JP2810799B2 - Manufacturing method of coil spring - Google Patents
Manufacturing method of coil springInfo
- Publication number
- JP2810799B2 JP2810799B2 JP1357491A JP1357491A JP2810799B2 JP 2810799 B2 JP2810799 B2 JP 2810799B2 JP 1357491 A JP1357491 A JP 1357491A JP 1357491 A JP1357491 A JP 1357491A JP 2810799 B2 JP2810799 B2 JP 2810799B2
- Authority
- JP
- Japan
- Prior art keywords
- coil spring
- surface roughness
- wire
- manufacturing
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Wire Processing (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Articles (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Springs (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、自動車用エンジンに使
用される弁ばね等の高強度高耐疲労ばねの製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high strength and high fatigue resistance spring such as a valve spring used for an automobile engine.
【0002】[0002]
【従来の技術】高強度高耐疲労ばねを製造する方法とし
て、引張強度の高い線材を使用し、コイリング成形し、
熱処理し、ショットピーニングによる残留応力付与処理
し、その後研磨処理して表面最大荒さを低減させる各工
程を実施する方法が知られている。また、特開平2−1
29422号公報には、シリコンクロム清浄鋼線を使用
し、コイリング成形し、熱処理し、ショットピーニング
による残留応力付与処理し、その後研磨処理して表面最
大荒さRmax を5μm以下にして高強度ばねを製造する
方法が記載されている。2. Description of the Related Art As a method of manufacturing a high-strength, high-fatigue-resistant spring, a wire having a high tensile strength is used, coiled and formed.
A method is known in which heat treatment is performed, a residual stress imparting process is performed by shot peening, and then each process is performed to reduce the maximum surface roughness by performing a polishing process. Also, Japanese Patent Application Laid-Open No.
No. 29422 discloses that a high strength spring is manufactured by using a silicon chromium clean steel wire, coiling, heat-treating, applying a residual stress by shot peening, and then polishing to reduce the maximum surface roughness Rmax to 5 μm or less. A method is described.
【0003】[0003]
【発明が解決しようとする課題】従来のショットピーニ
ングによる残留応力付与処理を行いその後研磨処理して
表面最大荒さをRmax 5μmとする方法は、ショットピ
ーニングにより表面の凹凸が大きくなるため比較的表面
を厚く研磨しなければならずそのために工数がかさむと
いった問題がある。The conventional method of applying a residual stress by shot peening and then polishing the surface to obtain a maximum surface roughness of Rmax 5 μm requires a relatively large surface unevenness due to shot peening. There is a problem that the polishing has to be thick and the man-hour is increased.
【0004】本発明は製造コストを低減でき、かつより
耐疲労性の高いコイルばねの製造方法を提供するもので
ある。[0004] The present invention is to provide a method of manufacturing a coil spring which can reduce the manufacturing cost and has higher fatigue resistance.
【0005】[0005]
【課題を解決するための手段】本発明は、耐疲労性を高
める手段および残留応力付与処理時のショットピーニン
グによる表面荒さの増大を抑制する手段として所定の処
理を施したコイリング成形品に窒化処理が有効であるこ
とを見つけ、本発明を完成したものである。すなわち、
本発明のコイルばねの製造方法は、酸化皮膜を有する鉄
鋼線材をコイリング成形し、熱処理し、表面最大荒さR
max 5μm以下となるようにデスケール処理し、窒化処
理し、ショットピーニングによる残留応力付与処理する
ことを特徴とする。SUMMARY OF THE INVENTION The present invention provides a nitriding treatment for a coiled molded product which has been subjected to a predetermined treatment as a means for increasing fatigue resistance and a means for suppressing an increase in surface roughness due to shot peening during a residual stress applying treatment. Are found to be effective, and the present invention has been completed. That is,
In the method for manufacturing a coil spring according to the present invention, a steel wire having an oxide film is coiled, heat-treated, and subjected to a maximum surface roughness R.
It is characterized in that it is subjected to a descaling treatment, a nitriding treatment, and a residual stress imparting treatment by shot peening so as to have a maximum of 5 μm or less.
【0006】コイリング成形品を表面最大荒さRmax 5
μm以下となるようにデスケール処理した後窒化処理す
ることにより、残留応力付与処理時のショットピーニン
グによるばね表面の荒さの増大が抑制され、研磨処理を
実施しなくても済み、研磨処理に要するコストが掛から
ないため、製造コストが大幅に低減できる。また、窒化
処理によりばね表面は窒化されて硬くなるため表面に傷
が生じにくくそれだけ耐久性が向上する。[0006] The coiled molded product is subjected to the maximum surface roughness Rmax5.
By performing nitriding after de-scaling to less than μm, the increase in roughness of the spring surface due to shot peening during the treatment of residual stress is suppressed, eliminating the need for polishing, and the cost required for polishing. , So that the manufacturing cost can be greatly reduced. In addition, since the spring surface is nitrided and hardened by the nitriding treatment, the surface is less likely to be scratched, and the durability is improved accordingly.
【0007】本発明のコイルばねの製造方法に使用され
る線材は、窒化処理により表面部が窒化されて表面部の
硬度が高くなる鉄鋼材である。特に、高強度ばね用とし
て従来より使用されている合金鋼オイルテンパー線とか
合金鋼硬引線が適している。係る線材は酸化皮膜をもつ
ものである必要がある。酸化皮膜はその後の工程のコイ
リング成形を容易にする作用を成す。The wire used in the method of manufacturing a coil spring according to the present invention is a steel material whose surface is nitrided by nitriding to increase the hardness of the surface. In particular, alloy steel oil-tempered wire or alloy steel hard drawn wire conventionally used for high-strength springs is suitable. Such a wire must have an oxide film. The oxide film has the function of facilitating the subsequent coil forming.
【0008】熱処理は残留応力や残留歪みを除去した
り、硬度を高くするために行うもので、具体的には、合
金鋼オイルテンパー線には例えば420℃30分間の低
温焼鈍処理を実施して、残留応力や歪みの除去を行って
いる。また合金硬引線には焼き入れ焼き戻し処理を実施
してその硬度を高くしている。デスケール処理は、コイ
リング成形され、熱処理されたバネ素材の表面の酸化皮
膜を除去する工程である。酸化皮膜を取り除くことによ
りより均一な窒化処理が可能となる。[0008] The heat treatment is performed to remove residual stress and residual strain and to increase the hardness. Specifically, the alloy steel oil-tempered wire is subjected to, for example, low-temperature annealing at 420 ° C for 30 minutes. And remove residual stress and distortion. The hardened wire of the alloy is quenched and tempered to increase its hardness. The descaling process is a process of removing the oxide film on the surface of the spring material which has been subjected to the coil forming and heat treatment. Removing the oxide film enables a more uniform nitriding treatment.
【0009】なお、デスケール処理において、ばね素材
の表面最大荒さをRmax 5μm以下にする必要がある。
表面最大荒さをRmax 5μmを越えると、窒化の均一性
が不十分となり、また、表面研磨が必要となる。デスケ
ール処理としては電解研磨、酸洗い(例えば5%程度の
希塩酸に数分浸漬する。)、ショットブラスト、ショッ
トピーニング等で実施できる。ショットブラスト、ショ
ットピーニングでは特にばね素材の表面荒さを増大させ
ないように、比較的弱くブラストされるような条件を選
択する必要がある。例えば、ショットピーニングでは、
比較的柔らかいガラスビーズや砥粒を使用するとか、直
径0.3mm以下の細かいカットワイヤを使用すると
か、直径0.3mm以下のスチールショットを使用する
ことによりばね素材の表面最大荒さをRmax 5μm以下
にすることができる。In the descaling process, the maximum surface roughness of the spring material must be less than Rmax 5 μm.
When the maximum surface roughness exceeds Rmax of 5 μm, the uniformity of nitriding becomes insufficient and the surface needs to be polished. The descaling treatment can be performed by electrolytic polishing, pickling (for example, immersion in dilute hydrochloric acid of about 5% for several minutes), shot blasting, shot peening, or the like. In shot blasting and shot peening, it is necessary to select a condition for relatively weak blasting so as not to increase the surface roughness of the spring material. For example, in shot peening,
By using relatively soft glass beads or abrasive grains, using fine cut wires with a diameter of 0.3 mm or less, or using steel shots with a diameter of 0.3 mm or less, the maximum surface roughness of the spring material can be reduced to Rmax 5 μm or less. Can be
【0010】デスケールをショットブラスト、ショット
ピーニングで実施することにより、酸化皮膜を除去でき
る以外に次の工程の窒化が容易となる。窒化処理は表面
より約0.2mm程度の深さまで窒化し、表面より0.
05から0.1mmまでの表面部の硬度をHv 800か
ら900程度とするものである。窒化処理そのものは従
来と同様に実施することができる。例えば、アンモニア
雰囲気中に420から550℃で2から6時間処理する
ことにより所定の窒化層を形成できる。By performing the descaling by shot blasting and shot peening, nitriding in the next step becomes easy in addition to removing the oxide film. In the nitriding treatment, nitriding is performed to a depth of about 0.2 mm from the surface.
The hardness of the surface portion from 05 to 0.1 mm is about Hv 800 to 900. The nitriding treatment itself can be carried out in the same manner as in the prior art. For example, a predetermined nitrided layer can be formed by treating in an ammonia atmosphere at 420 to 550 ° C. for 2 to 6 hours.
【0011】ショットピーニングによる残留応力付与処
理についても、基本的には従来と同じである。残留応力
は可能な限り表面より深く付与するのが好ましい。本発
明の方法では、表面部が最も高く、従来に比べ表面より
深いところまで分布する圧縮応力が付与される。The processing for applying residual stress by shot peening is basically the same as in the prior art. Preferably, the residual stress is applied as deep as possible to the surface. According to the method of the present invention, a compressive stress which is highest at the surface and is distributed deeper than the surface compared with the conventional method is applied.
【0012】[0012]
実施例1 コイルばねの線材として、炭素0.64重量%(以下、
%は特に明記されていない限り重量%を意味する)、珪
素1.43%、マンガン0.67%、燐0.015%、
硫黄0.006%、クロム1.57%、モリブデン0.
57%、バナジウム0.26%、残部鉄とからなる合金
鋼をオイルテンパーして、引張強度σB=209kgf/mm
2 の合金鋼オイルテンパー線としたものを使用した。Example 1 As a wire rod of a coil spring, 0.64% by weight of carbon (hereinafter, referred to as carbon)
% Means wt% unless otherwise specified), 1.43% silicon, 0.67% manganese, 0.015% phosphorus,
0.006% sulfur, 1.57% chromium, 0.1% molybdenum.
An alloy steel consisting of 57%, 0.26% vanadium and the balance iron is oil-tempered and has a tensile strength σ B = 209 kgf / mm.
The alloy steel oil tempered wire of No. 2 was used.
【0013】この線材をコイリングし、線径3.2mm、
コイル中心径21.2mm、総巻数6.5巻、有効巻数
4.5巻、自由高さ50mm、ばね定数2.445kgf/mm
2 のコイルばねに成形した。次にこのコイルばねを50
0℃で30分間熱処理し低温焼鈍をおこなった。その
後、直径0.2mmのスチールボールを使用し、10分間
のマイクロショットピーニングを実施して表面の酸化皮
膜を除去した。この状態でのコイルの表面荒さはRmax
2.5μmであった。[0013] This wire rod is coiled to have a wire diameter of 3.2 mm.
Coil center diameter 21.2mm, total number of turns 6.5, effective number of turns 4.5, free height 50mm, spring constant 2.445kgf / mm
Formed into a coil spring of No. 2 . Next, this coil spring is
Heat treatment was performed at 0 ° C. for 30 minutes to perform low-temperature annealing. Thereafter, using a steel ball having a diameter of 0.2 mm, microshot peening was performed for 10 minutes to remove an oxide film on the surface. The surface roughness of the coil in this state is Rmax
It was 2.5 μm.
【0014】次にアンモニアガス雰囲気下で500℃、
6時間のガス窒化を行いコイル表面に窒化層を形成し
た。その後、コイルの端面を切削して仕上げ処理し、続
いて直径0.8mmのカットワイヤを使用し、60分間の
ショットピーニングを実施してコイル表面に圧縮残留応
力を付与した。そして最後に250℃30分間の低温焼
鈍を実施し、異常に大きな内部歪みを除去し、弾性限界
の低下を抑制した。これにより本実施例のコイルばねを
得た。Next, at 500 ° C. in an ammonia gas atmosphere,
Gas nitriding was performed for 6 hours to form a nitride layer on the coil surface. Thereafter, the end face of the coil was cut and finished, and subsequently, a cut wire having a diameter of 0.8 mm was used to perform shot peening for 60 minutes to apply a compressive residual stress to the coil surface. Finally, low-temperature annealing at 250 ° C. for 30 minutes was performed to remove abnormally large internal strain and to suppress a decrease in elastic limit. Thus, a coil spring of the present example was obtained.
【0015】このコイルばねの表面荒さはRmax 2.6
μmであった。また、このコイルばねの5x107 回の
疲れ強さは60±57kgf/mm2 であった。なお、比較の
ために、同じ合金鋼オイルテンパー線を使用し、次に示
す比較例1、比較例2および比較例3の3種類のコイル
ばねを作った。比較例1のコイルばねは、実施例1の酸
化皮膜除去のためのマイクロショットピーニング処理お
よび窒化処理を省略したものである。これら酸化皮膜除
去および窒化処理以外は実施例1と同じにして比較例1
のコイルばねを得た。この比較例1のコイルばねの表面
荒さはRmax 10μm、このコイルばねの5x107 回
の疲れ強さは60±48kgf/mm2 であった。比較例1の
コイルばねは酸化皮膜除去処理と窒化処理を実施せずか
つ残留応力付与のためのショットピーニングの後に表面
平滑化のための処理を施していない。このためこの比較
例1のコイルばねは製造工程が簡単で製造コストが低い
というメリットがあるが、その反面、比較例1のコイル
ばねの表面荒さは実施例1のコイルばねの表面荒さより
大きく、かつ比較例1のコイルばねの疲れ強さは実施例
1のコイルばねの疲れ強さよりはるかに低い。The surface roughness of this coil spring is Rmax 2.6.
μm. The fatigue strength of the coil spring at 5 × 10 7 times was 60 ± 57 kgf / mm 2 . For comparison, three types of coil springs of Comparative Example 1, Comparative Example 2, and Comparative Example 3 shown below were made using the same alloy steel oil-tempered wire. The coil spring of Comparative Example 1 is obtained by omitting the micro shot peening process and the nitriding process for removing the oxide film of Example 1. Comparative Example 1 was the same as Example 1 except for the removal of the oxide film and the nitriding treatment.
A coil spring was obtained. The coil spring of Comparative Example 1 had a surface roughness Rmax of 10 μm, and the coil spring had a fatigue strength of 5 × 10 7 times of 60 ± 48 kgf / mm 2 . The coil spring of Comparative Example 1 did not perform the oxide film removal treatment and the nitriding treatment, and did not perform the treatment for surface smoothing after the shot peening for imparting the residual stress. Therefore, the coil spring of Comparative Example 1 has an advantage that the manufacturing process is simple and the manufacturing cost is low. On the other hand, the surface roughness of the coil spring of Comparative Example 1 is larger than the surface roughness of the coil spring of Example 1. Further, the fatigue strength of the coil spring of Comparative Example 1 is much lower than the fatigue strength of the coil spring of Example 1.
【0016】比較例2のコイルばねは、比較例1のコイ
ルばねを最後に電解研磨してその表面荒さをRmax 3.
5μmとしたものである。すなわち比較例2のコイルば
ねは、酸化皮膜除去処理および窒化処理を実施せずかつ
電解研磨で最後にコイルばねの表面を平滑にした以外は
実施例1と同じにして作ったものである。このコイルば
ねの5x107 回の疲れ強さは60±51kgf/mm2 であ
った。この比較例2のコイルばねは、表面平滑化処理を
実施しているため疲れ強さが向上しているが5x107
回の疲れ強さはまだ60±51kgf/mm2 と低い。これは
窒化処理を実施していないことおよび表面平滑化処理に
より残留圧縮応力層の一部が研磨除去されたために起因
すると考えられる。The coil spring of Comparative Example 2 was electrolytically polished from the coil spring of Comparative Example 1 to reduce its surface roughness to Rmax 3.
5 μm. That is, the coil spring of Comparative Example 2 was produced in the same manner as in Example 1 except that the oxide film removal treatment and the nitriding treatment were not performed and the surface of the coil spring was finally smoothed by electrolytic polishing. The fatigue strength of this coil spring at 5 × 10 7 times was 60 ± 51 kgf / mm 2 . The coil spring of Comparative Example 2 has improved fatigue strength because of the surface smoothing treatment, but 5 × 10 7.
The fatigue strength per cycle is still as low as 60 ± 51 kgf / mm 2 . This is considered to be because nitriding treatment was not performed and a part of the residual compressive stress layer was polished and removed by the surface smoothing treatment.
【0017】比較例3のコイルばねは、実施例1の酸化
皮膜除去のためのマイクロショットピーニングに代え
て、直径0.8mmのカットワイヤを使用した30分間の
ショットピーニングを実施し、その他の工程は実施例1
とまったく同じにしてコイルばねを得たものである。こ
のコイルばねの表面荒さはRmax 8μmであり、5x1
07 回の疲れ強さは60±52kgf/mm2 であった。ま
た、このコイルばねの酸化皮膜除去工程後の表面荒さは
Rmax 9.0μmであった。この比較例3のコイルばね
は、酸化皮膜除去工程における表面荒さが荒いため最終
製品のコイルばねの表面荒さも荒い。このため疲れ強さ
も低い。In the coil spring of Comparative Example 3, shot peening was performed for 30 minutes using a cut wire having a diameter of 0.8 mm in place of the micro shot peening for removing the oxide film of Example 1, and other steps were performed. Is Example 1
A coil spring was obtained in exactly the same way as in the first embodiment. The surface roughness of this coil spring is Rmax 8 μm and 5 × 1
0 7 times of fatigue strength was 60 ± 52kgf / mm 2. The surface roughness of this coil spring after the oxide film removing step was Rmax 9.0 μm. Since the surface roughness of the coil spring of Comparative Example 3 is rough in the oxide film removing step, the surface roughness of the final product coil spring is also rough. Therefore, the fatigue strength is low.
【0018】実施例1のコイルばねと比較例3のコイル
ばねとの比較から理解できるように、酸化皮膜除去工程
における表面荒さが最終製品の表面荒さと密接に関連
し、酸化皮膜除去工程における表面荒さを低く抑えかつ
窒化処理を実施することにより、最終製品のコイルバネ
の表面荒さを低くできかつ疲れ強さを高くすることがで
きる。As can be understood from the comparison between the coil spring of Example 1 and the coil spring of Comparative Example 3, the surface roughness in the oxide film removing step is closely related to the surface roughness of the final product. By performing the nitriding treatment while keeping the roughness low, the surface roughness of the final product coil spring can be reduced and the fatigue strength can be increased.
【0019】実施例2 実施例1の線材と同じ材質の合金鋼を硬引し、引張強度
σB =135kgf/mm2の合金鋼硬引線としたものを線材
として使用した。この線材を用いたことおよびコイリン
グ後の低温焼鈍に代えて930℃×7分加熱した後空冷
で焼入れし、さらに450℃×20分の焼戻しを行った
以外は実施例1の工程と全く同じ工程を実施し、本実施
例のコイルばねを得た。Example 2 An alloy steel of the same material as that of the wire of Example 1 was hard drawn to obtain an alloy steel hard drawn wire having a tensile strength σ B = 135 kgf / mm 2 , which was used as the wire. Exactly the same process as in Example 1 except that this wire was used, and instead of low-temperature annealing after coiling, heating was performed at 930 ° C. for 7 minutes, followed by quenching by air cooling, and further tempering at 450 ° C. for 20 minutes. Was carried out to obtain a coil spring of this example.
【0020】本実施例のコイルばねの表面荒さはRmax
3.2μmであり、5x107 回の疲れ強さは60±5
6kgf/mm2 であった。また、このコイルばねの酸化皮膜
除去工程後の表面荒さはRmax 3.0μmであった。本
実施例の場合も、酸化皮膜除去工程での表面荒さを低く
しているため、最終製品のコイルばねの表面荒さをRma
x 3.2μmと低くでき、かつ、疲れ強さを高くするこ
とができた。The surface roughness of the coil spring of this embodiment is Rmax
3.2 μm, 5 × 10 7 fatigue strength is 60 ± 5
It was 6 kgf / mm 2 . The surface roughness of the coil spring after the oxide film removing step was Rmax 3.0 μm. Also in this embodiment, since the surface roughness in the oxide film removing step is reduced, the surface roughness of the coil spring of the final product is reduced to Rma.
x could be as low as 3.2 μm and the fatigue strength could be increased.
【0021】[0021]
【発明の効果】本発明のコイルばねの製造方法では、酸
化皮膜除去工程後の表面荒さRmax 5μm以下と低く
し、かつその後に窒化処理を実施している。このため表
面残留応力付与工程のショットピーニング工程でもコイ
ルばね表面の表面荒さを比較的低くでき、コイルばね表
面を平滑にする表面研磨工程を必要としないで高い疲労
強度をもつコイルばねを製造することもできる。このた
め製造工程を短く、かつ、製造コストを大幅に低下させ
ることができる。According to the method of manufacturing the coil spring of the present invention, the surface roughness Rmax after the oxide film removing step is reduced to 5 μm or less, and a nitriding treatment is performed thereafter. Therefore, the surface roughness of the coil spring surface can be made relatively low even in the shot peening step of the surface residual stress applying step, and a coil spring having high fatigue strength can be manufactured without the need for a surface polishing step for smoothing the coil spring surface. Can also. Therefore, the manufacturing process can be shortened and the manufacturing cost can be significantly reduced.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F16F 1/06 F16F 1/06 B // C21D 7/06 C21D 7/06 A 9/02 9/02 A (72)発明者 中西 光明 愛知県愛知郡東郷町大字春木字蛭池1番 地 株式会社東郷製作所内 (72)発明者 近藤 覚 愛知県愛知郡東郷町大字春木字蛭池1番 地 株式会社東郷製作所内 (72)発明者 安田 茂 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 中野 修 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 内田 尚志 東京都千代田区大手町二丁目6番3号 新日本製鐵株式会社内 (72)発明者 小野田 光芳 千葉県習志野市東習志野7丁目5番1号 鈴木金属工業株式会社内 (56)参考文献 特開 平2−129422(JP,A) 特開 昭64−31927(JP,A) 特開 昭63−227791(JP,A) 特開 昭63−176430(JP,A) 特開 平2−125813(JP,A) 特開 昭52−21551(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23F 17/00 B21F 35/00 C23C 8/26 F01L 3/10 F16F 1/02 F16F 1/06 C21D 7/06 C21D 9/02 C21D 9/52 B24C 1/10──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F16F 1/06 F16F 1/06 B // C21D 7/06 C21D 7/06 A 9/02 9/02 A (72) Inventor Mitsuaki Nakanishi 1 Hiruki, Haruki, Togo-cho, Aichi-gun, Aichi Prefecture Inside Togo Seisakusho Co., Ltd. (72) Inventor Satoru Kondo 1st Hiruki, Haruki, Oaza-cho, Togo-cho, Aichi Gun, Aichi Prefecture Shigeru Yasuda 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (72) Inventor Osamu Nakano 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Takashi Uchida Otemachi, Chiyoda-ku, Tokyo 2-6-3 Nippon Steel Corporation (72) Inventor Mitsuyoshi Onoda 7-5-1, Higashi Narashino, Narashino City, Chiba Prefecture Suzuki Metal Industry Co., Ltd. (56) Reference JP-A-2-129422 (JP, A) JP-A-64-31927 (JP, A) JP-A-63-227791 (JP, A) JP-A-63-176430 (JP, A) JP-A-2-125813 (JP, A) JP-A-52-21551 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C23F 17/00 B21F 35/00 C23C 8/26 F01L 3/10 F16F 1 / 02 F16F 1/06 C21D 7/06 C21D 9/02 C21D 9/52 B24C 1/10
Claims (4)
成形し、熱処理し、表面最大荒さRmax 5μm以下とな
るようにデスケール処理し、窒化処理し、ショットピー
ニングによる残留応力付与処理することを特徴とするコ
イルばねの製造方法。1. A steel wire having an oxide film is coil-formed, heat-treated, descaled so as to have a maximum surface roughness Rmax of 5 μm or less, nitrided, and subjected to residual stress applying treatment by shot peening. Manufacturing method of coil spring.
り、熱処理は低温焼鈍処理である請求項1のコイルばね
の製造方法。2. The method for manufacturing a coil spring according to claim 1, wherein the steel wire is an alloy steel oil-tempered wire, and the heat treatment is a low-temperature annealing treatment.
は焼き入れ焼き戻し処理である請求項1のコイルばねの
製造方法。3. The method for manufacturing a coil spring according to claim 1, wherein the steel wire is an alloy steel hard drawn wire, and the heat treatment is quenching and tempering.
よってなされる請求項1のコイルばねの製造方法。4. The method according to claim 1, wherein the descaling is performed by shot peening.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1357491A JP2810799B2 (en) | 1991-02-04 | 1991-02-04 | Manufacturing method of coil spring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1357491A JP2810799B2 (en) | 1991-02-04 | 1991-02-04 | Manufacturing method of coil spring |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05339763A JPH05339763A (en) | 1993-12-21 |
JP2810799B2 true JP2810799B2 (en) | 1998-10-15 |
Family
ID=11836941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1357491A Expired - Fee Related JP2810799B2 (en) | 1991-02-04 | 1991-02-04 | Manufacturing method of coil spring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2810799B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3173756B2 (en) * | 1994-07-28 | 2001-06-04 | 株式会社東郷製作所 | Manufacturing method of coil spring |
US6224686B1 (en) * | 1998-02-27 | 2001-05-01 | Chuo Hatsujo Kabushiki Kaisha | High-strength valve spring and it's manufacturing method |
WO2000049186A1 (en) * | 1999-02-19 | 2000-08-24 | Suncall Corporation | Spring of excellent fatigue resisting characteristics and surface treatment method for manufacturing the same |
JP5540433B2 (en) * | 2010-11-29 | 2014-07-02 | 住友電工スチールワイヤー株式会社 | Spring excellent in sag resistance and durability and method for manufacturing the same |
-
1991
- 1991-02-04 JP JP1357491A patent/JP2810799B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05339763A (en) | 1993-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2994508B2 (en) | Manufacturing method of coil spring | |
US7699943B2 (en) | Method for manufacturing high-strength spring | |
JP3173756B2 (en) | Manufacturing method of coil spring | |
US6346157B1 (en) | Manufacturing method of suspension spring for car | |
JPH05148537A (en) | Production of coil spring | |
US6017641A (en) | Coil spring resistive to delayed fracture and manufacturing method of the same | |
JP2810799B2 (en) | Manufacturing method of coil spring | |
JP2682645B2 (en) | Oil tempered hard drawn steel wire spring and method for manufacturing the same | |
US6027577A (en) | Manufacturing method of valve spring superior in durability | |
JPH06240408A (en) | Steel wire for spring and its production | |
JPH07214216A (en) | Manufacture of high-strength spring | |
JP3634418B2 (en) | Coil spring manufacturing method and high toughness / high tensile strength coil spring | |
JPH05156351A (en) | Manufacture of coil spring with oil tempered wire | |
US5683521A (en) | Method for manufacturing spring having high nitrided properties | |
JP3780381B2 (en) | High strength coil spring and manufacturing method thereof | |
JP2511663B2 (en) | Coil spring manufacturing method | |
JPH05179348A (en) | Production of coil spring by hot coiling | |
JP2708279B2 (en) | Manufacturing method of high strength spring | |
JP3301088B2 (en) | Spring with excellent fatigue resistance | |
JP3045795B2 (en) | High-strength spring and oil-tempered wire for spring used in its manufacture | |
JPH0641631A (en) | Method for reinforcing spring | |
JPH05331597A (en) | Coil spring with high fatigue strength | |
JP2009270150A (en) | Method for manufacturing coil spring | |
JPH06158158A (en) | Production of coil spring | |
JPS58193323A (en) | Preparation of high strength spring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980707 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070731 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080731 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100731 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |