JP2018176268A - Manufacturing method for compression coil spring - Google Patents

Manufacturing method for compression coil spring Download PDF

Info

Publication number
JP2018176268A
JP2018176268A JP2017192915A JP2017192915A JP2018176268A JP 2018176268 A JP2018176268 A JP 2018176268A JP 2017192915 A JP2017192915 A JP 2017192915A JP 2017192915 A JP2017192915 A JP 2017192915A JP 2018176268 A JP2018176268 A JP 2018176268A
Authority
JP
Japan
Prior art keywords
steel wire
coil spring
coiling
wire rod
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017192915A
Other languages
Japanese (ja)
Other versions
JP7062395B2 (en
Inventor
俊之 赤沼
Toshiyuki Akanuma
俊之 赤沼
透 白石
Toru Shiraishi
透 白石
洋平 岩垣
Yohei Iwagaki
洋平 岩垣
啓太 高橋
Keita Takahashi
啓太 高橋
俊 平井
Shun HIRAI
俊 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2017192915A priority Critical patent/JP7062395B2/en
Publication of JP2018176268A publication Critical patent/JP2018176268A/en
Application granted granted Critical
Publication of JP7062395B2 publication Critical patent/JP7062395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Wire Processing (AREA)
  • Heat Treatment Of Articles (AREA)
  • Springs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compensation coil spring which is high in durability and high in settling resistance by forming a C-enrichment layer having a uniform thickness on a surface of a wire rod, and imparting a proper compression residual stress distribution to the molded wire rod.SOLUTION: A manufacturing method for a compression coil spring comprises: a coiling step of hot-molding a steel wire rod by using a coil spring molding machine; a quenching step of quenching a coil as it is which is cut after being coiled, and whose temperature remains in an austenite area; an annealing step of refining the quenched coil; and a shot peening step of imparting compression residual stress to a surface of the wire rod. The coil spring molding machine 1 has a high-frequency heating coil 40 for raising a temperature of the steel wire rod M up to the austenite area between an outlet of a feed roller 10 and a coiling tool 20. A member 50 for covering an external periphery of the steel wire rod is arranged in a part or the whole area reaching the coiling tool 20 from an inlet 50a side of the steel wire rod in the high-frequency heat coil 40, and gas supply means 60 for supplying carbonized hydrogen-system gas into an enclosure member 50 is arranged.SELECTED DRAWING: Figure 2

Description

本発明は、たとえば自動車のエンジンやクラッチ内で使用される圧縮コイルばねの製造方法に関し、特に、高応力下の使用環境においても優れた耐疲労性と耐へたり性を有する圧縮コイルばねの製造方法に関する。 The present invention relates to a method of manufacturing a compression coil spring used, for example, in an automobile engine or clutch, and in particular, to a compression coil spring having excellent fatigue resistance and fatigue resistance even in a high stress operating environment. On the way.

近年、環境問題を背景に自動車への低燃費化の要求が年々厳しくなっており、自動車部品に対する小型軽量化がこれまで以上に強く求められている。この小型軽量化の要求に対し、たとえばエンジン内で使用されるバルブスプリングや、クラッチ内で使用されるクラッチトーションスプリングをはじめとする圧縮コイルばね部品においては、材料の高強度化や、表面処理による表面強化の研究が盛んであり、その結果をもってコイルばねの特性として重要な耐疲労性の向上や、耐へたり性の向上を図ってきている。   In recent years, with the background of environmental problems, the demand for lower fuel consumption of automobiles has become more severe year by year, and there is a strong demand for smaller and lighter automobile parts than ever before. In response to the demand for smaller size and lighter weight, compression coil spring parts such as a valve spring used in an engine and a clutch torsion spring used in a clutch are made by strengthening the material and surface treatment Research on surface strengthening is active, and the results are used to improve fatigue resistance and fatigue resistance, which are important as the characteristics of coil springs.

一般に、コイルばねの製造方法は、熱間成形法と冷間成形法に大別される。熱間成形法は、線径dが太く、コイル平均径Dと線径dとの比であるばね指数D/dが小さいなど、その加工性の悪さから冷間成形が困難であるコイルばねの成形に用いられ、コイルばね線材としては炭素鋼やばね鋼が用いられている。熱間成形法では、線材を加工し易いように高温に加熱して芯金に巻き付けてコイルばね形状にコイリングし、焼入れ・焼戻し後に、さらにショットピーニングやセッチングを施して、コイルばねの性能として主要となる耐疲労性や耐へたり性を得ている。なお、熱間成形法においては、無芯金でのコイリングは技術的に非常に困難であるためこれまで実用化には至っていない。よって、熱間成形法は芯金を用いることが従来の技術では必須であり、成形できるコイルばねとしては、無芯金でコイリング可能な冷間成形法と比べ形状の自由度が低い。   Generally, methods of manufacturing a coil spring are roughly classified into a hot forming method and a cold forming method. The hot forming method is a coil spring in which cold forming is difficult due to its poor formability such as a large wire diameter d and a small spring index D / d which is a ratio of the coil average diameter D to the wire diameter d. It is used for forming, and carbon steel and spring steel are used as a coil spring wire material. In the hot forming method, the wire is heated to a high temperature so as to be easily processed, wound around a core metal and coiled in a coil spring shape, and after quenching and tempering, shot peening and setting are further performed to obtain main performance as a coil spring performance. Fatigue resistance and fatigue resistance are obtained. In the hot forming method, coiling with a coreless metal is technically very difficult, so it has not been put to practical use until now. Therefore, it is essential in the conventional art to use a core metal in the hot forming method, and as a coil spring that can be formed, the degree of freedom in shape is lower as compared with a cold forming method that can be coiled with a coreless metal.

一方、バルブスプリングやクラッチトーションスプリングクラスの圧縮コイルばねについては、比較的線径が細いために冷間成形が可能である。そして、加熱による変態や熱膨張収縮を伴わないことから高い寸法精度が得やすく、更に、加工速度や設備費等による量産性(タクト、コスト)も高いことから、このクラスの圧縮コイルばねの製造については従来から冷間成形法が採用されている。また、この冷間成形法については無芯金での成形技術が確立されており、コイルばねの形状自由度が高いことも、冷間成形法が用いられる大きな一因であり、熱間成形法によるバルブスプリングやクラッチトーションスプリングクラスの圧縮コイルばねの製造技術はこれまでに実用化されていない。なお、冷間成形法においては、コイルばね線材としては、炭素鋼線、硬鋼線、ピアノ線、ばね鋼線といった硬引線が従来用いられてきた。しかしながら、近年、軽量化の観点から材料の高強度化が求められており、高価なオイルテンパー線が広く用いられるようになってきている。   On the other hand, the compression coil spring of the valve spring and the clutch torsion spring class can be cold-formed because the wire diameter is relatively thin. And since high dimensional accuracy can be easily obtained because there is no transformation or thermal expansion and contraction due to heating, and mass productivity (tact, cost) due to processing speed, equipment cost, etc. is also high, this class of compression coil spring is manufactured. The cold forming method has conventionally been adopted for. In addition, for this cold forming method, a forming technique using a coreless metal has been established, and the high degree of freedom in shape of the coil spring is also a major cause of using the cold forming method. The manufacturing technology of the compression coil spring of the valve spring and the clutch torsion spring class by the above has not been put to practical use so far. In the cold forming method, hard drawn wires such as carbon steel wire, hard steel wire, piano wire, and spring steel wire have been conventionally used as the coil spring wire. However, in recent years, it has been required to increase the strength of materials from the viewpoint of weight reduction, and expensive oil-tempered wires are widely used.

冷間成形法では、図1(C)に示すように、線材を冷間でコイルばね形状にコイリングし、焼鈍後、窒化処理やショットピーニングおよびセッチングを必要に応じて施す。ここで、焼鈍は、コイルばねの耐疲労性向上の阻害要因となる加工によって生じた残留応力を除去することを目的としており、ショットピーニングによる表面への圧縮残留応力の付与と合わせ、コイルばねの耐疲労性向上に寄与する。なお、バルブスプリングやクラッチトーションスプリングのような高負荷応力で使用されるコイルばねについては、窒化処理による表面硬化処理がショットピーニング前に必要に応じて施される。   In the cold forming method, as shown in FIG. 1 (C), the wire is cold coiled in a coil spring shape, and after annealing, nitriding treatment, shot peening and setting are applied as needed. Here, the purpose of annealing is to remove the residual stress generated by processing that is an impediment to improving the fatigue resistance of the coil spring, and combined with the application of compressive residual stress to the surface by shot peening, It contributes to the improvement of fatigue resistance. In the case of a coil spring used under high load stress such as a valve spring or a clutch torsion spring, a surface hardening treatment by a nitriding treatment is applied before the shot peening as needed.

さらなる耐疲労性の向上を目指した研究が盛んに行われている。たとえば、特許文献1には、冷間成形用のオイルテンパー線が記載されており、残留オーステナイトの加工誘起変態を利用して耐疲労性を向上させる技術が開示されている。また、特許文献2には、加熱中から焼入れまでの間に、鋼線材表面に炭化水素系ガスを1本のノズルから直接吹付け、その鋼線材表面にC濃化層を形成する手段が開示されている。特許文献3には、窒化処理を施した線材の表面に、異なる投射速度での多段ショットピーニングを施すことで大きな圧縮残留応力を付与し、耐疲労性の向上を図る技術が開示されている。   Research aimed at further improving fatigue resistance is actively conducted. For example, Patent Document 1 describes an oil-tempered wire for cold forming, and discloses a technique for improving fatigue resistance by utilizing process-induced transformation of retained austenite. Further, Patent Document 2 discloses means for directly spraying hydrocarbon gas from one nozzle onto the surface of a steel wire rod during heating and quenching, and forming a C-rich layer on the surface of the steel wire rod. It is done. Patent Document 3 discloses a technique for imparting a large compressive residual stress by performing multi-stage shot peening at different projection speeds on the surface of a wire material subjected to a nitriding treatment to improve the fatigue resistance.

特許文献1においてコイリング後のコイルばねには残留応力が生じる。この残留応力、特にコイル内径側表面に発生する線軸方向の引張残留応力は、コイルばねとしての耐疲労性向上の阻害要因である。そして、通常はこの加工による残留応力を除去するために焼鈍を施すが、特許文献1に記載の軟化抵抗が高い線材をもってしても、所望の線材の強度を維持したうえでこの残留応力を完全に除去することが困難なことは容易に推定でき、当業者にとっては周知である。したがって、その後ショットピーニングを施したところで、加工によってコイル内径側に残留した引張残留応力の影響により線材表面に十分な圧縮残留応力を付与することは困難であり、コイルばねとしての十分な耐疲労性を得ることができない。   In Patent Document 1, residual stress occurs in the coil spring after coiling. The residual stress, in particular, the tensile residual stress in the direction of the linear axis generated on the inner surface of the coil is a factor inhibiting the improvement of the fatigue resistance as a coil spring. And although annealing is usually performed in order to remove the residual stress by this processing, even with the wire with high softening resistance described in Patent Document 1, the desired strength of the wire is maintained and this residual stress is completely eliminated. The difficulty of removing it is easy to estimate and is well known to those skilled in the art. Therefore, when shot peening is applied thereafter, it is difficult to provide sufficient compressive residual stress to the wire surface due to the influence of tensile residual stress remaining on the inner diameter side of the coil due to processing, and sufficient fatigue resistance as a coil spring Can not get.

また、特許文献2には、鋼線材をオーステナイト域まで加熱した状態でコイリング加工を行う際に、同時に鋼線材へ浸炭処理を施すことで、加工に起因した残留応力の発生を解消するとともに表面にC 濃化層を形成し、後に行うショットピーニングやセッチングの効果を効率的に得ることが開示されている。この場合において、加熱中から焼入れまでの間に、鋼線材表面に炭化水素系ガスを1本のノズルから直接吹付け、その鋼線材表面にC濃化層を形成している。しかし、この方法では、線材円周方向においてC濃化層の厚さ、表面C濃度にばらつきが生じることが容易に推定される。そして、そのばらつきは、所望されるC濃化層厚さやC濃度に対し、過剰なC濃化層厚さやC濃度、一方では希薄なC濃化層厚さやC濃度の部分を形成する。C濃度の高い部分ではオーステナイトからマルテンサイトへの変態が阻害され、残留オーステナイト相の増大を招く。その結果として、耐疲労性の向上は見込まれるが、耐へたり性の低下は免れられない。ショットピーニングにより導入される表面近傍の圧縮残留応力の大きさは、鋼線材においてショットピーニングの影響を受ける表面近傍の降伏応力、すなわち、C濃度に比例する。よって、希薄なC濃化層では、ショットピーニングにより導入される表面近傍の圧縮残留応力が所望の大きさに至らず、表面近傍(最表面を含む)を起点とする疲労亀裂の発生に対しその防止効果が十分ではない。また、表面硬さの上昇も少ないため、作動時に接触を繰り返す線間部での摩耗を防ぐことができず、その摩耗部を起点とした早期折損を招くことがある。これらのことから、希薄なC濃化層が存在すると、耐疲労性の向上が見込めない。   Further, according to Patent Document 2, when coiling processing is performed in a state where the steel wire is heated to the austenite region, carburizing treatment is simultaneously applied to the steel wire, thereby eliminating the generation of residual stress due to the processing and It is disclosed that the formation of a C-enriched layer to efficiently obtain the effects of shot peening and setting performed later. In this case, a hydrocarbon-based gas is directly sprayed onto the surface of the steel wire from one nozzle during heating and hardening, and a C-rich layer is formed on the surface of the steel wire. However, in this method, it is easily estimated that variations occur in the thickness and surface C concentration of the C-rich layer in the wire circumferential direction. And, the variation forms a portion of excessive C-concentrated layer thickness and C concentration, and a thin C-concentrated layer thickness and C concentration, with respect to the desired C-concentrated layer thickness and C concentration. In the part where the C concentration is high, the transformation from austenite to martensite is inhibited, resulting in an increase in retained austenite phase. As a result, improvement in fatigue resistance is expected, but deterioration in fatigue resistance is inevitable. The magnitude of the compressive residual stress in the vicinity of the surface introduced by shot peening is proportional to the yield stress in the vicinity of the surface affected by the shot peening in the steel wire, that is, the C concentration. Therefore, in the dilute C-enriched layer, compressive residual stress in the vicinity of the surface introduced by shot peening does not reach a desired magnitude, and fatigue cracks originating from the vicinity of the surface (including the outermost surface) are generated Preventive effect is not enough. In addition, since the surface hardness rise is also small, it is not possible to prevent wear at the inter-line portion where contact is repeated during operation, and there is a possibility of causing early breakage starting from the wear portion. From these facts, if a dilute C-rich layer is present, improvement in fatigue resistance can not be expected.

一方、従来からバッチ処理による真空浸炭処理が行われている。この処理がなされた浸炭ばねは深くかつ大きい圧縮残留応力が得られることで耐久性の向上は図れるものの、装置システム構成に起因する浸炭量のコントロールが難しく、得られる浸炭深さは所望する深さを超えるものとなってしまう。特に、弁ばねにとっては過剰浸炭となり、過剰なC濃化層厚さにより形成される残留オーステナイト相の増大に伴い、耐へたり性が著しく低下してしまう。   On the other hand, vacuum carburizing by batch processing has been conventionally performed. The carburized spring subjected to this treatment can improve the durability by obtaining deep and large compressive residual stress, but it is difficult to control the amount of carburized due to the system configuration, and the carburized depth obtained is a desired depth. It will be more than In particular, for the valve spring, it becomes excessive carburization, and with the increase of the retained austenite phase formed by the excessive C-concentrated layer thickness, the sag resistance is significantly reduced.

さらに、特許文献3では、コイルばねの線材表面近傍(以下、「表面」と称す)の圧縮残留応力は1400MPa程度あり、バルブスプリングやクラッチトーションスプリングクラスの高負荷応力下で使用するコイルばねとして、表面における亀裂発生抑制に対しその圧縮残留応力は十分である。しかしながら、表面の圧縮残留応力を向上させた結果、線材内部での圧縮残留応力は小さくなり、介在物などを起点とする線材内部での亀裂発生に対しては、その圧縮残留応力の効果が乏しくなる。つまり、特許文献3による手段では、ショットピーニングにより与えられるエネルギーに限りがあるため、すなわち圧縮残留応力分布の変化は与えられるものの圧縮残留応力の総和を大きく向上させることは困難である。先述した加工による残留応力の影響を解消することなどは考慮されておらず、よって、同じ強度の線材に対してその耐疲労性の向上効果は乏しい。   Further, in Patent Document 3, the compressive residual stress in the vicinity of the wire surface (hereinafter referred to as the “surface”) of the coil spring is about 1400 MPa, and as a coil spring used under high load stress of valve spring and clutch torsion spring class, Its compressive residual stress is sufficient to suppress crack initiation on the surface. However, as the compressive residual stress on the surface is improved, the compressive residual stress in the wire becomes smaller, and the effect of the compressive residual stress on cracking in the wire originating from inclusions etc. Become. That is, in the method according to Patent Document 3, since the energy given by shot peening is limited, that is, although the change of the compressive residual stress distribution is given, it is difficult to greatly improve the total of the compressive residual stress. It is not considered to eliminate the influence of the residual stress due to the above-mentioned processing, and therefore the improvement in the fatigue resistance of the wire having the same strength is poor.

なお、表面圧縮残留応力を向上させる手段は様々実用化されているが、その結果、たとえば線径1.5〜10mm程度のコイルばねにおいては、線材表面からの深さ0.1〜0.4mmの範囲に外部負荷による作用応力と残留応力との和である合成応力の最大値が存在し、その合成応力の最も高い部分が破壊起点となっているのが実情である。したがって、深さ0.1〜0.4mmの範囲において大きな圧縮残留応力を確保することが、耐疲労性に対し重要である。   Although various means for improving surface compressive residual stress have been put to practical use, as a result, for example, in a coil spring with a wire diameter of about 1.5 to 10 mm, the depth from the wire surface is 0.1 to 0.4 mm The maximum value of the combined stress, which is the sum of the applied stress and the residual stress due to the external load, exists in the range, and the highest part of the combined stress is the starting point of the failure. Therefore, securing a large compressive residual stress in the depth range of 0.1 to 0.4 mm is important for fatigue resistance.

特許第3595901号Patent No. 3595901 特開2014−055343号公報JP, 2014-055343, A 特開2009−226523号公報JP, 2009-226523, A

上記のように、従来の製造方法や特許文献1〜3等では、近年の高応力下での耐疲労性および耐へたり性の更なる向上とコスト低減の両立を求めた要求に対し、その対応は困難を来す。また、成形後の焼鈍処理で加工による残留応力を完全に解消できていないことから、線材の性能を十分に活用できていない。   As described above, in the conventional manufacturing method and Patent Documents 1 to 3 and the like, in response to the demand for coexistence of further improvement of fatigue resistance and fatigue resistance under high stress and cost reduction in recent years, Dealings are difficult. Moreover, since the residual stress by processing can not be completely eliminated by the annealing treatment after shaping | molding, the performance of the wire can not fully be utilized.

本発明は、このような背景のもと、コイリング加工による引張残留応力を解消すると共に線材表面にC 濃化層を、適切なC濃度および適切な厚さ範囲内で均一に形成し、成形後の線材に最適な圧縮残留応力分布を付与することにより、高耐久性かつ高耐へたり性の圧縮コイルばねの製造方法を提供することを目的とする。 Under such a background, the present invention eliminates tensile residual stress due to coiling and forms a C 2 -rich layer uniformly on the surface of the wire within an appropriate C concentration and an appropriate thickness range, and after forming It is an object of the present invention to provide a method of manufacturing a compression coil spring having high durability and high sag resistance by giving an optimum compression residual stress distribution to the wire rod.

本発明者らは、コイルばねの耐疲労性および耐へたり性について鋭意研究を行った。そして、鋼線材の表面に薄く均一な厚さの浸炭層(以下、「C濃化層」と称する)を形成することに思い至った。これにより、残留オーステナイト相が少なく耐へたり性を向上させることができるとともに、表面近傍を高硬度として降伏応力を向上させ、後に行うショットピーニングの効果を効率的に得ることができ、耐疲労性を向上させることができる。   The present inventors conducted intensive studies on the fatigue resistance and the sag resistance of a coil spring. Then, it has been conceived to form a thin and uniform carburized layer (hereinafter referred to as "C-enriched layer") on the surface of the steel wire. As a result, the residual austenite phase can be reduced and the sag resistance can be improved, the yield stress can be improved by making the vicinity of the surface high in hardness, and the effect of the shot peening to be performed later can be efficiently obtained. Can be improved.

本発明の圧縮コイルばねの製造方法は、コイルばね成形機により鋼線材を熱間成形するコイリング工程と、コイリングした後に切離され温度が未だオーステナイト域にあるコイルをそのまま焼入れする焼入れ工程と、焼入れされたコイルを調質する焼戻し工程と、線材表面に圧縮残留応力を付与するショットピーニング工程とを備えた圧縮コイルばねの製造方法において、前記コイリング工程では、加熱、浸炭および熱間成形を行い、前記コイルばね成形機は、連続的に鋼線材を供給するためのフィードローラと、鋼線材をコイル状に成形するコイリング部と、鋼線材を所定巻数コイリングした後に後方より連続して供給されてくる鋼線材とを切断するための切断手段とを有し、コイリング部は、フィードローラにより供給された鋼線材を加工部の適切な位置へ誘導するためのワイヤガイドと、ワイヤガイドを経由して供給された鋼線材をコイル形状に加工するためのコイリングピンもしくはコイリングローラからなるコイリングツールと、ピッチを付けるためのピッチツールとを備えており、コイルばね成形機は、さらに、フィードローラの出口からコイリングツールの間に鋼線材をオーステナイト域まで昇温する加熱手段を有し、加熱手段における鋼線材入口側からコイリングツールに至る間の一部または全域に鋼線材の外周を覆う囲い部材が配置され、囲い部材内に炭化水素系ガスを供給するガス供給手段を有し、加熱手段が高周波加熱装置であり、鋼線材の通過経路上に鋼線材と同心となるように高周波加熱コイルが配置され、高周波加熱コイルの内側に囲い部材が配置され、前記高周波加熱コイルは前記鋼線材を直接加熱することを特徴とする。 The method for manufacturing a compression coil spring according to the present invention includes a coiling step of hot forming a steel wire rod by a coil spring forming machine, a hardening step of hardening a coil which is separated after coiling and whose temperature is still in the austenite range, and hardening In the method of manufacturing a compression coil spring including a tempering step of tempering the coil and a shot peening step of applying a compressive residual stress to the surface of the wire, the coiling step performs heating, carburizing and hot forming, The coil spring forming machine is continuously supplied from the rear after coiling a feed roller for continuously supplying a steel wire, a coiling portion for forming the steel wire into a coil shape, and a predetermined number of turns of the steel wire. And a cutting means for cutting the steel wire rod, and the coiling portion adds the steel wire rod supplied by the feed roller. Wire guide for guiding to the appropriate position of the part, coiling tool consisting of coiling pin or coiling roller for processing the steel wire supplied through the wire guide into a coil shape, and pitch for pitching And the coil spring forming machine further includes heating means for raising the temperature of the steel wire to the austenite region between the exit of the feed roller and the coiling tool, and the coiling tool from the steel wire inlet side of the heating means An enclosure member covering the outer periphery of the steel wire rod is disposed in a part or the entire area between the two, and has a gas supply means for supplying hydrocarbon-based gas in the enclosure member , the heating means is a high frequency heating device, steel wire rod The high frequency heating coil is arranged on the passage of the pipe so as to be concentric with the steel wire, and the enclosing member is arranged inside the high frequency heating coil. The high-frequency heating coil is characterized by heating the steel wire rod directly.

本発明の圧縮コイルばねの製造方法では、炭化水素系ガスと接触させる時点の鋼線材表面温度が850〜1150℃であることが好ましい。この浸炭条件によれば、線材の結晶粒の著しい粗大化を防ぎながら浸炭を短時間で効率的に行うことができる。また、本発明の圧縮コイルばねの製造方法では、炭化水素系ガスの主成分が、メタン、ブタン、プロパン、アセチレンのいずれかであることが好ましい。   In the method for manufacturing a compression coil spring of the present invention, it is preferable that the steel wire surface temperature at the time of contacting with the hydrocarbon-based gas is 850 to 1150 ° C. According to this carburizing condition, carburization can be efficiently performed in a short time while preventing significant coarsening of crystal grains of the wire rod. Further, in the method for manufacturing a compression coil spring of the present invention, it is preferable that the main component of the hydrocarbon-based gas is any one of methane, butane, propane and acetylene.

上記製造方法において、焼戻し工程は、焼入れ工程によって硬化されたコイルばねを適切な硬さと靭性を有するコイルばねに調質するために行う。よって、焼入れたままで所望の硬さと靭性とが得られる場合には、焼戻し工程は省略しても良い。そして、ショットピーニング工程では、多段ショットピーニングを行っても良く、さらに、弾性限の回復を目的とした低温時効処理を必要に応じ組み合わせても良い。ここで、低温時効処理はショットピーニング工程後、あるいは多段ショットピーニングの各段の間にて行うことができ、多段ショットピーニングにおける最終段として粒径0.02〜0.30mmのショットによるショットピーニングを施す場合には、その前処理として行うことが、最表面の圧縮残留応力をより高める上で好適である。なお、セッチング工程は、鋼線材の降伏応力を高めて耐へたり性を向上させる処理であり、コイルばねに施すセッチングとしては、コールドセッチング、ホットセッチング等種々方法はあるが、所望する特性により適宜選択する。   In the above manufacturing method, the tempering step is performed to refine the coil spring hardened by the hardening step into a coil spring having an appropriate hardness and toughness. Therefore, the tempering step may be omitted if desired hardness and toughness can be obtained as it is quenched. In the shot peening step, multistage shot peening may be performed, and further, a low temperature aging treatment for the purpose of recovering the elastic limit may be combined as necessary. Here, the low temperature aging treatment can be performed after the shot peening step or between each stage of multistage shot peening, and shot peening with a shot having a particle diameter of 0.02 to 0.30 mm as a final stage in multistage shot peening When it is applied, it is preferable to carry out as the pretreatment in order to further increase the compressive residual stress on the outermost surface. The setting step is a treatment to increase the yield stress of the steel wire to improve the sett resistance, and there are various methods such as cold setting and hot setting as the setting applied to the coil spring, but depending on the desired characteristics select.

本発明の圧縮コイルばねの製造方法によれば、加熱手段における鋼線材入口側からコイリングツールに至る間の一部または全域に鋼線材の外周を覆う例えば円筒状の囲い部材が配置され、囲い部材内に炭化水素系ガスが供給されるから、炭化水素系ガスの供給量を制御することで囲い部材内の炭化水素系ガス濃度を容易に制御することができる。また、炭化水素系ガスが一様に鋼線材を取り囲むから、浸炭によって形成するC濃化層の厚さを均一にすることができる。すなわち、鋼線材の全周に亘って厚さが0.01〜0.05mmのC濃化層を形成することができる。   According to the method of manufacturing the compression coil spring of the present invention, for example, a cylindrical enclosing member covering the outer periphery of the steel wire rod is disposed in a part or the entire area from the steel wire rod inlet side to the coiling tool in the heating means Since the hydrocarbon-based gas is supplied to the inside, the hydrocarbon-based gas concentration in the enclosure member can be easily controlled by controlling the supply amount of the hydrocarbon-based gas. Further, since the hydrocarbon-based gas uniformly surrounds the steel wire rod, the thickness of the C-concentrated layer formed by carburizing can be made uniform. That is, a C-concentrated layer having a thickness of 0.01 to 0.05 mm can be formed all around the steel wire rod.

本発明においては、上記のようなコイルばね製造装置で熱間コイリングを行うため、加工による残留応力が発生しない。そして、鋼線材を2.5秒以内でオーステナイト域まで昇温するため、結晶粒の粗大化を防ぐことができ、優れた耐疲労性を得ることができる。また、浸炭処理を施すため、鋼線材表面を高硬度とすることができ、後に行うショットピーニングによって効果的に圧縮残留応力を付与することができる。特に、本発明の圧縮コイルばねの製造方法では、熱間コイリング時の熱を利用して浸炭処理を行うため、効率的に浸炭処理を行うことが可能である。   In the present invention, since the hot coiling is performed by the coil spring manufacturing apparatus as described above, residual stress due to processing does not occur. And, since the temperature of the steel wire is raised to the austenite region within 2.5 seconds, coarsening of crystal grains can be prevented, and excellent fatigue resistance can be obtained. In addition, since the surface of the steel wire rod can be made to have high hardness in order to carry out carburizing treatment, compressive residual stress can be effectively imparted by shot peening to be performed later. In particular, in the method for manufacturing a compression coil spring according to the present invention, carburizing treatment can be performed efficiently by utilizing the heat at the time of hot coiling.

本発明により製造される圧縮コイルばねは、たとえば以下のような構成を有する。すなわち、重量%で、Cを0.5〜0.7%、Siを1.2〜3.0%、Mnを0.3〜1.2%、Crを0.5〜1.9%、Vを0.05〜0.5%含むと共に、任意成分としてNiを1.5%以下,Moを1.5%以下、Wを0.5%以下のうち1種または2種以上を含み、残部が鉄および不可避不純物からなる鋼線材を用いた圧縮コイルばねにおいて、表層部に前記鋼線材に含まれるCの平均濃度を超えるC濃化層を有し、前記鋼線材の全周に亘って前記C濃化層の厚さが0.01〜0.05mmの範囲に入る The compression coil spring manufactured according to the present invention has, for example, the following configuration. That is, by weight%, C 0.5 to 0.7%, Si 1.2 to 3.0%, Mn 0.3 to 1.2%, Cr 0.5 to 1.9%, As well as containing 0.05 to 0.5% of V, containing 1.5% or less of Ni, 1.5% or less of Mo, and 0.5% or less of W as an optional component, In a compression coil spring using a steel wire rod, the balance of which comprises iron and unavoidable impurities, the surface layer portion has a C-concentrated layer exceeding the average concentration of C contained in the steel wire rod, and extends over the entire circumference of the steel wire rod The thickness of the C-concentrated layer is in the range of 0.01 to 0.05 mm .

以下に、上記数値範囲の限定理由を説明する。まず、本発明で用いる鋼線材の化学成分の限定理由について説明する。上記圧縮コイルばねにおいては、重量%で、Cを0.5〜0.7%、Siを1.2〜3.0%、Mnを0.3〜1.2%、Crを0.5〜1.9%、Vを0.05〜0.5%含むと共に、任意成分としてNiを1.5%以下,Moを1.5%以下、Wを0.5%以下のうち1種または2種以上を含み、残部が鉄および不可避不純物からなる鋼線材を用いる。なお、以下の説明において「%」は「重量%」を意味する。 The reasons for limitation of the above numerical range are described below. First, the reasons for limitation of the chemical components of the steel wire rod used in the present invention will be described. In the above compression coil spring , 0.5% to 0.7% of C, 1.2 to 3.0% of Si, 0.3 to 1.2% of Mn, and 0.5 to Cr by weight% While containing 1.9% and 0.05 to 0.5% of V, Ni is not more than 1.5%, Mo is not more than 1.5%, and W is not more than 0.5% as an optional component Use a steel wire rod containing at least the species and the balance being iron and unavoidable impurities. In the following description, "%" means "% by weight".

(1)材料成分
C:0.5〜0.7%
Cは、強度向上に寄与する。Cの含有量が0.5%未満では、強度向上の効果が十分に得られないため、耐疲労性、耐へたり性が不十分となる。一方、Cの含有量が0.7%を超えると、靭性が低下して割れが発生し易くなる。このため、Cの含有量は0.5〜0.7%とする。
(1) Material component C: 0.5 to 0.7%
C contributes to strength improvement. If the C content is less than 0.5%, the effect of improving the strength can not be sufficiently obtained, and therefore the fatigue resistance and the sag resistance become insufficient. On the other hand, when the content of C exceeds 0.7%, the toughness is lowered and the crack is easily generated. Therefore, the content of C is set to 0.5 to 0.7%.

Si:1.2〜3.0%
Siは、鋼の脱酸に有効であると共に、強度向上や焼戻し軟化抵抗向上に寄与する。Siの含有量が1.2%未満では、これらの効果が十分に得られない。一方、Siの含有量が3.0%を超えると、脱炭を助長し線材表面強度の低下を招き、また、靭性が大きく低下することからコイルばねとしての使用時に割れの発生を招く。このため、Siの含有量は1.2〜3.0%とする。一方、Si量が2.4%〜3.0%においてコイルばねの性能に対するその効果は同等ではあるが、この範囲におけるSi含有量の増加は素材製造における鋳造時の割れ発生の危険性を高めるため、Siの含有量は2.4%以下が好ましい。
Si: 1.2 to 3.0%
Si is effective for deoxidation of steel and contributes to the improvement of strength and the improvement of resistance to temper softening. If the content of Si is less than 1.2%, these effects can not be sufficiently obtained. On the other hand, if the content of Si exceeds 3.0%, decarburization is promoted and the surface strength of the wire is reduced, and the toughness is greatly reduced, which causes the occurrence of cracking when used as a coil spring. Therefore, the content of Si is set to 1.2 to 3.0%. On the other hand, although the effect on the performance of a coil spring is equivalent when the amount of Si is 2.4% to 3.0%, the increase of the Si content in this range increases the risk of cracking during casting in material production Therefore, the content of Si is preferably 2.4% or less.

Mn:0.3〜1.2%
Mnは焼入れ性の向上に寄与する。Mnの含有量が0.3%未満では、十分な焼入れ性を確保し難くなり、また、延靭性に有害となるSの固着(MnS生成)の効果も乏しくなる。一方、Mnの含有量が1.2%を超えると、延性が低下し、割れや表面キズが発生し易くなる。このため、Mnの含有量は0.3〜1.2%とする。一方、Mn量が0.8%〜1.2%においてコイルばねの性能に対するその効果は同等ではあるが、この範囲におけるMn含有量の増加は素材製造における伸線加工時の破断発生の危険性を高めるため、Mnの含有量は0.8%以下が好ましい。
Mn: 0.3 to 1.2%
Mn contributes to the improvement of the hardenability. When the content of Mn is less than 0.3%, it is difficult to secure sufficient hardenability, and the effect of the fixation of S (the formation of MnS) which is harmful to the ductility is also poor. On the other hand, when the content of Mn exceeds 1.2%, the ductility decreases, and cracking and surface flaws easily occur. Therefore, the content of Mn is set to 0.3 to 1.2%. On the other hand, although the effect on the performance of a coil spring is equivalent when the amount of Mn is 0.8% to 1.2%, the increase of the Mn content in this range is a risk of occurrence of breakage at the time of wire drawing in material production The content of Mn is preferably 0.8% or less.

Cr:0.5〜1.9%
Crは脱炭を防止するのに有効であると共に、強度向上や焼戻し軟化抵抗向上に寄与し、耐疲労性の向上に有効である。また、温間での耐へたり性向上にも有効である。このため、本発明においてはさらに、Crを0.5〜1.9%含有することが好ましい。Crの含有量が0.5%未満では、これらの効果を十分に得られない。一方、Crの含有量が1.9%を超えると、靭性が低下し、割れや表面キズが発生し易くなる。
Cr: 0.5 to 1.9%
Cr is effective in preventing decarburization, contributes to the improvement of strength and temper softening resistance, and is effective in the improvement of fatigue resistance. In addition, it is also effective for improving the resistance to warmth. Therefore, in the present invention, it is preferable to further contain 0.5 to 1.9% of Cr. If the content of Cr is less than 0.5%, these effects can not be obtained sufficiently. On the other hand, when the content of Cr exceeds 1.9%, the toughness is reduced, and cracking and surface flaws easily occur.

V:0.05〜0.5%
Vは熱処理により微細炭化物として析出することにより結晶粒微細化され、靱性を損なわずに強度を向上させるため、耐疲労性の向上に有効であるとともに、耐へたり性を向上させる。また、Vは焼戻し軟化抵抗向上にも寄与する。Vの含有量が0.05%に満たない場合には、そのような効果を得ることができない。一方、Vを0.5%を超えて含有すると、加熱時に炭化物を多く形成し、靭性の低下をもたらす。
V: 0.05 to 0.5%
Since V is refined as fine carbides by heat treatment and is refined as crystal grains and improves strength without losing toughness, it is effective in improving fatigue resistance and improves sag resistance. V also contributes to the improvement of temper softening resistance. If the V content is less than 0.05%, such an effect can not be obtained. On the other hand, when V is contained in excess of 0.5%, a large amount of carbides are formed at the time of heating, leading to a decrease in toughness.

上記圧縮コイルばねにおいては、さらに任意成分としてNi、Mo、Wのうち1種または2種以上を添加することができる。その結果、より高性能ないしは用途により適したコイルばねの製造も可能である。 In the compression coil spring , one or more of Ni, Mo and W can be added as an optional component. As a result, it is also possible to produce a coil spring having higher performance or more suitable for the application.

Ni:1.5%以下
Niは靱性向上に寄与するため、耐疲労性の向上に有効である。また、Niは耐食性向上に寄与する。一方、Niの含有量が1.5%を超えると逆に靭性の低下をもたらす。
Ni: 1.5% or less Ni contributes to the improvement of toughness and is effective in the improvement of fatigue resistance. In addition, Ni contributes to the improvement of the corrosion resistance. On the other hand, when the content of Ni exceeds 1.5%, the toughness is lowered.

Mo:1.5%以下
Moは焼入れ性および靱性向上に寄与する。焼入れ性向上に寄与しているMnの代わりにMoを添加しても良く、またMnとともにMoを添加しても良い。靭性向上に寄与するNiの代わりにMoを添加しても良く、またNiとともにMoを添加しても良い。一方、Moの含有量が1.5%を超えると、加熱時に炭化物を多く形成し、靭性の低下をもたらす。
Mo: 1.5% or less Mo contributes to the improvement of hardenability and toughness. Mo may be added instead of Mn contributing to the improvement of the hardenability, or Mo may be added together with Mn. Mo may be added instead of Ni which contributes to the improvement of toughness, and Mo may be added together with Ni. On the other hand, when the content of Mo exceeds 1.5%, a large amount of carbides are formed at the time of heating, leading to a decrease in toughness.

W:0.5%以下
Wは熱処理により微細炭化物として析出することにより結晶粒が微細化され、靱性を損なわずに強度を向上させるため、耐疲労性の向上に有効である。また、Wは耐へたり性を向上させるとともに、焼戻し軟化抵抗向上にも寄与する。一方、Wの含有量が0.5%を超えると、加熱時に炭化物を多く形成し、靭性の低下をもたらす。
W: 0.5% or less W precipitates as fine carbides by heat treatment to refine the crystal grains and improve the strength without losing the toughness, which is effective in improving the fatigue resistance. Further, W improves the sag resistance and also contributes to the improvement of the temper softening resistance. On the other hand, if the content of W exceeds 0.5%, a large amount of carbides are formed at the time of heating, leading to a decrease in toughness.

なお、本発明においては、上記したNi、Mo、およびWの任意元素の他に以下の元素を添加することもできる。   In the present invention, the following elements can be added in addition to the above optional elements of Ni, Mo and W.

B:0.0003〜0.003%
Bは焼入れ性を向上させ、低温脆性を防止する効果がある。また、Bは耐へたり性の向上に寄与する。焼入れ性向上に寄与しているMnの代わりにBを添加しても良く、またMnとともにBを添加しても良い。Bの含有量が0.0003%未満ではそのような効果が乏しく、0.003%を超えると、その効果が飽和し、製造性や衝撃強度を劣化させることがある。
B: 0.0003 to 0.003%
B improves the hardenability and has the effect of preventing low temperature brittleness. B also contributes to the improvement of the sag resistance. B may be added instead of Mn contributing to the improvement of the hardenability, or B may be added together with Mn. If the content of B is less than 0.0003%, such effects are scarce, and if it exceeds 0.003%, the effects may be saturated and the productivity and impact strength may be deteriorated.

Cu:0%を超え0.65%以下
Cuは電気化学的に鉄よりもイオン化傾向の高い金属元素であり、鋼の耐食性を高める作用を有するため、耐食性向上に有効である。Cuは、耐食性向上に寄与しているNiの代わりに添加してもよく、またNiとともに添加しても良い。Cuの含有量が0.65%を超えると、熱間加工時に割れが発生しやすくなる。
Cu: more than 0% and 0.65% or less Cu is a metal element having a higher ionization tendency than iron electrochemically, and has an action of enhancing the corrosion resistance of steel, and thus is effective for improving the corrosion resistance. Cu may be added instead of Ni contributing to the improvement of the corrosion resistance, and may be added together with Ni. When the content of Cu exceeds 0.65%, cracking tends to occur during hot working.

Ti,Nb:0.05〜0.5%
TiおよびNbはいずれもVと同様な効果を奏する元素である。これらの元素の含有量が0.05%未満ではそのような効果が乏しく、0.5%を超えると、加熱時に炭化物を多く形成し、靭性の低下をもたらす。
Ti, Nb: 0.05 to 0.5%
Both Ti and Nb are elements having the same effect as V. If the content of these elements is less than 0.05%, such effects are poor, and if it exceeds 0.5%, a large amount of carbides are formed at the time of heating, leading to a decrease in toughness.

(2)C濃度分布
上記圧縮コイルばねにおいては、線材表面の硬度を高めて降伏応力を向上させるため、線材の表層部に浸炭処理によってC濃化層を形成する。降伏応力を向上させることにより、後に行うショットピーニングによって大きな表面圧縮残留応力を付与することができる。また、線材の表面粗さを改善することができる。このため、耐疲労性をさらに向上させる効果がある。このC濃化層には線材に含有されるCの平均濃度を超える濃度のCを含有させる。また、これらの効果を十分に得るため、C濃化層における最大C濃度が0.7〜1.2%であり、C濃化層(浸炭深さ)は前記鋼線材の全周に亘って線材表面から0.01〜0.05mmの深さの範囲内に形成する。
(2) C concentration distribution
In the above-mentioned compression coil spring , in order to increase the hardness of the surface of the wire and to improve the yield stress, a C-concentrated layer is formed on the surface portion of the wire by carburizing treatment. By improving the yield stress, it is possible to apply a large surface compressive residual stress by the subsequent shot peening. In addition, the surface roughness of the wire can be improved. Therefore, there is an effect of further improving the fatigue resistance. The C-concentrated layer contains C at a concentration exceeding the average concentration of C contained in the wire. In addition, in order to obtain these effects sufficiently, the maximum C concentration in the C-rich layer is 0.7 to 1.2%, and the C-rich layer (carburized depth) extends over the entire circumference of the steel wire rod. It forms in the range of the depth of 0.01-0.05 mm from the wire surface.

C濃化層の最大C濃度が1.2%を超える場合やC濃化層の厚さが0.05mmを超える場合は、浸炭反応を効率的に行うために高温で処理を行わなければならないため、結晶粒度が悪化し、耐疲労性の低下を招き易い。また、C濃度が1.2%を超えた場合は、母相に固溶できないCが炭化物として結晶粒界に多く析出することで靭性が低下し、この場合も耐疲労性の低下を招き易い。さらに、C濃化層の厚さが0.05mmを超える場合には、残留オーステナイトの割合が増加して耐へたり性が悪化する。   When the maximum C concentration of the C-concentrated layer exceeds 1.2% or the thickness of the C-concentrated layer exceeds 0.05 mm, treatment must be performed at high temperature to efficiently perform the carburization reaction. Therefore, the grain size is deteriorated, and the fatigue resistance is easily reduced. In addition, when the C concentration exceeds 1.2%, a large amount of C which can not form a solid solution in the matrix precipitates as carbides at the grain boundaries to lower the toughness, which also tends to cause a decrease in the fatigue resistance. . Furthermore, when the thickness of the C-concentrated layer exceeds 0.05 mm, the proportion of retained austenite increases and the sag resistance deteriorates.

一方、C濃化層における最大C濃度が0.7%に満たなかったり、C濃化層厚さが線材表面から0.01mmに満たない場合には、以下の不都合を生じる。すなわち、ショットピーニングにより導入される表面近傍の圧縮残留応力の大きさは、鋼線材においてショットピーニングの影響を受ける表面近傍の降伏応力、すなわち、C濃度に比例する。よって、希薄な(濃度および深さ)C濃化層では、ショットピーニングにより導入される表面近傍の圧縮残留応力が所望の大きさに至らず、表面近傍(最表面を含む)を起点とする疲労亀裂の発生に対しその防止効果が十分ではない。また、表面硬さの上昇も少ないため、作動時に接触を繰り返す線間部での摩耗を防ぐことができず、その摩耗部を起点とした早期折損を招くことがある。これらのことから、希薄なC濃化層が存在すると、耐疲労性の向上が見込めない。   On the other hand, when the maximum C concentration in the C-concentrated layer is less than 0.7% or the C-concentrated layer thickness is less than 0.01 mm from the surface of the wire, the following problems occur. That is, the magnitude of the compressive residual stress in the vicinity of the surface introduced by shot peening is proportional to the yield stress in the vicinity of the surface affected by the shot peening in the steel wire, that is, the C concentration. Therefore, in a dilute (concentration and depth) C-concentrated layer, compressive residual stress in the vicinity of the surface introduced by shot peening does not reach a desired magnitude, and fatigue originating from the vicinity of the surface (including the outermost surface) The effect of preventing cracking is not sufficient. In addition, since the surface hardness rise is also small, it is not possible to prevent wear at the inter-line portion where contact is repeated during operation, and there is a possibility of causing early breakage starting from the wear portion. From these facts, if a dilute C-rich layer is present, improvement in fatigue resistance can not be expected.

(3)硬さ分布
鋼線材の任意の線材横断面における内部硬さが600〜710HVであり、C濃化層における最高硬さが内部硬さよりも30HV以上高いことが好ましい。これは、線材表面のC濃化層が内部硬さよりも高いことにより、表面近傍でさらに高い圧縮残留応力を得ることができ、表面近傍(最表面を含む)を起点とする疲労亀裂の発生を防止できるからである。上記数値が30HV未満であると、これらの効果が顕著に現れない。
(3) Hardness distribution It is preferable that the internal hardness in arbitrary wire rod cross sections of a steel wire is 600-710 HV, and the highest hardness in a C concentration layer is 30 HV or more higher than internal hardness. This is because the C-concentrated layer on the surface of the wire is higher than the internal hardness, higher compressive residual stress can be obtained in the vicinity of the surface, and fatigue cracks originating from the vicinity of the surface (including the outermost surface) It is because it can prevent. If the above value is less than 30 HV, these effects are not noticeable.

(4)結晶粒径
SEM/EBSD(Electron Back Scatter Diffraction)法を用いて測定した平均結晶粒径(方位角度差5°以上の境界を粒界とする)が1.3μm以下であることが好ましい。平均結晶粒径が1.3μmを超えた場合には、十分な耐疲労性を得難くなる。そして、平均結晶粒径が小さいこと、すなわち、旧オーステナイト粒内のブロックやラスが微細であることは、亀裂進展に対する抵抗が大きいため、耐疲労性の向上に対し好適である。
(4) Crystal grain size It is preferable that the average crystal grain size (the boundary of the azimuth angle difference of 5 ° or more is a grain boundary) measured by SEM / EBSD (Electron Back Scatter Diffraction) method is 1.3 μm or less . When the average crystal grain size exceeds 1.3 μm, it is difficult to obtain sufficient fatigue resistance. And, the fact that the average grain size is small, that is, that the blocks and laths in the prior austenite grains are fine, is suitable for improving the fatigue resistance because the resistance to crack growth is large.

(5)残留応力分布
本発明者等は、バルブスプリングやクラッチトーションスプリングとして要求される作用応力と、疲労折損起点と成りうる様々な要因(延靭性、非金属系介在物、不完全焼入れ組織等の異常組織、表面粗さ、表面キズ等々)との関係における破壊力学的計算、および、実際の耐久試験等による検証から、コイルばねの線材表面近傍に必要な圧縮残留応力について次の結論を得た。なお、上記圧縮残留応力は、ばねに圧縮荷重を負荷した場合の略最大主応力方向、すなわち、線材の軸方向に対し+45°方向におけるものである。
(5) Residual Stress Distribution The inventors of the present invention have found that the working stress required as a valve spring and a clutch torsion spring and various factors that can become fatigue fracture origins (eg, ductile toughness, nonmetallic inclusions, incompletely quenched structure, etc. From the fracture mechanics calculation in relation to the abnormal structure, surface roughness, surface flaw etc.) and verification by actual endurance test etc., we obtain the following conclusion about the compressive residual stress required near the wire surface of the coil spring The The compressive residual stress is in the direction of substantially maximum principal stress when a compressive load is applied to the spring, that is, in the + 45 ° direction with respect to the axial direction of the wire.

すなわち、上記圧縮コイルばねにおいては、コイルばねに圧縮荷重を負荷した場合に生じるコイルばね内径側の最大主応力方向において、無負荷時の圧縮残留応力の値がゼロとなる前記線材の表面からの深さをクロッシングポイントとし、縦軸を残留応力、横軸を表面からの深さとした残留応力分布曲線において表面からクロッシングポイントまでの積分値をI−σRと表したとき、I−σR が150MPa・mm以上であることが望ましい。これらの数値に満たない場合、内部起点の疲労破壊を抑制するには不十分である。 That is, in the above-mentioned compression coil spring , the value of compressive residual stress at no load becomes zero from the surface of the wire in the direction of maximum principal stress on the inner diameter side of the coil spring which occurs when a compression load is applied to the coil spring. the depth and crossing points, the residual longitudinal axis stress, when the integrated value of the surface in the residual stress distribution curves in which the horizontal axis and the depth from the surface to the crossing point was expressed as I -σR, I -σR is 150 MPa · It is desirable to be at least mm. If it does not reach these figures, it is insufficient to suppress fatigue failure of the internal origin.

上記圧縮残留応力分布は、ショットピーニング処理やセッチング処理により形成されることが好ましい。ショットピーニング処理において多段ショットピーニングを施す場合は、後に実施するショットピーニングに用いるショットの球相当直径は、先に実施するショットピーニングに用いるショットの球相当直径より小さいことが好ましい。具体的には、ショットピーニング処理は、粒径0.6〜1.2mmのショットによる第1のショットピーニング処理と、粒径0.2〜0.8mmのショットによる第2のショットピーニング処理と、粒径0.02〜0.30mmのショットによる第3のショットピーニング処理からなる多段ショットピーニング処理であることが好ましい。これにより、先に実施したショットピーニングにより増加した表面粗さを後に実施するショットピーニングによって低減することができる。 The compressive residual stress distribution is preferably formed by shot peening treatment or setting treatment. When multi-stage shot peening is performed in the shot peening process, the sphere equivalent diameter of a shot used for shot peening to be performed later is preferably smaller than the sphere equivalent diameter of a shot used for shot peening performed first. Specifically, the shot peening process includes a first shot peening process with a shot having a particle size of 0.6 to 1.2 mm and a second shot peening process with a shot having a particle size of 0.2 to 0.8 mm. It is preferable that it is a multistage shot peening process which consists of the 3rd shot peening process by the shot of particle diameter 0.02-0.30 mm. Thereby, it is possible to reduce the surface roughness increased by the previously implemented shot peening by the later implemented shot peening.

なお、ショットピーニング処理におけるショット径や段数は上記に限らず、要求性能に応じて、必要とする残留応力分布や表面粗さ等が得られれば良い。したがって、ショット径や材質、段数等は適宜選択する。また、投射速度や投射時間によっても導入される圧縮残留応力分布は異なってくるため、これらも必要に応じて適宜設定する。   The shot diameter and the number of steps in the shot peening treatment are not limited to the above, and the required residual stress distribution, surface roughness and the like may be obtained according to the required performance. Therefore, the shot diameter, the material, the number of steps, etc. are appropriately selected. Moreover, since the compressive residual stress distribution to be introduced also differs depending on the projection speed and the projection time, these are also appropriately set as needed.

(6)残留オーステナイト分布
X線回折法を用いて測定した残留オーステナイト体積率γRについて、縦軸を残留オーステナイト体積率、横軸を表面からの深さとした残留オーステナイト分布曲線において、表面から0.5mm深さまでの積分値をIγRと表したとき、IγRが3.4%・mm以下であることが望ましい。このように、残留オーステナイトを制限することにより、耐へたり性を向上させることができる。
(6) Retained austenite distribution Regarding retained austenite volume fraction γR measured using X-ray diffraction method, the retained austenite volume fraction on the vertical axis and the retained austenite distribution curve on the horizontal axis with depth from the surface 0.5 mm from the surface When the integral value up to the depth is expressed as I γR , it is desirable that I γR be 3.4% · mm or less. Thus, the sag resistance can be improved by limiting retained austenite.

(7)表面粗さ
高負荷応力下で使用されるバルブスプリングやクラッチトーションスプリング等としては、要求される耐疲労性を満足するために、上述の圧縮残留応力分布と共に表面粗さも重要である。本発明者らが破壊力学的計算とその検証実験を行った結果、表面起点による亀裂の発生・進展に対しては、表面キズの深さ(すなわち、表面粗さRz(最大高さ))を20μm以下とすることで、その影響を無害化できることが判明している。このため、表面粗さRzが、20μm以下であることが好ましい。Rzが20μmを超える場合、表面の谷部が応力集中源となり、その谷部を起点とした亀裂の発生・進展が起こり易くなるため、早期折損を招き易い。
(7) Surface Roughness As a valve spring, a clutch torsion spring, etc. used under high load stress, surface roughness is also important along with the above-mentioned compressive residual stress distribution in order to satisfy the required fatigue resistance. As a result of the inventors of the present invention carrying out fracture mechanics calculations and their verification experiments, the depth of surface flaws (ie, surface roughness Rz (maximum height)) is calculated with respect to the occurrence and development of cracks due to surface origin It has been found that the effect can be made harmless by setting it to 20 μm or less. Therefore, the surface roughness Rz is preferably 20 μm or less. When Rz exceeds 20 μm, the valleys on the surface become a stress concentration source, and the generation and propagation of cracks starting from the valleys are likely to occur, so it is easy to cause early breakage.

(8)コイルばね形状
本発明は、コイリング時の加工度が大きく、高い耐疲労性が必要とされる、次に挙げる仕様の圧縮コイルばねに好適である。本発明は、線材の円相当直径(線材横断面積から算出した真円とした場合の直径、角形や卵形をはじめとした非円形断面も含む)が1.5〜10mm、ばね指数が3〜20である、一般的に冷間成形されている圧縮コイルばねに利用できる。
(8) Coil Spring Shape The present invention is suitable for a compression coil spring having the following specifications, which has a large degree of processing at the time of coiling and requires high fatigue resistance. In the present invention, the equivalent circle diameter of the wire (including the diameter of a true circle calculated from the wire cross-sectional area, including non-circular cross sections including square and oval) is 1.5 to 10 mm, and the spring index is 3 to 3 20, which can be used for a generally cold-formed compression coil spring.

中でも、コイリング時の加工度が大きく(すなわち、冷間成形ではコイリング加工により発生するコイル内径側の引張残留応力が大きい)、かつ、高い耐疲労性が必要とされるバルブスプリングやクラッチトーションスプリング等で使用される円相当直径が1.5〜9.0mm、ばね指数が3〜8である圧縮コイルばねに対し好適である。   Above all, the degree of processing at coiling is large (that is, in cold forming, the tensile residual stress generated on the inner diameter of the coil is large due to coiling), and valve springs and clutch torsion springs etc. that require high fatigue resistance Is suitable for a compression coil spring having a circle equivalent diameter of 1.5 to 9.0 mm and a spring index of 3 to 8.

また、上記圧縮コイルばねは、従来の熱間成形法とは異なり、上記のようなコイルばね成形機を用いて製造するため、コイリング加工時に芯金が不要である。したがって、成形できるばね形状の自由度が高い。すなわち本発明におけるコイルばね形状としては、コイルばねとして代表的な全巻目でコイル外径にほぼ変化がない円筒形をはじめ、これ以外の形状のコイルばねにも適用できる。たとえば、円錐形、釣鐘形、鼓形、樽形等のばねの成形も可能である。 Further, unlike the conventional hot forming method, the above-described compression coil spring is manufactured using the above-described coil spring forming machine, and therefore, no core metal is required at the time of coiling. Therefore, the degree of freedom of the spring shape that can be molded is high. That is, as a coil spring shape in the present invention, the present invention can be applied to coil springs having other shapes including a cylindrical shape having substantially no change in coil outer diameter in a typical full turn as a coil spring. For example, it is also possible to form a conical, bell-shaped, drum-shaped, barrel-shaped or other spring.

ここで、「円筒形」とはコイル径が一定のばねであり、「円錐形」とはコイル径がばねの一端から他端に向けて円錐状に変化するばねである。「釣鐘形」とはコイル径が一端において小であり、中央に向けて拡径しそのままの径で他端に至るばねであり、「片絞り形」ともいう。「鼓形」とはコイル径が両端において大であり、中央において小であるばねである。「樽形」とはコイル径が両端において小であり、中央において大であるばねであり、「両端絞り形」ともいう。   Here, "cylindrical" is a spring with a constant coil diameter, and "conical" is a spring whose coil diameter changes conically from one end of the spring to the other end. The "bell-shaped" is a spring whose coil diameter is small at one end, is expanded toward the center, is a spring with the same diameter and reaches the other end, and is also referred to as "one-stop type". "Tick shaped" is a spring whose coil diameter is large at both ends and small at the center. A "barrel-shaped" is a spring whose coil diameter is small at both ends and large at the center, and is also referred to as "both-end throttled".

本発明は、ばねとして使用される炭素鋼線、硬鋼線、ピアノ線、ばね鋼線、炭素鋼オイルテンパー線、クロムバナジウム鋼オイルテンパー線、シリコンクロム鋼オイルテンパー線、シリコンクロムバナジウム鋼オイルテンパー線等に対して適用が可能である。ここで、炭素鋼線、硬鋼線、ピアノ線、およびばね鋼線はオイルテンパー線のような熱処理が施されていないため、鋼線材としては同等組成のオイルテンパー線と比較して安価である。また、本発明の製造法では熱処理(焼入れ、焼戻し)を施すため、組成が同等であれば、炭素鋼線、硬鋼線、ピアノ線、およびばね鋼線を使っても、オイルテンパー線を使っても、同等の特性を有する圧縮コイルばねを製造することができる。よって、組成が同等であれば、炭素鋼線、硬鋼線、ピアノ線、およびばね鋼線を使った方が安価に製造することができる。   The present invention uses carbon steel wire, hard steel wire, piano wire, spring steel wire, carbon steel oil temper wire, chromium vanadium steel oil temper wire, silicon chromium steel oil temper wire, silicon chromium vanadium steel oil temper wire used as a spring Application is possible to a line etc. Here, carbon steel wire, hard steel wire, piano wire, and spring steel wire are not subjected to heat treatment like oil temper wire, so they are less expensive as steel wire material than oil temper wire of the same composition. . In addition, because the heat treatment (quenching and tempering) is applied in the manufacturing method of the present invention, oil temper wire is used even if carbon steel wire, hard steel wire, piano wire and spring steel wire are used if the compositions are the same. However, it is possible to manufacture a compression coil spring having the same characteristics. Therefore, if the compositions are equal, using carbon steel wire, hard steel wire, piano wire, and spring steel wire can be inexpensively manufactured.

本発明によれば、鋼線材の表面に薄く均一な厚さのC濃化層を形成するから、残留オーステナイト相の総量が少なく耐へたり性を向上させることができるとともに、表面近傍を高硬度として降伏応力を向上させ、ショットピーニングの効果を効率的に得ることで耐疲労性を向上させることができる。   According to the present invention, since a C-concentrated layer having a thin and uniform thickness is formed on the surface of a steel wire rod, the total amount of retained austenite phase can be small and sag resistance can be improved, and the vicinity of the surface has high hardness. The fatigue resistance can be improved by improving yield stress and efficiently obtaining the effect of shot peening.

コイルばねの製造工程の一例を示す図である。It is a figure which shows an example of the manufacturing process of a coiled spring. 本発明の実施形態におけるコイリングマシンの成形部の概略図である。It is the schematic of the shaping | molding part of the coiling machine in embodiment of this invention. 実施例で用いたコイルばねの残留応力分布を示すグラフである。It is a graph which shows the residual stress distribution of the coiled spring used in the Example. 実施例で用いたコイルばねの残留オーステナイト分布を示すグラフである。It is a graph which shows the retained austenite distribution of the coiled spring used in the Example.

以下、本発明の実施形態を具体的に説明する。図1に各製造工程を示す。図1(A)は、本発明の圧縮コイルばねの製造方法であり、他は従来例である。図1(A)に示される製造工程は、以下のコイリングマシンによる熱間成形法であり、図1(B)および(C)に示される製造工程は、任意のコイリングマシンによる冷間成形法である。   Hereinafter, embodiments of the present invention will be specifically described. Each manufacturing process is shown in FIG. FIG. 1A shows a method of manufacturing the compression coil spring of the present invention, and the other is a conventional example. The manufacturing process shown in FIG. 1 (A) is a hot forming method by the following coiling machine, and the manufacturing process shown in FIGS. 1 (B) and (C) is a cold forming method by any coiling machine is there.

図1(A)に示される製造工程で用いるコイリングマシン成形部1の概略を図2に示す。図2に示すように、コイリングマシン成形部1は、連続的に鋼線材Mを供給するためのフィードローラ10と、鋼線材Mをコイル状に成形するコイリング部20とを備えている。コイリング部20は、フィードローラ10により供給された鋼線材Mを適切な位置へ誘導するためのワイヤガイド21と、ワイヤガイド21を経由して供給された鋼線材Mをコイル形状に加工するためのコイリングピン(もしくはコイリングローラ)22aからなるコイリングツール22と、ピッチを付けるためのピッチツール(図示略)とを備えている。また、コイリングマシン成形部1は、所定巻数コイリングした後に後方より連続して供給されてくる鋼線材Mとを切り離すための切断刃30aおよび内型30bを備えた切断手段30と、フィードローラ10の出口からコイリングツール22の間において鋼線材Mを加熱する高周波加熱コイル40とを備えている。   An outline of a coiling machine formed portion 1 used in the manufacturing process shown in FIG. 1 (A) is shown in FIG. As shown in FIG. 2, the coiling machine forming unit 1 includes a feed roller 10 for continuously supplying the steel wire M and a coiling unit 20 for forming the steel wire M in a coil shape. The coiling unit 20 has a wire guide 21 for guiding the steel wire rod M supplied by the feed roller 10 to an appropriate position, and a coil shape for processing the steel wire rod M supplied via the wire guide 21. A coiling tool 22 comprising a coiling pin (or coiling roller) 22a and a pitch tool (not shown) for pitching are provided. In addition, the coiling machine forming unit 1 includes a cutting means 30 having a cutting blade 30a and an inner die 30b for separating the steel wire rod M continuously supplied from the rear after coiling a predetermined number of turns, and the feed roller 10 The high frequency heating coil 40 which heats the steel wire rod M between an exit and the coiling tool 22 is provided.

高周波加熱コイル40の内側には、例えばセラミックスからなる囲い部材50が配置されている。囲い部材50は、その両端部には小径の鋼線材入口50aおよび鋼線材出口50bを備えている。囲い部材50の鋼線材入口50aの近傍には、囲い部材50に炭化水素系ガスを供給するガス供給部(ガス供給手段)60が設けられている。ガス供給部60は、囲い部材50の例えば鋼線材入口50aから内部に炭化水素系ガスを供給する。なお、炭化水素系ガスは鋼線材出口50bから供給することもできる。   An enclosure member 50 made of, for example, a ceramic is disposed inside the high frequency heating coil 40. The enclosing member 50 is provided with a small diameter steel wire rod inlet 50a and a steel wire rod outlet 50b at its both ends. In the vicinity of the steel wire rod inlet 50 a of the enclosure member 50, a gas supply unit (gas supply means) 60 for supplying a hydrocarbon-based gas to the enclosure member 50 is provided. The gas supply unit 60 supplies a hydrocarbon-based gas to the inside from, for example, a steel wire rod inlet 50 a of the enclosing member 50. In addition, hydrocarbon type gas can also be supplied from the steel wire rod exit 50b.

コイリングマシン成形部1での急速加熱は、高周波加熱コイル40によって行い、鋼線材を2.5秒以内でオーステナイト域に昇温させる。高周波加熱コイル40の設置位置は図2に示す通りであり、囲い部材50の外周側に配置されている。囲い部材50の内部を通過する鋼線材Mは、高周波加熱コイル40により加熱され、囲い部材50に充満している炭化水素系ガスにより浸炭される。ガス供給部は、浸炭性に寄与する囲い部材50内における炭化水素系ガスの密度と流速とを勘案した量の炭化水素系ガスを囲い部材50内に供給する。   The rapid heating in the coiling machine forming portion 1 is performed by the high frequency heating coil 40, and the temperature of the steel wire is raised to the austenite region within 2.5 seconds. The installation position of the high frequency heating coil 40 is as shown in FIG. 2 and is disposed on the outer peripheral side of the enclosing member 50. The steel wire rod M passing through the inside of the enclosing member 50 is heated by the high frequency heating coil 40 and carburized by the hydrocarbon-based gas filling the enclosing member 50. The gas supply unit supplies the hydrocarbon-based gas in an amount in consideration of the density and flow velocity of the hydrocarbon-based gas in the enclosure member 50 contributing to the carburizing property into the enclosure member 50.

高周波加熱コイル40はワイヤガイド21の近傍に設置されており、鋼線材Mを加熱後、直ぐに成形できるようにコイリング部20が設けられている。コイリング部20では、ワイヤガイド21を抜けた鋼線材Mをコイリングピン22aに当接させて所定の曲率で曲げ、さらに下流のコイリングピン22aに当接させて所定の曲率で曲げる。そして、ピッチツールに鋼線材Mを当接させて、所望のコイル形状となるようにピッチを付与する。所望の巻数となったところで、切断手段30の切断刃30aによって内型30bの直線部分との間でせん断によって切断して、後方より供給される鋼線材Mとばね形状の鋼線材Mとを切り離す。   The high frequency heating coil 40 is disposed in the vicinity of the wire guide 21, and a coiling portion 20 is provided so that the steel wire rod M can be formed immediately after heating. In the coiling portion 20, the steel wire M which has passed through the wire guide 21 is brought into contact with the coiling pin 22a and bent with a predetermined curvature, and is brought into contact with the downstream coiling pin 22a and bent with a predetermined curvature. Then, the steel wire rod M is brought into contact with the pitch tool, and the pitch is given so as to obtain a desired coil shape. At the desired number of turns, the cutting blade 30a of the cutting means 30 cuts by shear between the straight part of the inner mold 30b and separates the steel wire rod M supplied from the rear and the spring-shaped steel wire rod M .

(1)製造工程(A)
図1の工程(A)は、第1実施形態の製造工程を示す。まず、重量%で、Cを0.5〜0.7%、Siを1.2〜3.0%、Mnを0.3〜1.2%、Crを0.5〜1.9%、Vを0.05〜0.5%含むと共に、任意成分としてNiを1.5%以下,Moを1.5%以下、Wを0.5%以下のうち1種または2種以上を含み、残部が鉄および不可避不純物からなる円相当直径が1.5〜10mmの鋼線材Mを用意する。この鋼線材Mを線出機(図示省略)によりフィードローラ10へ供給し、高周波加熱コイル40によって鋼線材Mを2.5秒以内でオーステナイト域に加熱後、コイリング部20においてコイリングを行う(コイリング工程)。
(1) Manufacturing process (A)
Process (A) of FIG. 1 shows the manufacturing process of 1st Embodiment. First, by weight%, C 0.5 to 0.7%, Si 1.2 to 3.0%, Mn 0.3 to 1.2%, Cr 0.5 to 1.9%, As well as containing 0.05 to 0.5% of V, containing 1.5% or less of Ni, 1.5% or less of Mo, and 0.5% or less of W as an optional component, A steel wire rod M having a circle equivalent diameter of 1.5 to 10 mm, the balance of which is iron and unavoidable impurities, is prepared. The steel wire rod M is supplied to the feed roller 10 by a wire drawing machine (not shown), and the steel wire rod M is heated to the austenite region within 2.5 seconds by the high frequency heating coil 40 and coiling is performed in the coiling portion 20 (coiling) Process).

このとき、囲い部材50の中の鋼線材Mの浸炭処理が同時に行なわれる。浸炭処理は、線材温度850〜1150℃において行い、鋼線材Mの表面に最大C濃度が0.7〜1.2%であり、厚さが0.01〜0.05mmのC濃化層を形成する。これにより、線材内部硬さよりも30HV以上高い表層部を得ることができる。   At this time, carburizing treatment of the steel wire rod M in the enclosing member 50 is simultaneously performed. Carburizing treatment is performed at a wire temperature of 850 to 1150 ° C., and a C concentrated layer having a maximum C concentration of 0.7 to 1.2% and a thickness of 0.01 to 0.05 mm on the surface of the steel wire M Form. Thereby, the surface layer part which is 30 HV or more higher than the wire internal hardness can be obtained.

次に、コイリング後に切離され温度が未だオーステナイト域にあるコイルをそのまま焼入れ槽(図示省略)において焼入れ(焼入れ溶媒としては、たとえば60℃程度の油)を行い(焼入れ工程)、さらに焼戻し(例えば150〜500℃)を行う(焼戻し工程)。焼入れを行うことにより、マルテンサイト組織からなる高硬さ組織となり、さらに焼戻しを行うことにより、靭性に優れた焼戻しマルテンサイト組織とすることができる。ここで、焼入れ・焼戻し処理は一般的な方法を用いればよく、その焼入れ前の線材の加熱温度や焼入れ溶媒の種類・温度、そして焼戻しの温度や時間は、鋼線材Mの材質によって適宜設定する。   Next, after coiling, a coil which is separated and whose temperature is still in the austenite region is quenched as it is in a quenching tank (not shown) (quenching solvent, for example, oil of about 60 ° C.) (quenching step) 150 to 500 ° C.) (tempering step). By hardening, it becomes a high hardness structure which consists of a martensitic structure, and by further tempering, it can be set as a tempered martensitic structure excellent in toughness. Here, the quenching and tempering treatment may be performed by a general method, and the heating temperature of the wire before quenching, the type and temperature of the quenching solvent, and the temperature and time of tempering are appropriately set according to the material of the steel wire M. .

さらに、鋼線材Mにショットピーニング処理(ショットピーニング工程)およびセッチング処理(セッチング工程)を施すことにより、所望の耐疲労性を得ることができる。オーステナイト域に加熱した状態でコイリングを行うため、加工による残留応力の発生を防ぐことができる。このため、加工によりコイル内径側表面に引張残留応力が発生する冷間成形法と比較してショットピーニングによって圧縮残留応力を付与し易く、高応力となるばねの内径側において表面から深くかつ大きい圧縮残留応力を効果的に付与することができる。さらに、セッチング処理を行うことにより、ばねとして使用した場合の最大主応力方向により深い圧縮残留応力分布が形成され、耐疲労性を向上することができる。   Furthermore, desired fatigue resistance can be obtained by subjecting the steel wire rod M to a shot peening treatment (shot peening step) and a setting treatment (setting step). Since coiling is performed in a state of being heated to the austenite region, generation of residual stress due to processing can be prevented. For this reason, compared with the cold forming method in which tensile residual stress is generated on the coil inner diameter side surface by processing, compressive residual stress is more easily given by shot peening, and the compression is deep and large compression from the surface on the inner diameter side of the spring which becomes high stress. Residual stress can be effectively applied. Furthermore, by performing the setting process, a deeper compressive residual stress distribution is formed in the direction of the maximum principal stress when used as a spring, and fatigue resistance can be improved.

本実施形態においては、粒径0.6〜1.2mmのショットによる第1のショットピーニング処理と、粒径0.2〜0.8mmのショットによる第2のショットピーニング処理と、粒径0.02〜0.30mmのショットによる第3のショットピーニング処理からなる多段ショットピーニング処理を行う。後に実施するショットピーニング処理において、先に実施するショットピーニング処理よりも小さいショットを用いるため、線材の表面粗さを平滑にすることができる。   In the present embodiment, a first shot peening treatment with a shot with a particle diameter of 0.6 to 1.2 mm, a second shot peening treatment with a shot with a particle diameter of 0.2 to 0.8 mm, a particle diameter of 0. The multistage shot peening process which consists of the 3rd shot peening process by the shot of 02-0.30 mm is performed. In the shot peening treatment performed later, since the shot smaller than the shot peening treatment performed first is used, the surface roughness of the wire can be made smooth.

ショットピーニングで使用するショットは、スチールカットワイヤやスチ−ルビーズ、FeCrB系をはじめとした高硬度粒子等を用いることができる。また、圧縮残留応力は、ショットの球相当直径や投射速度、投射時間、および多段階の投射方式で調整することができる。   Shots used for shot peening may be steel cut wire, steel beads, high hardness particles including FeCrB, and the like. In addition, the compressive residual stress can be adjusted by the ball equivalent diameter of the shot, the projection speed, the projection time, and the multistage projection method.

また、本実施形態では、セッチング処理としてホットセッチングを行い、100〜300℃に加熱し、かつ線材表面に作用するせん断ひずみ量がばねとして実際に使用する場合の作用応力でのせん断ひずみ量以上となるようにばね形状の鋼材に対して塑性ひずみを与える。   Further, in the present embodiment, the hot setting is performed as the setting process, heating to 100 to 300 ° C., and the amount of shear strain acting on the surface of the wire is equal to or more than the amount of shear strain at the working stress in actual use as a spring. Apply plastic strain to the spring-shaped steel material.

以上のような工程(A)によって作製した本発明の圧縮コイルばねは、表層部に鋼線材に含まれるCの平均濃度を超えるC濃化層を有し、鋼線材の全周に亘ってC濃化層の厚さが0.01〜0.05mmの範囲に入る圧縮コイルばねである。このような圧縮コイルばねにおいては、鋼線材の表面に薄く均一な厚さのC濃化層を形成するから、残留オーステナイト相が少なく耐へたり性を向上させることができるとともに、表面近傍を高硬度として降伏応力を向上させ、ショットピーニングの効果を効率的に得ることで耐疲労性を向上させることができる。   The compression coil spring of the present invention manufactured according to the above-described step (A) has a C-concentrated layer exceeding the average concentration of C contained in the steel wire rod in the surface layer portion, and the entire circumference of the steel wire rod is C It is a compression coiled spring whose thickness of a concentration layer enters into the range of 0.01-0.05 mm. In such a compression coil spring, since a C-concentrated layer having a thin and uniform thickness is formed on the surface of the steel wire rod, the residual austenite phase can be reduced and the sag resistance can be improved, and the vicinity of the surface is made high. The fatigue resistance can be improved by improving yield stress as hardness and efficiently obtaining the effect of shot peening.

次に、本発明の実施形態との比較のために工程(B)、(C)について説明する。
図1の工程(B)では、工程(A)において用いた鋼線材Mを任意のコイリングマシンによって冷間コイリングを行う(コイリング工程)。そして、コイリング後の鋼線材を炭化水素ガスを含む減圧条件下でオーステナイト域まで昇温し、焼入れ(焼入れ剤としては、たとえば60℃程度の油)を行う(浸炭+焼入れ工程)。次に、工程(A)と同様に、焼戻し工程、ショットピーニング工程、およびセッチング工程を順に行う。
Next, steps (B) and (C) will be described for comparison with the embodiment of the present invention.
In step (B) of FIG. 1, cold coiling is performed on the steel wire rod M used in step (A) by an arbitrary coiling machine (coiling step). Then, the temperature was raised to the austenite region under reduced pressure comprising a hydrocarbon gas to the steel wire material after coiling, (as a quenching agent, for example, 60 ° C. of about oil) quenching performing (carburizing + quenching process). Next, similarly to the step (A), the tempering step, the shot peening step, and the setting step are sequentially performed.

工程(C)は工程(B)において浸炭、焼入れ、および焼戻しを行わずに焼鈍と窒化を行うものである。   In step (C), annealing and nitriding are performed without carburizing, quenching, and tempering in step (B).

1.サンプル作製方法
各製造工程によってコイルばねのサンプルを作製し、耐疲労性の評価を行った。まず、表1に記載の化学成分を有し、残部が鉄および不可避不純物からなるオイルテンパー線を用意した。そして、オイルテンパー線に対して、図1に示す製造工程A〜Cに従って、熱間成形法または冷間成形法により、線径4.1mm、ばね指数6、総巻数5.75巻、有効巻数3.25巻、クローズドエンドのコイルばねを作製した。なお、表1において「OT線」とはオイルテンパー線の意味である。
1. Sample Preparation Method Samples of coil springs were prepared by each manufacturing process, and their fatigue resistance was evaluated. First, an oil-tempered wire having the chemical components shown in Table 1 and the balance of iron and unavoidable impurities was prepared. The wire diameter is 4.1 mm, the spring index is 6, the total number of turns is 5.75, and the effective number of turns for the oil-tempered wire according to the manufacturing steps A to C shown in FIG. A 3.25-turn, closed-end coil spring was produced. In Table 1, "OT wire" means oil-tempered wire.

Figure 2018176268
Figure 2018176268

製造工程Aでは、高周波加熱コイル、囲い部材、およびガス供給部を備えたコイリングマシン(図2参照)により鋼線を加熱し、表2に示す処理温度で浸炭処理を行った後コイリングを行い、60℃の油によって焼入れした。表2において、浸炭処理温度は、鋼線の表面温度である。その後、表2に記載の条件で焼戻し処理を行った(発明例1〜7、比較例1〜4)。   In the manufacturing process A, the steel wire is heated by a coiling machine (see FIG. 2) provided with a high frequency heating coil, an enclosure member, and a gas supply unit, and after carburizing treatment is performed at a treatment temperature shown in Table 2, coiling is performed, Hardened with oil at 60 ° C. In Table 2, the carburizing temperature is the surface temperature of the steel wire. Thereafter, tempering was performed under the conditions described in Table 2 (Inventive Examples 1 to 7, Comparative Examples 1 to 4).

表2において「コイリング+浸炭方法」とは、コイリングの直前に加熱した鋼線に浸炭を行うことを示し、「A」は囲い部材およびガス供給部を用いた浸炭方法であり、「B」は1本のノズルから鋼線の表面に炭化水素系ガスを吹き付ける浸炭方法である。   In Table 2, "coiling + carburizing method" indicates that carburizing is performed on a steel wire heated immediately before coiling, "A" is a carburizing method using an enclosure member and a gas supply unit, and "B" is It is a carburizing method which blows hydrocarbon type gas on the surface of a steel wire from one nozzle.

製造工程Bでは、任意のコイリングマシンによる冷間コイリング後、コイリングされた鋼線材を炭化水素ガスを含む減圧条件下でオーステナイト域まで昇温し、60℃の油によって焼入れを行った後、300℃において焼戻し処理を行った(比較例6)。製造工程Cでは冷間コイリング後、430℃において焼鈍処理を行い、次いで窒化処理を行った。窒化処理では線材表面に深さ0.04mmの硬質層を形成した(比較例7,8)。 In manufacturing step B, after cold coiling by any coiling machine, the temperature was raised to the austenite region under reduced pressure comprising a hydrocarbon gas coiling steel wire rod, after quenching by 60 ° C. oil, 300 A tempering treatment was performed at ° C. (Comparative Example 6). In the manufacturing process C, after cold coiling, annealing treatment was performed at 430 ° C., and then nitriding treatment was performed. In the nitriding treatment, a hard layer having a depth of 0.04 mm was formed on the surface of the wire (Comparative Examples 7 and 8).

次に、各サンプルに対してショットピーニング処理およびセッチング処理を施した。ショットピーニング処理では、球相当直径1.0mmのスチール製ラウンドカットワイヤによる第1のショットピーニング処理と、球相当直径0.5mmのスチール製ラウンドカットワイヤによる第2のショットピーニング処理と、球相当直径0.1mmのスチールビーズによる第3のショットピーニング処理とを順に行った。セッチングはホットセッチングとし、コイルばねの加熱温度200℃、負荷応力1500MPaで行った。   Next, each sample was subjected to a shot peening treatment and a setting treatment. In the shot peening process, the first shot peening process using a steel round cut wire with a ball equivalent diameter of 1.0 mm, the second shot peening process using a steel round cut wire with a ball equivalent diameter of 0.5 mm, and the ball equivalent diameter The third shot peening treatment with 0.1 mm steel beads was sequentially performed. The setting was hot setting, and the heating temperature of the coil spring was 200 ° C., and the load stress was 1500 MPa.

Figure 2018176268
Figure 2018176268

2.評価方法
このようにして得たサンプルに対し、以下の通り諸性質を調査した。その結果を表3に示す。
2. Evaluation method Various properties were investigated as follows with respect to the sample obtained in this way. The results are shown in Table 3.

(1)硬さ(HV)
ビッカース硬さ試験機(フューチャテック FM−600)を用いてコイルばねの線材横断面における硬さを測定した。測定荷重は表面から深さ0.02mmの位置(表3における「表面」)では25gf、深さd(線径)/4mmの位置(表3における「内部」)では200gfとし、各深さについて同心上の任意の3点で測定し、その平均値を算出した。
(1) Hardness (HV)
The hardness of the wire cross section of the coil spring was measured using a Vickers hardness tester (Future Tech FM-600). The measurement load is 25 gf at a position 0.02 mm deep from the surface ("surface" in Table 3), and 200 gf at a depth d (wire diameter) / 4 mm position ("inner" in Table 3). Measurement was made at any three concentric points, and the average value was calculated.

(2)圧縮残留応力積分値(I−σR)、クロッシングポイント(CP)
コイルばねの内径側表面において、線材の線軸方向に対し+45°方向(ばねに圧縮荷重を負荷した場合の略最大主応力方向)の圧縮残留応力を、X線回折型残留応力測定装置(リガク製)を用いて測定した。測定は、管球:Cr、コリメータ径:0.5mmとして行った。また、コイルばねに対して塩酸を用いて線材表面の全面化学研磨後上記測定を行い、これを繰返すことで深さ方向の残留応力分布を求め、その結果からクロッシングポイントを求めた。また、圧縮残留応力積分値は、深さと残留応力の関係図における、表面からクロッシングポイントまでの圧縮残留応力を積分することにより算出した。なお、一例として発明例1の残留応力分布を図3に示す。
(2) Compression residual stress integral value (I- σ R ), crossing point (CP)
X-ray diffraction type residual stress measuring device (made by RIGAKU) on the inside diameter side surface of the coil spring in the direction of + 45 ° (the direction of substantially maximum principal stress when a compressive load is applied to the spring) with respect to the wire axis direction of the wire ) Was used. The measurement was performed with a tube: Cr, a collimator diameter: 0.5 mm. The above measurement was performed after chemical polishing of the entire surface of the wire using hydrochloric acid with respect to a coil spring, and the above measurement was repeated to determine the residual stress distribution in the depth direction, and the crossing point was determined from the result. The compressive residual stress integral value was calculated by integrating the compressive residual stress from the surface to the crossing point in the relationship diagram between depth and residual stress. In addition, the residual stress distribution of the invention example 1 is shown in FIG. 3 as an example.

(3)表面C濃度(C)、C濃化層厚さ(C
コイルばねの線材横断面において、60°毎に6箇所測定し、表面C濃度の平均値、C濃化層の厚さの平均値、最大値、および最小値を測定した。測定にはEPMA(島津製作所 EPMA−1600)を用い、ビーム径1μm、測定ピッチ1μmとしてライン分析を行った。C濃化層厚さは、線材内部と同じC濃度となるまでの表面からの深さとした。
(3) Surface C concentration (C C ), C-concentrated layer thickness (C t )
The wire cross section of the coil spring was measured at six points every 60 °, and the average value of the surface C concentration, the average value of the thickness of the C-concentrated layer, the maximum value, and the minimum value were measured. For measurement, line analysis was performed using EPMA (Shimadzu EPMA-1600) with a beam diameter of 1 μm and a measurement pitch of 1 μm. The C-concentrated layer thickness was the depth from the surface to the same C concentration as the inside of the wire.

(4)残留オーステナイト(IγR
コイルばねの線材横断面において、最表面から0.5mmまでの各測定深さについて、60°毎に6箇所残留オーステナイトの体積率を測定し、縦軸を残留オーステナイト体積率、横軸を素線半径方向とした残留オーステナイト分布曲線において、表面から0.5mm深さまでの積分値IγRを求めた。測定には、2次元PSPC搭載X線回折装置(ブルカーD8 DISCOVER)を用いた。なお、一例として発明例1の残留オーステナイト分布を図4に示す。
(4) Retained austenite (I γR )
In the wire cross section of the coil spring, the volume fraction of six retained austenites is measured at every 60 ° for each measurement depth from the outermost surface to 0.5 mm, and the ordinate is the retained austenite volume fraction and the abscissa is the wire In the radial direction retained austenite distribution curve, an integral value I γR from the surface to a depth of 0.5 mm was determined. For measurement, a two-dimensional PSPC mounted X-ray diffractometer (Bruker D8 DISCOVER) was used. In addition, the retained austenite distribution of the invention example 1 is shown in FIG. 4 as an example.

(5)表面粗さ(Rz(最大高さ))
非接触三次元形状測定装置(MITAKA NH−3)を用いてJIS B0601に準拠して表面粗さの測定を行った。測定条件は、測定倍率:100倍、測定距離:4mm、測定ピッチ:0.002mm、カットオフ値:0.8mmとした。
(5) Surface roughness (Rz (maximum height))
The surface roughness was measured according to JIS B0601 using a non-contact three-dimensional shape measuring apparatus (MITAKA NH-3). The measurement conditions were: measurement magnification: 100 times, measurement distance: 4 mm, measurement pitch: 0.002 mm, cutoff value: 0.8 mm.

(6)平均結晶粒径(dGS
SEM/EBSD(Electron Back Scatter Diffraction)法により、JEOL JSM−7000F(TSLソリューションズ OIM−Analysys Ver.4.6)を用いて、平均結晶粒径を測定した。ここで、測定はコイルばねの横断面の深さd/4の位置において行い、観察倍率5000倍で行い、方位角度差5°以上の境界を粒界として平均結晶粒径を算出した。
(6) Average grain size (d GS )
The average crystal grain size was measured by JEOL JSM-7000F (TSL Solutions OIM-Analysys Ver. 4.6) according to SEM / EBSD (Electron Back Scatter Diffraction) method. Here, the measurement was performed at a depth d / 4 of the cross section of the coil spring, and was performed at an observation magnification of 5000 times, and the average grain size was calculated with boundaries of 5 ° or more in azimuth angle as grain boundaries.

(7)耐疲労性(折損率)
油圧サーボ型疲労試験機(鷺宮製作所)を用いて室温(大気中)において疲労試験を行った。表1の成分A,Bのものについては、試験応力:735±686MPa、周波数:20Hz、試験数:各7本であり、2千万回加振時の折損率(折損数/試験本数)で耐疲労性を評価した。成分Cのものについては、試験応力:760±711MPa、周波数:20Hz、試験数:各7本であり、2千万回加振時の折損率(折損数/試験本数)で耐疲労性を評価した。
(7) Fatigue resistance (break rate)
A fatigue test was conducted at room temperature (in the air) using a hydraulic servo fatigue test machine (Kashimiya Seisakusho). For the components A and B in Table 1, test stress: 735 ± 686 MPa, frequency: 20 Hz, number of tests: 7 each, with a breakage rate after 20 million vibrations (number of breaks / number of tests) The fatigue resistance was evaluated. For component C, test stress: 760 ± 711 MPa, frequency: 20 Hz, number of tests: 7 for each, and fatigue resistance is evaluated by the breakage rate (number of breakages / number of tests) after 20 million vibrations. did.

(8)耐へたり性(残留せん断ひずみ率Δγ)
コイルばねに対して温間締付試験を行った。その際の条件は、試験応力:1100MPa、試験温度:120℃、試験時間:48時間である。そして、下記数1を用いて試験前に対する試験後の荷重損失量から残留せん断ひずみ率Δγを算出した。
(8) Settling resistance (residual shear strain rate Δγ)
A warm tightening test was performed on the coil spring. The conditions at that time are a test stress: 1100 MPa, a test temperature: 120 ° C., and a test time: 48 hours. Then, the residual shear strain rate Δγ was calculated from the amount of load loss after the test relative to before the test using the following equation 1.

Figure 2018176268
Figure 2018176268

Figure 2018176268
Figure 2018176268

3.評価結果
(1)硬さ
表3から分かるように、工程(A)の熱間成形法によって作製した発明例1〜7では、内部硬さが600〜710HVであり、高い耐疲労性が得られる。一方、比較例2、3の結果から、熱間成形法によって作製したコイルばねでも、硬さが600HV未満もしくは710HV以上の場合は十分な耐疲労性が得られない。また、発明例1〜7では浸炭によって表面の硬さが内部と比較して30HV以上高くなっている。これによって表面近傍で高い圧縮残留応力を得ることができ、表面近傍(最表面含む)を起点とする疲労亀裂の発生を防止できる(耐疲労性向上)。一方、比較例1では表面の硬さ上昇が30HV未満であり、作動時に接触を繰り返す線間部での摩耗が激しく、同部からの早期折損に至っており、十分な耐疲労性が得られていない。
3. Evaluation results (1) Hardness As can be seen from Table 3, in the invention examples 1 to 7 produced by the hot forming method of the step (A), the internal hardness is 600 to 710 HV and high fatigue resistance can be obtained . On the other hand, from the results of Comparative Examples 2 and 3, even with a coil spring manufactured by a hot forming method, sufficient fatigue resistance can not be obtained when the hardness is less than 600 HV or greater than 710 HV. Moreover, in the invention examples 1-7, the hardness of the surface is high 30 HV or more compared with the inside by carburizing. As a result, high compressive residual stress can be obtained in the vicinity of the surface, and the occurrence of fatigue cracks originating from the vicinity of the surface (including the outermost surface) can be prevented (improved fatigue resistance). On the other hand, in Comparative Example 1, the hardness increase of the surface is less than 30 HV, the wear in the inter-line portion where contact is repeated during operation is severe, and early breakage from the same portion is achieved, and sufficient fatigue resistance is obtained. Absent.

(2)残留応力分布
発明例1〜7では、I−σRは180MPa・mm以上であり、深く大きな圧縮残留応力が得られ、耐疲労性が良好である。一方、比較例7,8ではI−σRは150MPa・mm以下であり、圧縮残留応力が浅く小さく、耐疲労性が低下している。この理由は、工程(A)によって作製した発明例1〜7では、冷間コイリングにおいて発生する引張残留応力(コイル内径側に残存)が、熱間コイリングではほとんど発生しないため、冷間コイリングによって引張残留応力が発生した比較例7,8と比べ、ショットピーニングによる圧縮残留応力が表面から深くまで入り易いためである。
(2) Residual Stress Distribution In Inventive Examples 1 to 7, I -σR is 180 MPa · mm or more, deep and large compressive residual stress can be obtained, and fatigue resistance is good. On the other hand, in Comparative Examples 7 and 8, I −σ R is 150 MPa · mm or less, the compressive residual stress is shallow and small, and the fatigue resistance is lowered. The reason for this is that in the invention examples 1 to 7 produced in the step (A), tensile residual stress (remaining on the inner diameter side of the coil) generated in cold coiling hardly occurs in hot coiling, so tension is generated by cold coiling This is because compressive residual stress due to shot peening easily penetrates deeper from the surface as compared with Comparative Examples 7 and 8 in which residual stress is generated.

(3)表面C濃度、C濃化層厚さ
発明例1〜7では表面C濃度0.7〜1.2%、C濃化層厚さ(線材内部と同じC濃度となる表面からの深さ)0.01mm以上0.05mm以下の浸炭がされており、表面近傍での硬さが高いことから、表面近傍での高い圧縮残留応力が得られ、また、表面粗さも改善されることで高い耐疲労性を得ることができる。一方、比較例5では平均C濃化層厚さは発明例1〜7と同等であるが、浸炭方法が異なるためC濃化層厚さのばらつきが大きい。そのため、C濃化層厚さが大きい箇所では0.05mmを超えており、過剰な浸炭が残留オーステナイトの増加を招いている。発明例1〜7ではIγR(深さとγの関係図における、γの表面から0.5mm深さまでの積分値)は、3.1%・mm以下であるのに対し、比較例5では3.5%・mmと大きく、結果として、発明例1〜7が残留せん断ひずみ率Δγが0.050〜0.065と小さく耐へたり性が良好であるのに対し、比較例5では残留せん断ひずみ率Δγが0.080と大きく、耐へたり性が低下している。また比較例6では表面のC濃度が1.1%、C濃化層厚さが0.90mmとなっており、過剰な浸炭がなされていることで、残留オーステナイトの増加を招いており、IγRが3.55%・mmと大きく、結果として、発明例1〜7に比べ、残留せん断ひずみ率Δγが0.093と耐へたり性が低下している。
(3) Surface C concentration, C-concentrated layer thickness In the invention examples 1 to 7, surface C concentration is 0.7 to 1.2%, C-concentrated layer thickness (depth from the surface having the same C concentration as the inside of the wire) Carburization of 0.01 mm or more and 0.05 mm or less, and because the hardness near the surface is high, high compressive residual stress near the surface is obtained, and the surface roughness is also improved. High fatigue resistance can be obtained. On the other hand, in Comparative Example 5, the average C-thickened layer thickness is equivalent to that of Inventive Examples 1 to 7, but the carburizing method is different, so that the variation in C-thickened layer thickness is large. Therefore, the thickness exceeds 0.05 mm at a portion where the C-concentrated layer thickness is large, and excessive carburization causes an increase in retained austenite. (In relation diagram of a depth and gamma R, the integrated value from the surface of gamma R to 0.5mm depth) in the invention examples 1 to 7 I [gamma] R is whereas the less 3.1% · mm, Comparative Example 5 In the case of the comparative example 5, as compared with the invention examples 1 to 7, the residual shear strain rate Δγ is as small as 0.050 to 0.065 and the sag resistance is good. The residual shear strain rate Δγ is as large as 0.080, and the sag resistance is lowered. In Comparative Example 6, the C concentration in the surface is 1.1%, and the C-concentrated layer thickness is 0.90 mm, and excessive carburization causes an increase in retained austenite, I γR is as large as 3.55% · mm, and as a result, compared with Inventive Examples 1 to 7, the residual shear strain ratio Δγ is as low as 0.093 and the sag resistance is lowered.

(4)表面粗さ
高い耐疲労性の得られた発明例1〜について、表面粗さRz(最大高さ)は12.0μm以下であり、所望する表面粗さRz20μm以下を十分に満足している。ここで、Rzが20μmを超えた場合は、表面粗さにおける谷部が応力集中源となり、その谷部を起点として亀裂が発生・進展し、その結果として早期折損を招く。また、この表面粗さは、コイリング時におけるツール類との擦れや、ショットピーニング処理により形成されるものである。そしてショットピーニング処理により形成される表面粗さについては、線材の硬さと、ショットの粒径・硬さ・投射速度といった条件との組み合わせによりその大きさが決まる。よって、Rzが20μmを超えないよう、ショットピーニングの条件は適宜設定する必要がある。
(4) Surface Roughness In the invention examples 1 to 7 obtained with high fatigue resistance, the surface roughness Rz (maximum height) is 12.0 μm or less, and the desired surface roughness Rz of 20 μm or less is sufficiently satisfied. ing. Here, when Rz exceeds 20 μm, a valley in the surface roughness becomes a stress concentration source, and a crack is generated and developed starting from the valley, resulting in early breakage. Moreover, this surface roughness is formed by rubbing with tools at the time of coiling or by shot peening treatment. The surface roughness formed by the shot peening process is determined by the combination of the hardness of the wire and the conditions such as the particle size, hardness, and projection speed of the shot. Therefore, the conditions for shot peening need to be set appropriately so that Rz does not exceed 20 μm.

(5)平均結晶粒径
発明例では、平均結晶粒径(dGS)が0.84〜1.30μmであり、微細な結晶構造を有する。これは、前述のように、高周波加熱によって短時間で加熱を行うことが組織の粗大化抑制、あるいは微細化に繋がったためであり、その結果、発明例1〜7では微細な平均結晶粒径が得られ耐疲労性が向上している。これに対して、比較例4ではコイリング・浸炭温度が高く、発明例と比べ平均結晶粒径(dGS)が1.35μmと大きい。そのため、耐へたり性・耐疲労性が低下している。
(5) Average Crystal Grain Size In the inventive example, the average crystal grain size (d GS ) is 0.84 to 1.30 μm and has a fine crystal structure. This is because, as described above, performing heating in a short time by high frequency heating leads to suppression of coarsening of the structure or to miniaturization, and as a result, in the invention examples 1 to 7, the fine average crystal grain size is The resulting fatigue resistance is improved. On the other hand, in Comparative Example 4, the coiling and carburizing temperature is high, and the average grain size (d GS ) is as large as 1.35 μm as compared with the invention example. Therefore, the fatigue resistance and fatigue resistance are reduced.

以上より、本発明の圧縮コイルばねの製造方法によれば、耐疲労性および耐へたり性を大幅に向上させることができる。 As mentioned above, according to the manufacturing method of the compression coiled spring of this invention, fatigue resistance and fatigue resistance can be improved significantly.

本発明によって製造される圧縮コイルばねは、高耐疲労性および高耐へたり性を有するので、弁ばね、特に高応力下で使用されるレース用エンジンのバルブスプリングや、クラッチ内で使用されるクラッチトーションスプリングなどに利用することができる。 The compression coil spring manufactured according to the present invention is used in a valve spring, particularly a valve spring of a racing engine used under high stress, and a clutch because it has high fatigue resistance and high fatigue resistance. It can be used as a clutch torsion spring or the like.

1…コイリングマシン成形部、10…フィードローラ、20…コイリング部、21…ワイヤガイド、22…コイリングツール、22a…コイリングピン、30…切断手段、30a…切断刃、30b…内型、40…高周波加熱コイル、50…囲い部材、50a…囲い部材鋼線材入口、50b…囲い部材鋼線材出口、60…ガス供給部(ガス供給手段)、M…鋼線材。   DESCRIPTION OF SYMBOLS 1 ... Coiling machine shaping part, 10 ... Feed roller, 20 ... Coiling part, 21 ... Wire guide, 22 ... Coiling tool, 22a ... Coiling pin, 30 ... Cutting means, 30a ... Cutting blade, 30b ... Inner type, 40 ... High frequency Heating coil, 50: enclosure member, 50a: enclosure member steel wire rod inlet, 50b: enclosure member steel wire rod outlet, 60: gas supply part (gas supply means), M: steel wire rod.

Claims (10)

コイルばね成形機により鋼線材を熱間成形するコイリング工程と、コイリングした後に切離され温度が未だオーステナイト域にあるコイルをそのまま焼入れする焼入れ工程と、焼入れされたコイルを調質する焼戻し工程と、線材表面に圧縮残留応力を付与するショットピーニング工程とを備えた圧縮コイルばねの製造方法において、前記コイリング工程では、加熱、浸炭および熱間成形を行い、前記コイルばね成形機は、連続的に鋼線材を供給するためのフィードローラと、鋼線材をコイル状に成形するコイリング部と、鋼線材を所定巻数コイリングした後に後方より連続して供給されてくる鋼線材とを切断するための切断手段とを有し、
前記コイリング部は、前記フィードローラにより供給された鋼線材を加工部の適切な位置へ誘導するためのワイヤガイドと、前記ワイヤガイドを経由して供給された鋼線材をコイル形状に加工するためのコイリングピンもしくはコイリングローラからなるコイリングツールと、ピッチを付けるためのピッチツールとを備えており、
前記コイルばね成形機は、さらに、前記フィードローラの出口から前記コイリングツールの間に鋼線材をオーステナイト域まで昇温する加熱手段を有し、前記加熱手段における鋼線材入口側から前記コイリングツールに至る間の一部または全域に前記鋼線材の外周を覆う囲い部材が配置され、前記囲い部材内に炭化水素系ガスを供給するガス供給手段を有し、
前記加熱手段が高周波加熱装置であり、前記鋼線材の通路経路上に鋼線材と同心となるように高周波加熱コイルが配置され、
前記高周波加熱コイルの内側に前記囲い部材が配置され、前記高周波加熱コイルは前記鋼線材を直接加熱することを特徴とする圧縮コイルばねの製造方法。
A coiling step of hot forming a steel wire rod by a coil spring forming machine, a quenching step of quenching the coil whose coiling temperature is still in the austenite region after coiling, and a tempering step of tempering the quenched coil; In a method of manufacturing a compression coil spring including a shot peening step of applying a compressive residual stress to a wire surface, heating, carburizing and hot forming are performed in the coiling step, and the coil spring forming machine continuously performs steel A feed roller for supplying a wire, a coiling portion for forming the steel wire into a coil, and a cutting means for cutting the steel wire which is continuously supplied from the rear after coiling a predetermined number of turns of the steel wire; Have
The coiling unit includes a wire guide for guiding a steel wire supplied by the feed roller to an appropriate position of a processing unit, and a coil shape for processing the steel wire supplied via the wire guide. It has a coiling tool consisting of a coiling pin or coiling roller and a pitching tool for pitching.
The coil spring forming machine further includes heating means for raising the temperature of the steel wire to the austenite region between the coiling tool and the outlet of the feed roller, and the coiling tool is extended from the steel wire inlet side in the heating means. An enclosure member covering the outer periphery of the steel wire rod is disposed in a part or the whole of the space, and has a gas supply means for supplying a hydrocarbon-based gas into the enclosure member ,
The heating means is a high frequency heating device, and a high frequency heating coil is disposed on the passage path of the steel wire so as to be concentric with the steel wire.
The method for manufacturing a compression coil spring , wherein the surrounding member is disposed inside the high frequency heating coil, and the high frequency heating coil directly heats the steel wire .
前記囲い部材はセラミックスからなることを特徴とする請求項1に記載の圧縮コイルばねの製造方法。The method according to claim 1, wherein the enclosing member is made of a ceramic. 前記囲い部材は、その両端部に囲い部材よりも小径の鋼線材入口および鋼線材出口を備え、前記ガス供給部は、前記囲い部材の前記鋼線材入口から内部に炭化水素系ガスを供給することを特徴とする請求項1または2に記載の圧縮コイルばねの製造方法。The enclosure member is provided at both ends thereof with a steel wire rod inlet and a steel wire rod outlet each having a diameter smaller than that of the enclosure member, and the gas supply unit supplies hydrocarbon gas from the steel wire rod inlet of the enclosure member. The manufacturing method of the compression coiled spring of Claim 1 or 2 characterized by the above-mentioned. 前記囲い部材は、その両端部に囲い部材よりも小径の鋼線材入口および鋼線材出口を備え、前記ガス供給部は、前記囲い部材の前記鋼線材出口から内部に炭化水素系ガスを供給することを特徴とする請求項1または2に記載の圧縮コイルばねの製造方法。The enclosure member is provided at both ends thereof with a steel wire rod inlet and a steel wire rod outlet each having a diameter smaller than that of the enclosure member, and the gas supply unit supplies hydrocarbon gas from the steel wire rod outlet of the enclosure member. The manufacturing method of the compression coiled spring of Claim 1 or 2 characterized by the above-mentioned. 前記鋼線材の表層部に前記鋼線材に含まれるCの平均濃度を超えるC濃化層を形成し、前記鋼線材の全周に亘って前記C濃化層の厚さを0.01〜0.05mmの範囲に入れることを特徴とする請求項1〜4のいずれかに記載の圧縮コイルばねの製造方法。   A C-concentrated layer exceeding the average concentration of C contained in the steel wire is formed in the surface layer portion of the steel wire, and the thickness of the C-concentrated layer is 0.01 to 0 over the entire circumference of the steel wire. The method for manufacturing a compression coil spring according to any one of claims 1 to 4, wherein the width is in the range of .05 mm. 前期鋼線材の任意の線材横断面における内部硬さを600〜710HVとし、前記C濃化層における最高硬さを内部硬さよりも30HV以上高くすることを特徴とする請求項1〜5のいずれかに記載の圧縮コイルばねの製造方法。   The internal hardness in the arbitrary wire rod cross section of the above-mentioned steel wire rod shall be 600-710HV, and the highest hardness in said C concentration layer is made higher by 30 HV or more than internal hardness. The manufacturing method of the compression coiled spring as described in-. SEM/EBSD法を用いて測定した平均結晶粒径(方位角度差5°以上の境界を粒界とする)を1.3μm以下にすることを特徴とする請求項1〜6のいずれかに記載の圧縮コイルばねの製造方法。   7. The method according to claim 1, wherein an average crystal grain size (a boundary having an azimuthal angle difference of 5 ° or more is a grain boundary) measured using an SEM / EBSD method is 1.3 μm or less. Method of a compression coil spring. コイルばねに圧縮荷重を負荷した場合に生じるコイルばね内径側の最大主応力方向において、無負荷時の圧縮残留応力の値がゼロとなる前記線材の表面からの深さをクロッシングポイントとし、縦軸を残留応力、横軸を表面からの深さとした残留応力分布曲線において表面からクロッシングポイントまでの積分値をI−σRと表したとき、I−σR を150MPa・mm以上にすることを特徴とする請求項1〜7のいずれかに記載の圧縮コイルばねの製造方法。 In the direction of maximum principal stress on the inner diameter side of the coil spring that occurs when a compressive load is applied to the coil spring, let the depth from the surface of the wire where the value of compressive residual stress at no load becomes zero be the crossing point. When the integral from the surface to the crossing point in the residual stress distribution curve where the horizontal axis is depth from the surface is expressed as I -σR , I -σR is 150 MPa · mm or more. The manufacturing method of the compression coiled spring in any one of Claims 1-7. X線回折法を用いて測定した残留オーステナイト体積率γRについて、縦軸を残留オーステナイト体積率、横軸を表面からの深さとした残留オーステナイト分布曲線において、表面から0.5mm深さまでの積分値をIγRとあらわしたとき、IγRを3.4%・mm以下にすることを特徴とする請求項1〜8のいずれかに記載の圧縮コイルばねの製造方法。 Regarding retained austenite volume fraction γR measured using X-ray diffraction method, in the retained austenite distribution curve with the retained austenite volume fraction on the vertical axis and the depth from the surface on the horizontal axis, the integral value from the surface to 0.5 mm depth when expressed as I [gamma] R, the manufacturing method of the compression coil spring according to claim 1, characterized in that the I [gamma] R below 3.4% · mm. 表面粗さRz(最大高さ)を20μm以下にすることを特徴とする請求項1〜9のいずれかに記載の圧縮コイルばねの製造方法。   The method for manufacturing a compression coil spring according to any one of claims 1 to 9, wherein the surface roughness Rz (maximum height) is 20 μm or less.
JP2017192915A 2017-10-02 2017-10-02 Manufacturing method of compression coil spring Active JP7062395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017192915A JP7062395B2 (en) 2017-10-02 2017-10-02 Manufacturing method of compression coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017192915A JP7062395B2 (en) 2017-10-02 2017-10-02 Manufacturing method of compression coil spring

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017078113A Division JP6251830B1 (en) 2017-04-11 2017-04-11 Compression coil spring

Publications (2)

Publication Number Publication Date
JP2018176268A true JP2018176268A (en) 2018-11-15
JP7062395B2 JP7062395B2 (en) 2022-05-06

Family

ID=64280666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017192915A Active JP7062395B2 (en) 2017-10-02 2017-10-02 Manufacturing method of compression coil spring

Country Status (1)

Country Link
JP (1) JP7062395B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021075509A1 (en) * 2019-10-16 2021-04-22
WO2021075500A1 (en) * 2019-10-16 2021-04-22 日本製鉄株式会社 Damper spring
WO2021075501A1 (en) * 2019-10-16 2021-04-22 日本製鉄株式会社 Valve spring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181235U (en) * 1984-05-08 1985-12-02 加藤発条株式会社 Shape memory alloy coil spring forming equipment
JP2004323912A (en) * 2003-04-24 2004-11-18 Chuo Spring Co Ltd High strength coil spring, and method for manufacturing the same
JP2009052144A (en) * 2008-09-29 2009-03-12 Togo Seisakusho Corp High strength spring
JP2014055343A (en) * 2012-09-14 2014-03-27 Nhk Spring Co Ltd Compression coil spring and manufacturing method
JP2014206219A (en) * 2013-04-12 2014-10-30 日本発條株式会社 Helical compression spring and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181235U (en) * 1984-05-08 1985-12-02 加藤発条株式会社 Shape memory alloy coil spring forming equipment
JP2004323912A (en) * 2003-04-24 2004-11-18 Chuo Spring Co Ltd High strength coil spring, and method for manufacturing the same
JP2009052144A (en) * 2008-09-29 2009-03-12 Togo Seisakusho Corp High strength spring
JP2014055343A (en) * 2012-09-14 2014-03-27 Nhk Spring Co Ltd Compression coil spring and manufacturing method
JP2014206219A (en) * 2013-04-12 2014-10-30 日本発條株式会社 Helical compression spring and method of manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021075509A1 (en) * 2019-10-16 2021-04-22
WO2021075500A1 (en) * 2019-10-16 2021-04-22 日本製鉄株式会社 Damper spring
WO2021075501A1 (en) * 2019-10-16 2021-04-22 日本製鉄株式会社 Valve spring
WO2021075509A1 (en) * 2019-10-16 2021-04-22 日本製鉄株式会社 Steel wire
CN114555850A (en) * 2019-10-16 2022-05-27 日本制铁株式会社 Shock absorber spring
CN114555849A (en) * 2019-10-16 2022-05-27 日本制铁株式会社 Steel wire
CN114651082A (en) * 2019-10-16 2022-06-21 日本制铁株式会社 Valve spring
CN114555849B (en) * 2019-10-16 2022-11-01 日本制铁株式会社 Steel wire
CN114555850B (en) * 2019-10-16 2022-11-01 日本制铁株式会社 Shock absorber spring
CN114651082B (en) * 2019-10-16 2023-02-17 日本制铁株式会社 Valve spring
JP7239729B2 (en) 2019-10-16 2023-03-14 日本製鉄株式会社 steel wire
US11952650B2 (en) 2019-10-16 2024-04-09 Nippon Steel Corporation Steel wire

Also Published As

Publication number Publication date
JP7062395B2 (en) 2022-05-06

Similar Documents

Publication Publication Date Title
JP6251830B1 (en) Compression coil spring
JP5361098B1 (en) Compression coil spring and method of manufacturing the same
JP5064590B1 (en) Compression coil spring and method of manufacturing the same
JP5624503B2 (en) Spring and manufacturing method thereof
JP6178102B2 (en) Compression coil spring and method of manufacturing the same
JP7062395B2 (en) Manufacturing method of compression coil spring
WO2012133885A1 (en) Spring and method for producing same
JP2021167444A (en) Compression coil spring
JP5679455B2 (en) Spring steel, spring steel wire and spring
JP7165522B2 (en) Compression coil spring and its manufacturing method
JP6453693B2 (en) Heat treated steel wire with excellent fatigue characteristics
JP5941439B2 (en) Coil spring and manufacturing method thereof
JP5523241B2 (en) Spring and manufacturing method thereof
WO2013115404A1 (en) Coiled spring and manufacturing method therefor
WO2023120475A1 (en) Compression coil spring and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220420

R150 Certificate of patent or registration of utility model

Ref document number: 7062395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150