture due to hydrogen embrittlement), it is easily broken during manufacture, storage, and transportation.
  • delayed fracture hydrogen
  • the wire when the manufactured wire is bound in a coil shape for storage and transportation, the wire may be broken due to the stress at the time of binding. The breakage of the wire causes a reduction in the processing efficiency of the wire. Furthermore, when the length of the broken wire is shorter than the length required for the final product, the wire cannot be used as the material of the final product.
  • the tensile strength of the wire is reduced by adjusting the component composition of the wire, for example, by reducing the C content, problems related to delayed fracture and machinability are eliminated.
  • the component composition of the wire needs to be in accordance with the tensile strength required for the final product. Therefore, adjustment of the component composition of the wire cannot be employed as a means for preventing delayed fracture.
  • the tensile strength of the wire can be reduced by changing the heat treatment conditions during the production of the wire.
  • the metal structure of the conventional hypereutectoid wire (wire whose C content exceeds the eutectoid point) is mainly composed of pearlite.
  • a conventional method for producing a hypereutectoid wire includes a step of rolling a steel material to obtain a wire, and a step of cooling the wire. During the cooling process, the metal structure of the wire becomes pearlite. In this production method, if the rolled wire is first heated to the austenite temperature range and then cooled at a relatively slow cooling rate, the tensile strength of the wire can be reduced.
  • the present inventors examined adopting adjustment of the metal structure of the wire as a means for reducing the tensile strength.
  • a general wire according to the prior art mainly comprises a pearlite structure, and such a wire is called a pearlite wire.
  • a wire rod (bainite wire rod) mainly composed of bainite has better wire drawing characteristics than a pearlite wire rod (see, for example, Patent Documents 1 to 7).
  • the tensile strength of the hypereutectoid bainite wire in which the C content exceeds the eutectoid point is lower than the tensile strength of the pearlite wire having the same C content as the bainite wire.
  • the present inventors have found that the average tensile strength of a bainite wire having a C content of 1.1% is 200 to 300 MPa lower than the average tensile strength of a pearlite wire having a C content of 1.1%. I found out.
  • bainite as the metal structure of the wire, the tensile strength of the wire is reduced regardless of the tensile strength required for the final product after annealing (that is, regardless of the C content required for the steel wire). Improvement of wire drawing characteristics and suppression of delayed fracture can be achieved.
  • the bainite wire has a problem that the tensile strength tends to vary.
  • the state in which the tensile strength of the wire varies is a state in which these measured values vary when the tensile strength is measured at a plurality of locations in one wire.
  • the sensitivity to delayed fracture hydrogen embrittlement
  • the workability of the wire varies, so that the machining of the wire becomes difficult.
  • Patent Documents 1 to 7 disclose bainite wire manufacturing methods.
  • the present inventors have found that when a bainite wire is produced based on the production methods specifically disclosed in these documents, the tensile strength of the wire varies greatly.
  • the inventors first cut the wire obtained by the above-described manufacturing method into a length of 3200 mm.
  • the present inventors made eight test pieces having a length of 400 mm by dividing the wire into eight equal parts, and performed a tensile test on these test pieces.
  • the difference between the maximum value and the minimum value hereinafter referred to as variation width of tensile strength
  • variation width of tensile strength was more than 100 N / mm 2 .
  • it has been found that a wire having a tensile strength variation width of more than 50 N / mm 2 is difficult to be industrially used.
  • Japanese Unexamined Patent Publication No. 05-117762 Japanese Patent Laid-Open No. 06-017190 Japanese Patent Laid-Open No. 06-017191 Japanese Unexamined Patent Publication No. 06-017192 Japanese Patent Laid-Open No. 06-075032 Japanese Unexamined Patent Publication No. 06-330240 Japanese Unexamined Patent Publication No. 08-003639
  • the pearlite wire according to the prior art has a problem that delayed fracture is likely to occur because of its high tensile strength. It has been difficult to reduce the tensile strength by reducing the C content of the pearlite wire in view of the required specifications of the final product obtained from the pearlite wire. On the other hand, reducing the tensile strength by reducing the cooling rate in this method for producing pearlite wire increases the amount of pro-eutectoid cementite, which is not preferable. An increase in the amount of proeutectoid cementite decreases the machinability of the wire.
  • the bainite wire by the prior art especially the hypereutectoid bainite wire in which the C content exceeds the eutectoid point has a problem that the tensile strength tends to vary. Variations in tensile strength increase the frequency of delayed fracture and reduce machinability.
  • the metal structure of the wire is mainly bainite, thereby reducing the tensile strength and increasing the ductility of the wire whose C content exceeds the eutectoid point.
  • the challenge is to increase it.
  • this invention makes it a subject to suppress the dispersion
  • the inventors of the present invention can solve the above-mentioned problems by producing a wire based on production conditions capable of generating a bainite structure capable of simultaneously suppressing proeutectoid cementite and reducing the strength of the wire. I found it.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • the wire according to one embodiment of the present invention is unit mass%, C: more than 0.80 to 1.20%, Si: 0.10 to 1.50%, Mn: 0 to 1.00%, P: 0 to 0.02%, S: 0 to 0.02%, Cr: 0 to 1.00%, Ni: 0 to 1.00%, Cu: 0 to 1.00%, Mo: 0 to 0 50%, Ti: 0 to 0.20%, Nb: 0 to 0.20%, V: 0 to 0.20%, B: 0 to 0.0050%, Al: 0 to 0.10%, and , Ca: 0 to 0.05%, with the balance being composed of Fe and impurities, the metal structure containing 90 to 100 area% bainite, and the same length of 3200 mm length of wire
  • the average value TS of the tensile strength of each test piece is the unit N / mm 2 , and Satisfying Equation 1, the difference between
  • a method for manufacturing a wire according to an aspect of the present invention is the method for manufacturing a wire according to (1) above, wherein C: more than 0.80 to 1.20%, Si: 0.10 to 1.50%, Mn: 0 to 1.00%, P: 0 to 0.02%, S: 0 to 0.02%, Cr: 0 to 1.00%, Ni: 0 to 1 0.00%, Cu: 0 to 1.00%, Mo: 0 to 0.50%, Ti: 0 to 0.20%, Nb: 0 to 0.20%, V: 0 to 0.20%, B : A steel material containing 0 to 0.0050%, Al: 0 to 0.10%, and Ca: 0 to 0.05%, with the balance being composed of Fe and impurities, and rolling the steel slab.
  • a step of issuing Ri wherein a time within 5 seconds from the extraction, and the time is t s seconds before ⁇ t s seconds after the start of bainite transformation of the wire, the second of said wires to 530 ⁇ 600 ° C.
  • a step of immersing in the molten salt bath or molten lead bath, and a step of removing the wire from the second molten salt bath or molten lead bath after the bainite transformation is completely completed.
  • t complete indicates the time from the start to the end of the bainite transformation of the wire in a unit of seconds when the wire is continuously immersed in the first molten salt bath or molten lead bath.
  • the wire is immersed in the first molten salt bath or the molten lead bath, and the wire is the second molten salt bath or
  • the elapsed time from the time of immersion in the molten lead bath may be 10 to 40 seconds.
  • the reheat of the wire is detected at the time point when the bainite transformation starts in the wire in the first molten salt bath or molten lead bath. You may judge by.
  • a method for producing a hypereutectoid bainite steel wire according to another aspect of the present invention is the method for producing a hypereutectoid bainite steel wire according to the above (2), wherein C: 0 .80 to 1.20%, Si: 0.10 to 1.50%, Mn: 0 to 1.00%, P: 0.02% or less, S: 0.02% or less, Cr: 0 to 1 0.00%, Ni: 0 to 1.00%, Cu: 0 to 1.00%, Mo: 0 to 0.50%, Ti: 0 to 0.20%, Nb: 0 to 0.20%, V : 0 to 0.20%, B: 0 to 0.0050%, Al: 0 to 0.10%, and Ca: 0 to 0.05%, with the balance being Fe and impurities.
  • t s 0.05 ⁇ t complete t complete indicates the time from the start to the end of the bainite transformation of the wire in a unit of seconds when the wire is continuously immersed in the first molten salt bath or molten lead bath.
  • the time during which the wire is immersed in the first molten salt bath or molten lead bath is 10 to 40 seconds. May be.
  • the time point at which the bainite transformation starts in the wire in the first molten salt bath or molten lead bath The determination may be made by detecting recuperation.
  • a method for producing a hypereutectoid bainite steel wire according to another aspect of the present invention is the method for producing a hypereutectoid bainite steel wire according to the above (2), wherein C: 0 .80 to 1.20%, Si: 0.10 to 1.50%, Mn: 0 to 1.00%, P: 0 to 0.02%, S: 0 to 0.02%, Cr: 0 -1.00%, Ni: 0-1.00%, Cu: 0-1.00%, Mo: 0-0.50%, Ti: 0-0.20%, Nb: 0-0.20% V: 0 to 0.20%, B: 0 to 0.0050%, Al: 0 to 0.10%, and Ca: 0 to 0.05%, with the balance being Fe and impurities
  • a step of immersing in a molten lead bath and then removing the steel wire from the first molten salt bath or molten lead bath, at a time within 5 seconds from the removal, and of the bainite transformation of the steel wire Immersing the steel wire in a second molten salt bath or molten lead bath at 530-600 ° C. at a time from t s seconds before start to t s seconds later; and Removing from the second molten salt bath or molten lead bath after the transformation is completely completed.
  • t s 0.05 ⁇ t complete t complete indicates the time from the start to the end of the bainite transformation of the wire in a unit of seconds when the wire is continuously immersed in the first molten salt bath or molten lead bath.
  • the time point at which the bainite transformation has started in the steel wire in the first molten salt bath or molten lead bath is determined as the steel. The determination may be made by detecting the recuperation of the wire.
  • a wire having a lower tensile strength and higher ductility than a conventional pearlite wire and a smaller variation width of the tensile strength than a conventional bainite wire can be obtained. Occurrence of breakage is suppressed when the wires according to the present invention are bound, or when the wires according to the present invention are bound. Furthermore, the workability of the wire according to the present invention and the workability of the steel wire according to the present invention obtained by drawing the wire are good. Therefore, according to the present invention, a wire for a hypereutectoid bainite steel wire excellent in wire drawing characteristics and delayed fracture resistance, a hypereutectoid bainite steel wire produced using this wire, and stably producing them. A manufacturing method for manufacturing can be provided.
  • the hypereutectoid bainite steel wire rod (hereinafter, also referred to as “wire rod according to this embodiment”) having excellent wire drawing characteristics and delayed fracture resistance according to the present embodiment will be described.
  • the wire according to the present embodiment is unit mass%, C: more than 0.80 to 1.20%, Si: 0.10 to 1.50%, Mn: 0 to 1.00%, P: 0 to 0 0.02%, S: 0 to 0.02%, Cr: 0 to 1.00%, Ni: 0 to 1.00%, Cu: 0 to 1.00%, Mo: 0 to 0.50%, Ti : 0 to 0.20%, Nb: 0 to 0.20%, V: 0 to 0.20%, B: 0 to 0.0050%, Al: 0 to 0.10%, and Ca: 0 to A test piece having a length of 8 mm is obtained by dividing a wire having a length of 3200 mm into 8 elements having the same length by containing 0.05% and the balance being Fe and impurities.
  • the average tensile strength TS of each test piece is a unit N / mm 2
  • the following formula 1 is satisfied, and the maximum value and the minimum value among the tensile strengths of the test pieces are Difference is at 50 N / mm 2 or less, the average aperture RA of each of the test piece, in units%, and satisfies the following expression 2.
  • [C] is the C content of the wire expressed in unit mass%
  • [TS] is the average tensile strength TS expressed in unit N / mm 2 .
  • the component composition of the wire according to this embodiment will be described.
  • the unit “%” means “% by mass”.
  • C Over 0.80 to 1.20% C is an element that enhances the hardenability and tensile strength of the wire.
  • the main structure of the wire is bainite.
  • the C content exceeds 0.80%, the required hardenability and tensile strength can be obtained.
  • the C content is more than 1.20%, pro-eutectoid cementite is generated, and disconnection is likely to occur during wire drawing of the wire. Therefore, in order to suppress the formation of proeutectoid cementite, the upper limit value of the C content is set to 1.20%.
  • the lower limit value of the C content may be 0.85%, 0.90%, or 0.95%.
  • the lower limit of the C content may be 1.15%, 1.10%, or 1.05%.
  • Si 0.10 to 1.50%
  • Si is an element that increases the tensile strength of the wire.
  • Si is an element that functions as a deoxidizer.
  • the lower limit of the Si content is set to 0.10%.
  • Si promotes precipitation of proeutectoid ferrite. Proeutectoid ferrite may cause breakage during wire drawing.
  • Si may reduce the limit working degree in wire drawing in hypereutectoid steel. Therefore, the upper limit of Si content is set to 1.50%.
  • the lower limit value of the Si content may be set to 0.15%, 0.20%, or 0.25%.
  • the upper limit value of the Si content may be 1.45%, 1.40%, or 1.35%.
  • Mn 0 to 1.00%
  • the wire according to this embodiment does not need to contain Mn. Therefore, the lower limit of the Mn content of the wire according to this embodiment is 0%.
  • Mn has the effect of increasing the strength of the wire by increasing the hardenability of the wire.
  • Mn is an element that acts as a deoxidizing agent, similarly to Si. Therefore, Mn may be included in the wire as necessary.
  • Mn content exceeds 1.00% hardenability improves in the segregation part of Mn, and time until completion
  • the upper limit of the Mn content needs to be 1.00%.
  • the upper limit value of the Mn content may be 0.90% or 0.80%.
  • the lower limit value of the Mn content is 0%, but in order to obtain the above-described effect, the lower limit value of the Mn content is preferably 0.20%, more preferably 0.40%.
  • P and S are impurity elements.
  • the upper limit values of P and S are both 0.02%.
  • the upper limits of the P content and the S content are both 0.01%, and more preferably both 0.005%.
  • the smaller the P content and the S content the better. Therefore, the lower limit of the P content and the S content is 0%.
  • reducing the content of these elements to 0.001% or less causes an increase in the manufacturing cost of the wire. Therefore, in practical steel, the lower limit of the P content and the S content is usually 0.001%.
  • Cr, Ni, Cu, Mo, Ti, Nb, V, B, Al, and Ca are appropriately selected within a range that does not hinder the characteristics of the wire according to the present embodiment. You may contain. However, since the content of these elements is not essential, the lower limit of the content of these elements is 0%.
  • Cr 0 to 1.00% Cr is an element that improves the hardenability of the wire and thereby promotes bainite transformation.
  • the Cr content exceeds 1.00%, the time required from the start of transformation to the end of transformation becomes longer, which is not preferable because the heat treatment time until bainite transformation is completed becomes longer. Further, like Mn, Cr exceeding 1.00% may cause martensite to be generated in the wire. Therefore, the upper limit of the Cr content is set to 1.00%.
  • the Cr content is preferably 0.50% or less, and more preferably 0.30% or less.
  • the lower limit of the Cr content is 0%, but in order to obtain the above effect, 0.01% or more, more preferably 0.05% or more of Cr may be contained.
  • Ni 0 to 1.00%
  • Ni is an element that improves the hardenability of the wire and thereby promotes bainite transformation.
  • the upper limit of the Ni content is set to 1.00%.
  • the Ni content is preferably 0.70% or less, and more preferably 0.50% or less.
  • the lower limit of the Ni content is 0%, but in order to obtain the above-mentioned effect, 0.05% or more, more preferably 0.10% or more of Ni may be contained.
  • Cu 0 to 1.00%
  • Cu is an element that improves the corrosion fatigue characteristics of the wire.
  • the upper limit of the Cu content is set to 1.00%.
  • the Cu content is preferably 0.70% or less, more preferably 0.50% or less.
  • the lower limit value of the Cu content is 0%, but in order to obtain the above-mentioned effect, 0.05% or more, more preferably 0.10% or more of Cu may be contained.
  • Mo 0 to 0.50%
  • Mo is an element that improves the hardenability of the wire.
  • the Mo content exceeds 0.50%, the hardenability of the wire material is excessively improved, which may cause micromartensite to precipitate in the Mo segregation part. Micro martensite may reduce the ductility of the wire. Therefore, the upper limit of the Mo content is set to 0.50%. Mo content becomes like this. Preferably it is 0.30% or less, More preferably, it is 0.10% or less.
  • the lower limit of the Mo content is 0%, but in order to obtain the above-described effect, 0.01% or more, more preferably 0.03% or more of Mo may be contained.
  • Ti, Nb, and V refine the ⁇ grain size of the heated wire.
  • the toughness of the wire is improved.
  • the upper limit values of the Ti, Nb, and V contents are set to 0.20%.
  • the contents of Ti, Nb, and V are preferably all 0.15% or less, more preferably 0.10% or less.
  • the lower limit values for the contents of Ti, Nb, and V are all 0%, but in order to obtain the above-mentioned effects, the lower limit values for the contents of Ti, Nb, and V are preferably 0.01%. %, More preferably 0.02%.
  • B 0 to 0.0050% B improves the hardenability of the wire. If the B content exceeds 0.0050%, the hardenability of the wire becomes too high, so that martensite is formed in the wire, which may reduce the ductility of the wire. Therefore, the upper limit of the B content is set to 0.0050%.
  • the B content is preferably 0.0040% or less, and more preferably 0.0030% or less.
  • the lower limit of the B content is 0%, but in order to obtain the above-described effect, 0.0005% or more, more preferably 0.0010% or more of B may be contained.
  • Al is an element that functions as a deoxidizer.
  • the Al content exceeds 0.10%, hard alumina inclusions are generated, and the inclusions reduce the ductility and wire drawing of the wire. Therefore, the upper limit of the Al content is 0.10%.
  • the Al content is preferably 0.07% or less, and more preferably 0.05% or less.
  • the lower limit of the Al content is 0%, but in order to obtain the above-described effect, Al may preferably be contained by 0.01% or more, more preferably 0.02% or more.
  • Ca 0 to 0.05% Ca improves the delayed fracture resistance of the wire by controlling the form of MnS, which is an inclusion in the wire.
  • the upper limit value of the Ca content is set to 0.05%.
  • the Ca content is preferably 0.04% or less, more preferably 0.03% or less.
  • the lower limit of the Ca content is 0%, but in order to obtain the above effect, 0.001% or more, and more preferably 0.005% or more of Ca may be contained.
  • the remainder of the component composition of the wire according to this embodiment is made of Fe and impurities.
  • Impurities are components that are mixed due to various factors in the production process, such as ore or scrap, when industrially producing steel materials, and do not adversely affect the wire according to the present embodiment. Means what is allowed.
  • Bainite 90-100% area
  • the metal structure of the wire according to this embodiment contains 90 to 100 area% bainite.
  • the wire drawing characteristics of a wire rod containing bainite having a metal structure of 90 to 100 area% are superior to those of a wire rod having a metal structure mainly composed of pearlite (pearlite wire rod).
  • pearlite wire rod since cementite contained in bainite is finer than cementite contained in pearlite, when comparing bainite wire and pearlite wire with the same composition, the tensile strength of bainite wire is higher than the tensile strength of pearlite wire. Low.
  • the lower limit of the bainite content may be 95 area% or 98 area%.
  • micromartensite (MA), proeutectoid cementite, and the like may be included in the metal structure of the wire. These contents are permissible as long as the bainite content is 90 area% or more.
  • the content of bainite can be obtained by observing a cross section of the wire perpendicular to the wire drawing direction.
  • An example of a method for measuring the content of bainite is as follows. First, metal structure images are obtained at a plurality of locations on the wire cross section perpendicular to the wire drawing direction. Next, the average value of the area ratio of bainite in each metal structure image is obtained.
  • the imaging region for obtaining a metallographic image is not particularly limited. For example, as shown in FIG. 6, the center portion 11 of the wire cross section 1 perpendicular to the wire drawing direction, the surface layer portion 12, and the intermediate portion 13, which is a region having a depth of 1 ⁇ 4 of the wire diameter, are mutually possible.
  • a means for obtaining a metallographic image is not particularly limited.
  • the means for discriminating bainite in the metal structure image is not particularly limited.
  • the wire according to the present embodiment does not contain a structure other than pearlite, martensite (including micromartensite), proeutectoid cementite, and bainite.
  • a structure other than pearlite, martensite, and proeutectoid cementite may be regarded as bainite.
  • Average tensile strength TS of wire 810 ⁇ [C] +475 N / mm 2 or less
  • the mechanical properties of the wire according to this embodiment are obtained by dividing a wire having a length of 3200 mm into eight elements having the same length. Evaluation is made by measuring the characteristics of eight test pieces 400 mm long. The average value of the tensile strength of the eight test pieces described above is defined as the average tensile strength TS of the wire.
  • the average tensile strength TS of the wire according to this embodiment satisfies the following formula 1.
  • [C] is the C content of the wire expressed in unit mass%
  • [TS] is the average tensile strength TS expressed in unit N / mm 2 .
  • the main factors that increase the tensile strength of the wire are the C content of the wire and the heat treatment conditions during wire manufacture.
  • the increase in tensile strength due to the C content of the wire does not vary the tensile strength of the wire. This is because the increase in tensile strength that occurs with an increase in C content occurs uniformly throughout the wire.
  • an increase in tensile strength due to heat treatment conditions during wire manufacture may cause the wire tensile strength to vary.
  • the diameter of the wire is small, the heat capacity per unit length of the wire is small and the temperature distribution in the length direction of the wire is large, making it difficult to perform heat treatment uniformly throughout the wire, Variations are likely to occur.
  • the tensile strength of the wire varies, the workability of the wire and the steel wire varies, so that the machining of the wire and the steel wire becomes difficult. Further, in this case, the sensitivity to delayed fracture (hydrogen embrittlement) is increased at a portion where the tensile strength of the wire is high, and breakage occurs.
  • the average tensile strength of the wire according to this embodiment needs to be lower than the upper limit value defined only by the C content.
  • the present inventors limited the upper limit value of the average tensile strength TS by the above formula 1.
  • the coefficients “810” and “475” in the above formula 1 were experimentally determined by the present inventors for a wire having a C content exceeding 0.80%, that is, a wire having a C content exceeding the eutectoid point. It is a coefficient.
  • the average tensile strength TS of the wire exceeds the upper limit defined by Equation 1 (that is, when the average tensile strength is too high for the C content)
  • the effect of heat treatment on the tensile strength is inappropriate.
  • the present inventors have found that the variation in the tensile strength of the wire is increased, which increases the stability of machining and easily breaks. In this case, it is considered that the heat treatment conditions at the time of manufacturing the wire are not appropriate, and therefore the tensile strength of the wire is increased unevenly.
  • FIG. 2 an example of the relationship between average tensile strength TS (N / mm ⁇ 2 >) and C content (mass%) is shown. From the figure, it can be seen that the average tensile strength TS of the wire according to the present embodiment is in the region of “[TS] ⁇ 810 ⁇ [C] +475”.
  • the lower limit value of the tensile strength of the wire is not particularly specified. However, a certain amount of tensile strength is usually required for industrially used wires. Even when the average tensile strength of the wire is too low with respect to the C content, it is difficult to industrially use the wire. Therefore, you may prescribe
  • Average drawing value RA of wire rod ⁇ 0.083 ⁇ TS + 154 or more Evaluation of the mechanical properties of the wire rod according to the present embodiment is obtained by dividing a wire rod having a length of 3200 mm into eight elements having the same length. This is done by measuring the characteristics of eight 400 mm long test pieces. The average value of the above-mentioned eight test pieces is defined as the average drawing value RA of the wire.
  • the average drawing value RA of the wire according to the present embodiment satisfies the following formula 2. [RA] ⁇ ⁇ 0.083 ⁇ [TS] +154 (Formula 2)
  • [TS] is the average tensile strength TS expressed in the unit N / mm 2 .
  • the lower limit value of the average drawing value RA is limited by the lower limit value calculated from the average tensile strength TS.
  • the coefficients “ ⁇ 0.083” and “154” in the above equation 2 are obtained by investigating the average tensile strength and the average drawing value of various wires whose C content is in the hypereutectoid region. Is a coefficient obtained experimentally.
  • the average drawing value of the wire rod having no bainite having a metal structure of 90 to 100% was lower than the above lower limit value.
  • the metal structure is mainly composed of bainite, this bainite is obtained by heating the supercooled austenite before the start of the bainite transformation. It was low.
  • Variation width of the tensile strength of the wire The difference between the maximum value and the minimum value among the tensile strengths of the eight test pieces is 50 N / mm 2 or less.
  • the evaluation of the mechanical properties of the wire according to this embodiment is 3200 mm in length. This is done by measuring the properties of eight 400 mm long specimens obtained by dividing the wire into eight elements having the same length.
  • the difference between the maximum value and the minimum value among the tensile strengths of the test pieces described above is defined as the variation width of the tensile strength of the wire.
  • the variation width of the tensile strength of the wire according to this embodiment is 50 N / mm 2 or less.
  • the tensile strength of the wire When the tensile strength of the wire is large, the workability of the wire and the steel wire obtained by drawing the wire is reduced.
  • the variation width of the tensile strength of the wire is more than 50 N / mm 2 , it becomes difficult to process the wire and a steel wire obtained by drawing the wire under a certain condition. Further, in this case, the sensitivity to delayed fracture (hydrogen embrittlement) is increased at a portion where the tensile strength of the wire is high, and breakage occurs.
  • the variation range of the tensile strength of the wire is 45N / mm 2 or less, 40N / mm 2 or less, 35N / mm 2 or less, Alternatively, it may be 30 N / mm 2 or less.
  • the diameter of the wire according to this embodiment is not particularly specified.
  • the diameter of the wire may be set to 3.5 to 16.0 mm.
  • the diameter of the wire is less than 3.5 mm, the heat capacity per unit length of the wire is small and the temperature distribution in the length direction of the wire is large, so the heat treatment is performed uniformly over the entire wire. This makes it difficult to produce variations in tensile strength.
  • the diameter of the wire is more than 16.0 mm, it becomes difficult to uniformly cool the center portion and the surface layer portion of the wire, and it becomes difficult to make the metal structure of the center portion of the wire a predetermined one. There is a fear.
  • manufacturing method according to the present embodiment (hereinafter sometimes referred to as “manufacturing method according to the present embodiment”) will be described.
  • the method for manufacturing a wire according to the present embodiment includes (a) a step of obtaining a wire by rolling a steel piece having the above-described composition of the wire according to the present embodiment, and (b). Immersing a wire at 850 to 1050 ° C. in a first molten salt bath or molten lead bath at 350 to 450 ° C., and then removing the wire from the first molten salt bath or molten lead bath; from a time within 5 seconds, and the time is t s seconds before the start of bainite transformation of the wire ⁇ t s seconds after, the second molten salt bath or molten lead bath the wire 530 ⁇ 600 ° C.
  • t s is obtained by the following Equation 3.
  • t s 0.05 ⁇ t complete (Expression 3)
  • t complete indicates the time from the start to the end of the bainite transformation of the wire in a unit of seconds when the wire is continuously immersed in the first molten salt bath or molten lead bath.
  • the method for producing a hypereutectoid bainite steel wire includes (e) a second molten salt as shown in FIG. A step of drawing the wire taken out of the bath or molten lead bath. 4 and 5, “molten salt bath or molten lead bath” is simply referred to as “bath”. Since, starting substantially bainite transformation "wire to being dipped into the wire rods second molten salt bath or molten lead bath at a time is t s seconds before ⁇ t s seconds after the start of bainite transformation of the wire At the same time, the wire may be dipped in the second molten salt bath or molten lead bath.
  • FIG. 1 the heat processing of the manufacturing method which concerns on this embodiment is shown.
  • the arrow with the symbol (b) indicates that a wire at 850 to 1050 ° C. is immersed in the first molten salt bath or molten lead bath at a temperature T 1 in the range of 350 to 450 ° C. Taking out, that is, the above-mentioned (b) is shown.
  • the wire rod is retention at a temperature T 1, taken out and then transferred to a second molten salt bath or molten lead bath.
  • T 1 in the figure indicates the time for immersing the wire in the first molten salt bath or molten lead bath, and the wire is transferred from the first molten salt bath or molten lead bath to the second molten salt bath or molten lead bath. (I.e., the time from when the wire is immersed in the first molten salt bath or molten lead bath to the time when the wire is immersed in the second molten salt bath or molten lead bath) .
  • the arrow with the symbol (c) indicates that the wire is melted in the second molten salt bath or melt at a temperature in the range of 530 to 600 ° C. (T 1 + ⁇ T) almost simultaneously with the start of the bainite transformation.
  • Temperature of the wire before being immersed in the first molten salt bath or molten lead bath 850 to 1050 ° C.
  • a steel piece having the component composition of the wire according to the present embodiment is rolled to obtain a wire.
  • this wire is immersed in the first molten salt bath or molten lead bath.
  • the wire may be cooled once between rolling and dipping and then reheated, or cooling and reheating may not be performed between rolling and dipping.
  • the wire after rolling or the steel wire after drawing is directly immersed in the first molten salt bath or molten lead bath (that is, cooling and reheating are performed).
  • the upper limit of the temperature of the immersed wire or steel wire is substantially 1050 ° C.
  • the wire rod after rolling or the steel wire after drawing is once cooled and then reheated and then immersed in the first molten salt bath or molten lead bath, the first molten salt bath or molten It is good also considering the upper limit of the temperature of the wire rod or steel wire immersed in a lead bath as 1050 degreeC.
  • Temperature of the first molten salt bath or molten lead bath 350 to 450 ° C.
  • the wire at 850 to 1050 ° C. is rapidly cooled by being immersed in the first molten salt bath or molten lead bath ((b) in FIG. 1).
  • the temperature T 1 of the first molten salt bath or molten lead bath is 350 to 450 ° C.
  • the temperature T1 of the first molten salt bath or the molten lead bath When the temperature T1 of the first molten salt bath or the molten lead bath is higher than 450 ° C., the cooling rate of the wire decreases, so that the metal structure of the wire is transformed into bainite before becoming a supercooled austenite. In this case, the tensile strength of the wire is lowered, but pro-eutectoid cementite is precipitated in the wire. Proeutectoid cementite deteriorates the wire drawing properties of the wire. Therefore, in order to rapidly cool the wire, the temperature T1 of the first molten salt bath or molten lead bath needs to be 450 ° C. or lower.
  • the temperature T 1 of the first molten salt bath or molten lead bath is below 350 ° C.
  • the first molten salt bath or molten lead bath solidifies.
  • the time for immersing the wire in the first molten salt bath or molten lead bath is appropriately adjusted so that the step of immersing the wire in the second molten salt bath or molten lead bath can be performed as prescribed. Need to be done.
  • a time point within 5 seconds after the wire is taken out from the first molten salt bath or molten lead bath at temperature T 1.
  • a is, and the time is t s seconds before ⁇ t s seconds after the start of bainite transformation of the wire, immersing the wire in a second molten salt bath or molten lead bath at a temperature T 2.
  • the inventors of the present invention have determined the time from when the wire is immersed in the first molten salt bath or the molten lead bath to the time when the wire is immersed in the second molten salt bath or the molten lead bath (that is, the first molten salt bath or the molten lead bath).
  • the curve to which the symbol “S” is attached in FIG. 3 is a curve (hereinafter referred to as S curve) indicating the temperature and time at which the bainite transformation starts. This curve changes according to the component composition of the wire.
  • Data points that are described in FIG. 3 represents the temperature T 1 and the time t 1 at the time of manufacture wire according to the data points.
  • the wire according to the data point on the left side of the curve is a wire immersed in the second molten salt bath or the molten lead bath before the start of the bainite transformation, and the wire according to the data point on the right side of the curve is the bainite transformation. Is a wire rod immersed in a second molten salt bath or a molten lead bath after the start of the above.
  • S curve indicating the temperature and time at which the bainite transformation starts. This curve changes according to the component composition of the wire.
  • Data points that are described in FIG. 3 represents the temperature T 1 and the time t 1 at the time of manufacture wire according to the
  • the variation width of the tensile strength of the wire having the data point type “BAD” is more than 50 N / mm 2
  • the variation width of the tensile strength of the wire having the data point type “GOOD” is more than 40 N / mm 2 to 50 N. / Mm 2 or less
  • the variation width of the tensile strength of the wire material whose data point type is “VERY GOOD” is 40 N / mm 2 or less.
  • Time t 1 as the start of t s seconds before ⁇ t s seconds after a which point the wire of bainite transformation of the wire is immersed in a second molten salt bath or in molten lead bath is appropriately set.
  • t s is a value obtained by Equation 3 shown below.
  • t s 0.05 ⁇ t complete (Expression 3)
  • t complete indicates the time from the start to the end of the bainite transformation of the wire in a unit of seconds when the wire is continuously immersed in the first molten salt bath or molten lead bath.
  • Time from immersing the wire in a first molten salt bath or molten lead bath until bainite transformation of the wire is started, and t s, and S curve corresponding to the composition of the wire rod, a first molten salt It depends on the temperature of the bath or molten lead bath. Accordingly, the time t 1 is determined by simulation and / or preliminary experiments based on the component composition of the wire and the temperature of the first molten salt bath or molten lead bath. Further, as will be described later, by detecting the recuperation of the wire, the time from when the wire is immersed in the first molten salt bath or molten lead bath until the start of bainite transformation of the wire is obtained. Therefore, a preliminary investigation for determining the time t 1 may be performed by the above-mentioned means before manufacturing the wire.
  • the immersion of the wire in the second molten salt bath or the molten lead bath is performed completely simultaneously with the start of the bainite transformation of the wire.
  • the inventors of the present invention in the wire material in which the bainite transformation proceeds quickly and the temperature rise due to recuperation is relatively large, if the time between the immersion of the wire material and the start of the transformation of the wire material is 5 seconds or less, for wire rods that can sufficiently suppress the variation in tensile strength, and that the progress of bainite transformation is slow and the temperature rise due to recuperation is relatively low, the time between the immersion of the wire rod and the start of transformation of the wire rod is over 5 seconds.
  • the elapsed time t 1 between the time when the wire is immersed in the first molten salt bath or the molten lead bath and the time when the wire is immersed in the second molten salt bath or the molten lead bath is 10 ⁇ 40 seconds is preferred.
  • the wire must be immersed in the second molten salt bath or molten lead bath within 5 seconds after being taken out from the first molten salt bath or molten lead bath. If the time between wire rod removal and immersion, that is, the wire rod transfer time exceeds 5 seconds, the temperature of the wire rod may fluctuate during the wire rod transfer. At the same time, it is extremely difficult to immerse the wire in the second molten salt bath or molten lead bath.
  • the recuperation in the present embodiment is a phenomenon in which the temperature of the wire increases due to the start of bainite transformation in the wire.
  • the recuperation can be detected, for example, by comparing the temperature of the wire taken out after being immersed in the first molten salt bath or molten lead bath and the temperature of the first molten salt bath or molten lead bath. When the temperature of the wire is higher than the temperature of the first molten salt bath or molten lead bath, it is determined that reheating has occurred in the wire.
  • the shortest immersion time t min that can cause reheating of the wire is determined by examining the presence or absence of recuperation. Can be sought.
  • the time when t min has elapsed since the wire is immersed in the first molten salt bath or molten lead bath can be regarded as the time when the bainite transformation has started in the wire.
  • the wire is restored even if the temperature of the wire is higher than that of the first molten salt bath or molten lead bath. It cannot be determined whether or not heat is generated. This is because the temperature of the wire may increase due to insufficient dipping time rather than recuperation.
  • Second molten salt bath or molten lead bath 530 to 600 ° C
  • Second molten salt bath or when taking out the wire from the molten lead bath: bainite transformation completely finished start of the bainite transformation point wire after substantially the same time, a second molten salt bath or molten lead is temperature T 2 Immerse the wire in the bath. Temperature T 2 is 530 ⁇ 600 ° C..
  • the wire can be rapidly heated to a temperature of 530 to 600 ° C. ((c) in FIG. 1) and maintained at that temperature until the bainite transformation is completely completed.
  • the wire is rapidly heated to a temperature of 530 to 600 ° C.
  • the temperature of the second molten salt bath or molten lead bath is less than 530 ° C. or more than 600 ° C., it takes a long time to complete the bainite transformation. Therefore, the temperature of the second molten salt bath or molten lead bath is set to 530 to 600 ° C. in order to reliably complete the bainite transformation in a short time.
  • the heating rate at the time of heating a wire to said temperature range is not specifically limited.
  • the heating rate is high, specifically 10 to 50 ° C./second.
  • Such a heating rate can be obtained by immersing the wire in a molten salt bath or a molten lead bath at a temperature of 530 to 600 ° C.
  • MA is generated in the wire, and this MA may lower the workability of the wire.
  • a wire rod with a dense bainite structure has higher strength than a wire rod that is rapidly heated substantially simultaneously with the start of the bainite transformation. Therefore, in the wire according to the present embodiment, by rapidly heating the wire, the interval between the precipitated cementite is widened and the strength is lowered.
  • the hyper-eutectoid bainite steel wire (hereinafter, also referred to as “steel wire according to this embodiment”) having excellent delayed fracture resistance according to the present embodiment is the wire rod according to the present embodiment having excellent wire drawing properties. It is drawn.
  • the drawing process may be a normal drawing process, and the area reduction rate is not particularly limited. Since the steel wire which concerns on this embodiment is excellent in the delayed fracture resistance, the use of a steel wire expands significantly.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 1 The hypereutectoid steel slab having the component composition shown in Table 1 was rolled into a wire having the wire diameter shown in Table 2, and the bainite transformation was completed under the temperature conditions shown in Table 2. Average tensile strength of the wire after completion bainite transformation (N / mm 2), the average aperture (%) and tensile strength of the variation width (N / mm 2) was measured. The average tensile strength of the wire is an average value of the tensile strength of each of eight 400 mm-long test pieces obtained by dividing a wire having a length of 3200 mm into eight elements having the same length.
  • the average drawing value of the wire is an average value of the drawing values of each of eight 400 mm-long test pieces obtained by dividing a wire having a length of 3200 mm into eight elements having the same length.
  • the variation width of the tensile strength of the wire is the maximum value among the tensile strengths of each of the eight 400 mm-long test pieces obtained by dividing the wire having a length of 3200 mm into eight elements having the same length. It is the difference from the minimum value.
  • the measurement results are also shown in Table 2. The heating rate when the wire was immersed in the second molten salt bath or molten lead bath was 10 to 50 ° C./second.
  • T 0 is the temperature of the wire immersed in the first molten salt bath or molten lead bath
  • T 1 is the temperature of the first molten salt bath or molten lead bath
  • t 1 is the first molten salt bath.
  • ⁇ T is that the wire is immersed in the second molten salt bath or molten lead bath
  • T 2 is the temperature of the second molten salt bath or molten lead bath
  • the TS upper limit is the C content and the upper limit of the average tensile strength calculated from Equation 1
  • the TS average is the average tensile strength (N / mm 2 )
  • TS maximum is the maximum value of tensile strength (N / mm 2 )
  • TS minimum is the minimum value of tensile strength (N / mm 2 )
  • TS variation width is the difference between TS maximum and TS minimum (N
  • the immersion time t of the wire in the first molten salt bath or molten lead bath when manufacturing the inventive examples 1 to 7 is the same as that of the second molten salt bath or molten lead bath. It is appropriately selected so as to be almost simultaneously with the start of the transformation.
  • the wire was not immersed in the second molten salt bath or molten lead bath.
  • Comparative Examples 9 and 10 the wire was immersed in the second molten salt bath or molten lead bath after a long time had elapsed after the start of the bainite transformation.
  • Inventive Example No. 1-7, Comparative Example No. 9 and Comparative Example No. In 10 the wire was immersed in the second molten salt bath or molten lead bath within 5 seconds after being removed from the first molten salt bath or molten lead bath.
  • the wire rod has a lower strength and a higher ductility than pearlite steel, and the breakage during the binding work of the wire rod or in the bound state is suppressed, and the wire drawing characteristics and It is possible to provide a wire having excellent delayed fracture resistance, a hypereutectoid bainite steel wire produced using the wire, and a production method for producing them stably. Therefore, the present invention has high applicability in the steel industry.

Abstract

 The wire rod pertaining to the present invention has a predetermined component composition, the metallographic structure of which includes bainite in an area ratio of 90-100%, and when eight test pieces having a length of 400 mm are manufactured by dividing a length of 3200 mm of the wire rod into eight elements having the same length, the average tensile strength (TS) of the test pieces in units of N/mm2 satisfies the relationship "[TS] ≤ 810 × [C] + 475," the difference between the largest and smallest of the tensile strength values of the test pieces is 50 N/mm2 or less, and the average reduction of area (RA) of the test pieces in units of percent satisfies the relationship "[RA] ≥ − 0.083 × [TS] + 154."

Description

線材、過共析ベイナイト鋼線、及びそれらの製造方法Wire material, hypereutectoid bainite steel wire, and production method thereof
 本発明は、伸線特性及び耐遅れ破壊特性に優れた過共析ベイナイト鋼線用の線材、該線材から製造された過共析ベイナイト鋼線、及びそれらの製造方法に関する。
 本願は、2013年10月8日に、日本に出願された特願2013-211365号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a wire for a hypereutectoid bainite steel wire excellent in wire drawing characteristics and delayed fracture resistance, a hypereutectoid bainite steel wire produced from the wire, and a production method thereof.
This application claims priority based on Japanese Patent Application No. 2013-212365 filed in Japan on October 8, 2013, the contents of which are incorporated herein by reference.
 線材は、鋼線などの種々の機械部品の材料である。線材から種々の機械部品(以下、最終製品と称する)を製造する場合、通常は伸線加工等の機械加工と、焼鈍とが線材に行われる。最終製品の引張強度は、主に線材の成分組成、特に線材のC含有量に影響される。一方、線材の金属組織は、焼鈍の際の変態によって変化する。従って、最終製品が焼鈍を含む工程によって製造される場合、線材の金属組織は最終製品の引張強度に影響しない。以上の理由により、最終製品が焼鈍を含む工程によって製造される場合、線材の成分組成は、最終製品に必要とされる引張強度に応じたものとされる必要がある。 Wire is a material for various machine parts such as steel wire. When various machine parts (hereinafter referred to as final products) are manufactured from a wire, usually, the wire is subjected to mechanical processing such as wire drawing and annealing. The tensile strength of the final product is mainly influenced by the component composition of the wire, particularly the C content of the wire. On the other hand, the metal structure of the wire changes due to transformation during annealing. Therefore, when the final product is manufactured by a process including annealing, the metal structure of the wire does not affect the tensile strength of the final product. For the above reasons, when the final product is manufactured by a process including annealing, the component composition of the wire needs to be in accordance with the tensile strength required for the final product.
 一方、最終製品の引張強度に関わらず、線材の引張強度は低い方が好ましい。引張強度が高い線材は、機械加工性および伸線特性が低い。さらに、引張強度が高い線材は、遅れ破壊(水素脆化による破壊)に対する感受性が高いので、その製造、保管、および輸送の際に折損しやすい。特に、線材のC含有量が0.8質量%以上である場合(すなわち、線材のC含有量が共析点を上回っているので、線材が過共析鋼である場合)、遅れ破壊(水素脆化)に対する線材の感受性が高くなるという問題がある。その結果、保管及び輸送のために製造後の線材をコイル状に結束した場合、結束時の応力によって線材が折損することがある。線材の折損は、線材の加工能率の低下を招く。さらに、折損した線材の長さが最終製品に必要とされる長さよりも短い場合、その線材を最終製品の材料として用いることができない。 On the other hand, it is preferable that the tensile strength of the wire is low regardless of the tensile strength of the final product. A wire with high tensile strength has low machinability and wire drawing characteristics. Furthermore, since a wire with high tensile strength is highly sensitive to delayed fracture (fracture due to hydrogen embrittlement), it is easily broken during manufacture, storage, and transportation. In particular, when the C content of the wire is 0.8 mass% or more (that is, when the wire is hypereutectoid steel because the C content of the wire exceeds the eutectoid point), delayed fracture (hydrogen There is a problem that the sensitivity of the wire to embrittlement is increased. As a result, when the manufactured wire is bound in a coil shape for storage and transportation, the wire may be broken due to the stress at the time of binding. The breakage of the wire causes a reduction in the processing efficiency of the wire. Furthermore, when the length of the broken wire is shorter than the length required for the final product, the wire cannot be used as the material of the final product.
 遅れ破壊(水素脆化)に起因する折損を防止するためには、結束条件を緩和すること、例えば線材を結束する力を低減すること等が考えられる。しかし、結束条件を緩和することにより、コイルの保管性、コイルの輸送性、及び、コイルを取り扱う際の安全性等が損なわれる。 In order to prevent breakage due to delayed fracture (hydrogen embrittlement), it is conceivable to relax the binding conditions, for example, to reduce the force for binding the wire. However, by relaxing the bundling condition, the storage property of the coil, the transportability of the coil, the safety when handling the coil, and the like are impaired.
 線材の成分組成を調整すること、例えばC含有量を低下させることにより線材の引張強度を低下させれば、遅れ破壊および機械加工性に関する問題は解消される。しかし、上述したように、線材の成分組成は、最終製品に必要とされる引張強度に応じたものとされる必要がある。従って、線材の成分組成の調整を、遅れ破壊の防止の手段として採用することはできない。 If the tensile strength of the wire is reduced by adjusting the component composition of the wire, for example, by reducing the C content, problems related to delayed fracture and machinability are eliminated. However, as described above, the component composition of the wire needs to be in accordance with the tensile strength required for the final product. Therefore, adjustment of the component composition of the wire cannot be employed as a means for preventing delayed fracture.
 線材の製造時の熱処理条件を変化させることにより、線材の引張強度を低下させることができる。従来の過共析線材(C含有量が共析点を上回る線材)の金属組織は主にパーライトからなる。従来の過共析線材の製造方法は、鋼材を圧延して線材を得る工程と、この線材を冷却する工程とを含む。冷却する工程の際に、線材の金属組織がパーライトとなる。この製造方法において、圧延後の線材をまずオーステナイト温度域まで加熱し、次に比較的遅い冷却速度で冷却すれば、線材の引張強度を低下させることができる。しかし、C含有量が共析点を上回る線材の製造方法に、冷却速度が遅い製造条件を適用した場合、冷却時にパーライトのみならず初析セメンタイトが多く生成する。初析セメンタイトは、線材の加工性を悪化させる。従って、線材の冷却速度を遅くすることを、遅れ破壊の防止の手段として採用することはできない。 The tensile strength of the wire can be reduced by changing the heat treatment conditions during the production of the wire. The metal structure of the conventional hypereutectoid wire (wire whose C content exceeds the eutectoid point) is mainly composed of pearlite. A conventional method for producing a hypereutectoid wire includes a step of rolling a steel material to obtain a wire, and a step of cooling the wire. During the cooling process, the metal structure of the wire becomes pearlite. In this production method, if the rolled wire is first heated to the austenite temperature range and then cooled at a relatively slow cooling rate, the tensile strength of the wire can be reduced. However, when manufacturing conditions with a slow cooling rate are applied to a method for manufacturing a wire having a C content exceeding the eutectoid point, not only pearlite but also proeutectoid cementite is generated during cooling. Proeutectoid cementite deteriorates the workability of the wire. Therefore, slowing the cooling rate of the wire cannot be employed as a means for preventing delayed fracture.
 以上の事情に鑑みて、本発明者らは、線材の金属組織の調整を、引張強度の低下の手段として採用することを検討した。上述のように、最終製品が焼鈍を含む工程によって製造される場合、線材の金属組織は最終製品の引張強度に影響を及ぼさない。従来技術による一般的な線材は主にパーライト組織からなり、このような線材はパーライト線材と称される。一方、ベイナイトを主な組織とする線材(ベイナイト線材)は、パーライト線材よりも伸線特性に優れていることが知られている(例えば特許文献1~7参照)。また、C含有量が共析点を上回る過共析ベイナイト線材の引張強度は、そのベイナイト線材と同じC含有量を有するパーライト線材の引張強度よりも低い。例えば、本発明者らは、C含有量が1.1%であるベイナイト線材の平均引張強度が、C含有量が1.1%であるパーライト線材の平均引張強度よりも200~300MPa低いことを知見した。線材の金属組織をベイナイトとすることにより、焼鈍後の最終製品に求められる引張強度に関わらず(すなわち、鋼線に求められるC含有量に関わらず)、線材の引張強度を低下させ、これにより伸線特性の向上と遅れ破壊の抑制とを達成することができる。 In view of the above circumstances, the present inventors examined adopting adjustment of the metal structure of the wire as a means for reducing the tensile strength. As described above, when the final product is manufactured by a process including annealing, the metal structure of the wire does not affect the tensile strength of the final product. A general wire according to the prior art mainly comprises a pearlite structure, and such a wire is called a pearlite wire. On the other hand, it is known that a wire rod (bainite wire rod) mainly composed of bainite has better wire drawing characteristics than a pearlite wire rod (see, for example, Patent Documents 1 to 7). Moreover, the tensile strength of the hypereutectoid bainite wire in which the C content exceeds the eutectoid point is lower than the tensile strength of the pearlite wire having the same C content as the bainite wire. For example, the present inventors have found that the average tensile strength of a bainite wire having a C content of 1.1% is 200 to 300 MPa lower than the average tensile strength of a pearlite wire having a C content of 1.1%. I found out. By using bainite as the metal structure of the wire, the tensile strength of the wire is reduced regardless of the tensile strength required for the final product after annealing (that is, regardless of the C content required for the steel wire). Improvement of wire drawing characteristics and suppression of delayed fracture can be achieved.
 しかしながら、ベイナイト線材は、引張強度がばらつきやすいという問題がある。線材の引張強度がばらついている状態とは、1本の線材の中の複数個所において引張強度を測定した場合に、これら測定値がばらついている状態を意味する。線材の引張強度がばらついている場合、引張強度が高い箇所において遅れ破壊(水素脆化)に対する感受性が高まり、折損が生じる。さらに、線材の引張強度がばらついている場合、線材の加工性がばらつくので、線材の機械加工が難しくなる。特許文献1~7には、ベイナイト線材の製造方法が開示されている。しかし本発明者らは、これら文献中に具体的に開示された製造方法に基づいてベイナイト線材を製造した場合、線材の引張強度が大きくばらつくことを知見した。本発明者らは、上述の製造方法によって得られた線材を、まず3200mmの長さに切断した。次に本発明者らは、この線材を8等分することにより、400mmの長さを有する試験片を8本作成し、これら試験片に引張試験を行った。これら試験片の引張強度のうち最大値と最小値との差(以下、引張強度のばらつき幅と称する)は、100N/mm超であった。一方、本発明者らが検討した結果、線材の引張強度のばらつき幅が50N/mm超である線材は、工業的な利用に供することが難しいことがわかった。 However, the bainite wire has a problem that the tensile strength tends to vary. The state in which the tensile strength of the wire varies is a state in which these measured values vary when the tensile strength is measured at a plurality of locations in one wire. When the tensile strength of the wire varies, the sensitivity to delayed fracture (hydrogen embrittlement) increases at a location where the tensile strength is high, and breakage occurs. Furthermore, when the tensile strength of the wire varies, the workability of the wire varies, so that the machining of the wire becomes difficult. Patent Documents 1 to 7 disclose bainite wire manufacturing methods. However, the present inventors have found that when a bainite wire is produced based on the production methods specifically disclosed in these documents, the tensile strength of the wire varies greatly. The inventors first cut the wire obtained by the above-described manufacturing method into a length of 3200 mm. Next, the present inventors made eight test pieces having a length of 400 mm by dividing the wire into eight equal parts, and performed a tensile test on these test pieces. Among the tensile strengths of these test pieces, the difference between the maximum value and the minimum value (hereinafter referred to as variation width of tensile strength) was more than 100 N / mm 2 . On the other hand, as a result of studies by the present inventors, it has been found that a wire having a tensile strength variation width of more than 50 N / mm 2 is difficult to be industrially used.
日本国特開平05-117762号公報Japanese Unexamined Patent Publication No. 05-117762 日本国特開平06-017190号公報Japanese Patent Laid-Open No. 06-017190 日本国特開平06-017191号公報Japanese Patent Laid-Open No. 06-017191 日本国特開平06-017192号公報Japanese Unexamined Patent Publication No. 06-017192 日本国特開平06-073502号公報Japanese Patent Laid-Open No. 06-075032 日本国特開平06-330240号公報Japanese Unexamined Patent Publication No. 06-330240 日本国特開平08-003639号公報Japanese Unexamined Patent Publication No. 08-003639
 上述したように、従来技術によるパーライト線材は、引張強度が高いので、遅れ破壊が生じやすいという問題を有していた。このパーライト線材のC含有量を減少させることにより引張強度を減少させることは、パーライト線材から得られる最終製品の要求仕様に鑑みて、困難であった。一方、このパーライト線材の製造方法において冷却速度を減少させることにより引張強度を減少させることは、初析セメンタイトの量を増大させるので、好ましくなかった。初析セメンタイト量の増大は、線材の機械加工性を低下させる。また、従来技術によるベイナイト線材、特にC含有量が共析点を上回る過共析ベイナイト線材は、引張強度がばらつきやすいという問題を有していた。引張強度のばらつきは、遅れ破壊の発生頻度を上昇させ、且つ機械加工性を低下させる。 As described above, the pearlite wire according to the prior art has a problem that delayed fracture is likely to occur because of its high tensile strength. It has been difficult to reduce the tensile strength by reducing the C content of the pearlite wire in view of the required specifications of the final product obtained from the pearlite wire. On the other hand, reducing the tensile strength by reducing the cooling rate in this method for producing pearlite wire increases the amount of pro-eutectoid cementite, which is not preferable. An increase in the amount of proeutectoid cementite decreases the machinability of the wire. Moreover, the bainite wire by the prior art, especially the hypereutectoid bainite wire in which the C content exceeds the eutectoid point has a problem that the tensile strength tends to vary. Variations in tensile strength increase the frequency of delayed fracture and reduce machinability.
 本発明は、線材の金属組織を主にベイナイトとすることにより、C含有量が共析点を上回る線材の低引張強度化および高延性化を行い、線材の伸線特性及び耐遅れ破壊特性を高めることを課題とする。さらに、本発明は、線材の引張強度のばらつきを抑制することを課題とする。そして、本発明は、これら課題を解決する線材と、この線材を用いて製造した過共析ベイナイト鋼線と、これらを安定的に製造するための製造方法とを提供することを目的とする。 In the present invention, the metal structure of the wire is mainly bainite, thereby reducing the tensile strength and increasing the ductility of the wire whose C content exceeds the eutectoid point. The challenge is to increase it. Furthermore, this invention makes it a subject to suppress the dispersion | variation in the tensile strength of a wire. And this invention aims at providing the wire material which solves these subjects, the hypereutectoid bainite steel wire manufactured using this wire material, and the manufacturing method for manufacturing these stably.
 本発明者らは、初析セメンタイトの抑制と、線材の低強度化とが両立可能なベイナイト組織を生成させることができる製造条件に基づいて線材を製造することにより、上述の課題を解決できることを見いだした。 The inventors of the present invention can solve the above-mentioned problems by producing a wire based on production conditions capable of generating a bainite structure capable of simultaneously suppressing proeutectoid cementite and reducing the strength of the wire. I found it.
 本発明は、上記知見に基づいてなされたもので、その要旨は次の通りである。 The present invention has been made based on the above findings, and the gist thereof is as follows.
(1)本発明の一態様に係る線材は、単位質量%で、C:0.80超~1.20%、Si:0.10~1.50%、Mn:0~1.00%、P:0~0.02%、S:0~0.02%、Cr:0~1.00%、Ni:0~1.00%、Cu:0~1.00%、Mo:0~0.50%、Ti:0~0.20%、Nb:0~0.20%、V:0~0.20%、B:0~0.0050%、Al:0~0.10%、及び、Ca:0~0.05%を含有し、残部がFe及び不純物からなる成分組成を有し、金属組織が、90~100面積%のベイナイトを含み、長さ3200mmの線材を8本の同じ長さの要素に分割することにより、8本の長さ400mmの試験片を製造した場合に、各前記試験片の引張強度の平均値TSが、単位N/mmで、下記式1を満足し、各前記試験片の各前記引張強度のうち最大値と最小値との差が50N/mm以下であり、各前記試験片の絞り値の平均値RAが、単位%で、下記式2を満足する。
 [TS]≦810×[C]+475          ・・・(式1)
 [RA]≧-0.083×[TS]+154      ・・・(式2)
 ここで、[C]は単位質量%で表された前記線材のC含有量であり、[TS]は、単位N/mmで表された前記引張強度の前記平均値TSであり、[RA]は、単位%で表された前記絞り値の前記平均値RAである。
(1) The wire according to one embodiment of the present invention is unit mass%, C: more than 0.80 to 1.20%, Si: 0.10 to 1.50%, Mn: 0 to 1.00%, P: 0 to 0.02%, S: 0 to 0.02%, Cr: 0 to 1.00%, Ni: 0 to 1.00%, Cu: 0 to 1.00%, Mo: 0 to 0 50%, Ti: 0 to 0.20%, Nb: 0 to 0.20%, V: 0 to 0.20%, B: 0 to 0.0050%, Al: 0 to 0.10%, and , Ca: 0 to 0.05%, with the balance being composed of Fe and impurities, the metal structure containing 90 to 100 area% bainite, and the same length of 3200 mm length of wire When eight test pieces having a length of 400 mm are manufactured by dividing into length elements, the average value TS of the tensile strength of each test piece is the unit N / mm 2 , and Satisfying Equation 1, the difference between the maximum value and the minimum value among the tensile strengths of the test pieces is 50 N / mm 2 or less, and the average value RA of the aperture values of the test pieces is expressed in unit%. The following formula 2 is satisfied.
[TS] ≦ 810 × [C] +475 (Formula 1)
[RA] ≧ −0.083 × [TS] +154 (Formula 2)
Here, [C] is the C content of the wire expressed in unit mass%, [TS] is the average value TS of the tensile strength expressed in unit N / mm 2 , and [RA] ] Is the average value RA of the aperture values expressed in unit%.
(2)本発明の別の態様に係る過共析ベイナイト鋼線は、上記(1)に記載の線材を伸線加工することにより得られる。 (2) The hyper-eutectoid bainite steel wire according to another aspect of the present invention is obtained by drawing the wire described in (1) above.
(3)本発明の一態様に係る線材の製造方法は、上記(1)に記載の線材の製造方法であって、単位質量%で、C:0.80超~1.20%、Si:0.10~1.50%、Mn:0~1.00%、P:0~0.02%、S:0~0.02%、Cr:0~1.00%、Ni:0~1.00%、Cu:0~1.00%、Mo:0~0.50%、Ti:0~0.20%、Nb:0~0.20%、V:0~0.20%、B:0~0.0050%、Al:0~0.10%、及び、Ca:0~0.05%を含有し、残部がFe及び不純物からなる成分組成を有する鋼片を圧延して線材を得る工程と、850~1050℃の前記線材を350~450℃の第1の溶融塩浴又は溶融鉛浴の中に浸漬し、次いで前記線材を前記第1の溶融塩浴又は溶融鉛浴から取り出す工程と、前記取り出しから5秒以内の時点であって、かつ前記線材のベイナイト変態の開始のt秒前~t秒後である時点に、前記線材を530~600℃の第2の溶融塩浴又は溶融鉛浴の中に浸漬する工程と、前記線材を、前記ベイナイト変態が完全に終了した後に前記第2の溶融塩浴又は溶融鉛浴から取り出す工程と、を備える。
 t=0.05×tcomplete・・・(式3)
 tcompleteは、前記線材を前記第1の溶融塩浴または溶融鉛浴に浸漬し続けた場合に、前記線材のベイナイト変態が開始してから終了するまでの時間を単位秒で示す。
(3) A method for manufacturing a wire according to an aspect of the present invention is the method for manufacturing a wire according to (1) above, wherein C: more than 0.80 to 1.20%, Si: 0.10 to 1.50%, Mn: 0 to 1.00%, P: 0 to 0.02%, S: 0 to 0.02%, Cr: 0 to 1.00%, Ni: 0 to 1 0.00%, Cu: 0 to 1.00%, Mo: 0 to 0.50%, Ti: 0 to 0.20%, Nb: 0 to 0.20%, V: 0 to 0.20%, B : A steel material containing 0 to 0.0050%, Al: 0 to 0.10%, and Ca: 0 to 0.05%, with the balance being composed of Fe and impurities, and rolling the steel slab. And immersing the wire at 850 to 1050 ° C. in a first molten salt bath or molten lead bath at 350 to 450 ° C., and then removing the wire from the first molten salt bath or molten lead bath A step of issuing Ri, wherein a time within 5 seconds from the extraction, and the time is t s seconds before ~ t s seconds after the start of bainite transformation of the wire, the second of said wires to 530 ~ 600 ° C. A step of immersing in the molten salt bath or molten lead bath, and a step of removing the wire from the second molten salt bath or molten lead bath after the bainite transformation is completely completed.
t s = 0.05 × t complete (Expression 3)
t complete indicates the time from the start to the end of the bainite transformation of the wire in a unit of seconds when the wire is continuously immersed in the first molten salt bath or molten lead bath.
(4)上記(3)に記載の線材の製造方法では、前記線材が前記第1の溶融塩浴又は溶融鉛浴の中に浸漬された時点と、前記線材が前記第2の溶融塩浴又は溶融鉛浴の中に浸漬された時点との間の経過時間が10~40秒であってもよい。 (4) In the manufacturing method of the wire described in (3) above, the wire is immersed in the first molten salt bath or the molten lead bath, and the wire is the second molten salt bath or The elapsed time from the time of immersion in the molten lead bath may be 10 to 40 seconds.
(5)上記(3)に記載の線材の製造方法では、前記第1の溶融塩浴又は溶融鉛浴中の前記線材において前記ベイナイト変態が開始した前記時点を、前記線材の復熱を検出することにより判定してもよい。 (5) In the method for manufacturing a wire according to (3), the reheat of the wire is detected at the time point when the bainite transformation starts in the wire in the first molten salt bath or molten lead bath. You may judge by.
(6)本発明の別の態様に係る過共析ベイナイト鋼線の製造方法は、上記(2)に記載の過共析ベイナイト鋼線の製造方法であって、単位質量%で、C:0.80超~1.20%、Si:0.10~1.50%、Mn:0~1.00%、P:0.02%以下、S:0.02%以下、Cr:0~1.00%、Ni:0~1.00%、Cu:0~1.00%、Mo:0~0.50%、Ti:0~0.20%、Nb:0~0.20%、V:0~0.20%、B:0~0.0050%、Al:0~0.10%、及び、Ca:0~0.05%を含有し、残部がFe及び不純物からなる成分組成を有する鋼片を圧延して線材を得る工程と、850~1050℃の線材を350~450℃の第1の溶融塩浴又は溶融鉛浴の中に浸漬し、次いで前記線材を前記第1の溶融塩浴又は溶融鉛浴から取り出す工程と、前記取り出しから5秒以内の時点であって、かつ前記線材のベイナイト変態の開始のt秒前~t秒後である時点に、前記線材を530~600℃の第2の溶融塩浴又は溶融鉛浴の中に浸漬する工程と、前記線材を、前記ベイナイト変態が完全に終了した後に第2の溶融塩浴又は溶融鉛浴から取り出す工程と、前記第2の溶融塩浴又は溶融鉛浴から取り出された前記線材に伸線加工を施す工程と、を備える。
 t=0.05×tcomplete
 tcompleteは、前記線材を前記第1の溶融塩浴または溶融鉛浴に浸漬し続けた場合に、前記線材のベイナイト変態が開始してから終了するまでの時間を単位秒で示す。
(6) A method for producing a hypereutectoid bainite steel wire according to another aspect of the present invention is the method for producing a hypereutectoid bainite steel wire according to the above (2), wherein C: 0 .80 to 1.20%, Si: 0.10 to 1.50%, Mn: 0 to 1.00%, P: 0.02% or less, S: 0.02% or less, Cr: 0 to 1 0.00%, Ni: 0 to 1.00%, Cu: 0 to 1.00%, Mo: 0 to 0.50%, Ti: 0 to 0.20%, Nb: 0 to 0.20%, V : 0 to 0.20%, B: 0 to 0.0050%, Al: 0 to 0.10%, and Ca: 0 to 0.05%, with the balance being Fe and impurities. Rolling a steel slab having a wire to obtain a wire; immersing the wire at 850 to 1050 ° C. in a first molten salt bath or molten lead bath at 350 to 450 ° C .; Taking out from a molten salt bath or molten lead bath, the time the a time within 5 seconds from the extraction, and is after t s seconds before ~ t s s of the start of bainite transformation of the wire, the Immersing the wire in a second molten salt bath or molten lead bath at 530 to 600 ° C., and removing the wire from the second molten salt bath or molten lead bath after the bainite transformation is completely completed. And a step of drawing the wire taken out of the second molten salt bath or molten lead bath.
t s = 0.05 × t complete
t complete indicates the time from the start to the end of the bainite transformation of the wire in a unit of seconds when the wire is continuously immersed in the first molten salt bath or molten lead bath.
(7)上記(6)に記載の過共析ベイナイト鋼線の製造方法では、前記線材が前記第1の溶融塩浴又は溶融鉛浴の中に浸漬されている時間が10~40秒であってもよい。 (7) In the method for producing a hypereutectoid bainite steel wire described in (6) above, the time during which the wire is immersed in the first molten salt bath or molten lead bath is 10 to 40 seconds. May be.
(8)上記(6)に記載の過共析ベイナイト鋼線の製造方法では、前記第1の溶融塩浴又は溶融鉛浴中の前記線材において前記ベイナイト変態が開始した前記時点を、前記線材の復熱を検出することにより判定してもよい。 (8) In the method for producing a hypereutectoid bainite steel wire according to the above (6), the time point at which the bainite transformation starts in the wire in the first molten salt bath or molten lead bath The determination may be made by detecting recuperation.
(9)本発明の別の態様に係る過共析ベイナイト鋼線の製造方法は、上記(2)に記載の過共析ベイナイト鋼線の製造方法であって、単位質量%で、C:0.80超~1.20%、Si:0.10~1.50%、Mn:0~1.00%、P:0~0.02%、S:0~0.02%、Cr:0~1.00%、Ni:0~1.00%、Cu:0~1.00%、Mo:0~0.50%、Ti:0~0.20%、Nb:0~0.20%、V:0~0.20%、B:0~0.0050%、Al:0~0.10%、及び、Ca:0~0.05%を含有し、残部がFe及び不純物からなる成分組成を有する鋼片を圧延することにより得られる線材に伸線加工を行って鋼線を得る工程と、850~1050℃の前記鋼線を350~450℃の第1の溶融塩浴又は溶融鉛浴の中に浸漬し、次いで前記鋼線を前記第1の溶融塩浴又は溶融鉛浴から取り出す工程と、前記取り出しから5秒以内の時点であって、かつ前記鋼線のベイナイト変態の開始のt秒前~t秒後である時点に、前記鋼線を530~600℃の第2の溶融塩浴又は溶融鉛浴の中に浸漬する工程と、前記鋼線を、前記ベイナイト変態が完全に終了した後に前記第2の溶融塩浴又は溶融鉛浴から取り出す工程と、を備える。
 t=0.05×tcomplete
 tcompleteは、前記線材を前記第1の溶融塩浴または溶融鉛浴に浸漬し続けた場合に、前記線材のベイナイト変態が開始してから終了するまでの時間を単位秒で示す。
(9) A method for producing a hypereutectoid bainite steel wire according to another aspect of the present invention is the method for producing a hypereutectoid bainite steel wire according to the above (2), wherein C: 0 .80 to 1.20%, Si: 0.10 to 1.50%, Mn: 0 to 1.00%, P: 0 to 0.02%, S: 0 to 0.02%, Cr: 0 -1.00%, Ni: 0-1.00%, Cu: 0-1.00%, Mo: 0-0.50%, Ti: 0-0.20%, Nb: 0-0.20% V: 0 to 0.20%, B: 0 to 0.0050%, Al: 0 to 0.10%, and Ca: 0 to 0.05%, with the balance being Fe and impurities A step of drawing a wire obtained by rolling a steel slab having a composition to obtain a steel wire, a first molten salt bath or 350 to 450 ° C. of the steel wire of 850 to 1050 ° C. A step of immersing in a molten lead bath and then removing the steel wire from the first molten salt bath or molten lead bath, at a time within 5 seconds from the removal, and of the bainite transformation of the steel wire Immersing the steel wire in a second molten salt bath or molten lead bath at 530-600 ° C. at a time from t s seconds before start to t s seconds later; and Removing from the second molten salt bath or molten lead bath after the transformation is completely completed.
t s = 0.05 × t complete
t complete indicates the time from the start to the end of the bainite transformation of the wire in a unit of seconds when the wire is continuously immersed in the first molten salt bath or molten lead bath.
(10)上記(9)に記載の過共析ベイナイト鋼線の製造方法では、前記鋼線が前記第1の溶融塩浴又は溶融鉛浴の中に浸漬された時点と、前記鋼線が前記第2の溶融塩浴又は溶融鉛浴の中に浸漬された時点との間の経過時間が10~40秒であってもよい。 (10) In the method for producing a hypereutectoid bainite steel wire according to (9), when the steel wire is immersed in the first molten salt bath or molten lead bath, the steel wire is The elapsed time from the time of immersion in the second molten salt bath or molten lead bath may be 10 to 40 seconds.
(11)上記(9)に記載の過共析ベイナイト鋼線の製造方法では、前記第1の溶融塩浴又は溶融鉛浴中の前記鋼線において前記ベイナイト変態が開始した前記時点を、前記鋼線の復熱を検出することにより判定してもよい。 (11) In the method for producing a hypereutectoid bainite steel wire according to (9), the time point at which the bainite transformation has started in the steel wire in the first molten salt bath or molten lead bath is determined as the steel. The determination may be made by detecting the recuperation of the wire.
(12)上記(9)~(11)のいずれか一項に記載の過共析ベイナイト鋼線の製造方法では、前記第2の溶融塩浴又は溶融鉛浴から取り出された前記鋼線にさらに伸線加工を施す工程を備えてもよい。 (12) In the method for producing a hypereutectoid bainite steel wire according to any one of (9) to (11) above, the steel wire taken out from the second molten salt bath or molten lead bath is further added You may provide the process of performing a wire drawing process.
 本発明によれば、従来のパーライト線材よりも低引張強度且つ高延性であり、従来のベイナイト線材よりも引張強度のばらつき幅が小さい線材が得られる。本発明に係る線材を結束する際、又は本発明に係る線材が結束されている状態において、折損の発生が抑制される。さらに、本発明に係る線材の加工性、およびこの線材を伸線加工して得られた本発明に係る鋼線の加工性は良好である。従って、本発明によれば、伸線特性及び耐遅れ破壊特性に優れた過共析ベイナイト鋼線用の線材、この線材を用いて製造した過共析ベイナイト鋼線、及び、それらを安定的に製造する製造方法を提供することができる。 According to the present invention, a wire having a lower tensile strength and higher ductility than a conventional pearlite wire and a smaller variation width of the tensile strength than a conventional bainite wire can be obtained. Occurrence of breakage is suppressed when the wires according to the present invention are bound, or when the wires according to the present invention are bound. Furthermore, the workability of the wire according to the present invention and the workability of the steel wire according to the present invention obtained by drawing the wire are good. Therefore, according to the present invention, a wire for a hypereutectoid bainite steel wire excellent in wire drawing characteristics and delayed fracture resistance, a hypereutectoid bainite steel wire produced using this wire, and stably producing them. A manufacturing method for manufacturing can be provided.
本発明の一実施形態に係る線材の製造方法における熱処理条件を説明する図である。It is a figure explaining the heat processing conditions in the manufacturing method of the wire concerning one embodiment of the present invention. 本発明の一実施形態に係る線材における引張強度TS(N/mm2)とC含有量(質量%)との関係の一例を示す図である。It is a figure which shows an example of the relationship between tensile strength TS (N / mm < 2 >) and C content (mass%) in the wire which concerns on one Embodiment of this invention. 本発明の一実施形態に係る線材の製造方法における熱処理条件と、線材の引張強度のばらつきとの関係を示す図である。It is a figure which shows the relationship between the heat processing conditions in the manufacturing method of the wire which concerns on one Embodiment of this invention, and the dispersion | variation in the tensile strength of a wire. 本発明の一実施形態に係る線材または鋼線の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the wire which concerns on one Embodiment of this invention, or a steel wire. 本発明の別の実施形態に係る鋼線の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the steel wire which concerns on another embodiment of this invention. ベイナイトの面積率を求める方法を示す図である。It is a figure which shows the method of calculating | requiring the area ratio of a bainite. 線材を溶融塩浴または溶融鉛浴に浸漬する際の線材形状の模式図である。It is a schematic diagram of the wire shape at the time of immersing a wire in a molten salt bath or a molten lead bath.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 本実施形態に係る伸線特性及び耐遅れ破壊特性に優れた過共析ベイナイト鋼線用線材(以下「本実施形態に係る線材」ということがある。)について説明する。 The hypereutectoid bainite steel wire rod (hereinafter, also referred to as “wire rod according to this embodiment”) having excellent wire drawing characteristics and delayed fracture resistance according to the present embodiment will be described.
 本実施形態に係る線材は、単位質量%で、C:0.80超~1.20%、Si:0.10~1.50%、Mn:0~1.00%、P:0~0.02%、S:0~0.02%、Cr:0~1.00%、Ni:0~1.00%、Cu:0~1.00%、Mo:0~0.50%、Ti:0~0.20%、Nb:0~0.20%、V:0~0.20%、B:0~0.0050%、Al:0~0.10%、及び、Ca:0~0.05%を含有し、残部がFe及び不純物からなる成分組成を有し、長さ3200mmの線材を8本の同じ長さの要素に分割することにより、8本の長さ400mmの試験片を製造した場合に、各前記試験片の平均引張強度TSが、単位N/mmで、下記式1を満足し、各前記試験片の各前記引張強度のうち最大値と最小値との差が50N/mm以下であり、各前記試験片の平均絞り値RAが、単位%で、下記式2を満足することを特徴とする。 The wire according to the present embodiment is unit mass%, C: more than 0.80 to 1.20%, Si: 0.10 to 1.50%, Mn: 0 to 1.00%, P: 0 to 0 0.02%, S: 0 to 0.02%, Cr: 0 to 1.00%, Ni: 0 to 1.00%, Cu: 0 to 1.00%, Mo: 0 to 0.50%, Ti : 0 to 0.20%, Nb: 0 to 0.20%, V: 0 to 0.20%, B: 0 to 0.0050%, Al: 0 to 0.10%, and Ca: 0 to A test piece having a length of 8 mm is obtained by dividing a wire having a length of 3200 mm into 8 elements having the same length by containing 0.05% and the balance being Fe and impurities. When the average tensile strength TS of each test piece is a unit N / mm 2 , the following formula 1 is satisfied, and the maximum value and the minimum value among the tensile strengths of the test pieces are Difference is at 50 N / mm 2 or less, the average aperture RA of each of the test piece, in units%, and satisfies the following expression 2.
  [TS]≦810×[C]+475           ・・・(式1)
  [RA]≧-0.083×[TS]+154       ・・・(式2)
 ここで、[C]は単位質量%で表された前記線材のC含有量であり、[TS]は、単位N/mmで表された前記平均引張強度TSである。
[TS] ≦ 810 × [C] +475 (Formula 1)
[RA] ≧ −0.083 × [TS] +154 (Formula 2)
Here, [C] is the C content of the wire expressed in unit mass%, and [TS] is the average tensile strength TS expressed in unit N / mm 2 .
 まず、本実施形態に係る線材の成分組成について説明する。以下、単位「%」は「質量%」を意味する。 First, the component composition of the wire according to this embodiment will be described. Hereinafter, the unit “%” means “% by mass”.
 C:0.80超~1.20%
 Cは、線材の焼入れ性と引張強度とを高める元素である。線材の焼入れ性を高めることにより、線材の主な組織がベイナイトとなる。C含有量が0.80%超である場合、所要の焼入れ性と引張強度とが得られる。一方、C含有量が1.20%超である場合、初析セメンタイトが生成し、線材の伸線加工時に断線が発生し易くなる。従って、初析セメンタイトの生成を抑制するために、C含有量の上限値を1.20%とする。ベイナイト生成をさらに容易にするために、C含有量の下限値を0.85%、0.90%、または0.95%としてもよい。また、引張強度が高すぎる場合、遅れ破壊に対する線材の感受性が高まるので、C含有量の下限値を1.15%、1.10%、または1.05%としてもよい。
C: Over 0.80 to 1.20%
C is an element that enhances the hardenability and tensile strength of the wire. By improving the hardenability of the wire, the main structure of the wire is bainite. When the C content exceeds 0.80%, the required hardenability and tensile strength can be obtained. On the other hand, when the C content is more than 1.20%, pro-eutectoid cementite is generated, and disconnection is likely to occur during wire drawing of the wire. Therefore, in order to suppress the formation of proeutectoid cementite, the upper limit value of the C content is set to 1.20%. In order to further facilitate bainite generation, the lower limit value of the C content may be 0.85%, 0.90%, or 0.95%. In addition, when the tensile strength is too high, the sensitivity of the wire to delayed fracture increases, so the lower limit of the C content may be 1.15%, 1.10%, or 1.05%.
 Si:0.10~1.50%
 Siは、線材の引張強度を高める元素である。また、Siは、脱酸剤として機能する元素である。Si含有量が0.10%未満である場合、上述の効果が得られないので、Si含有量の下限値を0.10%とする。しかし、過共析鋼において、Siは、初析フェライトの析出を促進する。初析フェライトは、線材の伸線加工時に断線を発生させるおそれがある。さらにSiは、過共析鋼において、伸線加工での限界加工度を低下させるおそれもある。従って、Si含有量の上限値を1.50%とする。Siによる上述の効果をさらに高めるために、Si含有量の下限値を0.15%、0.20%、または0.25%としてもよい。また、伸線加工をさらに容易にするために、Si含有量の上限値を1.45%、1.40%、または1.35%としてもよい。
Si: 0.10 to 1.50%
Si is an element that increases the tensile strength of the wire. Si is an element that functions as a deoxidizer. When the Si content is less than 0.10%, the above effect cannot be obtained, so the lower limit of the Si content is set to 0.10%. However, in hypereutectoid steel, Si promotes precipitation of proeutectoid ferrite. Proeutectoid ferrite may cause breakage during wire drawing. Further, Si may reduce the limit working degree in wire drawing in hypereutectoid steel. Therefore, the upper limit of Si content is set to 1.50%. In order to further enhance the above-described effects due to Si, the lower limit value of the Si content may be set to 0.15%, 0.20%, or 0.25%. In order to further facilitate the wire drawing, the upper limit value of the Si content may be 1.45%, 1.40%, or 1.35%.
 Mn:0~1.00%
 本実施形態に係る線材がMnを含有する必要はない。従って、本実施形態に係る線材のMn含有量の下限値は0%である。しかし、Mnは、線材の焼入れ性を高めることにより線材の強度を高める効果を有する。また、Mnは、Siと同様に、脱酸剤として働く元素である。従って、必要に応じてMnを線材に含有させてもよい。Mn含有量が1.00%を超える場合、Mnの偏析部において、焼入れ性が向上し、変態終了までの時間が長くなる。すなわち、この場合、線材において焼入れ性が一様ではなくなり、焼入れ性が高い箇所にマルテンサイトが生じ、このマルテンサイトが伸線加工時に断線の原因となる。従って、Mn含有量の上限値を1.00%とする必要がある。また、伸線特性をさらに高めるために、Mn含有量の上限値を0.90%、または0.80%としてもよい。Mn含有量の下限値は0%であるが、上述の効果を得るために、Mn含有量の下限値は好ましくは0.20%、より好ましくは0.40%である。
Mn: 0 to 1.00%
The wire according to this embodiment does not need to contain Mn. Therefore, the lower limit of the Mn content of the wire according to this embodiment is 0%. However, Mn has the effect of increasing the strength of the wire by increasing the hardenability of the wire. Further, Mn is an element that acts as a deoxidizing agent, similarly to Si. Therefore, Mn may be included in the wire as necessary. When Mn content exceeds 1.00%, hardenability improves in the segregation part of Mn, and time until completion | finish of transformation becomes long. That is, in this case, the hardenability is not uniform in the wire, and martensite is generated at a place with high hardenability, and this martensite causes disconnection during wire drawing. Therefore, the upper limit of the Mn content needs to be 1.00%. In order to further improve the wire drawing characteristics, the upper limit value of the Mn content may be 0.90% or 0.80%. The lower limit value of the Mn content is 0%, but in order to obtain the above-described effect, the lower limit value of the Mn content is preferably 0.20%, more preferably 0.40%.
 P:0~0.02%
 S:0~0.02%
 PおよびSは、不純物元素である。PおよびSが線材中に多量に存在する場合、線材の延性が低下する。従って、PおよびSの上限値は、いずれも0.02%である。好ましくは、P含有量およびS含有量の上限値は、いずれも0.01%であり、より好ましくはいずれも0.005%である。P含有量およびS含有量は少ないほど好ましいので、P含有量およびS含有量の下限値は0%である。しかし、これら元素の含有量を0.001%以下に低減することは、線材の製造コストの上昇を招く。従って、実用鋼ではP含有量およびS含有量の下限値は0.001%となることが通常である。
P: 0 to 0.02%
S: 0 to 0.02%
P and S are impurity elements. When P and S are present in a large amount in the wire, the ductility of the wire is lowered. Therefore, the upper limit values of P and S are both 0.02%. Preferably, the upper limits of the P content and the S content are both 0.01%, and more preferably both 0.005%. The smaller the P content and the S content, the better. Therefore, the lower limit of the P content and the S content is 0%. However, reducing the content of these elements to 0.001% or less causes an increase in the manufacturing cost of the wire. Therefore, in practical steel, the lower limit of the P content and the S content is usually 0.001%.
 本実施形態に係る線材は、上記元素の他、Cr、Ni、Cu、Mo、Ti、Nb、V、B、Al、及び、Caを、本実施形態に係る線材の特性を阻害しない範囲で適宜含有してもよい。しかしながら、これら元素の含有は必須ではないので、これら元素の含有量の下限値は0%である。 In the wire according to the present embodiment, in addition to the above elements, Cr, Ni, Cu, Mo, Ti, Nb, V, B, Al, and Ca are appropriately selected within a range that does not hinder the characteristics of the wire according to the present embodiment. You may contain. However, since the content of these elements is not essential, the lower limit of the content of these elements is 0%.
 Cr:0~1.00%
 Crは、線材の焼入れ性を向上させ、これによりベイナイト変態を促進する元素である。Cr含有量が1.00%を超える場合、変態開始から変態終了までに要する時間が長くなり、これによりベイナイト変態を完了させるまでの熱処理時間が長くなるので好ましくない。また、Mnと同様に、1.00%超のCrは線材中にマルテンサイトを生成させるおそれもある。従って、Cr含有量の上限値を1.00%とする。Cr含有量は、好ましくは0.50%以下であり、より好ましくは0.30%以下である。Cr含有量の下限値は0%であるが、上述の効果を得るために、0.01%以上、より好ましくは0.05%以上のCrを含有してもよい。
Cr: 0 to 1.00%
Cr is an element that improves the hardenability of the wire and thereby promotes bainite transformation. When the Cr content exceeds 1.00%, the time required from the start of transformation to the end of transformation becomes longer, which is not preferable because the heat treatment time until bainite transformation is completed becomes longer. Further, like Mn, Cr exceeding 1.00% may cause martensite to be generated in the wire. Therefore, the upper limit of the Cr content is set to 1.00%. The Cr content is preferably 0.50% or less, and more preferably 0.30% or less. The lower limit of the Cr content is 0%, but in order to obtain the above effect, 0.01% or more, more preferably 0.05% or more of Cr may be contained.
 Ni:0~1.00%
 Niは、Crと同様に、線材の焼入れ性を向上させ、これによりベイナイト変態を推進する元素である。Ni含有量が1.00%を超える場合、フェライト相の延性が低下する。従って、Ni含有量の上限値を1.00%とする。Ni含有量は、好ましくは0.70%以下であり、より好ましくは0.50%以下である。Ni含有量の下限値は0%であるが、上述の効果を得るために、好ましくは0.05%以上、より好ましくは0.10%以上のNiを含有してもよい。
Ni: 0 to 1.00%
Ni, like Cr, is an element that improves the hardenability of the wire and thereby promotes bainite transformation. When the Ni content exceeds 1.00%, the ductility of the ferrite phase decreases. Therefore, the upper limit of the Ni content is set to 1.00%. The Ni content is preferably 0.70% or less, and more preferably 0.50% or less. The lower limit of the Ni content is 0%, but in order to obtain the above-mentioned effect, 0.05% or more, more preferably 0.10% or more of Ni may be contained.
 Cu:0~1.00%
 Cuは、線材の腐食疲労特性を向上させる元素である。Cu含有量が1.00%を超える場合、ベイナイト中のフェライトの延性が低下する。従って、Cu含有量の上限を1.00%とする。Cu含有量は、好ましくは0.70%以下、より好ましくは0.50%以下である。Cu含有量の下限値は0%であるが、上述の効果を得るために、好ましくは0.05%以上、より好ましくは0.10%以上のCuを含有してもよい。
Cu: 0 to 1.00%
Cu is an element that improves the corrosion fatigue characteristics of the wire. When Cu content exceeds 1.00%, the ductility of the ferrite in bainite falls. Therefore, the upper limit of the Cu content is set to 1.00%. The Cu content is preferably 0.70% or less, more preferably 0.50% or less. The lower limit value of the Cu content is 0%, but in order to obtain the above-mentioned effect, 0.05% or more, more preferably 0.10% or more of Cu may be contained.
 Mo:0~0.50%
 Moは、線材の焼入れ性を向上させる元素である。Mo含有量が0.50%を超える場合、線材の焼入れ性が過剰に向上し、これによりMo偏析部にミクロマルテンサイトが析出するおそれがある。ミクロマルテンサイトは、線材の延性を低下させる場合がある。従って、Mo含有量の上限値を0.50%とする。Mo含有量は、好ましくは0.30%以下であり、より好ましくは0.10%以下である。Mo含有量の下限値は0%であるが、上述の効果を得るために、好ましくは0.01%以上、より好ましくは0.03%以上のMoを含有してもよい。
Mo: 0 to 0.50%
Mo is an element that improves the hardenability of the wire. When the Mo content exceeds 0.50%, the hardenability of the wire material is excessively improved, which may cause micromartensite to precipitate in the Mo segregation part. Micro martensite may reduce the ductility of the wire. Therefore, the upper limit of the Mo content is set to 0.50%. Mo content becomes like this. Preferably it is 0.30% or less, More preferably, it is 0.10% or less. The lower limit of the Mo content is 0%, but in order to obtain the above-described effect, 0.01% or more, more preferably 0.03% or more of Mo may be contained.
 Ti:0~0.20%
 Nb:0~0.20%
 V:0~0.20%
 Ti、Nb、及び、Vは、加熱された線材のγ粒径を微細化する。この場合、線材が冷却される際に形成される組織が微細化されるので、線材の靭性が向上する。一方、Ti、Nb、及び、Vの含有量が0.20%を超える場合、本実施形態に係る線材の特性に悪影響を及ぼす。従って、Ti、Nb、及び、Vの含有量いずれの上限値も0.20%とする。Ti、Nb、及び、Vの含有量は、好ましくは、いずれも0.15%以下、より好ましくは0.10%以下である。Ti、Nb、及び、Vの含有量の下限値はいずれも0%であるが、上述の効果を得るために、Ti、Nb、及び、Vの含有量の下限値それぞれを好ましくは0.01%、より好ましくは0.02%としてもよい。
Ti: 0 to 0.20%
Nb: 0 to 0.20%
V: 0 to 0.20%
Ti, Nb, and V refine the γ grain size of the heated wire. In this case, since the structure formed when the wire is cooled is refined, the toughness of the wire is improved. On the other hand, when the content of Ti, Nb, and V exceeds 0.20%, the characteristics of the wire according to this embodiment are adversely affected. Accordingly, the upper limit values of the Ti, Nb, and V contents are set to 0.20%. The contents of Ti, Nb, and V are preferably all 0.15% or less, more preferably 0.10% or less. The lower limit values for the contents of Ti, Nb, and V are all 0%, but in order to obtain the above-mentioned effects, the lower limit values for the contents of Ti, Nb, and V are preferably 0.01%. %, More preferably 0.02%.
 B:0~0.0050%
 Bは、線材の焼入れ性を向上させる。B含有量が0.0050%を超える場合、線材の焼入れ性が高くなり過ぎるので、線材中にマルテンサイトが形成されることにより線材の延性が低下するおそれがある。従って、B含有量の上限値を0.0050%とする。B含有量は、好ましくは0.0040%以下であり、より好ましくは0.0030%以下である。B含有量の下限値は0%であるが、上述の効果を得るために、好ましくは0.0005%以上、より好ましくは0.0010%以上のBを含有してもよい。
B: 0 to 0.0050%
B improves the hardenability of the wire. If the B content exceeds 0.0050%, the hardenability of the wire becomes too high, so that martensite is formed in the wire, which may reduce the ductility of the wire. Therefore, the upper limit of the B content is set to 0.0050%. The B content is preferably 0.0040% or less, and more preferably 0.0030% or less. The lower limit of the B content is 0%, but in order to obtain the above-described effect, 0.0005% or more, more preferably 0.0010% or more of B may be contained.
 Al:0~0.10%
 Alは、脱酸剤として機能する元素である。Al含有量が0.10%を超える場合、硬質のアルミナ系介在物が生成し、この介在物が線材の延性および伸線性を低下させる。従って、Al含有量の上限値を0.10%とする。Al含有量は、好ましくは0.07%以下であり、より好ましくは0.05%以下である。Al含有量の下限値は0%であるが、上述の効果を得るために、好ましくは0.01%以上、より好ましくは0.02%以上のAlを含有してもよい。
Al: 0 to 0.10%
Al is an element that functions as a deoxidizer. When the Al content exceeds 0.10%, hard alumina inclusions are generated, and the inclusions reduce the ductility and wire drawing of the wire. Therefore, the upper limit of the Al content is 0.10%. The Al content is preferably 0.07% or less, and more preferably 0.05% or less. The lower limit of the Al content is 0%, but in order to obtain the above-described effect, Al may preferably be contained by 0.01% or more, more preferably 0.02% or more.
 Ca:0~0.05%
 Caは、線材中の介在物であるMnSの形態を制御することにより、線材の耐遅れ破壊特性を向上させる。しかしながら、Ca含有量が0.05%を超える場合、Caが粗大な介在物を生成し、これにより線材の耐遅れ破壊特性が低下する。従って、Ca含有量の上限値を0.05%とする。Ca含有量は、好ましくは0.04%以下、より好ましくは0.03%以下である。Ca含有量の下限値は0%であるが、上述の効果を得るために、好ましくは0.001%以上、より好ましくは0.005%以上のCaを含有してもよい。
Ca: 0 to 0.05%
Ca improves the delayed fracture resistance of the wire by controlling the form of MnS, which is an inclusion in the wire. However, when the Ca content exceeds 0.05%, Ca generates coarse inclusions, thereby reducing the delayed fracture resistance of the wire. Therefore, the upper limit value of the Ca content is set to 0.05%. The Ca content is preferably 0.04% or less, more preferably 0.03% or less. The lower limit of the Ca content is 0%, but in order to obtain the above effect, 0.001% or more, and more preferably 0.005% or more of Ca may be contained.
 本実施形態に係る線材の成分組成の残部はFe及び不純物からなる。不純物とは、鋼材を工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって混入する成分であって、本実施形態に係る線材に悪影響を与えない範囲で許容されるものを意味する。 The remainder of the component composition of the wire according to this embodiment is made of Fe and impurities. Impurities are components that are mixed due to various factors in the production process, such as ore or scrap, when industrially producing steel materials, and do not adversely affect the wire according to the present embodiment. Means what is allowed.
 次に、本実施形態に係る線材の金属組織について説明する。 Next, the metal structure of the wire rod according to this embodiment will be described.
 ベイナイト:90~100面積%
 本実施形態に係る線材の金属組織は、90~100面積%のベイナイトを含有する。金属組織が90~100面積%のベイナイトを含有する線材(ベイナイト線材)の伸線特性は、金属組織が主にパーライトからなる線材(パーライト線材)と比較して優れている。また、ベイナイトに含まれるセメンタイトは、パーライトに含まれるセメンタイトよりも微細であるので、成分組成が同一のベイナイト線材とパーライト線材とを比較した場合、ベイナイト線材の引張強度はパーライト線材の引張強度よりも低い。線材の引張強度が低い場合、線材、およびこの線材を伸線加工して得られる鋼線の延性、伸線特性、および加工性が高い。これら特性をさらに向上させるために、ベイナイト含有量の下限値を95面積%としてもよく、98面積%としてもよい。ベイナイト以外に、例えばミクロマルテンサイト(MA)、初析セメンタイト等が線材の金属組織に含まれる場合がある。これらの含有は、ベイナイトの含有量が90面積%以上である限り許容される。
Bainite: 90-100% area
The metal structure of the wire according to this embodiment contains 90 to 100 area% bainite. The wire drawing characteristics of a wire rod containing bainite having a metal structure of 90 to 100 area% (bainite wire rod) are superior to those of a wire rod having a metal structure mainly composed of pearlite (pearlite wire rod). Moreover, since cementite contained in bainite is finer than cementite contained in pearlite, when comparing bainite wire and pearlite wire with the same composition, the tensile strength of bainite wire is higher than the tensile strength of pearlite wire. Low. When the tensile strength of a wire is low, the ductility, wire drawing characteristics, and workability of a wire and a steel wire obtained by drawing the wire are high. In order to further improve these characteristics, the lower limit of the bainite content may be 95 area% or 98 area%. In addition to bainite, for example, micromartensite (MA), proeutectoid cementite, and the like may be included in the metal structure of the wire. These contents are permissible as long as the bainite content is 90 area% or more.
 ベイナイトの含有量は、伸線方向に垂直な線材断面を観察することにより求められる。ベイナイトの含有量を測定するための方法の例は、以下の通りである。まず、伸線方向に垂直な線材断面の複数の場所において金属組織像を得る。次に、各金属組織像におけるベイナイトの面積率の平均値を求める。金属組織像を得る撮影領域は特に限定されない。例えば図6に示されるように、伸線方向に垂直な線材断面1の中心部11、表層部12、および線材径の1/4の深さの領域である中間部13それぞれが、互いに可能な限り離隔された4つの撮影領域2を含んでいることが好ましい。金属組織像を得るための手段は特に限定されない。例えば、SEM(走査電子顕微鏡)を用いて、撮影倍率1000倍で金属組織像を撮影することが好ましい。金属組織像においてベイナイトを判別する手段は特に限定されない。その成分組成に鑑みて、本実施形態に係る線材がパーライト、マルテンサイト(ミクロマルテンサイトを含む)、初析セメンタイト、およびベイナイト以外の組織を含むことはないと見なすことができるので、本実施形態に係る線材の金属組織像において、パーライト、マルテンサイト、および初析セメンタイト以外の組織をベイナイトであると見なしてもよい。 The content of bainite can be obtained by observing a cross section of the wire perpendicular to the wire drawing direction. An example of a method for measuring the content of bainite is as follows. First, metal structure images are obtained at a plurality of locations on the wire cross section perpendicular to the wire drawing direction. Next, the average value of the area ratio of bainite in each metal structure image is obtained. The imaging region for obtaining a metallographic image is not particularly limited. For example, as shown in FIG. 6, the center portion 11 of the wire cross section 1 perpendicular to the wire drawing direction, the surface layer portion 12, and the intermediate portion 13, which is a region having a depth of ¼ of the wire diameter, are mutually possible. It is preferable to include four imaging regions 2 that are separated as much as possible. A means for obtaining a metallographic image is not particularly limited. For example, it is preferable to take a metal structure image at an imaging magnification of 1000 using an SEM (scanning electron microscope). The means for discriminating bainite in the metal structure image is not particularly limited. In view of the component composition, it can be considered that the wire according to the present embodiment does not contain a structure other than pearlite, martensite (including micromartensite), proeutectoid cementite, and bainite. In the metal structure image of the wire according to the present invention, a structure other than pearlite, martensite, and proeutectoid cementite may be regarded as bainite.
 次に、本実施形態に係る線材の機械特性について説明する。 Next, the mechanical characteristics of the wire according to this embodiment will be described.
 線材の平均引張強度TS:810×[C]+475N/mm2以下
 本実施形態に係る線材の機械特性は、長さ3200mmの線材を、同じ長さを有する8つの要素に分割することにより得られる、8本の長さ400mmの試験片の特性を測定することにより評価される。上述の8本の試験片の引張強度の平均値が、線材の平均引張強度TSと定義される。本実施形態に係る線材の平均引張強度TSは、下記式1を満足する。
  [TS]≦810×[C]+475             ・・・(1)
 ここで、[C]は単位質量%で表された線材のC含有量であり、[TS]は、単位N/mmで表された平均引張強度TSである。
Average tensile strength TS of wire: 810 × [C] +475 N / mm 2 or less The mechanical properties of the wire according to this embodiment are obtained by dividing a wire having a length of 3200 mm into eight elements having the same length. Evaluation is made by measuring the characteristics of eight test pieces 400 mm long. The average value of the tensile strength of the eight test pieces described above is defined as the average tensile strength TS of the wire. The average tensile strength TS of the wire according to this embodiment satisfies the following formula 1.
[TS] ≦ 810 × [C] +475 (1)
Here, [C] is the C content of the wire expressed in unit mass%, and [TS] is the average tensile strength TS expressed in unit N / mm 2 .
 線材の引張強度を増大させる主な要因は、線材のC含有量、および線材製造時の熱処理条件である。線材のC含有量に起因する引張強度の増大は、線材の引張強度をばらつかせない。何故なら、C含有量の増大に伴って生じる引張強度の増大は、線材全体にわたって一様に生じるからである。一方、線材製造時の熱処理条件に起因する引張強度の増大は、線材の引張強度をばらつかせるおそれがある。特に、線材の径が小さい場合、線材の単位長さ当たりの熱容量が小さく、線材の長さ方向の温度分布が大きくなるので、熱処理を線材全体で一様に行うことが難しくなり、引張強度のばらつきが生じやすい。熱処理が引張強度に及ぼす影響が大きいほど、引張強度のばらつきも大きくなる。線材の引張強度がばらついている場合、線材および鋼線の加工性がばらつくので、線材および鋼線の機械加工が難しくなる。さらに、この場合、線材の引張強度が高い箇所において遅れ破壊(水素脆化)に対する感受性が高まり、折損が生じる。 The main factors that increase the tensile strength of the wire are the C content of the wire and the heat treatment conditions during wire manufacture. The increase in tensile strength due to the C content of the wire does not vary the tensile strength of the wire. This is because the increase in tensile strength that occurs with an increase in C content occurs uniformly throughout the wire. On the other hand, an increase in tensile strength due to heat treatment conditions during wire manufacture may cause the wire tensile strength to vary. In particular, when the diameter of the wire is small, the heat capacity per unit length of the wire is small and the temperature distribution in the length direction of the wire is large, making it difficult to perform heat treatment uniformly throughout the wire, Variations are likely to occur. The greater the effect of heat treatment on tensile strength, the greater the variation in tensile strength. When the tensile strength of the wire varies, the workability of the wire and the steel wire varies, so that the machining of the wire and the steel wire becomes difficult. Further, in this case, the sensitivity to delayed fracture (hydrogen embrittlement) is increased at a portion where the tensile strength of the wire is high, and breakage occurs.
 以上の事項に鑑みて、本実施形態に係る線材の平均引張強度は、C含有量のみによって規定される上限値を下回る必要がある。本発明者らは、上記式1によって、平均引張強度TSの上限値を限定した。 In view of the above matters, the average tensile strength of the wire according to this embodiment needs to be lower than the upper limit value defined only by the C content. The present inventors limited the upper limit value of the average tensile strength TS by the above formula 1.
 上記式1における係数“810”及び“475”は、C含有量が0.80%超である線材、即ちC含有量が共析点を上回る線材において、本発明者らが実験的に求めた係数である。式1によって規定される上限値を、線材の平均引張強度TSが上回る場合(即ち、C含有量に対して平均引張強度が高すぎる場合)、熱処理が引張強度に及ぼす影響が不適切な水準まで高まるので、線材の引張強度のばらつきが大きくなり、これにより機械加工の安定性が損なわれ、且つ折損が生じやすくなることを本発明者らは知見した。この場合、線材の製造の際の熱処理条件が適切ではなく、従って、線材の引張強度が不均一に高められていると考えられる。 The coefficients “810” and “475” in the above formula 1 were experimentally determined by the present inventors for a wire having a C content exceeding 0.80%, that is, a wire having a C content exceeding the eutectoid point. It is a coefficient. When the average tensile strength TS of the wire exceeds the upper limit defined by Equation 1 (that is, when the average tensile strength is too high for the C content), the effect of heat treatment on the tensile strength is inappropriate. The present inventors have found that the variation in the tensile strength of the wire is increased, which increases the stability of machining and easily breaks. In this case, it is considered that the heat treatment conditions at the time of manufacturing the wire are not appropriate, and therefore the tensile strength of the wire is increased unevenly.
 図2に、平均引張強度TS(N/mm2)とC含有量(質量%)の関係の一例を示す。図から、本実施形態に係る線材の平均引張強度TSは、“[TS]≦810×[C]+475”の領域内にあることが解る。 In FIG. 2, an example of the relationship between average tensile strength TS (N / mm < 2 >) and C content (mass%) is shown. From the figure, it can be seen that the average tensile strength TS of the wire according to the present embodiment is in the region of “[TS] ≦ 810 × [C] +475”.
 線材の引張強度の下限値は特に規定されない。しかし、工業的に利用される線材にはある程度の引張強度が求められることが通常である。線材の平均引張強度がC含有量に対して低すぎる場合も、線材を工業的に利用することが難しくなる。従って、本実施形態に係る線材の平均引張強度を、以下の式1’、式1’’、または式1’’’によって規定してもよい。
  810×[C]+425≦[TS]≦810×[C]+475・・・(式1’)
  810×[C]+435≦[TS]≦810×[C]+475・・・(式1’’)
  810×[C]+445≦[TS]≦810×[C]+475・・・(式1’’’)
The lower limit value of the tensile strength of the wire is not particularly specified. However, a certain amount of tensile strength is usually required for industrially used wires. Even when the average tensile strength of the wire is too low with respect to the C content, it is difficult to industrially use the wire. Therefore, you may prescribe | regulate the average tensile strength of the wire which concerns on this embodiment by the following formula | equation 1 ', Formula 1'', or Formula 1'''.
810 × [C] + 425 ≦ [TS] ≦ 810 × [C] +475 (Formula 1 ′)
810 × [C] + 435 ≦ [TS] ≦ 810 × [C] +475 (Formula 1 ″)
810 × [C] + 445 ≦ [TS] ≦ 810 × [C] +475 (Formula 1 ″ ′)
 線材の平均絞り値RA:-0.083×TS+154以上
 本実施形態に係る線材の機械特性の評価は、長さ3200mmの線材を、同じ長さを有する8つの要素に分割することにより得られる、8本の長さ400mmの試験片の特性を測定することにより行われる。上述の8本の試験片の絞り値の平均値が、線材の平均絞り値RAと定義される。本実施形態に係る線材の平均絞り値RAは、下記式2を満足する。
  [RA]≧-0.083×[TS]+154         ・・・(式2)
 ここで、[TS]は、単位N/mmで表された平均引張強度TSである。
Average drawing value RA of wire rod: −0.083 × TS + 154 or more Evaluation of the mechanical properties of the wire rod according to the present embodiment is obtained by dividing a wire rod having a length of 3200 mm into eight elements having the same length. This is done by measuring the characteristics of eight 400 mm long test pieces. The average value of the above-mentioned eight test pieces is defined as the average drawing value RA of the wire. The average drawing value RA of the wire according to the present embodiment satisfies the following formula 2.
[RA] ≧ −0.083 × [TS] +154 (Formula 2)
Here, [TS] is the average tensile strength TS expressed in the unit N / mm 2 .
 また、本実施形態に係る線材においては、平均絞り値RAの下限値を、平均引張強度TSから算出される下限値によって限定する。 Moreover, in the wire according to the present embodiment, the lower limit value of the average drawing value RA is limited by the lower limit value calculated from the average tensile strength TS.
 上記式2における係数“-0.083”及び“154”は、C含有量が過共析の領域内にある種々の線材の平均引張強度と平均絞り値とを調査することにより、本発明者らが実験的に求めた係数である。後述する、本実施形態に係る製造方法によって得られた線材の絞り値は、少なくとも「-0.083×[TS]+154」以上の平均絞り値を有していた。この平均絞り値は、従来のパーライト線材の平均絞り値を上回るものである。一方、金属組織が90~100%のベイナイトを有していない線材の平均絞り値は、上述の下限値よりも低かった。また、金属組織が主にベイナイトから成るが、このベイナイトが、過冷却状態のオーステナイトをベイナイト変態の開始前に加熱することにより得られたものである線材の平均絞り値も、上述の下限値より低かった。 The coefficients “−0.083” and “154” in the above equation 2 are obtained by investigating the average tensile strength and the average drawing value of various wires whose C content is in the hypereutectoid region. Is a coefficient obtained experimentally. The aperture value of the wire obtained by the manufacturing method according to this embodiment, which will be described later, had an average aperture value of at least “−0.083 × [TS] +154”. This average aperture value exceeds the average aperture value of the conventional pearlite wire. On the other hand, the average drawing value of the wire rod having no bainite having a metal structure of 90 to 100% was lower than the above lower limit value. Moreover, although the metal structure is mainly composed of bainite, this bainite is obtained by heating the supercooled austenite before the start of the bainite transformation. It was low.
 線材の引張強度のばらつき幅:8本の試験片の各引張強度のうち最大値と最小値との差が50N/mm以下
 本実施形態に係る線材の機械特性の評価は、長さ3200mmの線材を、同じ長さを有する8つの要素に分割することにより得られる、8本の長さ400mmの試験片の特性を測定することにより行われる。本実施形態に係る線材においては、上述の各試験片の各引張強度のうち最大値と最小値との差が、線材の引張強度のばらつき幅と定義される。本実施形態に係る線材の引張強度のばらつき幅は50N/mm以下である。
Variation width of the tensile strength of the wire: The difference between the maximum value and the minimum value among the tensile strengths of the eight test pieces is 50 N / mm 2 or less. The evaluation of the mechanical properties of the wire according to this embodiment is 3200 mm in length. This is done by measuring the properties of eight 400 mm long specimens obtained by dividing the wire into eight elements having the same length. In the wire according to the present embodiment, the difference between the maximum value and the minimum value among the tensile strengths of the test pieces described above is defined as the variation width of the tensile strength of the wire. The variation width of the tensile strength of the wire according to this embodiment is 50 N / mm 2 or less.
 線材の引張強度が大きい場合、線材、および線材を伸線加工して得られる鋼線の加工性が小さくなる。線材の引張強度のばらつき幅が50N/mm超である場合、この線材、およびこの線材を伸線加工することにより得られる鋼線を一定条件下で加工することが困難になる。さらに、この場合、線材の引張強度が高い箇所において遅れ破壊(水素脆化)に対する感受性が高まり、折損が生じる。線材および鋼線の加工をさらに容易にし、且つ線材の折損の発生をさらに抑制するために、線材の引張強度のばらつき幅は45N/mm以下、40N/mm以下、35N/mm以下、または30N/mm以下であってもよい。 When the tensile strength of the wire is large, the workability of the wire and the steel wire obtained by drawing the wire is reduced. When the variation width of the tensile strength of the wire is more than 50 N / mm 2 , it becomes difficult to process the wire and a steel wire obtained by drawing the wire under a certain condition. Further, in this case, the sensitivity to delayed fracture (hydrogen embrittlement) is increased at a portion where the tensile strength of the wire is high, and breakage occurs. Wires and to further facilitate the processing of the steel wire, and in order to further suppress the occurrence of breakage of the wire, the variation range of the tensile strength of the wire is 45N / mm 2 or less, 40N / mm 2 or less, 35N / mm 2 or less, Alternatively, it may be 30 N / mm 2 or less.
 本実施形態に係る線材の径は特に規定されない。しかしながら、線材の引張強度のばらつきをさらに抑止するために、線材の径を3.5~16.0mmとしてもよい。上述のように、線材の径が3.5mm未満である場合、線材の単位長さ当たりの熱容量が小さく、線材の長さ方向の温度分布が大きくなるので、熱処理を線材全体で一様に行うことが難しくなり、引張強度のばらつきが生じやすい。一方、線材の径が16.0mm超である場合、線材の中心部と表層部とを一様に冷却することが難しくなり、線材の中心部の金属組織を所定のものとすることが難しくなるおそれがある。 The diameter of the wire according to this embodiment is not particularly specified. However, in order to further suppress variations in the tensile strength of the wire, the diameter of the wire may be set to 3.5 to 16.0 mm. As described above, when the diameter of the wire is less than 3.5 mm, the heat capacity per unit length of the wire is small and the temperature distribution in the length direction of the wire is large, so the heat treatment is performed uniformly over the entire wire. This makes it difficult to produce variations in tensile strength. On the other hand, when the diameter of the wire is more than 16.0 mm, it becomes difficult to uniformly cool the center portion and the surface layer portion of the wire, and it becomes difficult to make the metal structure of the center portion of the wire a predetermined one. There is a fear.
 次に、本実施形態に係る線材および鋼線の製造方法(以下「本実施形態に係る製造方法」ということがある。)について説明する。 Next, a method for manufacturing a wire and a steel wire according to the present embodiment (hereinafter sometimes referred to as “manufacturing method according to the present embodiment”) will be described.
 本実施形態に係る線材の製造方法は、図4に示されるように、(a)上述した本実施形態に係る線材の成分組成を有する鋼片を圧延して線材を得る工程と、(b)850~1050℃の線材を350~450℃の第1の溶融塩浴又は溶融鉛浴の中に浸漬し、次いで線材を第1の溶融塩浴又は溶融鉛浴から取り出す工程と、(c)取り出しから5秒以内の時点であって、かつ線材のベイナイト変態の開始のt秒前~t秒後である時点に、線材を530~600℃の第2の溶融塩浴又は溶融鉛浴の中に浸漬する工程と、(d)前記線材を、前記ベイナイト変態が完全に終了した後に第2の溶融塩浴又は溶融鉛浴から取り出す工程と、を備える。tは、以下の式3によって求められる。
 t=0.05×tcomplete・・・(式3)
 tcompleteは、線材を第1の溶融塩浴または溶融鉛浴に浸漬し続けた場合に、線材のベイナイト変態が開始してから終了するまでの時間を単位秒で示す。本実施形態に係る過共析ベイナイト鋼線の製造方法は、図4に示されるように、上記(a)~(d)に加えて、線材を第1の溶融塩浴または溶融鉛浴に浸漬する前に、線材に伸線加工を行って鋼線を得る工程を備える。また、本発明の別の実施形態に係る過共析ベイナイト鋼線の製造方法は、図5に示されるように、上記(a)~(d)に加えて、(e)第2の溶融塩浴又は溶融鉛浴から取り出された線材に伸線加工を施す工程を備える。なお、図4および図5において、「溶融塩浴又は溶融鉛浴」は、単に「浴」と記載されている。以降、線材のベイナイト変態の開始のt秒前~t秒後である時点において線材を第2の溶融塩浴又は溶融鉛浴の中に浸漬することを「線材のベイナイト変態の開始と略同時に線材を第2の溶融塩浴又は溶融鉛浴の中に浸漬する」と記載する場合がある。
As shown in FIG. 4, the method for manufacturing a wire according to the present embodiment includes (a) a step of obtaining a wire by rolling a steel piece having the above-described composition of the wire according to the present embodiment, and (b). Immersing a wire at 850 to 1050 ° C. in a first molten salt bath or molten lead bath at 350 to 450 ° C., and then removing the wire from the first molten salt bath or molten lead bath; from a time within 5 seconds, and the time is t s seconds before the start of bainite transformation of the wire ~ t s seconds after, the second molten salt bath or molten lead bath the wire 530 ~ 600 ° C. Dipping in, and (d) removing the wire from the second molten salt bath or molten lead bath after the bainite transformation is completely completed. t s is obtained by the following Equation 3.
t s = 0.05 × t complete (Expression 3)
t complete indicates the time from the start to the end of the bainite transformation of the wire in a unit of seconds when the wire is continuously immersed in the first molten salt bath or molten lead bath. In the hypereutectoid bainite steel wire manufacturing method according to this embodiment, as shown in FIG. 4, in addition to the above (a) to (d), the wire is immersed in the first molten salt bath or molten lead bath. Before performing, the wire rod is drawn to provide a steel wire. In addition to the above (a) to (d), the method for producing a hypereutectoid bainite steel wire according to another embodiment of the present invention includes (e) a second molten salt as shown in FIG. A step of drawing the wire taken out of the bath or molten lead bath. 4 and 5, “molten salt bath or molten lead bath” is simply referred to as “bath”. Since, starting substantially bainite transformation "wire to being dipped into the wire rods second molten salt bath or molten lead bath at a time is t s seconds before ~ t s seconds after the start of bainite transformation of the wire At the same time, the wire may be dipped in the second molten salt bath or molten lead bath.
 図1に、本実施形態に係る製造方法の熱処理を示す。図中の、(b)との記号が付された矢印は、850~1050℃の線材を350~450℃の範囲の温度T1の第1の溶融塩浴又は溶融鉛浴に浸漬し、次いで取り出すこと、即ち上述の(b)を示す。(b)において、線材は温度T1で保定され、取り出され、次いで第2の溶融塩浴または溶融鉛浴に移送される。図中のtは、線材を第1の溶融塩浴又は溶融鉛浴に浸漬する時間と、線材を第1の溶融塩浴又は溶融鉛浴から第2の溶融塩浴または溶融鉛浴に移送する時間との合計(すなわち、線材が第1の溶融塩浴又は溶融鉛浴に浸漬された時点から、線材が第2の溶融塩浴又は溶融鉛浴に浸漬された時点までの時間)を示す。図中の、(c)との記号が付された矢印は、ベイナイト変態の開始と略同時に、線材を、530~600℃の範囲の温度(T1+ΔT)の第2の溶融塩浴又は溶融鉛浴に浸漬すること、即ち上述の(c)を示す。図中の、(d)との記号が付された矢印は、第2の溶融塩浴又は溶融鉛浴に、線材を、ベイナイト変態が完全に終了するまで保定すること、即ち上述の(d)を示す。 In FIG. 1, the heat processing of the manufacturing method which concerns on this embodiment is shown. In the figure, the arrow with the symbol (b) indicates that a wire at 850 to 1050 ° C. is immersed in the first molten salt bath or molten lead bath at a temperature T 1 in the range of 350 to 450 ° C. Taking out, that is, the above-mentioned (b) is shown. (B), the wire rod is retention at a temperature T 1, taken out and then transferred to a second molten salt bath or molten lead bath. T 1 in the figure indicates the time for immersing the wire in the first molten salt bath or molten lead bath, and the wire is transferred from the first molten salt bath or molten lead bath to the second molten salt bath or molten lead bath. (I.e., the time from when the wire is immersed in the first molten salt bath or molten lead bath to the time when the wire is immersed in the second molten salt bath or molten lead bath) . In the figure, the arrow with the symbol (c) indicates that the wire is melted in the second molten salt bath or melt at a temperature in the range of 530 to 600 ° C. (T 1 + ΔT) almost simultaneously with the start of the bainite transformation. Immersion in a lead bath, that is, the above (c) is shown. In the figure, the arrow with the symbol (d) indicates that the wire is held in the second molten salt bath or molten lead bath until the bainite transformation is completely completed, that is, the above (d). Indicates.
 第1の溶融塩浴又は溶融鉛浴に浸漬する前の線材の温度:850~1050℃
 本実施形態に係る線材の製造方法では、まず、本実施形態に係る線材の成分組成を有する鋼片を圧延して線材を得る。次いで、この線材を第1の溶融塩浴又は溶融鉛浴に浸漬する。圧延と浸漬との間に一旦線材を冷却し、次いで再加熱してもよいし、圧延と浸漬との間に冷却および再加熱を行わなくても良い。また、圧延と浸漬との間に、線材に伸線加工を行っても良い。いずれの場合でも、第1の溶融塩浴又は溶融鉛浴に浸漬される線材の温度は850~1050℃とする。通常、圧延直後の線材の温度は1050℃以下であるので、圧延後の線材または伸線後の鋼線を第1の溶融塩浴又は溶融鉛浴に直接浸漬する(即ち、冷却および再加熱を行わずに浸漬する)場合、浸漬される線材または鋼線の温度の上限は、実質的に1050℃となる。また、圧延後の線材または伸線後の鋼線を一旦冷却し、次いで再加熱した後に第1の溶融塩浴又は溶融鉛浴に浸漬する場合であっても、第1の溶融塩浴又は溶融鉛浴に浸漬される線材または鋼線の温度の上限値を1050℃としてもよい。線材または鋼線を1050℃以上に加熱することの利点が存在しないからである。第1の溶融塩浴又は溶融鉛浴に浸漬される線材または鋼線の温度が850℃未満であると、線材または鋼線に焼入れが十分行われなくなるので、第1の溶融塩浴又は溶融鉛浴に浸漬される線材または鋼線の温度の下限値は850℃とする。なお、圧延と浸漬との間に、線材に伸線加工を行う場合、以降の工程の説明における「線材」との記載は適宜「鋼線」と読み替えられる。
Temperature of the wire before being immersed in the first molten salt bath or molten lead bath: 850 to 1050 ° C.
In the manufacturing method of the wire according to the present embodiment, first, a steel piece having the component composition of the wire according to the present embodiment is rolled to obtain a wire. Next, this wire is immersed in the first molten salt bath or molten lead bath. The wire may be cooled once between rolling and dipping and then reheated, or cooling and reheating may not be performed between rolling and dipping. Moreover, you may wire-draw a wire between rolling and immersion. In either case, the temperature of the wire immersed in the first molten salt bath or molten lead bath is 850 to 1050 ° C. Usually, since the temperature of the wire immediately after rolling is 1050 ° C. or less, the wire after rolling or the steel wire after drawing is directly immersed in the first molten salt bath or molten lead bath (that is, cooling and reheating are performed). In the case of immersion), the upper limit of the temperature of the immersed wire or steel wire is substantially 1050 ° C. In addition, even if the wire rod after rolling or the steel wire after drawing is once cooled and then reheated and then immersed in the first molten salt bath or molten lead bath, the first molten salt bath or molten It is good also considering the upper limit of the temperature of the wire rod or steel wire immersed in a lead bath as 1050 degreeC. This is because there is no advantage of heating the wire or steel wire to 1050 ° C. or higher. When the temperature of the wire or steel wire immersed in the first molten salt bath or molten lead bath is less than 850 ° C., the wire or steel wire is not sufficiently quenched, so the first molten salt bath or molten lead The lower limit of the temperature of the wire rod or steel wire immersed in the bath is 850 ° C. In addition, when wire drawing is performed on a wire between rolling and dipping, the description of “wire” in the description of the subsequent steps is appropriately read as “steel wire”.
 第1の溶融塩浴又は溶融鉛浴の温度:350~450℃
 本実施形態に係る線材の製造方法では、850~1050℃の線材を、第1の溶融塩浴又は溶融鉛浴に浸漬することにより急冷する(図1中(b))。第1の溶融塩浴又は溶融鉛浴の温度Tは、350~450℃である。この急冷により、線材の金属組織は過冷却状態のオーステナイトとなる。この状態で線材を等温保持すると、過冷却状態のオーステナイトのベイナイト変態が開始する。
Temperature of the first molten salt bath or molten lead bath: 350 to 450 ° C.
In the manufacturing method of the wire according to the present embodiment, the wire at 850 to 1050 ° C. is rapidly cooled by being immersed in the first molten salt bath or molten lead bath ((b) in FIG. 1). The temperature T 1 of the first molten salt bath or molten lead bath is 350 to 450 ° C. By this rapid cooling, the metal structure of the wire becomes a supercooled austenite. When the wire is kept isothermal in this state, the bainite transformation of the austenite in the supercooled state starts.
 第1の溶融塩浴又は溶融鉛浴の温度Tが450℃超である場合、線材の冷却速度が低下するので、線材の金属組織が、過冷却状態のオーステナイトになる前にベイナイト変態する。この場合、線材の引張強度は下がるが、線材中に初析セメンタイトが析出する。初析セメンタイトは線材の伸線特性を悪化させる。従って、線材を急冷するために、第1の溶融塩浴又は溶融鉛浴の温度Tを450℃以下とする必要がある。一方、第1の溶融塩浴又は溶融鉛浴の温度Tが350℃未満である場合、第1の溶融塩浴又は溶融鉛浴が凝固するおそれがある。線材を第1の溶融塩浴又は溶融鉛浴の中に浸漬する時間は、線材を第2の溶融塩浴又は溶融鉛浴の中に浸漬する工程を規定通り行うことができるように、適宜調整される必要がある。 When the temperature T1 of the first molten salt bath or the molten lead bath is higher than 450 ° C., the cooling rate of the wire decreases, so that the metal structure of the wire is transformed into bainite before becoming a supercooled austenite. In this case, the tensile strength of the wire is lowered, but pro-eutectoid cementite is precipitated in the wire. Proeutectoid cementite deteriorates the wire drawing properties of the wire. Therefore, in order to rapidly cool the wire, the temperature T1 of the first molten salt bath or molten lead bath needs to be 450 ° C. or lower. On the other hand, if the temperature T 1 of the first molten salt bath or molten lead bath is below 350 ° C., there is a possibility that the first molten salt bath or molten lead bath solidifies. The time for immersing the wire in the first molten salt bath or molten lead bath is appropriately adjusted so that the step of immersing the wire in the second molten salt bath or molten lead bath can be performed as prescribed. Need to be done.
 線材を第2の溶融塩浴又は溶融鉛浴に浸漬する時点:第1の溶融塩浴又は溶融鉛浴からの線材の取り出しから5秒以内の時点であって、かつ線材のベイナイト変態の開始のt秒前~t秒後である時点
 本実施形態に係る線材の製造方法では、温度Tである第1の溶融塩浴又は溶融鉛浴から線材が取り出されてから5秒以内の時点であって、かつ線材のベイナイト変態の開始のt秒前~t秒後である時点に、線材を温度Tである第2の溶融塩浴又は溶融鉛浴の中に浸漬する。
When the wire is immersed in the second molten salt bath or molten lead bath: within 5 seconds from the removal of the wire from the first molten salt bath or molten lead bath, and the start of the bainite transformation of the wire Time point before t s seconds to time point after t s seconds In the wire manufacturing method according to this embodiment, a time point within 5 seconds after the wire is taken out from the first molten salt bath or molten lead bath at temperature T 1. a is, and the time is t s seconds before ~ t s seconds after the start of bainite transformation of the wire, immersing the wire in a second molten salt bath or molten lead bath at a temperature T 2.
 本発明者らは、線材が第1の溶融塩浴又は溶融鉛浴に浸漬された時点から、線材が第2の溶融塩浴又は溶融鉛浴に浸漬された時点までの時間(即ち、第1の溶融塩浴又は溶融鉛浴内に線材が浸漬されている時間と、第1の溶融塩浴又は溶融鉛浴から第2の溶融塩浴又は溶融鉛浴へ線材を移送する時間との合計時間)tと、第1の溶融塩浴又は溶融鉛浴の温度Tとを変化させた種々の製造条件によって線材を製造し、それら線材の引張強度のばらつき幅を測定した。これにより得られたデータを用いて、温度T、時間t、および引張強度のばらつき幅の関係を調査した。その結果、図3に示される結果が得られた。 The inventors of the present invention have determined the time from when the wire is immersed in the first molten salt bath or the molten lead bath to the time when the wire is immersed in the second molten salt bath or the molten lead bath (that is, the first molten salt bath or the molten lead bath). The total time of the time during which the wire is immersed in the molten salt bath or molten lead bath and the time for transferring the wire from the first molten salt bath or molten lead bath to the second molten salt bath or molten lead bath ) Wires were produced under various production conditions in which t 1 and the temperature T 1 of the first molten salt bath or molten lead bath were changed, and the variation widths of the tensile strengths of these wires were measured. Using the data thus obtained, the relationship between the temperature T 1 , the time t 1 and the variation width of the tensile strength was investigated. As a result, the result shown in FIG. 3 was obtained.
 図3中の、記号「S」が付された曲線は、ベイナイト変態が開始する温度および時間を示す曲線(以下、S曲線と称する)である。この曲線は、線材の成分組成に応じて変化する。図3中に記載されているデータポイントは、このデータポイントに係る線材を製造した際の温度Tおよび時間tを表している。曲線より左側にあるデータポイントに係る線材は、ベイナイト変態の開始前に第2の溶融塩浴又は溶融鉛浴に浸漬された線材であり、曲線より右側にあるデータポイントに係る線材は、ベイナイト変態の開始後に第2の溶融塩浴又は溶融鉛浴に浸漬された線材である。図3中において、各データポイントに関して記載されている点線は、各データポイントに係る線材の熱履歴を示す。データポイントの種類が「BAD」である線材の引張強度のばらつき幅は50N/mm超であり、データポイントの種類が「GOOD」である線材の引張強度のばらつき幅は40N/mm超50N/mm以下であり、データポイントの種類が「VERY GOOD」である線材の引張強度のばらつき幅は40N/mm以下である。 The curve to which the symbol “S” is attached in FIG. 3 is a curve (hereinafter referred to as S curve) indicating the temperature and time at which the bainite transformation starts. This curve changes according to the component composition of the wire. Data points that are described in FIG. 3 represents the temperature T 1 and the time t 1 at the time of manufacture wire according to the data points. The wire according to the data point on the left side of the curve is a wire immersed in the second molten salt bath or the molten lead bath before the start of the bainite transformation, and the wire according to the data point on the right side of the curve is the bainite transformation. Is a wire rod immersed in a second molten salt bath or a molten lead bath after the start of the above. In FIG. 3, the dotted line described regarding each data point shows the thermal history of the wire which concerns on each data point. The variation width of the tensile strength of the wire having the data point type “BAD” is more than 50 N / mm 2 , and the variation width of the tensile strength of the wire having the data point type “GOOD” is more than 40 N / mm 2 to 50 N. / Mm 2 or less, and the variation width of the tensile strength of the wire material whose data point type is “VERY GOOD” is 40 N / mm 2 or less.
 図3中に表されているように、曲線に近接しているデータポイントに係る線材(すなわち、ベイナイト変態の開始と略同時に第2の溶融塩浴又は溶融鉛浴に浸漬された線材)において、引張強度のばらつき幅は小さかった。 As shown in FIG. 3, in the wire according to the data point close to the curve (that is, the wire immersed in the second molten salt bath or molten lead bath almost simultaneously with the start of the bainite transformation), The variation width of the tensile strength was small.
 時間tは、線材のベイナイト変態の開始のt秒前~t秒後である時点に線材が第2の溶融塩浴又は溶融鉛浴内に浸漬されるように、適宜設定される。tとは、以下に示す式3によって求められる値である。
 t=0.05×tcomplete・・・(式3)
 tcompleteは、線材を第1の溶融塩浴または溶融鉛浴に浸漬し続けた場合に、線材のベイナイト変態が開始してから終了するまでの時間を単位秒で示す。
Time t 1, as the start of t s seconds before ~ t s seconds after a which point the wire of bainite transformation of the wire is immersed in a second molten salt bath or in molten lead bath is appropriately set. t s is a value obtained by Equation 3 shown below.
t s = 0.05 × t complete (Expression 3)
t complete indicates the time from the start to the end of the bainite transformation of the wire in a unit of seconds when the wire is continuously immersed in the first molten salt bath or molten lead bath.
 線材を第1の溶融塩浴又は溶融鉛浴に浸漬してから線材のベイナイト変態が開始するまでの時間と、tとは、線材の成分組成に対応するS曲線と、第1の溶融塩浴又は溶融鉛浴の温度とに応じて決まる。従って、線材の成分組成と第1の溶融塩浴又は溶融鉛浴の温度とに基づいたシミュレーションおよび/または予備実験によって、時間tが求められる。また、後述するように、線材の復熱を検出することにより、線材を第1の溶融塩浴又は溶融鉛浴に浸漬してから線材のベイナイト変態が開始するまでの時間を求められる。従って、線材を製造する前に、上述の手段によって、時間tを決定するための予備的な調査を行っても良い。 Time from immersing the wire in a first molten salt bath or molten lead bath until bainite transformation of the wire is started, and t s, and S curve corresponding to the composition of the wire rod, a first molten salt It depends on the temperature of the bath or molten lead bath. Accordingly, the time t 1 is determined by simulation and / or preliminary experiments based on the component composition of the wire and the temperature of the first molten salt bath or molten lead bath. Further, as will be described later, by detecting the recuperation of the wire, the time from when the wire is immersed in the first molten salt bath or molten lead bath until the start of bainite transformation of the wire is obtained. Therefore, a preliminary investigation for determining the time t 1 may be performed by the above-mentioned means before manufacturing the wire.
 線材のベイナイト変態の開始と略同時に線材を第2の溶融塩浴又は溶融鉛浴に浸漬することによって、線材の引張強度のばらつきが抑制される理由は明らかではない。しかし、以下に説明する理由が推定される。線材のベイナイト変態が、第1の溶融塩浴又は溶融鉛浴への浸漬の間、または第2の溶融塩浴又は溶融鉛浴への移送中に生じた場合、復熱(変態発熱)によって、第1の溶融塩浴又は溶融鉛浴への浸漬の間、または第2の溶融塩浴又は溶融鉛浴への移送中に線材温度が上昇する。この場合、線材温度の上昇が不均一に生じるおそれがある。何故なら、溶融塩浴または溶融鉛浴において線材の熱処理を行う場合、線材は、例えば図7に示されるようなコイル形状を有した状態で溶融塩浴または溶融鉛浴に浸漬され、次いで取り出されるからである。熱処理中の線材がコイル形状を有している場合、線材同士が重なり合っている部分は、それ以外の部分よりも、復熱に起因した温度上昇が大きくなる。何故なら、第1の溶融塩浴又は溶融鉛浴による冷却効果が、線材同士が重なり合っている部分には比較的及びにくいからである。従って、上述の時間tが長くなることにより、線材の加熱の開始が遅れた場合、線材温度の不均一な上昇により、線材の引張強度のばらつきが生じる。なお、熱処理時に線材をコイル形状とすることは、線材の製造効率を高めるために不可欠である。特別の理由が無い限り、線材同士が重なり合わない形状を有した状態で線材を溶融塩浴または溶融鉛浴に浸漬することはない。一方、上述の時間tが短くなり、ベイナイト変態の開始よりもt秒超前に線材が第2の溶融塩浴又は溶融鉛浴に浸漬された場合、変態の開始が早まるので、変態開始温度が高くなる。この場合、線材の強度の上昇および線材の延性の低下が生じる。 It is not clear why the variation in tensile strength of the wire is suppressed by immersing the wire in the second molten salt bath or molten lead bath substantially simultaneously with the start of the bainite transformation of the wire. However, the reason explained below is estimated. If the bainite transformation of the wire occurs during immersion in the first molten salt bath or molten lead bath or during transfer to the second molten salt bath or molten lead bath, recuperation (transformation exotherm) causes The wire temperature rises during immersion in the first molten salt bath or molten lead bath or during transfer to the second molten salt bath or molten lead bath. In this case, the wire temperature may increase unevenly. This is because when a wire is heat-treated in a molten salt bath or a molten lead bath, the wire is immersed in a molten salt bath or a molten lead bath in a state having a coil shape as shown in FIG. 7, for example, and then taken out. Because. When the wire during heat treatment has a coil shape, the temperature rise due to recuperation is greater in the portion where the wires overlap each other than in the other portions. This is because the cooling effect of the first molten salt bath or the molten lead bath is relatively difficult to reach the portion where the wires overlap. Thus, by the time t 1 of the above becomes longer, if the delayed start of the heating of the wire, the non-uniform rise of the wire temperature, variation in the tensile strength of the wire occurs. In addition, it is indispensable to make a wire shape into a coil shape at the time of heat processing, in order to improve the manufacture efficiency of a wire. Unless there is a special reason, a wire is not immersed in a molten salt bath or a molten lead bath in a state where the wires do not overlap each other. On the other hand, the above time t 1 is short, if the wire to t s s ultra before the start of bainite transformation is immersed in a second molten salt bath or molten lead bath, since the start of the transformation is accelerated, transformation starting temperature Becomes higher. In this case, the strength of the wire increases and the ductility of the wire decreases.
 上述の理由に鑑みて、第2の溶融塩浴又は溶融鉛浴への線材の浸漬は、線材のベイナイト変態の開始と完全に同時に行われることが最も好ましい。しかしながら本発明者らは、ベイナイト変態の進行が早く、復熱による温度上昇が比較的大きい線材においては、線材の浸漬と線材の変態の開始との間の時間が5秒以下であれば線材の引張強度のばらつきを十分に抑制でき、またベイナイト変態の進行が遅く、復熱による温度上昇が比較的低い線材においては、線材の浸漬と線材の変態の開始との間の時間が5秒超であってもばらつきを抑制できることを、実験的事実から知見した。このような知見に基づき、本実施形態に係る線材の製造方法においては、線材の浸漬と線材の変態の開始との間の時間を、ベイナイト変態の進行速度に応じて決定される値tによって規定した。なお、本実施形態に係る線材において、tcompleteが100秒未満となることはないので、tの上限値を5秒としてもよい。 In view of the above-mentioned reason, it is most preferable that the immersion of the wire in the second molten salt bath or the molten lead bath is performed completely simultaneously with the start of the bainite transformation of the wire. However, the inventors of the present invention, in the wire material in which the bainite transformation proceeds quickly and the temperature rise due to recuperation is relatively large, if the time between the immersion of the wire material and the start of the transformation of the wire material is 5 seconds or less, For wire rods that can sufficiently suppress the variation in tensile strength, and that the progress of bainite transformation is slow and the temperature rise due to recuperation is relatively low, the time between the immersion of the wire rod and the start of transformation of the wire rod is over 5 seconds. It was found from experimental facts that even if it exists, variation can be suppressed. Based on this finding, in the manufacturing method of the wire according to the present embodiment, the time between the start of the transformation of immersion and wire of the wire, the value t s which is determined in accordance with the rate of progression of bainite transformation Stipulated. Note that, in the wire according to the present embodiment, since t complete will not be less than 100 seconds, the upper limit of t s may be 5 seconds.
 多くの場合、線材が第1の溶融塩浴又は溶融鉛浴に浸漬された時点と、線材が第2の溶融塩浴又は溶融鉛浴に浸漬された時点との間の経過時間tは10~40秒が好ましい。本実施形態に係る線材の成分組成に鑑みて、時間tを10秒未満または40秒超とした場合、続く第2の溶融塩浴又は溶融鉛浴内への線材の浸漬を適切に行うことは難しい。 In many cases, the elapsed time t 1 between the time when the wire is immersed in the first molten salt bath or the molten lead bath and the time when the wire is immersed in the second molten salt bath or the molten lead bath is 10 ~ 40 seconds is preferred. In view of the chemical composition of the wire according to the present embodiment, the time when t 1 to a or 40 seconds greater than 10 seconds, to properly carry out the immersion of the wire to the subsequent second molten salt bath or molten lead bath in Is difficult.
 線材は、上述の規定に加えて、第1の溶融塩浴又は溶融鉛浴から取り出されてから5秒以内に第2の溶融塩浴又は溶融鉛浴に浸漬される必要がある。線材の取り出しから浸漬までの間の時間、すなわち線材の移送の時間が5秒超である場合、線材の移送の間に線材の温度が変動するおそれがあるので、線材のベイナイト変態の開始と略同時に線材を第2の溶融塩浴又は溶融鉛浴に浸漬することが、きわめて困難となる。 In addition to the above-mentioned rules, the wire must be immersed in the second molten salt bath or molten lead bath within 5 seconds after being taken out from the first molten salt bath or molten lead bath. If the time between wire rod removal and immersion, that is, the wire rod transfer time exceeds 5 seconds, the temperature of the wire rod may fluctuate during the wire rod transfer. At the same time, it is extremely difficult to immerse the wire in the second molten salt bath or molten lead bath.
 第1の溶融塩浴又は溶融鉛浴中の線材においてベイナイト変態が開始した時点を、線材の復熱(変態発熱)を検出することにより判定してもよい。本実施形態における復熱とは、線材中でのベイナイト変態の開始によって線材の温度が上昇する現象である。復熱は、例えば、第1の溶融塩浴又は溶融鉛浴に浸漬されてから取り出された線材の温度と、第1の溶融塩浴又は溶融鉛浴の温度とを比較することによって検出できる。線材の温度が第1の溶融塩浴又は溶融鉛浴の温度よりも高い場合、線材に復熱が生じていると判断される。第1の溶融塩浴又は溶融鉛浴内への浸漬時間を種々変化させた線材それぞれにおいて、復熱の有無を調べることにより、線材に復熱を生じさせることができる最も短い浸漬時間tminを求めることができる。線材を第1の溶融塩浴又は溶融鉛浴の中に浸漬してからtminだけ経過した時点を、線材においてベイナイト変態が開始した時点と見なすことができる。このように、復熱を利用して、線材中においてベイナイト変態が開始する時点を予め求め、それに基づいて線材の製造を行うことがさらに好ましい。 You may determine the time of the bainite transformation start in the wire in a 1st molten salt bath or a molten lead bath by detecting the recuperation (transformation heat_generation | fever) of a wire. The recuperation in the present embodiment is a phenomenon in which the temperature of the wire increases due to the start of bainite transformation in the wire. The recuperation can be detected, for example, by comparing the temperature of the wire taken out after being immersed in the first molten salt bath or molten lead bath and the temperature of the first molten salt bath or molten lead bath. When the temperature of the wire is higher than the temperature of the first molten salt bath or molten lead bath, it is determined that reheating has occurred in the wire. In each of the wires in which the immersion time in the first molten salt bath or the molten lead bath is variously changed, the shortest immersion time t min that can cause reheating of the wire is determined by examining the presence or absence of recuperation. Can be sought. The time when t min has elapsed since the wire is immersed in the first molten salt bath or molten lead bath can be regarded as the time when the bainite transformation has started in the wire. As described above, it is more preferable to use the recuperation to obtain in advance the time point at which the bainite transformation starts in the wire, and to manufacture the wire based on that.
 なお、第1の溶融塩浴又は溶融鉛浴に浸漬されている時間が5秒未満である場合、たとえ線材の温度が第1の溶融塩浴又は溶融鉛浴よりも高くても、線材に復熱が生じているか否かを判断できない。線材の温度が、復熱ではなく、不十分な浸漬時間に起因して高くなる場合があるからである。 If the time of immersion in the first molten salt bath or molten lead bath is less than 5 seconds, the wire is restored even if the temperature of the wire is higher than that of the first molten salt bath or molten lead bath. It cannot be determined whether or not heat is generated. This is because the temperature of the wire may increase due to insufficient dipping time rather than recuperation.
 第2の溶融塩浴又は溶融鉛浴の温度:530~600℃
 第2の溶融塩浴又は溶融鉛浴から線材を取り出す時:ベイナイト変態が完全に終了した後の時点
 線材のベイナイト変態の開始と略同時に、温度Tである第2の溶融塩浴又は溶融鉛浴の中に線材を浸漬する。温度Tは530~600℃である。これにより、線材を530~600℃の温度まで急速に加熱し(図1中(c))、該温度で、完全にベイナイト変態が終了するまで保定することができる。線材のベイナイト変態の開始と略同時に、線材を530~600℃の温度まで急速に加熱すると、ベイナイト中のセメンタイトの間隔が広くなる。その結果、急速加熱をしない場合に比べ、線材の強度が低下する。第2の溶融塩浴又は溶融鉛浴の温度が530℃未満または600℃超である場合、ベイナイト変態の終了まで長時間かかる。それ故、第2の溶融塩浴又は溶融鉛浴の温度は、ベイナイト変態を短時間で確実に完了させるために、530~600℃とする。上記の温度範囲まで線材を加熱する際の加熱速度は特に限定されない。しかし、ベイナイト変態完了までの時間を短縮するために、加熱速度は速い方が好ましく、具体的には10~50℃/秒が好ましい。温度530~600℃の溶融塩浴又は溶融鉛浴に線材を浸漬することにより、このような加熱速度が得られる。ベイナイト変態が完了する前に線材を第2の溶融塩浴又は溶融鉛浴から取り出した場合、線材中にMAが生成し、このMAが線材の加工性を低下させるおそれがある。
Temperature of second molten salt bath or molten lead bath: 530 to 600 ° C
Second molten salt bath or when taking out the wire from the molten lead bath: bainite transformation completely finished start of the bainite transformation point wire after substantially the same time, a second molten salt bath or molten lead is temperature T 2 Immerse the wire in the bath. Temperature T 2 is 530 ~ 600 ° C.. As a result, the wire can be rapidly heated to a temperature of 530 to 600 ° C. ((c) in FIG. 1) and maintained at that temperature until the bainite transformation is completely completed. When the wire is rapidly heated to a temperature of 530 to 600 ° C. almost simultaneously with the start of the bainite transformation of the wire, the space between the cementite in the bainite becomes wide. As a result, the strength of the wire is reduced as compared with the case where rapid heating is not performed. When the temperature of the second molten salt bath or molten lead bath is less than 530 ° C. or more than 600 ° C., it takes a long time to complete the bainite transformation. Therefore, the temperature of the second molten salt bath or molten lead bath is set to 530 to 600 ° C. in order to reliably complete the bainite transformation in a short time. The heating rate at the time of heating a wire to said temperature range is not specifically limited. However, in order to shorten the time until completion of the bainite transformation, it is preferable that the heating rate is high, specifically 10 to 50 ° C./second. Such a heating rate can be obtained by immersing the wire in a molten salt bath or a molten lead bath at a temperature of 530 to 600 ° C. When the wire is taken out from the second molten salt bath or molten lead bath before the bainite transformation is completed, MA is generated in the wire, and this MA may lower the workability of the wire.
 第1の溶融塩浴又は溶融鉛浴への線材の浸漬中にベイナイト変態が開始した後、線材をそのまま保定すると、緻密なベイナイト組織が成長する。緻密なベイナイト組織が成長した線材は、ベイナイト変態の開始と略同時に急速加熱した線材に比べ強度が高い。それ故、本実施形態に係る線材では、線材を急速加熱することにより、析出するセメンタイトの間隔を広くし、強度を低下させる。 When the wire material is held as it is after the wire material is immersed in the first molten salt bath or molten lead bath, the dense bainite structure grows. A wire rod with a dense bainite structure has higher strength than a wire rod that is rapidly heated substantially simultaneously with the start of the bainite transformation. Therefore, in the wire according to the present embodiment, by rapidly heating the wire, the interval between the precipitated cementite is widened and the strength is lowered.
 本実施形態に係る耐遅れ破壊特性に優れた過共析ベイナイト鋼線(以下「本実施形態に係る鋼線」ということがある。)は、伸線特性の優れた本実施形態に係る線材を伸線加工したものである。伸線加工は通常の伸線加工でよく、減面率は特に限定されない。本実施形態に係る鋼線は、耐遅れ破壊特性に優れているので、鋼線の用途が大幅に拡大する。 The hyper-eutectoid bainite steel wire (hereinafter, also referred to as “steel wire according to this embodiment”) having excellent delayed fracture resistance according to the present embodiment is the wire rod according to the present embodiment having excellent wire drawing properties. It is drawn. The drawing process may be a normal drawing process, and the area reduction rate is not particularly limited. Since the steel wire which concerns on this embodiment is excellent in the delayed fracture resistance, the use of a steel wire expands significantly.
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
 (実施例1)
 表1に示す成分組成の過共析鋼片を、表2に示す線径の線材に圧延し、表2に示す温度条件でベイナイト変態を完了させた。ベイナイト変態完了後の線材の平均引張強度(N/mm2)、平均絞り値(%)、および引張強度のばらつき幅(N/mm2)を測定した。線材の平均引張強度は、長さ3200mmの線材を、同じ長さを有する8つの要素に分割することにより得られる、8本の長さ400mmの試験片それぞれの引張強度の平均値である。線材の平均絞り値は、長さ3200mmの線材を、同じ長さを有する8つの要素に分割することにより得られる、8本の長さ400mmの試験片それぞれの絞り値の平均値である。線材の引張強度のばらつき幅は、長さ3200mmの線材を、同じ長さを有する8つの要素に分割することにより得られる、8本の長さ400mmの試験片それぞれの引張強度のうち最大値と最小値との差である。測定結果を表2に併せて示す。なお、線材を第2の溶融塩浴または溶融鉛浴に浸漬した際の加熱速度は、10~50℃/秒とした。
Example 1
The hypereutectoid steel slab having the component composition shown in Table 1 was rolled into a wire having the wire diameter shown in Table 2, and the bainite transformation was completed under the temperature conditions shown in Table 2. Average tensile strength of the wire after completion bainite transformation (N / mm 2), the average aperture (%) and tensile strength of the variation width (N / mm 2) was measured. The average tensile strength of the wire is an average value of the tensile strength of each of eight 400 mm-long test pieces obtained by dividing a wire having a length of 3200 mm into eight elements having the same length. The average drawing value of the wire is an average value of the drawing values of each of eight 400 mm-long test pieces obtained by dividing a wire having a length of 3200 mm into eight elements having the same length. The variation width of the tensile strength of the wire is the maximum value among the tensile strengths of each of the eight 400 mm-long test pieces obtained by dividing the wire having a length of 3200 mm into eight elements having the same length. It is the difference from the minimum value. The measurement results are also shown in Table 2. The heating rate when the wire was immersed in the second molten salt bath or molten lead bath was 10 to 50 ° C./second.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において、T0は第1の溶融塩浴又は溶融鉛浴に浸漬される線材の温度、T1は第1の溶融塩浴又は溶融鉛浴の温度、tは第1の溶融塩浴又は溶融鉛浴内に線材を浸漬してから第2の溶融塩浴又は溶融鉛浴内に線材を浸漬するまでの時間、ΔTは第2の溶融塩浴又は溶融鉛浴に線材を浸漬したことにより上昇した温度、Tは第2の溶融塩浴又は溶融鉛浴の温度、TS上限はC含有量および式1から算出された平均引張強度の上限値、TS平均は平均引張強度(N/mm2)、TS最大は引張強度の最大値(N/mm2)、TS最小は引張強度の最小値(N/mm2)、TSばらつき幅はTS最大とTS最小との差(N/mm2)、RA下限は平均引張強度の上限値および式2から算出された平均絞り値の上限値、RA平均は平均絞り値(%)、RA最大は絞り値の最大値(%)、RA最小は絞り値の最小値(%)、RAばらつき幅はRA最大とRA最小との差(%)である。No.1~7の発明例を製造する際の、第1の溶融塩浴又は溶融鉛浴内での線材の浸漬時間tは、第2の溶融塩浴または溶融鉛浴内への線材の浸漬がベイナイト変態の開始と略同時となるように、適宜選択されたものである。No.8の比較例では、線材が第2の溶融塩浴または溶融鉛浴内に浸漬されなかった。No.9および10の比較例では、線材が、ベイナイト変態の開始後長時間経過してから第2の溶融塩浴または溶融鉛浴内に浸漬された。なお、発明例No.1~7、比較例No.9、および比較例No.10において、線材は、第1の溶融塩浴又は溶融鉛浴から取り出されてから5秒以内に第2の溶融塩浴または溶融鉛浴内に浸漬された。 In Table 2, T 0 is the temperature of the wire immersed in the first molten salt bath or molten lead bath, T 1 is the temperature of the first molten salt bath or molten lead bath, and t 1 is the first molten salt bath. Or the time from immersing the wire in the molten lead bath to immersing the wire in the second molten salt bath or molten lead bath, ΔT is that the wire is immersed in the second molten salt bath or molten lead bath , T 2 is the temperature of the second molten salt bath or molten lead bath, the TS upper limit is the C content and the upper limit of the average tensile strength calculated from Equation 1, and the TS average is the average tensile strength (N / mm 2 ), TS maximum is the maximum value of tensile strength (N / mm 2 ), TS minimum is the minimum value of tensile strength (N / mm 2 ), and TS variation width is the difference between TS maximum and TS minimum (N / mm) 2), RA lower the upper limit value and the upper limit value of the average aperture value calculated from equation 2 of average tensile strength, RA mean average aperture (%), RA largest maximum aperture value (%), RA minimum minimum aperture value (%), RA variation width is the difference between the RA maximum and RA Min (%). No. The immersion time t of the wire in the first molten salt bath or molten lead bath when manufacturing the inventive examples 1 to 7 is the same as that of the second molten salt bath or molten lead bath. It is appropriately selected so as to be almost simultaneously with the start of the transformation. No. In Comparative Example 8, the wire was not immersed in the second molten salt bath or molten lead bath. No. In Comparative Examples 9 and 10, the wire was immersed in the second molten salt bath or molten lead bath after a long time had elapsed after the start of the bainite transformation. Inventive Example No. 1-7, Comparative Example No. 9 and Comparative Example No. In 10, the wire was immersed in the second molten salt bath or molten lead bath within 5 seconds after being removed from the first molten salt bath or molten lead bath.
 表2から、No.1~7の発明例においては、TS平均及びRA平均が式1及び式2を満たしており、加えて、TSばらつき幅が50N/mm以下であった。これにより、No.1~7の発明例においては、耐遅れ破壊特性が向上し、線材結束時及び結束状態で折損が発生しなかったことが解る。 From Table 2, no. In the inventive examples 1 to 7, the TS average and RA average satisfy the formulas 1 and 2, and the TS variation width is 50 N / mm 2 or less. As a result, no. In the inventive examples 1 to 7, it can be seen that the delayed fracture resistance is improved, and no breakage occurs when the wires are bound and in the bound state.
 前述したように、本発明によれば、パーライト鋼よりも低強度化および高延性化された線材であって、線材の結束作業時又は結束された状態での折損が抑制され、伸線特性及び耐遅れ破壊特性に優れた線材と、該線材を用いて製造した過共析ベイナイト鋼線と、それらを安定的に製造する製造方法とを提供することができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。 As described above, according to the present invention, the wire rod has a lower strength and a higher ductility than pearlite steel, and the breakage during the binding work of the wire rod or in the bound state is suppressed, and the wire drawing characteristics and It is possible to provide a wire having excellent delayed fracture resistance, a hypereutectoid bainite steel wire produced using the wire, and a production method for producing them stably. Therefore, the present invention has high applicability in the steel industry.
1  線材断面
11 中心部
12 表層部
13 中間部
2  撮影領域
DESCRIPTION OF SYMBOLS 1 Wire rod cross section 11 Center part 12 Surface layer part 13 Middle part 2 Imaging | photography region

Claims (12)

  1.  単位質量%で、
     C :0.80超~1.20%、
     Si:0.10~1.50%、
     Mn:0~1.00%、
     P :0~0.02%、
     S :0~0.02%、
     Cr:0~1.00%、
     Ni:0~1.00%、
     Cu:0~1.00%、
     Mo:0~0.50%、
     Ti:0~0.20%、
     Nb:0~0.20%、
     V :0~0.20%、
     B :0~0.0050%、
     Al:0~0.10%、及び、
     Ca:0~0.05%
    を含有し、
     残部がFe及び不純物からなる成分組成を有し、
     金属組織が、90~100面積%のベイナイトを含み、
     長さ3200mmの線材を8本の同じ長さの要素に分割することにより、8本の長さ400mmの試験片を製造した場合に、各前記試験片の引張強度の平均値TSが、単位N/mmで、下記式1を満足し、
     各前記試験片の各前記引張強度のうち最大値と最小値との差が50N/mm以下であり、
     各前記試験片の絞り値の平均値RAが、単位%で、下記式2を満足する
    ことを特徴とする線材。
      [TS]≦810×[C]+475             ・・・(式1)
      [RA]≧-0.083×[TS]+154         ・・・(式2)
     ここで、[C]は単位質量%で表された前記線材のC含有量であり、[TS]は、単位N/mmで表された前記引張強度の前記平均値TSであり、[RA]は、単位%で表された前記絞り値の前記平均値RAである。
    In unit mass%
    C: more than 0.80 to 1.20%,
    Si: 0.10 to 1.50%,
    Mn: 0 to 1.00%
    P: 0 to 0.02%,
    S: 0 to 0.02%,
    Cr: 0 to 1.00%,
    Ni: 0 to 1.00%,
    Cu: 0 to 1.00%,
    Mo: 0 to 0.50%,
    Ti: 0 to 0.20%,
    Nb: 0 to 0.20%,
    V: 0 to 0.20%,
    B: 0 to 0.0050%,
    Al: 0 to 0.10%, and
    Ca: 0 to 0.05%
    Containing
    The balance has a component composition consisting of Fe and impurities,
    The metal structure comprises 90-100 area% bainite;
    When a test piece having a length of 3 mm is divided into eight elements having the same length to produce eight test pieces having a length of 400 mm, the average value TS of the tensile strength of each test piece is expressed in the unit N. / Mm 2 , the following formula 1 is satisfied,
    The difference between the maximum value and the minimum value among the tensile strengths of the test pieces is 50 N / mm 2 or less,
    An average value RA of the aperture value of each test piece satisfies the following formula 2 in unit%.
    [TS] ≦ 810 × [C] +475 (Formula 1)
    [RA] ≧ −0.083 × [TS] +154 (Formula 2)
    Here, [C] is the C content of the wire expressed in unit mass%, [TS] is the average value TS of the tensile strength expressed in unit N / mm 2 , and [RA] ] Is the average value RA of the aperture values expressed in unit%.
  2.  請求項1に記載の線材を伸線加工することにより得られることを特徴とする過共析ベイナイト鋼線。 A hypereutectoid bainite steel wire obtained by drawing the wire according to claim 1.
  3.  請求項1に記載の線材の製造方法であって、
     単位質量%で、
     C :0.80超~1.20%、
     Si:0.10~1.50%、
     Mn:0~1.00%、
     P :0~0.02%、
     S :0~0.02%、
     Cr:0~1.00%、
     Ni:0~1.00%、
     Cu:0~1.00%、
     Mo:0~0.50%、
     Ti:0~0.20%、
     Nb:0~0.20%、
     V :0~0.20%、
     B :0~0.0050%、
     Al:0~0.10%、及び、
     Ca:0~0.05%
    を含有し、残部がFe及び不純物からなる成分組成を有する鋼片を圧延して線材を得る工程と、
     850~1050℃の前記線材を350~450℃の第1の溶融塩浴又は溶融鉛浴の中に浸漬し、次いで前記線材を前記第1の溶融塩浴又は溶融鉛浴から取り出す工程と、
     前記取り出しから5秒以内の時点であって、かつ前記線材のベイナイト変態の開始のt秒前~t秒後である時点に、前記線材を530~600℃の第2の溶融塩浴又は溶融鉛浴の中に浸漬する工程と、
     前記線材を、前記ベイナイト変態が完全に終了した後に前記第2の溶融塩浴又は溶融鉛浴から取り出す工程と、を備えることを特徴とする線材の製造方法。
     t=0.05×tcomplete・・・(式3)
     tcompleteは、前記線材を前記第1の溶融塩浴または溶融鉛浴に浸漬し続けた場合に、前記線材のベイナイト変態が開始してから終了するまでの時間を単位秒で示す。
    It is a manufacturing method of the wire according to claim 1,
    In unit mass%
    C: more than 0.80 to 1.20%,
    Si: 0.10 to 1.50%,
    Mn: 0 to 1.00%
    P: 0 to 0.02%,
    S: 0 to 0.02%,
    Cr: 0 to 1.00%,
    Ni: 0 to 1.00%,
    Cu: 0 to 1.00%,
    Mo: 0 to 0.50%,
    Ti: 0 to 0.20%,
    Nb: 0 to 0.20%,
    V: 0 to 0.20%,
    B: 0 to 0.0050%,
    Al: 0 to 0.10%, and
    Ca: 0 to 0.05%
    A step of rolling a steel slab having a component composition consisting of Fe and impurities, and obtaining a wire rod,
    Immersing the wire at 850 to 1050 ° C. in a first molten salt bath or molten lead bath at 350 to 450 ° C., and then removing the wire from the first molten salt bath or molten lead bath;
    A time within 5 seconds from the extraction, and the time is after t s seconds before the start of bainite transformation of the wire rod ~ t s s, a second molten salt bath of the wire 530 ~ 600 ° C. or Soaking in a molten lead bath;
    And a step of taking out the wire from the second molten salt bath or molten lead bath after the bainite transformation is completely completed.
    t s = 0.05 × t complete (Expression 3)
    t complete indicates the time from the start to the end of the bainite transformation of the wire in a unit of seconds when the wire is continuously immersed in the first molten salt bath or molten lead bath.
  4.  前記線材が前記第1の溶融塩浴又は溶融鉛浴の中に浸漬された時点と、前記線材が前記第2の溶融塩浴又は溶融鉛浴の中に浸漬された時点との間の経過時間が10~40秒であることを特徴とする請求項3に記載の線材の製造方法。 Elapsed time between the time when the wire is immersed in the first molten salt bath or molten lead bath and the time when the wire is immersed in the second molten salt bath or molten lead bath. The method for producing a wire according to claim 3, wherein is 10 to 40 seconds.
  5.  前記第1の溶融塩浴又は溶融鉛浴中の前記線材において前記ベイナイト変態が開始した前記時点を、前記線材の復熱を検出することにより判定することを特徴とする請求項3に記載の線材の製造方法。 The wire rod according to claim 3, wherein the time point at which the bainite transformation starts in the wire rod in the first molten salt bath or molten lead bath is determined by detecting recuperation of the wire rod. Manufacturing method.
  6.  請求項2に記載の過共析ベイナイト鋼線の製造方法であって、
     単位質量%で、
     C :0.80超~1.20%、
     Si:0.10~1.50%、
     Mn:0~1.00%、
     P :0~0.02%、
     S :0~0.02%、
     Cr:0~1.00%、
     Ni:0~1.00%、
     Cu:0~1.00%、
     Mo:0~0.50%、
     Ti:0~0.20%、
     Nb:0~0.20%、
     V :0~0.20%、
     B :0~0.0050%、
     Al:0~0.10%、及び、
     Ca:0~0.05%
    を含有し、残部がFe及び不純物からなる成分組成を有する鋼片を圧延して線材を得る工程と、
     850~1050℃の線材を350~450℃の第1の溶融塩浴又は溶融鉛浴の中に浸漬し、次いで前記線材を前記第1の溶融塩浴又は溶融鉛浴から取り出す工程と、
     前記取り出しから5秒以内の時点であって、かつ前記線材のベイナイト変態の開始のt秒前~t秒後である時点に、前記線材を530~600℃の第2の溶融塩浴又は溶融鉛浴の中に浸漬する工程と、
     前記線材を、前記ベイナイト変態が完全に終了した後に第2の溶融塩浴又は溶融鉛浴から取り出す工程と、
     前記第2の溶融塩浴又は溶融鉛浴から取り出された前記線材に伸線加工を施す工程と、
    を備えることを特徴とする過共析ベイナイト鋼線の製造方法。
     t=0.05×tcomplete
     tcompleteは、前記線材を前記第1の溶融塩浴または溶融鉛浴に浸漬し続けた場合に、前記線材の前記ベイナイト変態が開始してから終了するまでの時間を単位秒で示す。
    A method for producing a hypereutectoid bainite steel wire according to claim 2,
    In unit mass%
    C: more than 0.80 to 1.20%,
    Si: 0.10 to 1.50%,
    Mn: 0 to 1.00%
    P: 0 to 0.02%,
    S: 0 to 0.02%,
    Cr: 0 to 1.00%,
    Ni: 0 to 1.00%,
    Cu: 0 to 1.00%,
    Mo: 0 to 0.50%,
    Ti: 0 to 0.20%,
    Nb: 0 to 0.20%,
    V: 0 to 0.20%,
    B: 0 to 0.0050%,
    Al: 0 to 0.10%, and
    Ca: 0 to 0.05%
    A step of rolling a steel slab having a component composition consisting of Fe and impurities, and obtaining a wire rod,
    Immersing a wire at 850-1050 ° C. in a first molten salt bath or molten lead bath at 350-450 ° C., and then removing the wire from the first molten salt bath or molten lead bath;
    A time within 5 seconds from the extraction, and the time is after t s seconds before the start of bainite transformation of the wire rod ~ t s s, a second molten salt bath of the wire 530 ~ 600 ° C. or Soaking in a molten lead bath;
    Removing the wire from the second molten salt bath or molten lead bath after the bainite transformation is completely completed;
    Applying wire drawing to the wire taken out from the second molten salt bath or molten lead bath;
    A method for producing a hypereutectoid bainite steel wire, comprising:
    t s = 0.05 × t complete
    t complete indicates the time from the start to end of the bainite transformation of the wire in units of seconds when the wire is continuously immersed in the first molten salt bath or molten lead bath.
  7.  前記線材が前記第1の溶融塩浴又は溶融鉛浴の中に浸漬されている時間が10~40秒であることを特徴とする請求項6に記載の過共析ベイナイト鋼線の製造方法。 The method for producing a hypereutectoid bainite steel wire according to claim 6, wherein the time during which the wire is immersed in the first molten salt bath or molten lead bath is 10 to 40 seconds.
  8.  前記第1の溶融塩浴又は溶融鉛浴中の前記線材において前記ベイナイト変態が開始した前記時点を、前記線材の復熱を検出することにより判定することを特徴とする請求項6に記載の過共析ベイナイト鋼線の製造方法。 7. The process according to claim 6, wherein the time point at which the bainite transformation has started in the wire in the first molten salt bath or molten lead bath is determined by detecting reheating of the wire. A method for producing a eutectoid bainite steel wire.
  9.  請求項2に記載の過共析ベイナイト鋼線の製造方法であって、
     単位質量%で、
     C :0.80超~1.20%、
     Si:0.10~1.50%、
     Mn:0~1.00%、
     P :0~0.02%、
     S :0~0.02%、
     Cr:0~1.00%、
     Ni:0~1.00%、
     Cu:0~1.00%、
     Mo:0~0.50%、
     Ti:0~0.20%、
     Nb:0~0.20%、
     V :0~0.20%、
     B :0~0.0050%、
     Al:0~0.10%、及び、
     Ca:0~0.05%
    を含有し、残部がFe及び不純物からなる成分組成を有する鋼片を圧延することにより得られる線材に伸線加工を行って鋼線を得る工程と、
     850~1050℃の前記鋼線を350~450℃の第1の溶融塩浴又は溶融鉛浴の中に浸漬し、次いで前記鋼線を前記第1の溶融塩浴又は溶融鉛浴から取り出す工程と、
     前記取り出しから5秒以内の時点であって、かつ前記鋼線のベイナイト変態の開始のt秒前~t秒後である時点に、前記鋼線を530~600℃の第2の溶融塩浴又は溶融鉛浴の中に浸漬する工程と、
     前記鋼線を、前記ベイナイト変態が完全に終了した後に前記第2の溶融塩浴又は溶融鉛浴から取り出す工程と、を備えることを特徴とする過共析ベイナイト鋼線の製造方法。
     t=0.05×tcomplete
     tcompleteは、前記鋼線を前記第1の溶融塩浴または溶融鉛浴に浸漬し続けた場合に、前記鋼線の前記ベイナイト変態が開始してから終了するまでの時間を単位秒で示す。
    A method for producing a hypereutectoid bainite steel wire according to claim 2,
    In unit mass%
    C: more than 0.80 to 1.20%,
    Si: 0.10 to 1.50%,
    Mn: 0 to 1.00%
    P: 0 to 0.02%,
    S: 0 to 0.02%,
    Cr: 0 to 1.00%,
    Ni: 0 to 1.00%,
    Cu: 0 to 1.00%,
    Mo: 0 to 0.50%,
    Ti: 0 to 0.20%,
    Nb: 0 to 0.20%,
    V: 0 to 0.20%,
    B: 0 to 0.0050%,
    Al: 0 to 0.10%, and
    Ca: 0 to 0.05%
    A step of drawing a wire obtained by rolling a steel slab having a component composition consisting of Fe and impurities in the balance to obtain a steel wire,
    Immersing the steel wire at 850 to 1050 ° C. in a first molten salt bath or molten lead bath at 350 to 450 ° C., and then removing the steel wire from the first molten salt bath or molten lead bath; ,
    A time within 5 seconds from the extraction, and the time is t s seconds before ~ t s seconds after the start of bainite transformation of the steel wire, a second molten salt of the steel wire 530 ~ 600 ° C. Soaking in a bath or molten lead bath;
    And a step of taking out the steel wire from the second molten salt bath or molten lead bath after the bainite transformation is completely completed, and a method for producing a hypereutectoid bainite steel wire.
    t s = 0.05 × t complete
    t complete indicates the time from the start to the end of the bainite transformation of the steel wire in units of seconds when the steel wire is continuously immersed in the first molten salt bath or molten lead bath.
  10.  前記鋼線が前記第1の溶融塩浴又は溶融鉛浴の中に浸漬された時点と、前記鋼線が前記第2の溶融塩浴又は溶融鉛浴の中に浸漬された時点との間の経過時間が10~40秒であることを特徴とする請求項9に記載の過共析ベイナイト鋼線の製造方法。 Between the time when the steel wire is immersed in the first molten salt bath or the molten lead bath and the time when the steel wire is immersed in the second molten salt bath or the molten lead bath. The method for producing a hypereutectoid bainite steel wire according to claim 9, wherein the elapsed time is 10 to 40 seconds.
  11.  前記第1の溶融塩浴又は溶融鉛浴中の前記鋼線において前記ベイナイト変態が開始した前記時点を、前記鋼線の復熱を検出することにより判定することを特徴とする請求項9に記載の過共析ベイナイト鋼線の製造方法。 The time point at which the bainite transformation starts in the steel wire in the first molten salt bath or molten lead bath is determined by detecting recuperation of the steel wire. Method for producing hypereutectoid bainite steel wire.
  12.  前記第2の溶融塩浴又は溶融鉛浴から取り出された前記鋼線にさらに伸線加工を施す工程を備えることを特徴とする請求項9~11のいずれか一項に記載の過共析ベイナイト鋼線の製造方法。 The hypereutectoid bainite according to any one of claims 9 to 11, further comprising a step of drawing the steel wire taken out from the second molten salt bath or molten lead bath. Manufacturing method of steel wire.
PCT/JP2014/076938 2013-10-08 2014-10-08 Wire rod, hypereutectoid bainite steel wire, and method for manufacturing same WO2015053311A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/027,181 US20160244858A1 (en) 2013-10-08 2014-10-08 Wire rod, hypereutectoid bainite steel wire, and method for manufacturing thereof
JP2015541609A JP6079894B2 (en) 2013-10-08 2014-10-08 Wire material, hypereutectoid bainite steel wire, and production method thereof
EP14851484.7A EP3056580A4 (en) 2013-10-08 2014-10-08 Wire rod, hypereutectoid bainite steel wire, and method for manufacturing same
KR1020167008667A KR101789949B1 (en) 2013-10-08 2014-10-08 Wire rod, hypereutectoid bainite steel wire, and method for manufacturing same
CN201480055078.1A CN105612269B (en) 2013-10-08 2014-10-08 Wire rod, hypereutectoid bainite steel wire and their manufacture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013211365 2013-10-08
JP2013-211365 2013-10-08

Publications (1)

Publication Number Publication Date
WO2015053311A1 true WO2015053311A1 (en) 2015-04-16

Family

ID=52813126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076938 WO2015053311A1 (en) 2013-10-08 2014-10-08 Wire rod, hypereutectoid bainite steel wire, and method for manufacturing same

Country Status (7)

Country Link
US (1) US20160244858A1 (en)
EP (1) EP3056580A4 (en)
JP (1) JP6079894B2 (en)
KR (1) KR101789949B1 (en)
CN (1) CN105612269B (en)
TW (1) TWI516611B (en)
WO (1) WO2015053311A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180031730A (en) * 2015-07-21 2018-03-28 신닛테츠스미킨 카부시키카이샤 High Strength PC Wire
KR20180031731A (en) * 2015-07-21 2018-03-28 신닛테츠스미킨 카부시키카이샤 High Strength PC Wire
JP7469643B2 (en) 2020-05-21 2024-04-17 日本製鉄株式会社 Steel wire, wire rods for non-tempered machine parts, and non-tempered machine parts

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105220786A (en) * 2015-10-17 2016-01-06 张磊 A kind of building heat preserving puigging
CN105178455A (en) * 2015-10-17 2015-12-23 张磊 Fireproof insulating layer of building exterior wall
US10597748B2 (en) * 2015-10-23 2020-03-24 Nippon Steel Corporation Steel wire rod for wire drawing
KR102154575B1 (en) * 2016-07-05 2020-09-10 닛폰세이테츠 가부시키가이샤 Wire rod, steel wire and parts
KR102021199B1 (en) * 2017-11-27 2019-09-11 현대제철 주식회사 Steel and method of manufacturing the same
KR102362665B1 (en) * 2019-12-20 2022-02-11 주식회사 포스코 Wire rod, high strength steel wire and method for manufacturing thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117762A (en) 1991-10-24 1993-05-14 Nippon Steel Corp Manufacture of bainite wire rod
JPH0617192A (en) 1992-04-09 1994-01-25 Nippon Steel Corp Bainitic wire rod or steel wire for wire drawing and manufacture therefor
JPH0617191A (en) 1992-04-09 1994-01-25 Nippon Steel Corp Bainitic wire rod or steel wire for wire drawing and manufacture therefor
JPH0617190A (en) 1992-04-09 1994-01-25 Nippon Steel Corp Bainitic wire rod or steel wire for wire drawing and manufacture thereof
JPH0673502A (en) 1992-07-08 1994-03-15 Nippon Steel Corp High carbon steel wire rod or high carbon steel wire excellent in wire drawability and its production
JPH06330240A (en) 1993-05-25 1994-11-29 Nippon Steel Corp High carbon steel site rod or steel wire excellent in wire drawability and its production
JPH06340950A (en) * 1993-04-06 1994-12-13 Nippon Steel Corp High strength steel wire rod and high strength steel wire excellent in fatigue property
JPH083639A (en) 1994-06-21 1996-01-09 Nippon Steel Corp Production of high carbon steel wire rod or steel wire excellent in wire drawability
JPH11293400A (en) * 1998-04-15 1999-10-26 Nippon Steel Corp High strength steel wire
JP2001220650A (en) * 1999-11-30 2001-08-14 Sumitomo Electric Ind Ltd Steel wire, spring and producing method therefor
JP2002241899A (en) * 2001-02-09 2002-08-28 Kobe Steel Ltd High strength steel wire having excellent delayed fracture resistance and excellent forging property and manufacturing method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647918A (en) * 1993-04-06 1997-07-15 Nippon Steel Corporation Bainite wire rod and wire for drawing and methods of producing the same
EP0693570B1 (en) * 1993-04-06 2000-06-07 Nippon Steel Corporation Bainite rod wire or steel wire for wire drawing and process for producing the same
EP0708183B1 (en) * 1993-05-25 2000-03-22 Nippon Steel Corporation High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same
JPH083649A (en) * 1994-06-21 1996-01-09 Nippon Steel Corp Production of high carbon steel wire rod or steel wire excellent in wire drawability
JP3448459B2 (en) * 1997-06-10 2003-09-22 新日本製鐵株式会社 Wire rod for steel wire
CN102301024B (en) * 2010-02-01 2014-03-05 新日铁住金株式会社 Wire material, steel wire, and processes for production of those products

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117762A (en) 1991-10-24 1993-05-14 Nippon Steel Corp Manufacture of bainite wire rod
JPH0617192A (en) 1992-04-09 1994-01-25 Nippon Steel Corp Bainitic wire rod or steel wire for wire drawing and manufacture therefor
JPH0617191A (en) 1992-04-09 1994-01-25 Nippon Steel Corp Bainitic wire rod or steel wire for wire drawing and manufacture therefor
JPH0617190A (en) 1992-04-09 1994-01-25 Nippon Steel Corp Bainitic wire rod or steel wire for wire drawing and manufacture thereof
JPH0673502A (en) 1992-07-08 1994-03-15 Nippon Steel Corp High carbon steel wire rod or high carbon steel wire excellent in wire drawability and its production
JPH06340950A (en) * 1993-04-06 1994-12-13 Nippon Steel Corp High strength steel wire rod and high strength steel wire excellent in fatigue property
JPH06330240A (en) 1993-05-25 1994-11-29 Nippon Steel Corp High carbon steel site rod or steel wire excellent in wire drawability and its production
JPH083639A (en) 1994-06-21 1996-01-09 Nippon Steel Corp Production of high carbon steel wire rod or steel wire excellent in wire drawability
JPH11293400A (en) * 1998-04-15 1999-10-26 Nippon Steel Corp High strength steel wire
JP2001220650A (en) * 1999-11-30 2001-08-14 Sumitomo Electric Ind Ltd Steel wire, spring and producing method therefor
JP2002241899A (en) * 2001-02-09 2002-08-28 Kobe Steel Ltd High strength steel wire having excellent delayed fracture resistance and excellent forging property and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3056580A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180031730A (en) * 2015-07-21 2018-03-28 신닛테츠스미킨 카부시키카이샤 High Strength PC Wire
KR20180031731A (en) * 2015-07-21 2018-03-28 신닛테츠스미킨 카부시키카이샤 High Strength PC Wire
KR102090721B1 (en) 2015-07-21 2020-03-18 닛폰세이테츠 가부시키가이샤 High strength PC liner
KR102090718B1 (en) 2015-07-21 2020-03-18 닛폰세이테츠 가부시키가이샤 High strength PC liner
JP7469643B2 (en) 2020-05-21 2024-04-17 日本製鉄株式会社 Steel wire, wire rods for non-tempered machine parts, and non-tempered machine parts

Also Published As

Publication number Publication date
KR20160048991A (en) 2016-05-04
TW201516162A (en) 2015-05-01
JP6079894B2 (en) 2017-02-15
TWI516611B (en) 2016-01-11
JPWO2015053311A1 (en) 2017-03-09
CN105612269A (en) 2016-05-25
EP3056580A1 (en) 2016-08-17
CN105612269B (en) 2017-11-14
EP3056580A4 (en) 2017-07-26
KR101789949B1 (en) 2017-10-25
US20160244858A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
JP6079894B2 (en) Wire material, hypereutectoid bainite steel wire, and production method thereof
JP5114684B2 (en) Wire material excellent in ductility, high-strength steel wire, and production method thereof
JP5162875B2 (en) High strength wire rod excellent in wire drawing characteristics and method for producing the same
JP6264462B2 (en) Steel wire for wire drawing
WO2007001054A1 (en) High-strength wire rod excelling in wire drawing performance and process for producing the same
JP6481770B2 (en) Steel wire rod for wire drawing
KR20200004407A (en) Rolled Wire for Spring Steel
JP6237794B2 (en) Steel wire
JP6229793B2 (en) Filament for high strength steel cord
JP5824443B2 (en) Method of manufacturing steel wire for spring
JP5201009B2 (en) High-strength extra-fine steel wire, high-strength extra-fine steel wire, and manufacturing methods thereof
JP2007039799A (en) High-strength wire rod having superior rod drawability, manufacturing method therefor, and high-strength steel wire having superior rod drawability
WO2015119241A1 (en) Filament
WO2018117157A1 (en) Wire rod
JP2010229469A (en) High-strength wire rod excellent in cold working characteristic and method of producing the same
JP5201000B2 (en) Wire material for high-strength steel wire, high-strength steel wire, and production method thereof
KR20170002541A (en) Steel wire
JP2018197375A (en) Hot rolling wire for wire drawing
JP6614005B2 (en) Hot rolled wire rod for high-strength steel wire and method for producing the same
JP6922726B2 (en) Hot rolled wire
JP6682863B2 (en) High carbon steel wire rod and high carbon steel wire
JP6249100B2 (en) Rolled steel bar for machine structure and manufacturing method thereof
JP6648516B2 (en) Hot rolled wire for wire drawing
JP2016164291A (en) Steel for cold working
JP6536382B2 (en) Hot rolled wire for wire drawing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167008667

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15027181

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014851484

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014851484

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015541609

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE