JP4806722B2 - Metal salt bath nitriding method and metal produced by the method - Google Patents

Metal salt bath nitriding method and metal produced by the method Download PDF

Info

Publication number
JP4806722B2
JP4806722B2 JP2009514185A JP2009514185A JP4806722B2 JP 4806722 B2 JP4806722 B2 JP 4806722B2 JP 2009514185 A JP2009514185 A JP 2009514185A JP 2009514185 A JP2009514185 A JP 2009514185A JP 4806722 B2 JP4806722 B2 JP 4806722B2
Authority
JP
Japan
Prior art keywords
steel
metal
nitriding
salt bath
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009514185A
Other languages
Japanese (ja)
Other versions
JP2009540120A (en
Inventor
ウォン チョン,フィ
ジュン パク,ユン
サム キム,ドン
ニョン イ,ドン
ション,インチョン
ファン オ,キュ
Original Assignee
イルジン ライト メタル カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イルジン ライト メタル カンパニー リミテッド filed Critical イルジン ライト メタル カンパニー リミテッド
Publication of JP2009540120A publication Critical patent/JP2009540120A/en
Application granted granted Critical
Publication of JP4806722B2 publication Critical patent/JP4806722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本発明は、金属の塩浴窒化方法及びその方法で製造された金属に係り、さらに詳細には、非シアン系塩を利用した純鉄または鋼の塩浴窒化方法及びその方法で製造された純鉄または鋼に関する。   The present invention relates to a metal salt bath nitriding method and a metal produced by the method, and more particularly, a pure iron or steel salt bath nitriding method using a non-cyanide salt and a pure produced by the method. Related to iron or steel.

一般的に、機械部品の材料として使われる鉄鋼材料(steel)は、部品に要求された強度を満足させるので、広く利用されている。機械部品のほとんどは、強くて耐久性にすぐれる品質が要求されており、かような理由で鉄鋼材料は、最初の工程で熱処理され、強度、耐性、耐久性などが付与される。また、劣悪な外部環境に露出される一部の機械部品は、表面の耐食性を改善するために、熱処理による表面処理がなされもする。   Generally, steel materials (steel) used as materials for machine parts are widely used because they satisfy the strength required for parts. Most of the mechanical parts are required to have strong and durable quality. For this reason, the steel material is heat-treated in the first step to give strength, resistance, durability and the like. Some mechanical parts exposed to a poor external environment are also subjected to a surface treatment by heat treatment in order to improve the corrosion resistance of the surface.

かような機械部品の耐食性のための表面処理方法の一つとして、機械部品の表面を窒化(nitriding)処理する方法が知られている。窒化方法としては、NHガスだけを利用したガス窒化法、KCNOなどの塩浴中で処理する塩浴窒化法、NHガスと吸熱性ガス(RXガス)とを混合して利用するガス軟窒化法、NとHとの混合ガスをプラズマ中に入れて処理するイオン窒化法などが知られている。 As one of surface treatment methods for the corrosion resistance of such machine parts, a method of nitriding the surface of the machine parts is known. Nitriding methods include gas nitriding using only NH 3 gas, salt bath nitriding using a salt bath such as KCNO, and gas softening using a mixture of NH 3 gas and endothermic gas (RX gas). There are known a nitriding method, an ion nitriding method in which a mixed gas of N 2 and H 2 is put in plasma and processed.

一般的に、かような窒化処理方法は、被処理材である鉄鋼材料の耐摩耗性、疲労強度などを改善するところにその主要目的があるが、窒化処理された機械部品の表面に腐食に対する耐性を有させるところに利用されもする。   In general, such a nitriding method has the main purpose of improving the wear resistance, fatigue strength, etc. of the steel material to be processed, but the surface of the nitriding machine part is resistant to corrosion. It can also be used where it is resistant.

さらに、塩浴(salt bath)窒化法の場合、これに溶融する無機塩類の性質または融点を自由に調節でき、広範囲な処理温度の安定を得ることができ、鋼鉄表面に侵食されないので、自動車用を始めとする多くの機械部品などに広く適用されている。特に、塩浴は、熱伝導性、亀裂性、雰囲気調節の容易性などにすぐれ、他の熱処理と比較して設備費が廉価であって操作方法が簡単であり、加熱速度が大気中の加熱に比べて4倍ほど速く、特に、結晶成長に敏感な高速度鋼の熱処理に適し、処理品を大気中に取り出したとき、その表面に塩浴剤が付着して被膜を形成、大気との遮断を助けて表面酸化を防止し、処理後に表面が清潔であり、少量多種部品の熱処理に適しているというメリットがある。   Furthermore, in the case of the salt bath nitriding method, the properties or melting points of the inorganic salts that melt into it can be freely adjusted, and a stable range of processing temperatures can be obtained, and the steel surface is not eroded. It is widely applied to many machine parts such as In particular, salt baths have excellent thermal conductivity, cracking properties, ease of atmosphere control, etc., have lower equipment costs compared to other heat treatments, are easy to operate, and have a heating rate in the atmosphere. 4 times faster than this, especially suitable for heat treatment of high-speed steel sensitive to crystal growth. When the treated product is taken out into the atmosphere, a salt bath adheres to the surface and forms a film. It has the advantage of helping to cut off and preventing surface oxidation, clean the surface after processing, and suitable for heat treatment of small quantities of various parts.

かような塩浴窒化法には、シアン系の塩が一般的に使われ、これによって、バス(bath)中にはシアン化物イオンが存在する。前記シアン化物イオンは毒劇物に分類され、環境問題が厳しくなっている現在では、公害防止対策に相当な費用と労力とがかかってしまい、排水、排気ガスなど処理費用の増大が問題になっている。   In such a salt bath nitriding method, a cyan salt is generally used, whereby cyanide ions are present in the bath. The cyanide ions are classified as poisonous and deleterious substances, and at present, environmental problems have become severe, and considerable costs and labor are required for pollution prevention measures, which causes an increase in treatment costs such as wastewater and exhaust gas. ing.

また、シアン化物(Cyanide)が含まれた溶融塩中の窒化処理は、炭素及び窒素が同時に浸透する浸炭窒化方式による被処理材の窒化処理後に、表面硬度は大きく向上するが、引張り強度の上昇效果が微小であり、従来のシアン系塩を使用した塩浴窒化法は、窒化される厚さが薄く、金型やギア(gear)などその適用分野がきわめて制限的であるという問題がある。   In addition, nitriding treatment in molten salt containing cyanide significantly improves the surface hardness after nitriding treatment of carbonitriding material in which carbon and nitrogen penetrate at the same time, but increases tensile strength. The conventional salt bath nitriding method using a cyan salt has a problem that the nitriding thickness is thin and its application fields such as a mold and a gear are extremely limited.

本発明は、前記の問題点を解決するために、非シアン系塩を使用して金属を窒化させる方法及びその方法で製造された金属を提供するところに目的がある。   In order to solve the above-mentioned problems, an object of the present invention is to provide a method of nitriding a metal using a non-cyanide salt and a metal produced by the method.

本発明の他の目的は、金属の内部まで窒化が可能な塩浴窒化方法及びその方法で製造された金属を提供するところにある。   Another object of the present invention is to provide a salt bath nitriding method capable of nitriding to the inside of the metal and a metal produced by the method.

本発明のさらに他の目的は、塩浴窒化処理前に比べて、被処理物である金属の硬度及び引張り強度を上昇させることができる塩浴窒化方法及びその方法で製造された金属を提供するところにある。   Still another object of the present invention is to provide a salt bath nitriding method and a metal produced by the method, which can increase the hardness and tensile strength of the metal to be processed compared to before the salt bath nitriding treatment. By the way.

本発明のさらに他の目的は窒化される深さを最大化できる金属の塩浴窒化方法及びその方法で製造された金属を提供するところにある。   Still another object of the present invention is to provide a metal salt bath nitriding method capable of maximizing the nitriding depth and a metal produced by the method.

本発明による金属の塩浴窒化方法は、塩浴中にCa(NO、NaNO及びNaNOのうち、少なくとも一つ以上の塩を入れる段階、前記塩を溶融させて一定温度に維持させる段階、及び前記塩浴内で金属を窒化させる段階を含む。 The metal salt bath nitriding method according to the present invention includes a step of adding at least one of Ca (NO 3 ) 2 , NaNO 3 and NaNO 2 into a salt bath, and melting the salt to maintain a constant temperature. And nitriding the metal in the salt bath.

本発明による金属の他の塩浴窒化方法は、塩浴中にKNOまたはKNOのうちいずれか一つと、Ca(NO、NaNO及びNaNOのうち少なくとも一つ以上とを含む混合塩を入れる段階、前記塩を溶融させて一定温度に維持させる段階、及び前記塩浴内で金属を窒化させる段階を含む。 Another salt bath nitriding method of the metal according to the present invention includes any one of KNO 3 or KNO 2 and at least one of Ca (NO 3 ) 2 , NaNO 3 and NaNO 2 in the salt bath. Adding a mixed salt; melting the salt to maintain a constant temperature; and nitriding a metal in the salt bath.

このとき、一定温度は、400℃ないし700℃の範囲であり、浸漬時間は、1分ないし24時間の範囲であることが望ましい。   At this time, the constant temperature is preferably in the range of 400 ° C. to 700 ° C., and the immersion time is preferably in the range of 1 minute to 24 hours.

本発明による金属のさらに他の塩浴窒化方法は、塩浴中にKNO塩を入れる段階、前記塩を溶融させて400℃以上620℃以下に維持させる段階、及び前記塩浴内で8時間未満に金属を窒化させる段階を含む。 Still another salt bath nitriding method of the metal according to the present invention includes the step of putting KNO 3 salt in the salt bath, the step of melting the salt and maintaining it at 400 ° C. or more and 620 ° C. or less, and 8 hours in the salt bath. Less than nitriding the metal.

本発明による金属のさらに他の塩浴窒化方法は、塩浴中にKNO塩を入れる段階、前記塩を溶融させて620℃超過640℃以下に維持させる段階、及び前記塩浴内で1時間未満に金属を窒化させる段階を含む。 Still another salt bath nitriding method of the metal according to the present invention comprises the steps of placing KNO 3 salt in the salt bath, melting the salt to maintain it above 620 ° C. and below 640 ° C., and 1 hour in the salt bath. Less than nitriding the metal.

本発明による塩浴を利用して純鉄を窒化する場合、純鉄の表面から0.1mmないし3.0mmの内部まで窒化させることができる。   When pure iron is nitrided using the salt bath according to the present invention, it can be nitrided from the surface of pure iron to the inside of 0.1 mm to 3.0 mm.

本発明による塩浴を利用して純鉄を窒化する場合、鋼の表面から0.1mmないし3.0mmの内部まで窒化させることができる。   When pure iron is nitrided using the salt bath according to the present invention, it can be nitrided from the steel surface to the inside of 0.1 mm to 3.0 mm.

本発明において、鋼は、極低炭素鋼、低炭素鋼、中炭素鋼、高炭素鋼及び合金鋼のうちいずれか一つである。   In the present invention, the steel is any one of extremely low carbon steel, low carbon steel, medium carbon steel, high carbon steel, and alloy steel.

本発明によって窒化された極低炭素鋼は、表面硬度が120Hv超過450Hv以下、低炭素鋼は、表面硬度が200Hv超過410Hv以下、中炭素鋼は、表面硬度が130Hv超過420Hv以下、高炭素鋼は、表面硬度が150Hv超過400Hv以下、合金鋼は、表面硬度が200Hv超過410Hv以下であり、本発明によって窒化された鋼は、その表面硬度が最高420Hvまで向上し、本発明によって窒化された純鉄もまた表面硬度が向上する。   The ultra low carbon steel nitrided according to the present invention has a surface hardness of more than 120 Hv and not more than 450 Hv, the low carbon steel has a surface hardness of more than 200 Hv and not more than 410 Hv, the medium carbon steel has a surface hardness of more than 130 Hv and not more than 420 Hv, and the high carbon steel has The surface hardness is more than 150 Hv and less than 400 Hv, the alloy steel has a surface hardness of more than 200 Hv and less than 410 Hv, and the steel nitrided according to the present invention has a surface hardness improved to a maximum of 420 Hv. The surface hardness is also improved.

一方、本発明によって窒化された極低炭素鋼の引張り強度は、35kg/mm超過110kg/mm以下、低炭素鋼は、引張り強度が45kg/mm超過110kg/mm以下、中炭素鋼は、引張り強度が45kg/mm超過100kg/mm以下、高炭素鋼は、引張り強度が60kg/mm超過95kg/mm以下、合金鋼は、引張り強度が55kg/mm超過110kg/mm以下に増大するメリットがあって、純鉄もまた本発明の窒化方法によって、引張り強度が増加するというメリットがある。 On the other hand, the tensile strength of the ultra low carbon steel nitrided by the present invention is 35 kg / mm 2 exceeding 110 kg / mm 2 or less, and the low carbon steel is tensile strength of 45 kg / mm 2 exceeding 110 kg / mm 2 or less. Has a tensile strength of over 45 kg / mm 2 and 100 kg / mm 2 or less, high carbon steel has a tensile strength of over 60 kg / mm 2 and 95 kg / mm 2 or less, and alloy steel has a tensile strength of 55 kg / mm 2 and over 110 kg / mm 2 There is a merit of increasing to 2 or less, and pure iron also has a merit that the tensile strength is increased by the nitriding method of the present invention.

従って、本発明による塩浴窒化方法は純鉄に適用可能であり、炭素含有量が0.0001wt.%以上0.13wt.%未満である極低炭素鋼、炭素含有量が0.13wt.%以上0.2wt.%未満である低炭素鋼、炭素含有量が0.21wt.%以上0.51wt.%未満である中炭素鋼、炭素含有量が0.51wt.%以上2.0wt.%以下である高炭素鋼のような炭素鋼や、クロム含有量が0.1wt.%ないし1.5wt.%である鋼、モリブデン含有量が0.05wt.%ないし0.5wt.%である鋼、ニッケル含有量が0.1wt.%ないし10wt.%である鋼、マンガン含有量が0.1wt.%ないし2.0wt.%である鋼、ホウ素含有量が0.001wt.%ないし0.1wt.%である鋼、チタン含有量が0.001wt.%ないし0.1wt.%である鋼、バナジウム含有量が0.05wt.%ないし0.15wt.%である鋼、ニオブ含有量が0.005wt.%ないし0.1wt.%である鋼、アルミニウム含有量が0.005wt.%ないし0.1wt.%である鋼などにも適用可能である。また、本発明による塩浴窒化方法は、前述の鋼のうち少なくとも2以上の鋼を含む合金鋼に適用可能である。   Therefore, the salt bath nitriding method according to the present invention is applicable to pure iron and has a carbon content of 0.0001 wt. % Or more and 0.13 wt. %, An extremely low carbon steel with a carbon content of 0.13 wt. % To 0.2 wt. % Low carbon steel with a carbon content of 0.21 wt. % Or more 0.51 wt. % Carbon steel with a carbon content of 0.51 wt. % To 2.0 wt. % Or less of carbon steel such as high carbon steel or chromium content of 0.1 wt. % To 1.5 wt. % Steel and molybdenum content of 0.05 wt. % To 0.5 wt. % Steel, nickel content of 0.1 wt. % To 10 wt. % Steel and manganese content of 0.1 wt. % To 2.0 wt. % Steel, boron content is 0.001 wt. % To 0.1 wt. % Steel and titanium content of 0.001 wt. % To 0.1 wt. % Steel, the vanadium content is 0.05 wt. % To 0.15 wt. % Steel, niobium content of 0.005 wt. % To 0.1 wt. % Steel and aluminum content of 0.005 wt. % To 0.1 wt. % Steel is also applicable. Further, the salt bath nitriding method according to the present invention is applicable to alloy steels including at least two or more of the aforementioned steels.

本発明は、鋼材の塩浴窒化方法において、硝酸ナトリウム(NaNO)、亜硝酸ナトリウム(NaNO)及び硝酸カルシウム(Ca(NO)やこれらを利用した化合物のような非シアン系塩を利用することによって、環境汚染問題を解決して処理費用を減らすことができる。 The present invention relates to a non-cyanide salt such as sodium nitrate (NaNO 3 ), sodium nitrite (NaNO 2 ), calcium nitrate (Ca (NO 3 ) 2 ), and compounds using these in a salt bath nitriding method for steel. By using, environmental pollution problems can be solved and processing costs can be reduced.

本発明は、金属の窒化深さを従来の2倍ないし6倍に増大させることができ、金属の内部まで窒化させることができ、これによって、適用分野が拡大されうるという利点がある。   The present invention has the advantage that the nitriding depth of the metal can be increased to 2 to 6 times that of the prior art, and the inside of the metal can be nitrided, thereby expanding the field of application.

本発明は、金属の硬度及び引張り強度を向上させ、鋼の表面硬化だけではなくして材料自体のバルク硬化にも適用され、向上した耐摩耗性、耐摩滅性、耐食性及び疲労寿命を要する軽量高強度の自動車部品及び各種構造材など、さまざまな分野に適用可能である。   The present invention improves the hardness and tensile strength of metals and is applied not only to the surface hardening of steel but also to the bulk hardening of the material itself, and it is light weight and high that requires improved wear resistance, wear resistance, corrosion resistance and fatigue life. It can be applied to various fields such as strong automotive parts and various structural materials.

以下、本発明についてさらに詳細に説明すれば、次の通りである。   Hereinafter, the present invention will be described in more detail as follows.

本発明は、金属を窒化する方法において、従来のシアン化物(Cyanide)すなわち、シアン系が含まれたKCN、NaCNなどを溶融塩として利用し、金属内部に窒素と炭素とが同時に浸透する浸炭窒化方式を利用した窒化方法ではない非シアン系溶融塩、さらに詳細には、NaNO、NaNO、Ca(NO及びその混合物を溶融塩として使用した窒素分解原理を利用する。 The present invention uses a conventional cyanide, that is, a carbonitriding process in which nitrogen and carbon permeate into a metal at the same time using a cyanide, that is, KCN, NaCN, etc. containing cyanide as a molten salt. A non-cyan molten salt that is not a nitriding method using a system, more specifically, a nitrogen decomposition principle using NaNO 3 , NaNO 2 , Ca (NO 3 ) 2 and a mixture thereof as a molten salt is used.

本発明による金属の塩浴窒化方法は、塩浴中にNaNO、NaNO及びCa(NOのうち、少なくとも一つ以上の塩を入れた後、前記塩を溶融させて400℃ないし700℃範囲内の一定温度に維持させる。その後、前記塩浴内に被処理物である金属を一定時間、例えば1分ないし24時間浸漬させて窒化する。 In the salt bath nitriding method of a metal according to the present invention, at least one salt of NaNO 3 , NaNO 2 and Ca (NO 3 ) 2 is put in a salt bath, and then the salt is melted to 400 ° C. to Maintain a constant temperature in the 700 ° C. range. Thereafter, the metal to be treated is immersed in the salt bath for a predetermined time, for example, 1 minute to 24 hours, and is nitrided.

このとき、前記本発明の非シアン系溶融塩であるNaNO、NaNO及びCa(NOなどで、塩の分解による窒素の発生は、以下のような反応式1及び反応式2によって起こる。 At this time, generation of nitrogen by decomposition of the salt in NaNO 3 , NaNO 2, Ca (NO 3 ) 2, etc., which are the non-cyan molten salt of the present invention, is represented by the following reaction formulas 1 and 2. Occur.

以下の反応式1は、NaNO、NaNOの溶融塩浴の窒素生成反応を示したものである。 The following reaction formula 1 shows a nitrogen generation reaction in a molten salt bath of NaNO 3 and NaNO 2 .

(化1)
NaNO→NaNO+1/2O
2NaNO→NaO+NO+NO
2NaNO+2NO→2NaNO+N
(Chemical formula 1)
NaNO 3 → NaNO 2 + 1 / 2O 2
2NaNO 2 → Na 2 O + NO 2 + NO
2NaNO 2 + 2NO → 2NaNO 3 + N 2

以下の反応式2は、Ca(NOの溶融塩浴の窒素生成反応を示したものである。 The following reaction formula 2 shows a nitrogen generation reaction of a molten salt bath of Ca (NO 3 ) 2 .

(化2)
Ca(NO→CaO+2NO+1/2O
2NO→2O+N
(Chemical formula 2)
Ca (NO 3 ) 2 → CaO + 2NO 2 + 1 / 2O 2
2NO 2 → 2O 2 + N 2

本発明による塩浴窒化方法によって窒化された金属のうち炭素鋼(極低炭素鋼、低炭素鋼、中炭素鋼、高炭素鋼)、合金鋼及び純鉄は、表1に図示されているように、窒化された深さが表面から0.1mmないし3.0mmと、従来の窒化方法で窒化された深さに比べて、およそ2倍ないし6倍に増大し、これは、窒化層が金属の表面部位のみで拡散している状態ではなく、試片の内部まで影響を及ぼしていることを意味し、このとき、窒化された金属は、表面硬度及び引張り強度もまた従来に比べて増大する値を有する。下記の表1に係る参考文献は、次の通りである。   Among the metals nitrided by the salt bath nitriding method according to the present invention, carbon steel (very low carbon steel, low carbon steel, medium carbon steel, high carbon steel), alloy steel and pure iron are as shown in Table 1. Further, the nitrided depth is 0.1 mm to 3.0 mm from the surface, which is about 2 to 6 times the depth nitrided by the conventional nitriding method. This means that the surface is not diffused only at the surface part of the sample but affects the inside of the specimen. At this time, the nitrided metal also has an increased surface hardness and tensile strength. Has a value. The references according to Table 1 below are as follows.

[1]B.Finnem,Bad und Gasnitrieren.Vol.18,Betriebsbuecher Carl-Hausner-Verlag,Muenchen(1965)
[2]Tufftride Information 15.DEGUSSA Durfeerit Abteilung
[3]H.Eiraku,K.Shinkawa,Y.Yoneyama,and M.Higashi,“Characteristics of Palsonite(Low temperature salt bath nitriding),”JSHT Conf.,No.1,49-50(1998)
[4]E.A.Mattision,K.Frisk,and A.Melander,“Microstructure evolution during the combination hardening process of nitriding and induction hardening,”in:5ASM-HTSE Europe(2002),pp.209-219
[5]W.Junyi,P.Lin and Z.Hul、“Effect of rare earth on ionic nitriding process,” in: 1st Conf. Heat Trearment of Materials,May(1998),pp.57-61
[6]S.Kondo,Y.Izawa,O.Nakano,S.Uchida,and M.Onoda,“Influence of white layer produced by gas nitriding on fatigue strength of compressive spring,”J.JSHT,36(1),34-40(1996)
[7]J.Georges,“TC plasma nitriding,” in: 12th IFHTSE Melbourne,Australia(2000),p.229;Heat treatment Met.,No.2,33-37(2001)
[8]T.Bell,Y.Sun,K.Mao,and P.Buchhagen,“Modeling plasma nitriding,”Advanced Mater.Pro.,No.8,40Y-40BB(1996)
[9]T.Bell,Y.Sun,Z.Lin,and M.Yan,“Rare earth surface engineering,”Heat Treatment Mat.,27(1),12-13(2000)







[1] B. Finnem, Bad und Gasnitrieren. Vol. 18, Betriebsbuecher Carl-Hausner-Verlag, Muenchen (1965)
[2] Tufftride Information 15. DEGUSSA Durfeerit Abteilung
[3] H. Eiraku, K. Shinkawa, Y. Yoneyama, and M. Higashi, “Characteristics of Palsonite (Low temperature salt bath nitriding),” JSHT Conf. , No. 1, 49-50 (1998)
[4] E.E. A. Mattision, K. Frisk, and A. Melander, “Microstructure evolution during the combination hardening process of nitriding and induction hardening,” in: 5ASM-HTSE Europe (2002), pp. 209-219
[5] W.H. Junyi, P.A. Lin and Z. Hul, “Effect of rare earth on ionic nitriding process,” in: 1st Conf. Heat Trearment of Materials, May (1998), pp. 57-61
[6] S.E. Kondo, Y. Izawa, O. Nakano, S .; Uchida, and M. Onoda, “Influence of white layer produced by gas nitriding on fatigue strength of compressive spring,” J. JSHT, 36 (1), 34-40 (1996)
[7] J. et al. Georges, “TC plasma nitriding,” in: 12th IFHTSE Melbourne, Australia (2000), p. 229; Heat treatment Met. , No. 2, 33-37 (2001)
[8] T.M. Bell, Y. Sun, K. Mao, and P. Buchhagen, “Modeling plasma nitriding,” Advanced Mater. Pro. , No. 8, 40Y-40BB (1996)
[9] T. Bell, Y. Sun, Z. Lin, and M. Yan, “Rare earth surface engineering,” Heat Treatment Mat. , 27 (1), 12-13 (2000)







Figure 0004806722
Figure 0004806722

以下、添付された図面を参照しつつ、本発明の一実施例について詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1実施例First embodiment

本発明の第1実施例は、NaNOを溶融塩として使用して鋼を窒化したものである。 In the first embodiment of the present invention, steel is nitrided using NaNO 3 as a molten salt.

窒化した鋼の種類は、極低炭素鋼、低炭素鋼、中炭素鋼、高炭素鋼、合金鋼である。   The types of steels nitrided are extremely low carbon steel, low carbon steel, medium carbon steel, high carbon steel, and alloy steel.

前記の極低炭素鋼、低炭素鋼、中炭素鋼、高炭素鋼及び合金鋼それぞれをNaNO溶融塩浴に浸漬した後、500℃の温度で2時間窒化処理する。 The ultra low carbon steel, low carbon steel, medium carbon steel, high carbon steel and alloy steel are immersed in a NaNO 3 molten salt bath and then subjected to nitriding treatment at a temperature of 500 ° C. for 2 hours.

浸漬した結果の硬度変化及び引張り強度変化は、下記の表2に示した通りであり、表面硬度の測定は、Vickers硬度機で1kgの荷重を与えて測定した結果である。   The hardness change and tensile strength change as a result of the immersion are as shown in Table 2 below, and the surface hardness measurement is a result of measurement by applying a load of 1 kg with a Vickers hardness machine.

第1実施例の溶融塩浴窒化方法を介して窒化された極低炭素鋼の場合、表面硬度が119%増大して引張り強度が47%増大し、低炭素鋼の場合、表面硬度が47%増大し、引張り強度が19%増大する。   In the case of the extremely low carbon steel nitrided through the molten salt bath nitriding method of the first embodiment, the surface hardness is increased by 119% and the tensile strength is increased by 47%. In the case of the low carbon steel, the surface hardness is 47%. Increase and the tensile strength increases by 19%.

第1実施例の溶融塩浴窒化方法を介して窒化された中炭素鋼の場合、表面硬度が32%増大して引張り強度が18%増大し、高炭素鋼の場合、表面硬度が28%増大し、引張り強度が16%増大する。そして、合金鋼の場合、表面硬度が24%増大し、引張り強度が17%増大する。   In the case of medium carbon steel nitrided through the molten salt bath nitriding method of the first embodiment, the surface hardness is increased by 32% and the tensile strength is increased by 18%, and in the case of high carbon steel, the surface hardness is increased by 28%. And the tensile strength is increased by 16%. In the case of alloy steel, the surface hardness is increased by 24% and the tensile strength is increased by 17%.

すなわち、本発明の第1実施例による溶融塩浴窒化方法を介して窒化された鋼は、表面硬度が20%ないし120%増大し、引張り強度も15%ないし50%増大することが分かる。   That is, the steel nitrided through the molten salt bath nitriding method according to the first embodiment of the present invention has a surface hardness increased by 20% to 120% and a tensile strength increased by 15% to 50%.

一方、鋼の種類による表面硬度の増大幅が違いが出るのは、鋼内部の炭素含有量による窒素の拡散差による結果であるといえる。   On the other hand, the difference in the increase in the surface hardness depending on the type of steel can be said to be a result of the diffusion difference of nitrogen due to the carbon content in the steel.

Figure 0004806722
Figure 0004806722

図1は、極低炭素鋼を500℃のNaNO溶融塩浴で30分、1時間、2時間、5時間でそれぞれ窒化処理した後、窒化処理されていない鋼の硬度(As)と窒化処理された鋼の硬度との分布を厚さ方向に示したグラフである。 FIG. 1 shows the hardness (As) and nitriding treatment of non-nitriding steel after ultra low carbon steel was nitrided in a NaNO 3 molten salt bath at 500 ° C. for 30 minutes, 1 hour, 2 hours and 5 hours, respectively. It is the graph which showed distribution with the hardness of the made steel in the thickness direction.

図1に示されているように、窒化処理される時間が長くなるほど鋼の窒化深さも増大するが、硬度は、鋼の表面から中へ入っていくほど低下する。これは、窒素の濃度が鋼の表面から中へ入っていくほど低下するためであり、前記の窒化処理方法で前記鋼を5時間窒化処理した場合、鋼の表面から0.6mmの内部まで窒化されていることが分かる。   As shown in FIG. 1, the nitriding depth of the steel increases as the nitriding time increases, but the hardness decreases as it enters from the surface of the steel. This is because the concentration of nitrogen decreases as it enters from the surface of the steel, and when the steel is nitrided for 5 hours by the nitriding method, it is nitrided from the steel surface to the inside of 0.6 mm. You can see that.

図2は、低炭素鋼を680℃のNaNO溶融塩浴で3時間、6時間、12時間、24時間でそれぞれ窒化処理した後、窒化処理された鋼の厚さ方向への表面硬度の分布を示したグラフであり、硬度はVickers硬度であり、3kgの荷重で実験したものである。 FIG. 2 shows the distribution of the surface hardness in the thickness direction of the nitrided steel after nitriding the low carbon steel in a NaNO 3 molten salt bath at 680 ° C. for 3 hours, 6 hours, 12 hours and 24 hours, respectively. The hardness is Vickers hardness and is an experiment with a load of 3 kg.

図2に示されているように、低炭素鋼の場合も、窒化処理される時間が長くなるほど鋼の窒化深さも増大し、鋼の表面から3.0mmの内部まで窒化され、従来の6倍以上の厚さに窒化されることが分かる。   As shown in FIG. 2, even in the case of low carbon steel, the nitriding depth of steel increases as the nitriding time increases, and the steel is nitrided from the surface of the steel to the inside of 3.0 mm, which is 6 times the conventional steel. It turns out that it nitrides to the above thickness.

また、窒化処理厚の表面硬度が450Hvと、窒化処理前の値(As)に比べて4倍以上向上したことが分かる。   Further, it can be seen that the surface hardness of the nitriding treatment thickness is 450 Hv, which is 4 times or more higher than the value (As) before the nitriding treatment.

従って、従来のシアン系塩浴窒化方法に比べて、本発明の窒化方法を使用する場合、その鋼の窒化深さを従来の2倍ないし6倍に向上させることができるのである。   Therefore, when the nitriding method of the present invention is used, the nitriding depth of the steel can be improved to 2 to 6 times that of the conventional cyan salt bath nitriding method.

図3は、極低炭素鋼を500℃温度と600℃温度とのNaNO溶融塩浴でそれぞれ3時間窒化処理し、極低炭素鋼の窒化処理前(As)と窒化処理後との硬度分布を厚さ方向に示したものであり、500℃温度で窒化処理した鋼より600℃の温度で窒化処理した鋼の方が窒化される深さが3倍程度深く、その硬度もまた100Hvほど高まり、窒化処理温度が上昇するほど鋼の硬度増大幅が大きく、窒素が鋼の表面から内部へ浸透する浸透深さもまた増大することが分かる。 FIG. 3 shows nitriding treatment of ultra-low carbon steel in a NaNO 3 molten salt bath at 500 ° C. and 600 ° C. for 3 hours, respectively, and hardness distributions before (As) and after nitriding of ultra-low carbon steel Is shown in the thickness direction, and the steel nitrided at a temperature of 600 ° C. is about three times deeper than the steel nitrided at a temperature of 500 ° C., and its hardness is also increased by about 100 Hv. It can be seen that the increase in the hardness of the steel increases as the nitriding temperature rises, and the penetration depth at which nitrogen penetrates from the surface to the inside of the steel also increases.

表3は、本発明の第1実施例による塩浴窒化方法を使用し、450℃ないし600℃の温度範囲でそれぞれ極低炭素鋼を3時間窒化し、処理温度変化による鋼の引張り強度の変化を示したものである。   Table 3 shows the change in the tensile strength of the steel by changing the treatment temperature by nitriding ultra low carbon steel for 3 hours in the temperature range of 450 ° C. to 600 ° C. using the salt bath nitriding method according to the first embodiment of the present invention. Is shown.

表3に示されているように、処理温度が450℃である場合は、5%の引張り強度上昇率を示し、処理温度が上昇するほど鋼の引張り強度もまた上昇し、処理温度が600℃である場合、134%の引張り強度上昇率を示す。   As shown in Table 3, when the processing temperature is 450 ° C., the tensile strength increase rate is 5%, and as the processing temperature increases, the tensile strength of the steel also increases, and the processing temperature is 600 ° C. The tensile strength increase rate is 134%.

Figure 0004806722
Figure 0004806722

すなわち、本発明の第1実施例による鋼の窒化処理によって、鋼の硬度と引張り強度とを同時に向上させることができ、各種部品及び構造材など多様な分野に適用可能であるという利点がある。   That is, the steel nitriding treatment according to the first embodiment of the present invention can improve the hardness and tensile strength of the steel at the same time, and has an advantage that it can be applied to various fields such as various parts and structural materials.

第2実施例Second embodiment

本発明の第2実施例は、NaNOを溶融塩として使用して鋼を窒化する。 The second embodiment of the present invention nitrides steel using NaNO 2 as the molten salt.

窒化した鋼の種類は極低炭素鋼、低炭素鋼、中炭素鋼、高炭素鋼、合金鋼であり、450℃の温度でそれぞれ2時間浸漬する。   The types of nitrided steel are extremely low carbon steel, low carbon steel, medium carbon steel, high carbon steel, and alloy steel, which are immersed for 2 hours at a temperature of 450 ° C.

浸漬した結果、鋼の硬度変化及び引張り強度変化は、下記表4に示した通りであり、表面硬度の測定は、Vickers硬度機で1kgの荷重を与えて測定した結果である。   As a result of the immersion, the hardness change and tensile strength change of the steel are as shown in Table 4 below, and the surface hardness is measured by applying a load of 1 kg with a Vickers hardness machine.

第2実施例の溶融塩浴窒化方法を介して窒化された極低炭素鋼の場合、表面硬度が54%増大して引張り強度が21%増大し、低炭素鋼の場合、表面硬度が32%増大して引張り強度が15%増大する。   In the case of the ultra-low carbon steel nitrided through the molten salt bath nitriding method of the second embodiment, the surface hardness is increased by 54% and the tensile strength is increased by 21%. In the case of the low-carbon steel, the surface hardness is 32%. Increases the tensile strength by 15%.

第2実施例の溶融塩浴窒化方法を介して窒化された中炭素鋼の場合、表面硬度が19%増大して引張り強度が13%増大し、高炭素鋼の場合、表面硬度が18%増大し、引張り強度が12%増大する。   In the case of the medium carbon steel nitrided through the molten salt bath nitriding method of the second embodiment, the surface hardness is increased by 19% and the tensile strength is increased by 13%. In the case of the high carbon steel, the surface hardness is increased by 18%. And the tensile strength is increased by 12%.

合金鋼の場合、表面硬度が17%増大し、引張り強度が14%増大する。   In the case of alloy steel, the surface hardness increases by 17% and the tensile strength increases by 14%.

すなわち、本発明の第2実施例による溶融塩浴窒化方法を介して窒化された鋼は、表面硬度がおよそ15%ないし60%増大し、引張り強度もまたおよそ10%ないし25%増大する。   That is, the steel nitrided through the molten salt bath nitriding method according to the second embodiment of the present invention has an increased surface hardness of about 15% to 60% and a tensile strength of about 10% to 25%.

従って、本発明の第2実施例による溶融塩浴窒化方法も、鋼の表面硬度、引張り強度を増大させることが分かる。   Therefore, it can be seen that the molten salt bath nitriding method according to the second embodiment of the present invention also increases the surface hardness and tensile strength of the steel.

Figure 0004806722
Figure 0004806722

第3実施例Third embodiment

本発明の第3実施例は、KNOを溶融塩として使用して鋼を窒化する。 The third embodiment of the present invention nitrides steel using KNO 3 as the molten salt.

窒化した鋼の種類はIF(Interstitial-Free)鋼であり、0.003wt%の炭素(C)、1.23wt%のマンガン(Mn)、0.037wt%のアルミニウム(Al)、0.027wt%のチタン(Ti)、0.050wt%のIN(P)、0.002wt%の窒素(N)及び0.008wt%の硫黄(S)を含む。   The type of nitrided steel is IF (Interstitial-Free) steel, 0.003 wt% carbon (C), 1.23 wt% manganese (Mn), 0.037 wt% aluminum (Al), 0.027 wt% Titanium (Ti), 0.050 wt% IN (P), 0.002 wt% nitrogen (N) and 0.008 wt% sulfur (S).

本発明の第3実施例による窒化処理温度は、560℃、580℃、600℃、620℃及び640℃であり、温度別のKNO溶融塩浴に前記IF鋼を浸漬して窒化する。 The nitriding temperatures according to the third embodiment of the present invention are 560 ° C., 580 ° C., 600 ° C., 620 ° C. and 640 ° C., and the IF steel is immersed in a KNO 3 molten salt bath according to temperature for nitriding.

図4は、かような温度別のKNO溶融塩で窒化されたIF鋼の表面硬度を示すグラフである。 FIG. 4 is a graph showing the surface hardness of IF steel nitrided with KNO 3 molten salt at different temperatures.

図4に示されているように、ほとんどの温度条件で、窒化する時間と温度とが上昇するにつれ、表面硬度が増大し、かような硬度の上昇は、窒素濃度の上昇による固溶強化現象と説明されうるが、本願発明がかような理論に必ずしも制約されるものではない。   As shown in FIG. 4, as the time and temperature for nitriding increase under most temperature conditions, the surface hardness increases, and this increase in hardness is a solid solution strengthening phenomenon due to an increase in nitrogen concentration. However, the present invention is not necessarily limited to such a theory.

しかし、620℃のKNO溶融塩を利用した窒化時間が8時間を超えるか、または640℃のKNO溶融塩を利用した窒化時間が1時間を超える場合は、表面硬度がむしろ低下する。これは、IF鋼の結晶成長による窒化物層の形成によるものであるということが分かる。 However, if the nitriding time using KNO 3 molten salt at 620 ° C. exceeds 8 hours or the nitriding time using KNO 3 molten salt at 640 ° C. exceeds 1 hour, the surface hardness is rather lowered. It can be seen that this is due to the formation of a nitride layer by crystal growth of IF steel.

図5は、本発明の第3実施例によって窒化されたIF鋼に対して、厚さ方向に硬度分布を示したグラフである。   FIG. 5 is a graph showing the hardness distribution in the thickness direction for the IF steel nitrided according to the third embodiment of the present invention.

このとき、560℃のKNO溶融塩で16時間、560℃、580℃、600℃、620℃それぞれのKNO溶融塩で8時間窒化する。 At this time, nitriding is performed with KNO 3 molten salt at 560 ° C. for 16 hours, and KNO 3 molten salt at 560 ° C., 580 ° C., 600 ° C., and 620 ° C. for 8 hours.

図5を参照すれば、IF鋼の硬度は、表面から内部に入っていくほど低下する。かような硬度の低下は、窒素の濃度が内部に行くほど低減するためであると見られ、窒化層の厚さを、IF鋼中心の窒化処理前硬度の110%以上に該当する厚さに定義すれば、それぞれの条件で形成された窒化層の厚さは、およそ1.38mmないし1.5mmであり、従来の窒化層の形成厚よりおよそ3倍ないし5倍厚い窒化層を形成できる。   Referring to FIG. 5, the hardness of IF steel decreases as it enters the interior from the surface. Such a decrease in hardness is considered to be due to a decrease in the nitrogen concentration toward the inside, and the thickness of the nitride layer is reduced to a thickness corresponding to 110% or more of the hardness before nitriding of the IF steel center. If defined, the thickness of the nitride layer formed under each condition is about 1.38 mm to 1.5 mm, and a nitride layer that is about 3 to 5 times thicker than the conventional nitride layer can be formed.

第4実施例Fourth embodiment

本発明の第4実施例は、Ca(NOを溶融塩として使用して鋼を窒化する。 The fourth embodiment of the present invention nitrides steel using Ca (NO 3 ) 2 as a molten salt.

第4実施例で窒化した鋼の種類は、低炭素鋼である。   The type of steel nitrided in the fourth example is low carbon steel.

Ca(NOは、常温状態で吸湿性が強くて結晶水を含むので、一定時間熱処理を実施し、水分を蒸発させた後で使用することが望ましい。 Since Ca (NO 3 ) 2 is strongly hygroscopic at room temperature and contains crystal water, it is desirable to use it after performing heat treatment for a certain period of time to evaporate the water.

本発明の第4実施例では、Ca(NOを100℃ないし150℃で4時間熱処理を実施して水分を蒸発させた後、580℃の温度で加熱してCa(NO溶融塩浴を形成した後、低炭素鋼を3時間浸漬する。 In the fourth embodiment of the present invention, Ca (NO 3 ) 2 is heat-treated at 100 ° C. to 150 ° C. for 4 hours to evaporate water, and then heated at a temperature of 580 ° C. to heat Ca (NO 3 ) 2. After forming the molten salt bath, the low carbon steel is immersed for 3 hours.

図6は、本発明の第4実施例によって窒化処理された低炭素鋼の表面硬度を示したグラフである。   FIG. 6 is a graph showing the surface hardness of the low carbon steel nitrided according to the fourth embodiment of the present invention.

図6に示されているように、第4実施例によって窒化処理された低炭素鋼は、表面から0.5mmの深さまで窒化され、窒化処理前の表面硬度(As)に比べて表面硬度がおよそ2倍向上する。   As shown in FIG. 6, the low carbon steel nitrided according to the fourth example is nitrided to a depth of 0.5 mm from the surface, and the surface hardness is higher than the surface hardness (As) before nitriding. It is improved about 2 times.

第5実施例Example 5

本発明の第5実施例は、KNOとNaNOとの混合塩を溶融塩として使用して鋼を窒化する。 The fifth embodiment of the present invention nitrides steel using a mixed salt of KNO 3 and NaNO 3 as a molten salt.

第5実施例では、KNOとNaNOとの混合比率を1:1、8:2、2:8として低炭素鋼を窒化する。 In the fifth embodiment, the low carbon steel is nitrided with the mixing ratio of KNO 3 and NaNO 3 being 1: 1, 8: 2, and 2: 8.

表5は、本発明の第5実施例によって窒化された鋼の表面硬度を示したものである。さまざまな種類の鋼をKNOとNaNOとの混合比率を1:1とした混合塩に浸漬させた後、650℃に維持して12時間または24時間浸漬する。 Table 5 shows the surface hardness of the steel nitrided according to the fifth embodiment of the present invention. Various types of steel are immersed in a mixed salt in which the mixing ratio of KNO 3 and NaNO 3 is 1: 1, and then maintained at 650 ° C. for 12 hours or 24 hours.

このとき、測定された硬度はVickers硬度であり、3kgの荷重で測定する。   At this time, the measured hardness is Vickers hardness and is measured with a load of 3 kg.

表5に示されているように、KNOとNaNOとの混合塩で窒化処理した鋼は、その種類によって69%ないし251%の硬度向上率を示す。 As shown in Table 5, the steel nitrided with a mixed salt of KNO 3 and NaNO 3 exhibits a hardness improvement rate of 69% to 251% depending on the type.

Figure 0004806722
Figure 0004806722

混合塩を利用して行った窒化処理時間による鋼の表面硬度及び引張り強度の変化を知るために、KNOとNaNOとの混合比率が1:1である580℃混合塩内にさまざまな種類の鋼を浸漬する。 In order to know the changes in the surface hardness and tensile strength of steel due to the time of nitriding performed using the mixed salt, various types are included in the 580 ° C. mixed salt in which the mixing ratio of KNO 3 and NaNO 3 is 1: 1. Immerse the steel.

その結果は、下記表6に開示されているように、あらゆる鋼において、窒化処理を行った後の硬度及び引張り強度は上昇し、時間が長くなるほど硬度及び引張り強度の上昇率もまた上昇するということが分かる。   As a result, as disclosed in Table 6 below, in all steels, the hardness and tensile strength after nitriding increased, and the rate of increase in hardness and tensile strength also increased with time. I understand that.

これによって、窒化処理時間が長くなるほど鋼の表面硬度及び引張り強度が持続的に上昇することが分かる。   This shows that the surface hardness and tensile strength of the steel continuously increase as the nitriding time increases.

Figure 0004806722
Figure 0004806722

図7は、塩浴の種類による鋼の表面硬度変化を示したグラフであり、使われた塩浴の種類は、KNO、NaNOの単一塩、及びKNOとNaNOとを1:1で混合した混合塩であり、680℃の温度で200分間窒化処理する。 FIG. 7 is a graph showing changes in the surface hardness of steel depending on the type of salt bath. The type of salt bath used is KNO 3 , a single salt of NaNO 3 , and KNO 3 and NaNO 3 in a 1: The mixed salt mixed in 1 is nitrided at a temperature of 680 ° C. for 200 minutes.

そして、表面硬度の測定は、Vickers硬度機を使用して表面から深部に硬度を測定したものである。   And the measurement of surface hardness measures hardness from the surface to the deep part using the Vickers hardness machine.

図7に示されているように、混合塩を使用した場合、窒化処理された鋼は、表面から1.5mmの深さまで窒化され、このときの表面硬度はおよそ160Hvであり、単一塩浴を使用して窒化処理された鋼に比べて高い硬度を示し、窒化処理前の鋼(As)に比べて、およそ3倍ほど高い硬度を示す。   As shown in FIG. 7, when mixed salt is used, the nitrided steel is nitrided to a depth of 1.5 mm from the surface, with a surface hardness of approximately 160 Hv, a single salt bath It shows a high hardness compared to steel nitriding using, and shows a hardness about three times higher than steel (As) before nitriding.

図8は、KNOとNaNOとの混合塩の混合比率をそれぞれ8:2及び2:8とし、低炭素鋼を650℃温度で4時間窒化した後で窒化処理された低炭素鋼の表面硬度を示したグラフである。 FIG. 8 shows the surface of the low carbon steel nitrided after nitriding the low carbon steel for 4 hours at 650 ° C. with the mixing ratio of the mixed salt of KNO 3 and NaNO 3 being 8: 2 and 2: 8, respectively. It is the graph which showed hardness.

図8に示されているように、KNOとNaNOとの混合比率を異ならせた場合にも、表面の硬度が窒化処理を行う前の鋼(As)表面硬度に比べて、2倍以上上昇することが分かる。 As shown in FIG. 8, even when the mixing ratio of KNO 3 and NaNO 3 is varied, the hardness of the surface is more than twice the steel (As) surface hardness before nitriding treatment. You can see that it rises.

本明細書及び特許請求範囲に使われた用語や単語は、一般的であるか、または辞典的意味に限定して解釈されるものではなく、発明者が自身の発明を最善の方法で説明するために用語の概念を適切に定義できるという原則に立脚し、本発明の技術的思想に符合する意味と概念とによって解釈されねばならない。   The terms and words used in the specification and claims are not to be interpreted in a general or limiting sense, and the inventor best describes the invention. Therefore, it should be based on the principle that the concept of terms can be appropriately defined and interpreted with the meaning and concept consistent with the technical idea of the present invention.

従って、本明細書に記載された実施例と図面に図示された構成は、本発明の最も望ましい一実施例に過ぎず、本発明の技術的思想をいずれも代弁するものではないので、本出願時点において、それらを代替可能な多様な均等物と変形例とがありうるということを理解せねばならないのである。   Therefore, the embodiments described in the present specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention, and do not represent any technical ideas of the present invention. It should be understood that at the time, there can be various equivalents and variations that can be substituted for them.

本発明の第1実施例による、窒化処理時間と鋼の窒化厚さとの関係を示すグラフである。It is a graph which shows the relationship between nitriding treatment time and the nitriding thickness of steel by 1st Example of this invention. 本発明の第1実施例による、窒化処理時間と鋼の窒化厚さとの関係を示すグラフである。It is a graph which shows the relationship between nitriding treatment time and the nitriding thickness of steel by 1st Example of this invention. 本発明の第1実施例による、窒化処理温度と鋼の窒化厚さとの関係を示すグラフである。It is a graph which shows the relationship between the nitriding process temperature and the nitriding thickness of steel by 1st Example of this invention. 本発明の第3実施例による、窒化処理時間と鋼の窒化厚さとの関係を示すグラフである。It is a graph which shows the relationship between nitriding treatment time and the nitriding thickness of steel by 3rd Example of this invention. 本発明の第3実施例による、窒化処理温度と鋼の窒化厚さとの関係を示すグラフである。It is a graph which shows the relationship between the nitriding temperature by the 3rd Example of this invention, and the nitriding thickness of steel. 本発明の第4実施例による、窒化処理温度と鋼の窒化厚さとの関係を示すグラフである。It is a graph which shows the relationship between the nitriding process temperature and the nitriding thickness of steel by 4th Example of this invention. 本発明の第5実施例による、塩浴の種類と鋼の窒化厚さとの関係を示すグラフである。It is a graph which shows the relationship between the kind of salt bath and the nitriding thickness of steel by 5th Example of this invention. 本発明の第5実施例による、混合塩の混合比率と鋼の窒化厚さとの関係を示すグラフである。It is a graph which shows the relationship between the mixing ratio of mixed salt and the nitriding thickness of steel by 5th Example of this invention.

Claims (35)

塩浴中にCa(NO、NaNO及びNaNOのうち、少なくとも一つ以上の塩を入れる段階と、
前記塩を溶融させて一定温度に維持させる段階と、
前記塩浴内で金属を窒化させる段階とを含むことを特徴とする金属の塩浴窒化方法。
Placing at least one salt of Ca (NO 3 ) 2 , NaNO 3 and NaNO 2 in a salt bath;
Melting the salt to maintain a constant temperature;
And nitriding the metal in the salt bath.
塩浴中にKNO及びKNOのうち少なくともいずれか一つ以上と、Ca(NO、NaNO及びNaNOのうち少なくとも一つ以上とを含む混合塩を入れる段階と、
前記塩を溶融させて一定温度に維持させる段階と、
前記塩浴内で金属を窒化させる段階とを含むことを特徴とする金属の塩浴窒化方法。
Placing a mixed salt containing at least one of KNO 3 and KNO 2 and at least one of Ca (NO 3 ) 2 , NaNO 3 and NaNO 2 in a salt bath;
Melting the salt to maintain a constant temperature;
And nitriding the metal in the salt bath.
前記一定温度は、400℃ないし700℃の範囲であることを特徴とする請求項1または請求項2に記載の金属の塩浴窒化方法。  The metal salt bath nitriding method according to claim 1 or 2, wherein the constant temperature is in a range of 400 ° C to 700 ° C. 前記金属を窒化させる段階での浸漬時間は、1分ないし24時間の範囲であることを特徴とする請求項1または請求項2に記載の金属の塩浴窒化方法。  3. The metal salt bath nitriding method according to claim 1, wherein an immersion time in the step of nitriding the metal is in a range of 1 minute to 24 hours. 塩浴中にKNO塩を入れる段階と、
前記塩を溶融させて400℃以上620℃以下に維持させる段階と、
前記塩浴内で8時間未満に金属を窒化させる段階とを含むことを特徴とする金属の塩浴窒化方法。
Putting KNO 3 salt in a salt bath;
Melting the salt and maintaining it at 400 ° C. or higher and 620 ° C. or lower;
Nitriding the metal in the salt bath in less than 8 hours.
塩浴中にKNO塩を入れる段階と、
前記塩を溶融させて620℃超過640℃以下に維持させる段階と、
前記塩浴内で1時間未満に金属を窒化させる段階とを含む金属の塩浴窒化方法。
Putting KNO 3 salt in a salt bath;
Melting the salt and maintaining it above 620 ° C. and below 640 ° C .;
Nitriding the metal in the salt bath in less than 1 hour.
前記金属は、純鉄または鋼であることを特徴とする請求項1、請求項2、請求項5及び請求項6のうちいずれか1項に記載の金属の塩浴窒化方法。  The metal salt bath nitriding method according to any one of claims 1, 2, 5, and 6, wherein the metal is pure iron or steel. Ca(NO、NaNO及びNaNOのうち、少なくとも一つ以上の塩浴で窒化された金属において、
前記金属は純鉄であり、
前記純鉄の表面から0.1mmないし3.0mmの内部まで窒化されたことを特徴とする純鉄。
In the metal nitrided in at least one salt bath among Ca (NO 3 ) 2 , NaNO 3 and NaNO 2 ,
The metal is pure iron;
Pure iron nitrided from the surface of the pure iron to the inside of 0.1 mm to 3.0 mm.
KNO及びKNOのうち少なくともいずれか一つ以上と、Ca(NO、NaNO及びNaNOのうち少なくとも一つ以上とを含む混合塩浴で窒化された金属において、
前記金属は純鉄であり、
前記純鉄の表面から0.1mmないし3.0mmの内部まで窒化されたことを特徴とする純鉄。
In a metal nitrided in a mixed salt bath containing at least one of KNO 3 and KNO 2 and at least one of Ca (NO 3 ) 2 , NaNO 3 and NaNO 2 ,
The metal is pure iron;
Pure iron nitrided from the surface of the pure iron to the inside of 0.1 mm to 3.0 mm.
Ca(NO、NaNO及びNaNOのうち、少なくとも一つ以上の塩浴で窒化された金属において、
前記金属は鋼であり、
前記鋼の表面から0.1mmないし3.0mmの内部まで窒化されたことを特徴とする鋼。
In the metal nitrided in at least one salt bath among Ca (NO 3 ) 2 , NaNO 3 and NaNO 2 ,
The metal is steel;
A steel characterized in that it is nitrided from the surface of the steel to the inside of 0.1 mm to 3.0 mm.
KNO及びKNOのうち少なくともいずれか一つ以上と、Ca(NO、NaNO及びNaNOのうち少なくとも一つ以上とを含む混合塩浴で窒化された金属において、
前記金属は鋼であり、
前記鋼の表面から0.1mmないし3.0mmの内部まで窒化されたことを特徴とする鋼。
In a metal nitrided in a mixed salt bath containing at least one of KNO 3 and KNO 2 and at least one of Ca (NO 3 ) 2 , NaNO 3 and NaNO 2 ,
The metal is steel;
A steel characterized in that it is nitrided from the surface of the steel to the inside of 0.1 mm to 3.0 mm.
前記鋼は、極低炭素鋼、低炭素鋼、中炭素鋼、高炭素鋼及び合金鋼のうちいずれか一つであることを特徴とする請求項10または請求項11に記載の鋼。  The steel according to claim 10 or 11, wherein the steel is any one of an extremely low carbon steel, a low carbon steel, a medium carbon steel, a high carbon steel, and an alloy steel. 前記極低炭素鋼は、表面硬度が120Hv超過450Hv以下であることを特徴とする請求項12に記載の鋼。  The steel according to claim 12, wherein the ultra-low carbon steel has a surface hardness of more than 120Hv and not more than 450Hv. 前記低炭素鋼は表面硬度が200Hv超過410Hv以下であることを特徴とする請求項12に記載の鋼。  The steel according to claim 12, wherein the low carbon steel has a surface hardness of more than 200Hv and not more than 410Hv. 前記中炭素鋼は、表面硬度が130Hv超過420Hv以下であることを特徴とする請求項12に記載の鋼。  The steel according to claim 12, wherein the medium carbon steel has a surface hardness of more than 130Hv and not more than 420Hv. 高炭素鋼は、表面硬度が150Hv超過400Hv以下であることを特徴とする請求項12に記載の鋼。  The steel according to claim 12, wherein the high carbon steel has a surface hardness of more than 150 Hv and not more than 400 Hv. 前記合金鋼は、表面硬度が200Hv超過410Hv以下であることを特徴とする請求項12に記載の鋼。  The steel according to claim 12, wherein the alloy steel has a surface hardness of more than 200Hv and not more than 410Hv. 前記極低炭素鋼は、引張り強度が35kg/mm超過110kg/mm以下であることを特徴とする請求項13に記載の鋼。The ultra low carbon steel, steel of claim 13, the tensile strength is equal to or less than 35 kg / mm 2 exceeding 110 kg / mm 2. 前記低炭素鋼は、引張り強度が45kg/mm超過110kg/mm以下であることを特徴とする請求項14に記載の鋼。The low carbon steel, steel of claim 14 tensile strength equal to or less than 45 kg / mm 2 exceeding 110 kg / mm 2. 前記中炭素鋼は、引張り強度が45kg/mm超過100kg/mm以下であることを特徴とする請求項15に記載の鋼。Wherein the carbon steel, steel of claim 15, the tensile strength is equal to or less than 45 kg / mm 2 exceeding 100 kg / mm 2. 前記高炭素鋼は、引張り強度が60kg/mm超過95kg/mm以下であることを特徴とする請求項16に記載の鋼。The steel according to claim 16, wherein the high carbon steel has a tensile strength of more than 60 kg / mm 2 and not more than 95 kg / mm 2 . 前記合金鋼は、引張り強度が55kg/mm超過110kg/mm以下であることを特徴とする請求項17に記載の鋼。The steel according to claim 17, wherein the alloy steel has a tensile strength of 55 kg / mm 2 and 110 kg / mm 2 or less. 前記鋼のクロム含有量は、0.1wt.%ないし1.5wt.%であることを特徴とする請求項22に記載の鋼。  The chromium content of the steel is 0.1 wt. % To 1.5 wt. 23. Steel according to claim 22, characterized in that it is%. 前記鋼のモリブデン含有量は、0.05wt.%ないし0.5wt.%であることを特徴とする請求項22に記載の鋼。  The molybdenum content of the steel is 0.05 wt. % To 0.5 wt. 23. Steel according to claim 22, characterized in that it is%. 前記鋼のニッケル含有量は、0.1wt.%ないし10wt.%であることを特徴とする請求項22に記載の鋼。  The nickel content of the steel is 0.1 wt. % To 10 wt. 23. Steel according to claim 22, characterized in that it is%. 前記鋼のマンガン含有量は、0.1wt.%ないし2.0wt.%であることを特徴とする請求項22に記載の鋼。  The manganese content of the steel is 0.1 wt. % To 2.0 wt. 23. Steel according to claim 22, characterized in that it is%. 前記鋼のホウ素含有量は、0.001wt.%ないし0.1wt.%であることを特徴とする請求項22に記載の鋼。  The boron content of the steel is 0.001 wt. % To 0.1 wt. 23. Steel according to claim 22, characterized in that it is%. 前記鋼のチタン含有量は、0.001wt.%ないし0.1wt.%であることを特徴とする請求項22に記載の鋼。  The titanium content of the steel is 0.001 wt. % To 0.1 wt. 23. Steel according to claim 22, characterized in that it is%. 前記鋼のバナジウム含有量は、0.05wt.%ないし0.15wt.%である請求項22に記載の鋼。  The vanadium content of the steel is 0.05 wt. % To 0.15 wt. The steel according to claim 22, wherein the steel is%. 前記鋼のニオブ含有量は、0.005wt.%ないし0.1wt.%である請求項22に記載の鋼。  The niobium content of the steel is 0.005 wt. % To 0.1 wt. The steel according to claim 22, wherein the steel is%. 前記鋼のアルミニウム含有量は、0.005wt.%ないし0.1wt.%であることを特徴とする請求項22に記載の鋼。  The aluminum content of the steel is 0.005 wt. % To 0.1 wt. 23. Steel according to claim 22, characterized in that it is%. 前記極低炭素鋼の炭素含有量は、0.0001wt.%以上0.13wt.%未満であることを特徴とする請求項18に記載の鋼。  The carbon content of the ultra-low carbon steel is 0.0001 wt. % Or more and 0.13 wt. The steel according to claim 18, wherein the steel is less than%. 前記低炭素鋼の炭素含有量は、0.13wt.%以上0.2wt.%未満であることを特徴とする請求項19に記載の鋼。  The carbon content of the low carbon steel is 0.13 wt. % To 0.2 wt. The steel according to claim 19, wherein the steel is less than%. 前記中炭素鋼の炭素含有量は、0.21wt.%以上0.51wt.%未満であることを特徴とする請求項20に記載の鋼。  The carbon content of the medium carbon steel is 0.21 wt. % Or more 0.51 wt. 21. Steel according to claim 20, characterized in that it is less than%. 前記高炭素鋼の炭素含有量は、0.51wt.%以上2.0wt.%以下であることを特徴とする請求項21に記載の鋼。  The carbon content of the high carbon steel is 0.51 wt. % To 2.0 wt. The steel according to claim 21, wherein the steel is not more than%.
JP2009514185A 2006-06-08 2006-06-08 Metal salt bath nitriding method and metal produced by the method Active JP4806722B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2006/002198 WO2007142373A1 (en) 2006-06-08 2006-06-08 Method for nitriding metal in salt bath and metal manufactured by its method

Publications (2)

Publication Number Publication Date
JP2009540120A JP2009540120A (en) 2009-11-19
JP4806722B2 true JP4806722B2 (en) 2011-11-02

Family

ID=38801608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009514185A Active JP4806722B2 (en) 2006-06-08 2006-06-08 Metal salt bath nitriding method and metal produced by the method

Country Status (3)

Country Link
JP (1) JP4806722B2 (en)
BR (1) BRPI0621724A2 (en)
WO (1) WO2007142373A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106399921A (en) * 2016-09-19 2017-02-15 福州大学 QPQ technology for increasing thickness of infiltrated layer on surface of cast duplex stainless steel
CN110423977B (en) * 2019-09-05 2021-06-18 合肥工业大学 Gas nitriding method for aluminum material by taking chemical iron-immersion plating as pretreatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209324A (en) * 1994-11-29 1996-08-13 Durferrit Gmbh Thermotechnik Method of pretreating member made of steel in the form of passive state before carbonitridation in salt bath
JPH0920977A (en) * 1995-03-01 1997-01-21 Centre Stephanois Rech Mec Hydromec Frottement Method for treating iron surface subjected to high frictional strain
JPH09184058A (en) * 1995-12-28 1997-07-15 Dowa Mining Co Ltd Steel with corrosion resistance and wear resistance and its production
JP2004091906A (en) * 2002-09-04 2004-03-25 Parker Netsu Shori Kogyo Kk Salt bath nitriding method for metallic member having strengthened corrosion resistance
JP2005113229A (en) * 2003-10-09 2005-04-28 Kanai Hiroaki Traveler for spinning machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2561667B1 (en) * 1984-03-20 1986-09-12 Stephanois Rech Mec SALT BATH TREATMENT PROCESS FOR IMPROVING CORROSION RESISTANCE OF FERROUS METAL PARTS THAT HAVE BEEN SUBJECT TO THERMOCHEMICAL TREATMENT
US5576066A (en) * 1993-08-10 1996-11-19 Centre Stephanois De Recherches Mecaniques Hydromecanique Et Frottement Method of improving the wear and corrosion resistance of ferrous metal parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209324A (en) * 1994-11-29 1996-08-13 Durferrit Gmbh Thermotechnik Method of pretreating member made of steel in the form of passive state before carbonitridation in salt bath
JPH0920977A (en) * 1995-03-01 1997-01-21 Centre Stephanois Rech Mec Hydromec Frottement Method for treating iron surface subjected to high frictional strain
JPH09184058A (en) * 1995-12-28 1997-07-15 Dowa Mining Co Ltd Steel with corrosion resistance and wear resistance and its production
JP2004091906A (en) * 2002-09-04 2004-03-25 Parker Netsu Shori Kogyo Kk Salt bath nitriding method for metallic member having strengthened corrosion resistance
JP2005113229A (en) * 2003-10-09 2005-04-28 Kanai Hiroaki Traveler for spinning machine

Also Published As

Publication number Publication date
BRPI0621724A2 (en) 2012-06-12
JP2009540120A (en) 2009-11-19
WO2007142373A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP2018532879A (en) Chromium-based coating, method for producing a chrome-based coating and coated object
KR100812971B1 (en) Method for nitriding steel in salt bath and steel manufactured by its method
JP6194057B2 (en) Surface treatment agent for steel and surface treatment method for steel
JP4806722B2 (en) Metal salt bath nitriding method and metal produced by the method
JP2006342409A (en) Iron-based parts and manufacturing method therefor
JP2015218359A (en) Surface-hardened component, steel for surface-hardened component, and method for producing the surface-hardened component
US5228929A (en) Thermochemical treatment of machinery components for improved corrosion resistance
CN103774085A (en) High-nitrogen austenite layer in low-carbon alloy steel surface preparation and preparation method thereof
US20100055496A1 (en) Steel having high strength
JP7397029B2 (en) Carburizing method for steel parts and method for manufacturing steel parts
EP1308534A1 (en) Low temperature nitrocarburizing salt and method of use
KR100862217B1 (en) Method for manufacturing high corrosion-resistant and high wear- resistant steel materials by 2 step gas nitriding or gas nitrocarburizing
Triwiyanto et al. Low temperature thermochemical treatments of austenitic stainless steel without impairing its corrosion resistance
JP2010222649A (en) Production method of carbon steel material and carbon steel material
JP2000073156A (en) Production of nitrided stainless steel
KR20070111439A (en) Steel manufactured by non-cyan salt bath nitriding
EP1474541B1 (en) Method for producing an oxide layer on metallic elements
JP7178832B2 (en) Method for manufacturing surface hardening material
KR20110074356A (en) Nitriding methode for a steel
WO2002053793A1 (en) Duplex process of diffusion forming of hard carbide layers on metallic materials
KR100922619B1 (en) Steel having high strength and methode for manufacturing the same
JP6111126B2 (en) Salt bath soft nitriding method
JP2005330565A (en) Surface hardening treatment method for malaging steel
Caliari et al. Microstructural investigation of oxynitrocarburized components processed at different temperatures
KR100920212B1 (en) Method of metal surface treatment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

R150 Certificate of patent or registration of utility model

Ref document number: 4806722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250