JP2006104551A - High strength machine part having excellent fatigue property and method for improving its fatigue property - Google Patents

High strength machine part having excellent fatigue property and method for improving its fatigue property Download PDF

Info

Publication number
JP2006104551A
JP2006104551A JP2004295861A JP2004295861A JP2006104551A JP 2006104551 A JP2006104551 A JP 2006104551A JP 2004295861 A JP2004295861 A JP 2004295861A JP 2004295861 A JP2004295861 A JP 2004295861A JP 2006104551 A JP2006104551 A JP 2006104551A
Authority
JP
Japan
Prior art keywords
notch
ultrasonic
strength
residual stress
mechanical component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004295861A
Other languages
Japanese (ja)
Other versions
JP4436225B2 (en
Inventor
Toshizo Tarui
敏三 樽井
Takashi Fujita
崇史 藤田
Shuji Ozawa
修司 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004295861A priority Critical patent/JP4436225B2/en
Priority to PCT/JP2005/016881 priority patent/WO2006030800A1/en
Publication of JP2006104551A publication Critical patent/JP2006104551A/en
Application granted granted Critical
Publication of JP4436225B2 publication Critical patent/JP4436225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide high strength machine parts having a notched part with the radius of curvature of ≤25 mm and further having a surface HV hardness of ≥250, and to provide a method for improving its fatigue strength. <P>SOLUTION: Regarding the high strength machine parts having excellent fatigue strength, in machine parts having a composition of, by mass, 0.1 to 1.2% C, and the balance Fe with inevitable impurities, and having a notched part with the radius of curvature of ≤25 mm, the HV hardness of the surface is ≥250, and further, the compressive residual stress of the surface layer in the notched part is -100 to -1,500 MPa, and to provide a method for improving its fatigue strength. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車や各種産業機械等に広く使用されているシャフト、歯車などの疲労特性に優れた高強度機械部品および疲労特性向上方法に関する。
具体的には、曲率半径が25mm以下の切欠き部を有し、さらに表面HV硬度が250以上である疲労特性に優れた高強度機械部品および疲労特性向上方法に関する。
The present invention relates to a high-strength mechanical component having excellent fatigue characteristics such as a shaft and gears widely used in automobiles and various industrial machines, and a method for improving fatigue characteristics.
Specifically, the present invention relates to a high-strength mechanical component having a notch portion with a radius of curvature of 25 mm or less and having a surface HV hardness of 250 or more and excellent fatigue properties, and a method for improving fatigue properties.

自動車や各種産業機械の軽量化、高性能化のために、各種機械部品の高強度化のニーズが高まっており、この機械部品の高強度化は、鋼材の化学成分の調整や種々の熱処理方法・条件で達成が可能である。
しかしながら、機械部品の高強度化は実現できても疲労特性が機械部品の強度の増加に応じて向上しない場合がある。特に切欠き部を有する機械部品では、高強度化を図っても疲労強度の向上効果が少ない。これは、切欠き部に応力が集中するためである。
一般に疲労強度を増加する手段として、非特許文献1に記載されているように、高周波焼入れ、浸炭、窒化、浸炭窒化、タフトライド処理などの表面硬化処理、ショットピーニングや表面ロール加工処理、等がある。しかしながら、曲率半径が小さな切欠き部がある機械部品では、上記のような疲労強度の増加手段では限界があり、大幅な疲労特性の向上は実現できないと言う課題があった。
In order to reduce the weight and performance of automobiles and various industrial machines, there is a growing need for increasing the strength of various machine parts. The increase in strength of these machine parts is achieved by adjusting the chemical composition of steel materials and various heat treatment methods.・ It can be achieved under certain conditions.
However, even if the strength of the machine part can be increased, the fatigue characteristics may not improve as the strength of the machine part increases. In particular, in a machine part having a notch, the effect of improving fatigue strength is small even if the strength is increased. This is because stress concentrates on the notch.
Generally, as described in Non-Patent Document 1, as means for increasing fatigue strength, there are surface hardening treatment such as induction hardening, carburizing, nitriding, carbonitriding, and tuftride treatment, shot peening and surface roll processing treatment, etc. . However, in a machine part having a notch with a small radius of curvature, there is a limit to the means for increasing the fatigue strength as described above, and there is a problem that a significant improvement in fatigue characteristics cannot be realized.

また、内燃機関のクランクシャフトでは、アームとピンまたはジャーナルとの接合部が断面アール状のフィレット部となっている。このフィレット部は、クランクシャフト回転時の捻り応力や曲げ応力が集中しやすい箇所となっている。このため、フィレット部を強化することが行なわれており、その方法として、ロール加工法、高周波焼き入れ法等が挙げられる。
ロール加工法は、ピン/フランジ、ジャーナル/フランジの境目をフィレットロールにより冷間加工し強度を向上する技術である。従来技術として、例えば、特許文献1では、引張応力のかかる部分の曲率半径を大きくして応力集中を緩和する技術が、また、特許文献2ではフレット部の軸径の減少を抑えて結果として応力集中を緩和する技術が紹介されている。
一方、高周波焼き入れ法は、ピン、ジャーナル部およびピン/フランジ、ジャーナル/フランジ境界のフィレット部の表面を高周波焼き入れによりマルテンサイト化して強度を高める技術である。従来技術として、例えば、特許文献3では焼き割れが生じにくい高周波焼入方法と装置が紹介されている。
「金属材料疲労設計便覧」(日本材料学会編集、養賢堂、昭和56年8月20日、第2版発行)95〜105頁 特開2002−122126号公報 特開2002−224920号公報 特開2002−173711号公報
Further, in a crankshaft of an internal combustion engine, a joint portion between an arm and a pin or a journal is a fillet portion having a rounded cross section. This fillet portion is a location where twisting stress and bending stress during crankshaft rotation tend to concentrate. For this reason, it is practiced to reinforce the fillet part, and examples thereof include a roll processing method and an induction hardening method.
The roll processing method is a technique for improving the strength by cold working the boundary between the pin / flange and the journal / flange with a fillet roll. As a conventional technique, for example, Patent Document 1 discloses a technique for reducing the stress concentration by increasing the radius of curvature of a portion where tensile stress is applied. Techniques to ease concentration are introduced.
On the other hand, the induction hardening method is a technique in which the surface of the pin, the journal portion, the pin / flange, and the fillet portion at the boundary of the journal / flange is martensite by induction hardening to increase the strength. As a prior art, for example, Patent Document 3 introduces an induction hardening method and apparatus that hardly cause quenching cracks.
"Metallic Material Fatigue Design Handbook" (edited by the Society of Materials Science, Yokendo, August 20, 1981, 2nd edition) 95-105 JP 2002-122126 A JP 2002-224920 A JP 2002-173711 A

本発明は上記の如き実状に鑑みなされたものであって、曲率半径が25mm以下の切欠き部を有し、更に表面HV硬度が250以上である疲労特性に優れた高強度機械部品およびその疲労強度向上方法を提供することを課題とする。   The present invention has been made in view of the actual situation as described above, and has a high-strength mechanical component having a fatigue characteristic having a notch portion with a radius of curvature of 25 mm or less and a surface HV hardness of 250 or more, and its fatigue. It is an object to provide a strength improvement method.

本発明者らは、焼入れ・焼戻し処理、浸炭処理、高周波焼入れ処理などの各種の熱処理を施した切欠きを有する高強度の機械部品の疲労特性の向上方法について、種々の検討を重ねた。この結果、疲労特性を向上させるためには切欠き部に圧縮残留応力を付与させることが必須であるとともに、従来のショットピーニング処理では曲率半径の小さな切欠き部に効率的に圧縮残留応力を付与させることが困難であることを明確にした。そこで、ショットピーニングに替わる圧縮残留応力の付与方法として種々の手段を検討した結果、超音波打撃処理が圧縮残留応力の導入に対して極めて有効であり、疲労特性が大幅に向上することを見出し、更に最適な超音波打撃処理の製造技術を確立した。以上の検討結果に基づき、圧縮残留応力および超音波打撃処理による圧縮残留応力の付与方法を最適に選択すれば、疲労特性の優れた切欠き部を有する高強度機械部品を実現できると言う結論に達し、本発明をなしたものである。   The present inventors have made various studies on methods for improving the fatigue properties of high-strength mechanical parts having notches subjected to various heat treatments such as quenching / tempering treatment, carburizing treatment, and induction hardening treatment. As a result, in order to improve fatigue characteristics, it is essential to apply compressive residual stress to the notch, and in conventional shot peening, compressive residual stress is efficiently applied to the notch having a small radius of curvature. Clarified that it is difficult to do. Therefore, as a result of examining various means as an application method of compressive residual stress in place of shot peening, it was found that ultrasonic hitting treatment is extremely effective for introduction of compressive residual stress, and fatigue characteristics are greatly improved. Furthermore, the manufacturing technology of the optimum ultrasonic hitting process was established. Based on the above examination results, it is concluded that if a compression residual stress and compressive residual stress applying method by ultrasonic impact treatment are optimally selected, a high-strength mechanical part having a notch with excellent fatigue characteristics can be realized. And the present invention has been made.

本発明は以上の知見に基づいてなされたものであって、その要旨とするところは、次の通りである。
(1)質量%で、C:0.1〜1.2%を含有し、残部がFeおよび不可避的不純物からなる鋼材で構成され、曲率半径が25mm以下の切欠き部を有する機械部品であって、前記鋼材表面のHV硬度が250以上であり、かつ、前記切欠き部表層の圧縮残留応力が−300〜−1500MPaであることを特徴とする疲労特性に優れた高強度機械部品。
(2)前記切欠き部表層からの深さが少なくとも30μm以内の領域において、結晶粒の長軸方向と短軸方向の長さの比であるアスペクト比が1.5以上であることを特徴とする(1)に記載の疲労特性に優れた高強度機械部品。
(3)(1)または(2)に記載の高強度機械部品の切欠き部を超音波振動子により打撃して圧縮残留応力を付与する高強度機械部品の疲労特性向上方法であって、
前記超音波振動子の機械部品に対する硬度比:1.1以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子の切欠き部への押し付け力:10〜1000Nの条件で、前記高強度機械部品の切欠き部に超音波打撃処理を施すことを特徴とする高強度機械部品の疲労特性向上方法。
The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
(1) It is a machine part having a notch portion with a mass radius of C: 0.1 to 1.2%, the balance being made of steel consisting of Fe and inevitable impurities, and a radius of curvature of 25 mm or less. A high-strength mechanical component having excellent fatigue properties, wherein the steel material has an HV hardness of 250 or more and a compressive residual stress of the notch surface layer is -300 to -1500 MPa.
(2) The aspect ratio, which is the ratio of the length in the major axis direction to the minor axis direction of the crystal grains, is 1.5 or more in a region where the depth from the surface layer of the notch is at least 30 μm or less. A high-strength mechanical component having excellent fatigue properties as described in (1).
(3) A method for improving fatigue characteristics of a high-strength mechanical component that applies a compressive residual stress by hitting a notch of the high-strength mechanical component according to (1) or (2) with an ultrasonic vibrator,
Hardness ratio of the ultrasonic vibrator to mechanical parts: 1.1 or more, ultrasonic vibrator frequency: 10-60 kHz, ultrasonic output: 500-5000 W, pressing force to the notch of the ultrasonic vibrator : A method for improving the fatigue characteristics of a high-strength mechanical component, characterized by subjecting the notched portion of the high-strength mechanical component to ultrasonic striking treatment under a condition of 10 to 1000 N.

本発明によれば、切り欠き部に超音波打撃処理を施して圧縮残留応力を導入することによって、曲率半径が25mm以下の切欠きを有する高強度機械部品の疲労特性を大幅に向上させることができ、これにより疲労特性に優れた高強度機械部品および疲労特性向上方法を提供することができるなど、産業上有用な著しい効果を奏する。   According to the present invention, the fatigue characteristics of a high-strength mechanical component having a notch with a radius of curvature of 25 mm or less can be significantly improved by applying an ultrasonic impact treatment to the notch and introducing a compressive residual stress. Thus, it is possible to provide a high-strength mechanical part excellent in fatigue characteristics and a method for improving fatigue characteristics, and thus, there are significant industrially useful effects.

以下に本発明を実施するための最良の形態について説明する。
まず、本発明の対象とする鋼材の成分の限定理由について述べる。
Cは機械部品の強度を確保する上で必須の元素であるが、0.1%未満では本発明で目的とするHV硬度が250以上を得ることが困難であり、一方1.2%を越えると機械部品の延性が低下するため、0.1〜1.2%の範囲に制限した。
Si、Mn、Cr、Mo、Ni等の合金元素は、各種機械部品の熱処理条件、用途等に応じて添加しても差し支えがない。好ましい範囲は、Si:0.01〜2%、Mn:0.2〜2%、Cr:0.05〜2%、Mo:0.05〜3%、Ni:0.05〜2%、Cu:0.05〜1%、B:0.0003〜0.005%である。更に、Al、Ti、Nb、Vの好ましい範囲は、いずれの元素も0.002〜0.5%の範囲である。また、P、Sの好ましい範囲は、P:0.015%以下、S:0.05%以下である。
なお、本発明は、高強度機械部品に用いる鋼材の組織や処理工程は問わず、フェライト-パ−ライト鋼、ベイナイト鋼、マルテンサイト鋼など、いずれの組織の鋼材にも適用できるうえ、熱間鍛造後に切削され、浸炭処理、高周波焼入れ、焼入れやき戻し処理などが施される場合に広く適用できる。
The best mode for carrying out the present invention will be described below.
First, the reasons for limiting the components of the steel material that is the subject of the present invention will be described.
C is an essential element for securing the strength of the machine part. However, if it is less than 0.1%, it is difficult to obtain the target HV hardness of 250 or more, while it exceeds 1.2%. Since the ductility of machine parts is reduced, the content is limited to a range of 0.1 to 1.2%.
Alloy elements such as Si, Mn, Cr, Mo, and Ni can be added depending on the heat treatment conditions and applications of various machine parts. Preferred ranges are: Si: 0.01-2%, Mn: 0.2-2%, Cr: 0.05-2%, Mo: 0.05-3%, Ni: 0.05-2%, Cu : 0.05 to 1%, B: 0.0003 to 0.005%. Furthermore, the preferable range of Al, Ti, Nb, and V is a range of 0.002 to 0.5% for all elements. The preferable ranges of P and S are P: 0.015% or less and S: 0.05% or less.
In addition, the present invention can be applied to any steel material such as ferrite-pearlite steel, bainite steel, martensitic steel, etc. It can be widely applied when it is cut after forging and subjected to carburizing, induction hardening, quenching or tempering.

次に機械部品の曲率半径、表面HV硬度、圧縮残留応力の限定理由について説明する。曲率半径が25mmを超えるような大きな切欠きがある場合は、疲労強度の低下が少ないため、本発明の対象外とした。また、25mmを超えるような切欠きを有する部品に圧縮残留応力を付与する場合、従来技術のショットピーニング処理の方が超音波打撃処理よりも経済的であるため、曲率半径の上限を25mmに限定した。本発明の技術は、機械部品の表面HV硬度が250未満であっても十分な効果があるが、一般的に低強度鋼の場合は高い疲労強度が要求されないため、表面HV硬度の下限を250に制限した。切欠き部表層の圧縮残留応力が−300MPa未満では疲労強度の向上効果が少なく、一方、−1500MPaを超える圧縮残留応力を付与させても疲労特性の向上効果が飽和するため、切欠き部の表層の圧縮残留応力の範囲を−300〜−1500MPaに限定した。なお、本発明の残留応力はX線法で測定したものである。 Next, the reasons for limiting the radius of curvature, surface HV hardness, and compressive residual stress of machine parts will be described. When there is a large notch with a radius of curvature exceeding 25 mm, the fatigue strength is not significantly reduced, and thus is excluded from the scope of the present invention. In addition, when compressive residual stress is applied to a part having a notch exceeding 25 mm, the shot peening process of the prior art is more economical than the ultrasonic hitting process, so the upper limit of the radius of curvature is limited to 25 mm. did. The technique of the present invention is sufficiently effective even when the surface HV hardness of the machine part is less than 250. However, in general, high fatigue strength is not required in the case of low-strength steel, so the lower limit of the surface HV hardness is 250. Restricted to. If the compressive residual stress of the surface layer of the notch is less than −300 MPa, the effect of improving the fatigue strength is small. On the other hand, even if a compressive residual stress exceeding −1500 MPa is applied, the effect of improving the fatigue characteristics is saturated. The range of compressive residual stress was limited to -300 to -1500 MPa. The residual stress of the present invention is measured by the X-ray method.

本発明の超音波打撃処理を行わない場合には、結晶粒の長軸方向と短軸方向のアスペクト比が1.5未満となり疲労特性の向上効果が不十分であるため、アスペクト比の下限を1.5に制限した。また、アスペクト比が1.5以上の領域が、切欠き表層から30μm未満では、十分な疲労強度向上効果を得ることが困難であるため、下限を30μmに制限した。本発明において、結晶粒のアスペクト比は、500倍の光学顕微鏡で測定したものである。機械部品の組織がフェライト・パーライトの場合はフェライト粒およびパーライト粒の平均値であり、パーライトが主体の場合はパーライト粒の平均値、マルテンサイトもしくは焼戻しマルテンサイトの場合は旧オーステナイト粒の平均値である。
次に、超音波打撃処理の条件について説明する。本発明では、機械部品の仕様に応じて熱間鍛造、冷間鍛造、各種の機械加工や焼入れ・焼戻し処理、浸炭処理、高周波焼入れ処理などの各種工程を経て最終の機械部品に仕上げた後、最後に切欠き部に超音波打撃処理を行うものである。
When the ultrasonic hitting treatment of the present invention is not performed, the aspect ratio in the major axis direction and the minor axis direction of the crystal grains is less than 1.5, and the effect of improving fatigue characteristics is insufficient. Limited to 1.5. In addition, if the region having an aspect ratio of 1.5 or more is less than 30 μm from the notched surface layer, it is difficult to obtain a sufficient fatigue strength improvement effect, so the lower limit was limited to 30 μm. In the present invention, the aspect ratio of the crystal grains is measured with an optical microscope of 500 times. When the structure of the machine part is ferrite pearlite, it is the average value of ferrite grains and pearlite grains, when pearlite is the main component, it is the average value of pearlite grains, and when it is martensite or tempered martensite, it is the average value of prior austenite grains. is there.
Next, conditions for the ultrasonic hitting process will be described. In the present invention, after finishing the final machine part through various processes such as hot forging, cold forging, various machining and quenching / tempering treatment, carburizing treatment, induction hardening treatment according to the specifications of the machine parts, Finally, an ultrasonic hitting process is performed on the notch.

超音波振動子の硬度が切欠き表面の硬度の1.1倍未満では、超音波打撃処理による切欠き部への圧縮残留応力を効率的に付与することが困難であるため、超音波振動子と機械部品の硬度比を1.1以上に限定した。なお、超音波振動子の先端の曲率半径は特に限定しないものの、機械部品の切欠き部の曲率半径よりも大きい場合は効率的に圧縮残留応力を付与することが出来ないため、超音波振動子の先端半径は切欠き部の曲率半径と同等以下にすることが好ましい条件である。超音波振動子の振動数が10kHz未満では、効率的に圧縮残留応力を付与することができないため、下限を10kHzに限定した。一方、60kHzを超える振動数で超音波打撃処理を行っても圧縮残留応力の導入効果が飽和するため、振動数の上限を60kHzに制限した。振動数の好ましい範囲は、20〜40kHzである。超音波の出力が500W未満では、所定の圧縮残留応力を付与させるための超音波打撃処理時間が長くなり経済的でないため、下限を500Wに限定した。超音波出力が5000Wを超えても効果が飽和するため、5000Wを上限にした。超音波振動子の切欠き部への押し付け力が10N未満では、効率的に圧縮残留応力を付与することができず経済的でないため、下限を10Nに制限した。一方、押し付け力が1000Nを超えて超音波打撃処理を行っても効果が飽和するため、上限を1000Nに制限した。   If the hardness of the ultrasonic vibrator is less than 1.1 times the hardness of the notch surface, it is difficult to efficiently apply compressive residual stress to the notch by the ultrasonic hitting process. And the hardness ratio of machine parts was limited to 1.1 or more. Although the radius of curvature of the tip of the ultrasonic transducer is not particularly limited, it is not possible to efficiently apply compressive residual stress if the radius of curvature is larger than the notch radius of the machine part. It is a preferable condition that the tip radius is equal to or less than the curvature radius of the notch. If the frequency of the ultrasonic vibrator is less than 10 kHz, the compressive residual stress cannot be applied efficiently, so the lower limit is limited to 10 kHz. On the other hand, since the effect of introducing the compressive residual stress is saturated even if the ultrasonic impact treatment is performed at a frequency exceeding 60 kHz, the upper limit of the frequency is limited to 60 kHz. A preferable range of the frequency is 20 to 40 kHz. If the output of the ultrasonic wave is less than 500 W, the ultrasonic striking treatment time for applying the predetermined compressive residual stress becomes long and not economical, so the lower limit is limited to 500 W. Even if the ultrasonic output exceeds 5000 W, the effect is saturated, so 5000 W was set as the upper limit. If the pressing force to the notch of the ultrasonic transducer is less than 10N, it is not economical because compressive residual stress cannot be efficiently applied, so the lower limit is limited to 10N. On the other hand, since the effect is saturated even if the pressing force exceeds 1000 N and the ultrasonic impact treatment is performed, the upper limit is limited to 1000 N.

超音波打撃処理による圧縮残留応力付与は、ショットピーニングによる圧縮残留応力付与よりも、疲労特性が優れている。この理由は、
1)超音波打撃処理による圧縮残留応力はショットピーニングよりも高い
2)超音波打撃処理による圧縮残留応力はショットピーニングよりも鋼材内部まで付与されている
3)超音波打撃処理の部位は塑性変形されており、疲労特性が向上する
4)超音波打撃処理による表面粗さがショットピーニングよりも小さい
ことに起因すると推定される。
The application of compressive residual stress by ultrasonic hitting treatment has better fatigue characteristics than the application of compressive residual stress by shot peening. The reason is
1) The compressive residual stress by ultrasonic hitting treatment is higher than that of shot peening 2) The compressive residual stress by ultrasonic hitting treatment is applied to the inside of the steel material rather than shot peening 3) The site of ultrasonic hitting treatment is plastically deformed 4) It is estimated that the surface roughness due to the ultrasonic hitting process is smaller than that of shot peening.

以下、実施例により本発明の効果をさらに具体的に説明する。
表1に示す化学成分の鋼材を用いて、熱間鍛造で図1に示すような丸棒形状の部品(シャフト)を製造した。熱間鍛造温度は1200℃である。その後、機械加工で図1に示す切欠きを有する機械部品に仕上げた。更に、これらの機械部品を用いて焼入れ・焼戻し処理、高周波加熱処理、浸炭処理を行い、表面のHV硬度を測定した。焼入れ・焼戻し処理は、焼入れ温度:850〜950℃、焼戻し温度:180〜650℃の条件で行った。高周波加熱処理は、950℃に加熱後、焼入れ処理を行い、その後150℃で焼戻し処理を行った。浸炭処理は、浸炭温度が950℃、焼戻し温度が160℃の条件で行った。また、最終的に切欠き部に超音波打撃処理を施した。超音波打撃処理後に切欠き部の残留応力はX線法で測定した。結晶粒のアスペクト比は、切欠き部の表層から30μmの領域を500倍の光学顕微鏡で10視野以上を観察することにより求めた。機械部品の疲労強度(107サイクル)は回転曲げ疲労試験で調査した。上記の製造条件、測定結果を表2に示す。
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
A round bar-shaped part (shaft) as shown in FIG. 1 was manufactured by hot forging using steel materials having chemical components shown in Table 1. The hot forging temperature is 1200 ° C. Then, it machine-finished into the machine part which has a notch shown in FIG. Furthermore, quenching / tempering treatment, high-frequency heat treatment, and carburization treatment were performed using these mechanical parts, and the HV hardness of the surface was measured. The quenching / tempering treatment was performed under the conditions of quenching temperature: 850 to 950 ° C. and tempering temperature: 180 to 650 ° C. In the high-frequency heat treatment, after heating to 950 ° C., a quenching treatment was performed, and then a tempering treatment was performed at 150 ° C. The carburizing process was performed under the conditions of a carburizing temperature of 950 ° C. and a tempering temperature of 160 ° C. In addition, ultrasonic hitting treatment was finally applied to the notch. The residual stress at the notch was measured by the X-ray method after the ultrasonic impact treatment. The aspect ratio of the crystal grains was determined by observing 10 fields or more in a 30 μm region from the surface layer of the notch with a 500 × optical microscope. The fatigue strength (10 7 cycles) of machine parts was investigated by a rotating bending fatigue test. The above production conditions and measurement results are shown in Table 2.

表2の試験No.3、5、7、8、9、12、16、18、20、21、23、25、28、32、34、37が本発明例で、これ以外は比較例である。同表に見られるように本発明例は、いずれも切欠き部に高い圧縮残留応力が付与され、結晶粒のアスペクト比も1.5以上になっている。この結果、比較例に比べ疲労強度が高く、疲労特性の優れた高強度部品が実現されている。
これに対して、比較例である試験No.1、4、6、8、11、14、17、19、22、24、27、30、33、35は、いずれも機械部品製造後に切欠き部の残留応力制御の処理を施さなかった場合である。圧縮残留応力が低いか、あるいは引張残留応力になっているため、いずれも疲労強度が本発明例よりも低い例である。
Test Nos. 3, 5, 7, 8, 9, 12, 16, 18, 20, 21, 23, 25, 28, 32, 34, and 37 in Table 2 are examples of the present invention, and other examples are comparative examples. . As can be seen from the table, in all of the examples of the present invention, a high compressive residual stress is imparted to the notch, and the aspect ratio of the crystal grains is 1.5 or more. As a result, a high-strength component having higher fatigue strength and superior fatigue characteristics than the comparative example is realized.
On the other hand, test Nos. 1, 4, 6, 8, 11, 14, 17, 19, 22, 24, 27, 30, 33, and 35, which are comparative examples, are all notched after manufacturing the machine part. This is a case where the residual stress control process is not performed. Since the compressive residual stress is low or is a tensile residual stress, both are examples in which the fatigue strength is lower than that of the present invention.

比較例である試験No.2、15、31、36は、いずれも部品製造後に従来のショットピーニング処理を施したものである。ショットピーニング処理を行うことによって、切欠き部の残留応力は圧縮残留応力側に移行するものの、切欠き部の曲率半径が小さいために大きな圧縮残留応力を効率的に付与することができない。この結果、いずれの例においても本発明例に比べ疲労強度が劣っている。
比較例である試験No.10、13、26、29、38は、いずれも超音波打撃処理の条件が不適切な例である。即ち、No.10は超音波振動子と機械部品の硬度比が低いために、No.13は超音波振動子の振動数が低いために、No.26は超音波振動子の切欠き部への押し付け力が低すぎるために、No.29は硬度比および超音波振動子の振動数が低いために、No.38は超音波出力が低いために、いずれも切欠き部の圧縮残留応力値が低く、疲労強度の向上効果が少なかった例である。

Figure 2006104551
Figure 2006104551
Test Nos. 2, 15, 31, and 36, which are comparative examples, are all subjected to conventional shot peening treatment after component manufacture. By performing the shot peening process, although the residual stress in the notch part moves to the compressive residual stress side, a large compressive residual stress cannot be efficiently applied because the radius of curvature of the notch part is small. As a result, the fatigue strength is inferior to the examples of the present invention in any of the examples.
Test Nos. 10, 13, 26, 29, and 38, which are comparative examples, are all examples in which the conditions of the ultrasonic impact treatment are inappropriate. That is, No. 10 has a low hardness ratio between the ultrasonic vibrator and machine parts, and No. 13 has a low frequency of the ultrasonic vibrator, so No. 26 goes to the notch of the ultrasonic vibrator. No. 29 is low in hardness ratio and the vibration frequency of the ultrasonic transducer is low, and No. 38 is low in ultrasonic output. This is an example in which the effect of improving fatigue strength is low.
Figure 2006104551
Figure 2006104551

本発明の実施例で用いた切欠きを有する機械部品を例示する図である。It is a figure which illustrates the machine component which has a notch used in the Example of this invention.

Claims (3)

質量%で、C:0.1〜1.2%を含有し、残部がFeおよび不可避的不純物からなる鋼材で構成され、曲率半径が25mm以下の切欠き部を有する機械部品であって、前記鋼材表面のHV硬度が250以上であり、かつ、前記切欠き部表層の圧縮残留応力が−300〜−1500MPaであることを特徴とする疲労特性に優れた高強度機械部品。   It is a mechanical part having a notch part with a curvature radius of 25 mm or less, comprising C: 0.1-1.2% by mass, the balance being made of a steel material composed of Fe and inevitable impurities, A high-strength mechanical component having excellent fatigue characteristics, wherein the steel material has an HV hardness of 250 or more and a compressive residual stress of the notch surface layer is -300 to -1500 MPa. 前記切欠き部表層からの深さが少なくとも30μm以内の領域において、結晶粒の長軸方向と短軸方向の長さの比であるアスペクト比が1.5以上であることを特徴とする請求項1に記載の疲労特性に優れた高強度機械部品。   The aspect ratio, which is the ratio of the length in the major axis direction to the minor axis direction of the crystal grains, is 1.5 or more in a region where the depth from the surface layer of the notch is at least 30 μm or less. A high-strength mechanical component having excellent fatigue characteristics as described in 1. 請求項1または請求項2に記載の高強度機械部品の切欠き部を超音波振動子により打撃して圧縮残留応力を付与する高強度機械部品の疲労特性向上方法であって、前記超音波振動子の機械部品に対する硬度比:1.1以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子の切欠き部への押し付け力:10〜1000Nの条件で、前記高強度機械部品の切欠き部に超音波打撃処理を施すことを特徴とする高強度機械部品の疲労特性向上方法。


A method for improving fatigue characteristics of a high-strength mechanical component by applying a compressive residual stress by hitting a notch portion of the high-strength mechanical component according to claim 1 or 2 with an ultrasonic transducer, wherein the ultrasonic vibration Hardness ratio of child to mechanical parts: 1.1 or more, ultrasonic vibrator frequency: 10-60 kHz, ultrasonic output: 500-5000 W, pressing force on notch of ultrasonic vibrator: 10-1000 N A method for improving fatigue characteristics of a high-strength mechanical component, comprising subjecting the notched portion of the high-strength mechanical component to an ultrasonic impact treatment under the conditions described above.


JP2004295861A 2004-09-17 2004-10-08 High-strength mechanical parts with excellent fatigue characteristics and methods for improving the fatigue characteristics Expired - Fee Related JP4436225B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004295861A JP4436225B2 (en) 2004-10-08 2004-10-08 High-strength mechanical parts with excellent fatigue characteristics and methods for improving the fatigue characteristics
PCT/JP2005/016881 WO2006030800A1 (en) 2004-09-17 2005-09-07 High strength machine parts and shaft excellent in fatigue characteristics, and method for improving fatigue characteristics thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295861A JP4436225B2 (en) 2004-10-08 2004-10-08 High-strength mechanical parts with excellent fatigue characteristics and methods for improving the fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2006104551A true JP2006104551A (en) 2006-04-20
JP4436225B2 JP4436225B2 (en) 2010-03-24

Family

ID=36374623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295861A Expired - Fee Related JP4436225B2 (en) 2004-09-17 2004-10-08 High-strength mechanical parts with excellent fatigue characteristics and methods for improving the fatigue characteristics

Country Status (1)

Country Link
JP (1) JP4436225B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081821A (en) * 2006-09-28 2008-04-10 Mine Seisakusho:Kk High-carbon steel material and hardening-treatment method therefor
JP2010242130A (en) * 2009-04-01 2010-10-28 Kobe Steel Ltd Shaft steel for gear and shaft for gear excellent in bending fatigue resistance and peeling resistance
JP2013112826A (en) * 2011-11-25 2013-06-10 Jfe Bars & Shapes Corp Induction hardening gear excellent in wear resistance and surface fatigue characteristic, and manufacturing method therefor
KR101424862B1 (en) 2012-03-29 2014-08-01 현대제철 주식회사 Steel and method of manufacturing the same
KR101481168B1 (en) 2008-07-03 2015-01-13 현대자동차주식회사 Method for manufacturing shaft of automobile
EP3040438A1 (en) * 2013-08-27 2016-07-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength steel, and crankshaft manufactured using said high-strength steel
EP3401412A4 (en) * 2016-01-08 2019-07-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Large crankshaft
SE2130179A1 (en) * 2021-06-29 2022-12-30 Sandvik Materials Tech Emea Ab A new super bainite steel, method for manufacturing an object of said steel and an object manufactured by the method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081821A (en) * 2006-09-28 2008-04-10 Mine Seisakusho:Kk High-carbon steel material and hardening-treatment method therefor
KR101481168B1 (en) 2008-07-03 2015-01-13 현대자동차주식회사 Method for manufacturing shaft of automobile
JP2010242130A (en) * 2009-04-01 2010-10-28 Kobe Steel Ltd Shaft steel for gear and shaft for gear excellent in bending fatigue resistance and peeling resistance
JP2013112826A (en) * 2011-11-25 2013-06-10 Jfe Bars & Shapes Corp Induction hardening gear excellent in wear resistance and surface fatigue characteristic, and manufacturing method therefor
KR101424862B1 (en) 2012-03-29 2014-08-01 현대제철 주식회사 Steel and method of manufacturing the same
EP3040438A1 (en) * 2013-08-27 2016-07-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength steel, and crankshaft manufactured using said high-strength steel
EP3040438A4 (en) * 2013-08-27 2017-05-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength steel, and crankshaft manufactured using said high-strength steel
EP3401412A4 (en) * 2016-01-08 2019-07-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Large crankshaft
SE2130179A1 (en) * 2021-06-29 2022-12-30 Sandvik Materials Tech Emea Ab A new super bainite steel, method for manufacturing an object of said steel and an object manufactured by the method
WO2023277754A1 (en) * 2021-06-29 2023-01-05 Alleima Emea Ab A super bainite steel, an object comprising said steel and a method for manufacturing said object
SE544951C2 (en) * 2021-06-29 2023-02-07 Sandvik Materials Tech Emea Ab A new super bainite steel, method for manufacturing an object of said steel and an object manufactured by the method

Also Published As

Publication number Publication date
JP4436225B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP5958652B2 (en) Soft nitrided induction hardened steel parts with excellent surface fatigue strength
JP6772499B2 (en) Steel parts and their manufacturing methods
CN100516268C (en) High strength machine parts and shaft excellent in fatigue characteristics, and method for improving fatigue characteristics thereof
WO2019244503A1 (en) Mechanical component
JP4436225B2 (en) High-strength mechanical parts with excellent fatigue characteristics and methods for improving the fatigue characteristics
JP5343760B2 (en) Tempered soft nitriding parts
JP4299758B2 (en) High strength bolt with excellent delayed fracture resistance and method for improving delayed fracture resistance
JP4403624B2 (en) Non-tempered steel for nitrocarburizing, non-tempered tempered crankshaft and manufacturing method thereof
JP2000129347A (en) Production of high strength parts
JPH0432537A (en) Member for high strength machine structural use excellent in bearing strength
WO2006030800A1 (en) High strength machine parts and shaft excellent in fatigue characteristics, and method for improving fatigue characteristics thereof
JP2004286196A (en) High-strength connecting rod and its manufacturing method
JP2008280612A (en) High-strength steel sheet having excellent internal fatigue damage resistance, and method for producing the same
JP2005097682A (en) Steel, steel sheet and stock belt for continuously variable transmission belt, continuously variable transmission belt, and production method therefor
JP4504550B2 (en) Steel for gears and gears with excellent root bending fatigue and surface fatigue properties
JP2003193128A (en) Method of producing carburized and quenched member, and carburized and quenched member
JP4488228B2 (en) Induction hardening steel
WO2005100626A1 (en) Crankshaft excellent in flexural fatigue strength
JP4757831B2 (en) Induction hardening part and manufacturing method thereof
JP2006292108A (en) Crank shaft and its manufacturing method
JP6447064B2 (en) Steel parts
JP2004323912A (en) High strength coil spring, and method for manufacturing the same
JPH10310823A (en) Manufacture of shaft-shaped parts for machine structural use, excellent in fatigue characteristic
JP4456036B2 (en) Induction hardened steel parts with shaft-like parts with excellent static strength and fatigue properties
JP3931797B2 (en) Induction hardening steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091225

R151 Written notification of patent or utility model registration

Ref document number: 4436225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees