JP2002302756A - Surface treated steel member and gas soft nitriding method - Google Patents

Surface treated steel member and gas soft nitriding method

Info

Publication number
JP2002302756A
JP2002302756A JP2001303680A JP2001303680A JP2002302756A JP 2002302756 A JP2002302756 A JP 2002302756A JP 2001303680 A JP2001303680 A JP 2001303680A JP 2001303680 A JP2001303680 A JP 2001303680A JP 2002302756 A JP2002302756 A JP 2002302756A
Authority
JP
Japan
Prior art keywords
compound layer
concentration
steel member
treatment
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001303680A
Other languages
Japanese (ja)
Other versions
JP4998654B2 (en
Inventor
Yuichi Kobayashi
裕一 小林
Junichi Nagasawa
潤一 長沢
Kaname Ueno
要 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP2001303680A priority Critical patent/JP4998654B2/en
Publication of JP2002302756A publication Critical patent/JP2002302756A/en
Application granted granted Critical
Publication of JP4998654B2 publication Critical patent/JP4998654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treated steel member which exhibits stable, excellent performance in the corrosion resistance as and as wear resistance and can shorten its surface treatment time. SOLUTION: The steel member is obtained by performing gas soft-nitriding treatment at 570 to 580 deg.C for 60 min to form a compound layer mainly consisting of epsilon iron nitride (ε-Fe2-3 N) on the surface. On the above gas soft-nitriding treatment, the mixing ratio of gaseous ammonia, nitrogen and carbon dioxide is suitably set, and particularly, the concentration of carbon dioxide is controlled to 20.0 to 80.0 g/h per square meter of the surface area of the material to be treated, so that a stabilization layer in which the concentration of carbon is 0.2 to 1.0 wt.%, and the concentration of nitrogen is 5.0 to 8.0 wt.% is provided in a compound layer having a thickness of 10 to 15 μm. Thus, the reduction of its corrosion resistance is suppressed by the stabilization layer. Further, in a degree at which the compound layer is thinned, the number of production per unit time is increased to improve the productivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軟窒化処理を施し
てなる表面処理鋼部材と該表面処理鋼部材の製造に向け
て好適なガス軟窒化処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-treated steel member subjected to a nitrocarburizing treatment and a gas nitrocarburizing method suitable for producing the surface-treated steel member.

【0002】[0002]

【従来の技術】軟窒化処理により形成される、主にイプ
シロン鉄窒化物(ε−Fe2-3N)よりなる化合物層が、
鋼部材の耐摩耗性と耐食性との向上に大きく寄与するこ
とが、従来より知られている。しかし、この軟窒化処理
を施した鋼部材を実際に使用してみると、長期間にわた
って全く錆を生じないものがある一方で、使用初期段階
で錆を生じるものやある期間使用した後に錆を生じるも
のがあり、耐食性の面でかなりのバラツキがあり、その
安定使用が困難であるという問題があった。なお、軟窒
化処理により形成された化合物層上に、酸化処理により
主に四三酸化鉄(Fe34 )よりなる酸化物層を積層形
成することが一部で行われているが、この場合でも、最
表面の酸化物層が摩耗した場合に、上記した耐食性のバ
ラツキの問題が生じ、根本的な解決には至らない。
2. Description of the Related Art A compound layer mainly formed of epsilon iron nitride (ε-Fe 2-3 N) formed by nitrocarburizing treatment is
It has been conventionally known that it greatly contributes to improvement in wear resistance and corrosion resistance of steel members. However, when actually using the steel member subjected to the soft nitriding treatment, some steel members do not rust at all for a long period of time, while those that rust at the initial stage of use or rust after a certain period of use have been used. However, there is a problem that there is considerable variation in the corrosion resistance, and it is difficult to use it stably. It is to be noted that an oxide layer mainly composed of iron sesquioxide (Fe 3 O 4 ) is formed on the compound layer formed by the nitrocarburizing process in a part by oxidation process. Even in this case, when the oxide layer on the outermost surface is worn out, the above-mentioned problem of the variation in corrosion resistance occurs, and the fundamental solution cannot be achieved.

【0003】そこで従来、例えば、特開平11−269
630号公報に記載の表面処理鋼部材においては、ガス
軟窒化処理により形成される化合物層の厚さ方向の炭素
濃度分布を一定範囲に収めることにより、耐食性のバラ
ツキを抑える対策を採っている。そして、化合物層の厚
さを18〜20μmとし、その表層を15μm研削しても発錆
しない(耐食性を有する)ことを確認している。
Therefore, conventionally, for example, Japanese Patent Application Laid-Open No. 11-269
In the surface-treated steel member described in Japanese Patent No. 630, measures are taken to suppress the variation in corrosion resistance by keeping the carbon concentration distribution in the thickness direction of the compound layer formed by the gas nitrocarburizing treatment within a certain range. It has been confirmed that the compound layer has a thickness of 18 to 20 μm and does not rust (has corrosion resistance) even when its surface layer is ground by 15 μm.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記公
報に記載の表面処理鋼部材によれば、化合物層を18〜20
μmの厚さとなるように形成しているので、化合物層の
形成に時間がかかり(化合物層の厚さを20μmとするの
に約2時間必要)、単位時間当りの生産数が少ない、と
いう問題があった。そこで、単位時間あたりの生産数を
増加させるために、上記公報の処理条件で化合物層の薄
い(5〜15μm)ものを製作することが考えられるが、
この場合、単純に化合物層の形成にかかる時間を短縮す
ることができる(30分〜1.5時間)が、図3に示すよう
に、化合物層内の炭素濃度が高くなる一方で窒素濃度が
低くなり、耐食性に劣るものとなる。上記した問題点に
ついて、本発明者等は鋭意検討した結果、化合物層の厚
さを薄くして単位時間あたりの生産数を増加させるに当
たり、化合物層の厚さ方向の炭素濃度分布に加えて、窒
素濃度分布が大きく影響し、炭素濃度と窒素濃度とがあ
る範囲を超えている面が露出した場合に発錆が起こるこ
とを確認した。また、ガス軟窒化処理についても鋭意検
討した結果、ガス軟窒化は、始めに浸炭によりFe3Cが
形成された後、Fe3C→Fe3C(N)→Fe3N(C)へと化
合物が変化していくが、被処理材の単位表面積当りの二
酸化炭素量が多過ぎると、浸炭量(浸炭速度)が浸窒量
(浸窒速度)よりも大きくなって、Fe3N(C)への変化
が遅れてしまい、このことが耐食性を低下させる原因に
なる、との結論に至った。そして、この点に注目して種
々の二酸化炭素濃度でガス軟窒化処理を行ったところ、
被処理材の単位表面積当りの二酸化炭素の濃度がある範
囲を超えている場合に錆が生じ易いことが判明した。
However, according to the surface-treated steel member described in the above-mentioned publication, the compound layer has a thickness of 18 to 20.
Since it is formed to have a thickness of μm, it takes a long time to form the compound layer (about 2 hours is required to make the thickness of the compound layer 20 μm), and the number of products per unit time is small. was there. Therefore, in order to increase the number of products per unit time, it is conceivable to manufacture a thin compound layer (5 to 15 μm) under the processing conditions described in the above publication.
In this case, the time required for forming the compound layer can be simply reduced (30 minutes to 1.5 hours). However, as shown in FIG. 3 , the carbon concentration in the compound layer increases while the nitrogen concentration decreases. And poor corrosion resistance. Regarding the above-mentioned problems, the present inventors have conducted intensive studies and found that, in order to increase the number of production per unit time by reducing the thickness of the compound layer, in addition to the carbon concentration distribution in the thickness direction of the compound layer, It was confirmed that the nitrogen concentration distribution greatly affected, and rusting occurred when the surface where the carbon concentration and the nitrogen concentration exceeded a certain range was exposed. In addition, as a result of intensive studies on the gas nitrocarburizing treatment, the gas nitrocarburizing was performed after Fe 3 C was first formed by carburization, and then Fe 3 C → Fe 3 C (N) → Fe 3 N (C). Although the compound changes, if the amount of carbon dioxide per unit surface area of the material to be treated is too large, the amount of carburizing (carburizing rate) becomes larger than the amount of nitriding (nitrifying rate), and Fe 3 N (C ) Was delayed, and it was concluded that this would cause a reduction in corrosion resistance. And, focusing on this point, gas nitrocarburizing treatment was performed at various carbon dioxide concentrations.
It has been found that when the concentration of carbon dioxide per unit surface area of the material to be treated exceeds a certain range, rust easily occurs.

【0005】本発明は、上記した知見に基づいてなされ
たもので、その課題とするところは、軟窒化処理により
形成される化合物層の厚さ方向の炭素濃度と窒素濃度と
を一定範囲に収めることにより、化合物層の厚さを薄く
しても耐摩耗性はもとより、耐食性の面でも安定して優
れた性能を発揮できる表面処理鋼部材を提供し、併せて
このような表面処理鋼部材を安定的に製造できるガス軟
窒化処理方法を提供することにある。
The present invention has been made on the basis of the above findings, and it is an object of the present invention to keep the carbon concentration and the nitrogen concentration in the thickness direction of the compound layer formed by the nitrocarburizing treatment within a certain range. By providing a surface-treated steel member capable of exhibiting excellent performance stably in terms of corrosion resistance as well as abrasion resistance even if the thickness of the compound layer is reduced, such a surface-treated steel member is also provided. An object of the present invention is to provide a gas nitrocarburizing method that can be manufactured stably.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明に係る表面処理鋼部材は、軟窒化処理により
表面に、主にイプシロン鉄窒化物よりなる化合物層を形
成した表面処理鋼部材において、前記化合物層内に、炭
素濃度が0.2〜1.0重量%範囲でかつ窒素濃度が5.0〜8.0
重量%範囲の安定層を設け、前記化合物層の厚さを5.0
〜15.0μmの範囲に収めたことを特徴とする。このよう
に構成した表面処理鋼部材においては、化合物層内に設
けた安定層が耐食性の維持に寄与すると共に、化合物層
の厚さを薄くすることができる。本表面処理鋼部材にお
いて、上記安定層は、化合物層の全層(全厚さ)にわた
って設けても、化合物層内に部分的に設けるようにして
もよいものである。本表面処理鋼部材は、上記化合物層
上に、さらに酸化処理により主に四三酸化鉄よりなる酸
化物層を積層形成しても良いもので、これにより、耐摩
耗性および耐食性がより一層向上する。
In order to solve the above-mentioned problems, a surface-treated steel member according to the present invention has a surface-treated steel member having a compound layer mainly composed of epsilon iron nitride formed on the surface by nitrocarburizing treatment. In the compound layer, the carbon concentration is in the range of 0.2 to 1.0% by weight and the nitrogen concentration is in the range of 5.0 to 8.0.
% Of a stable layer, and the thickness of the compound layer is adjusted to 5.0%.
115.0 μm. In the surface-treated steel member configured as described above, the stable layer provided in the compound layer contributes to maintaining the corrosion resistance, and the thickness of the compound layer can be reduced. In the surface-treated steel member, the stable layer may be provided over the entire layer (total thickness) of the compound layer or may be provided partially within the compound layer. The present surface-treated steel member may be formed by laminating an oxide layer mainly composed of triiron tetroxide on the compound layer by oxidation treatment, whereby the wear resistance and corrosion resistance are further improved. I do.

【0007】本発明に係るガス軟窒化処理方法は、アン
モニア、窒素および二酸化炭素を含む浸炭窒化性ガス雰
囲気中で熱処理をして被処理材の表面に主にイプシロン
鉄窒化物よりなる化合物層を形成するガス軟窒化処理方
法において、前記二酸化炭素の濃度を、被処理材の表面
積1.0 m2 当り20.0〜80.0g/hに制御することを特徴
とする。このように行うガス軟窒化処理においては、二
酸化炭素の濃度を所定の範囲に抑えることで、耐食性に
優れた化合物層が効率よく形成される。本方法におい
て、上記被処理材の表面積は、被処理材の重さを測定す
ることにより、あるいは被処理材の体積を測定すること
により特定することができる。前者の特定方法によれ
ば、小物部品を一度に大量処理する場合にトータルとし
ての表面積を簡単に把握することができ、後者の特定方
法によれば、形状の複雑な被処理材の表面積を正確に把
握することができる。
In the gas nitrocarburizing method according to the present invention, a heat treatment is performed in a carbonitriding gas atmosphere containing ammonia, nitrogen and carbon dioxide to form a compound layer mainly composed of epsilon iron nitride on the surface of the material to be treated. In the gas nitrocarburizing method to be formed, the concentration of the carbon dioxide is controlled to 20.0 to 80.0 g / h per 1.0 m 2 of surface area of the material to be treated. In the gas nitrocarburizing treatment performed in this manner, a compound layer having excellent corrosion resistance is efficiently formed by suppressing the concentration of carbon dioxide within a predetermined range. In this method, the surface area of the material to be treated can be specified by measuring the weight of the material to be treated or by measuring the volume of the material to be treated. According to the former identification method, the total surface area can be easily grasped when small parts are processed in large quantities at a time. According to the latter identification method, the surface area of the workpiece having a complicated shape can be accurately determined. Can be grasped.

【0008】[0008]

【発明の実施の形態】本発明に係る鋼部材を製造するに
は、加熱手段およびガス置換手段を付設した窒化炉内に
鋼部材を装入し、先ず、窒化炉内を真空引きしてその内
部に窒素ガスを導入しながら、標準の軟窒化温度( 570
〜580 ℃)まで昇温する。そして、軟窒化温度まで昇温
したら、窒化炉内にアンモニアガスと、窒素と二酸化炭
素とを所定の割合で供給し、窒化炉内を浸炭窒化性ガス
雰囲気として所定時間保持し、ガス軟窒化処理を行い、
この処理後、例えば、窒化炉に隣接して設けた油槽内の
油中に鋼部材を浸漬して急冷する。このガス軟窒化処理
により、鋼部材の表面には、主にイプシロン鉄窒化物
(ε−Fe2-3N)よりなる化合物層が5〜15μmの厚さ
に形成されると共に、この化合物層下に窒素の拡散層が
形成され、耐摩耗性と耐食性とに優れた鋼部材が得られ
る。
BEST MODE FOR CARRYING OUT THE INVENTION To manufacture a steel member according to the present invention, a steel member is charged into a nitriding furnace provided with heating means and gas replacement means, and the inside of the nitriding furnace is first evacuated to a vacuum. While introducing nitrogen gas inside, the standard soft nitriding temperature (570
~ 580 ℃). Then, when the temperature is raised to the nitrocarburizing temperature, ammonia gas, nitrogen and carbon dioxide are supplied into the nitriding furnace at a predetermined ratio, and the inside of the nitriding furnace is maintained as a carbonitriding gas atmosphere for a predetermined time to perform a gas nitrocarburizing treatment. Do
After this treatment, for example, the steel member is immersed in oil in an oil tank provided adjacent to the nitriding furnace and rapidly cooled. By this gas nitrocarburizing treatment, a compound layer mainly composed of epsilon iron nitride (ε-Fe 2-3 N) is formed on the surface of the steel member to a thickness of 5 to 15 μm, and a layer under the compound layer is formed. A nitrogen diffusion layer is formed on the steel member, and a steel member having excellent wear resistance and corrosion resistance can be obtained.

【0009】上記ガス軟窒化処理に際しては、アンモニ
アガスと、窒素と二酸化炭素との混合比率を適当に設定
することにより、化合物層内に、炭素濃度が0.2〜1.0
重量%でかつ窒素濃度が5.0〜8.0重量%となる安定層を
設けるようにする。この時、二酸化炭素は、被処理材の
表面積1.0 m2 当り20.0〜80.0g/hとなるように供給
する。これにより、化合物層内の安定層が耐食性の安定
維持に寄与し、耐食性のバラツキの少ない表面処理鋼部
材を提供できるようになる。なお、前記安定層は、化合
物層の全厚さにわたって設けることが望ましいが、本実
施の形態のように適用する部材の耐摩耗性が高い場合
は、化合物層の全厚さのうち、部分的に設けてもよい。
In the above gas nitrocarburizing treatment, by appropriately setting the mixing ratio of ammonia gas, nitrogen and carbon dioxide, the carbon concentration in the compound layer becomes 0.2 to 1.0.
A stable layer having a weight percentage of 5.0 to 8.0 weight% is provided. At this time, carbon dioxide is supplied so as to be 20.0 to 80.0 g / h per 1.0 m 2 of surface area of the material to be treated. Thereby, the stable layer in the compound layer contributes to the maintenance of stable corrosion resistance, and it becomes possible to provide a surface-treated steel member with little variation in corrosion resistance. The stable layer is desirably provided over the entire thickness of the compound layer. However, when the member to be applied has high abrasion resistance as in the present embodiment, a part of the total thickness of the compound layer is used. May be provided.

【0010】ここで、必要により酸化処理を追加する場
合は、上記窒化炉と同様に加熱手段およびガス置換手段
を付設した酸化炉を別途用意し、この中に上記ガス軟窒
化処理を終えた鋼部材を装入して、先ず、酸化炉内を真
空引きしてその内部に窒素ガスを導入しながら、標準の
水蒸気酸化温度( 400〜500 ℃)まで昇温する。そし
て、水蒸気酸化温度まで昇温したら、酸化炉内に水蒸気
を所定時間だけ吹込み、その後、酸化炉から取出して大
気冷却する。この酸化処理により上記化合物層上に、主
に四三酸化鉄(Fe34 )よりなる酸化物層が1〜3μ
m程度の厚さに形成され、耐摩耗性と耐食性とに、より
優れた鋼部材が得られるようになる。
Here, in the case where an oxidation treatment is added if necessary, an oxidation furnace provided with heating means and gas replacement means is separately prepared in the same manner as in the above-mentioned nitriding furnace, and the steel which has been subjected to the gas nitrocarburizing treatment is provided therein. First, the inside of the oxidation furnace is evacuated and nitrogen gas is introduced therein, and the temperature is raised to a standard steam oxidation temperature (400 to 500 ° C.). Then, when the temperature is raised to the steam oxidation temperature, steam is blown into the oxidation furnace for a predetermined time, and then taken out of the oxidation furnace and cooled to the atmosphere. By this oxidation treatment, an oxide layer mainly composed of triiron tetroxide (Fe 3 O 4 ) is formed on the compound layer by 1 to 3 μm.
m, and a steel member having more excellent wear resistance and corrosion resistance can be obtained.

【0011】[0011]

【実施例】実施例1 JIS S35C製の油圧緩衝器用ピストンロッド素材(長さ約
150mm)に必要な切削加工を加え、さらにその表面を研
削加工して、所定のロッド寸法(径10mm)と表面粗さ
(中心線平均粗さRa0.08μm以下)に仕上げた。次
に、前記ロッド(ピストンロッド)を、1000本を一単位
として専用の治具にセットし、ロッド表面に付着してい
た研削油を洗浄除去した後、窒化炉に装入し、アンモニ
アガスと、窒素と二酸化炭素とを所定の比率で炉内に供
給し、特に二酸化炭素については、予め寸法から計算に
より求めた全ロッドの表面積に基いて1.0m2当り77.0g
/hとなるように供給し、浸炭窒化性ガス雰囲気中に
て、比率で混合した浸炭窒化性ガス雰囲気中にて、 570
℃に60分保持するガス軟窒化処理を施し、その後急冷し
た。
[Example] Example 1 JIS S35C piston rod material for hydraulic shock absorber (length approx.
(150 mm), and the surface was further ground to finish to a predetermined rod size (diameter 10 mm) and surface roughness (center line average roughness Ra 0.08 μm or less). Next, the rods (piston rods) were set in a dedicated jig with 1,000 rods as one unit. After the grinding oil attached to the rod surface was removed by washing, the rod was charged into a nitriding furnace, and ammonia gas and ammonia gas were removed. , Nitrogen and carbon dioxide are supplied into the furnace at a predetermined ratio, and particularly for carbon dioxide, 77.0 g per 1.0 m 2 based on the surface area of all rods previously calculated from dimensions.
/ h, in a carbonitriding gas atmosphere, in a carbonitriding gas atmosphere mixed in proportion,
A gas soft nitriding treatment was performed at 60 ° C. for 60 minutes, followed by rapid cooling.

【0012】そして、上記一連の処理を終えた後、各ロ
ッドを治具から取り外し、そのうちの複数本について
は、表面の化合物層の分析試験を行ってその厚さ方向に
おける炭素濃度分布と窒素濃度分布とを求め、また、他
の複数本については、JIS Z2371塩水噴霧試験を行い、
腐食面積率からレイティングナンバー(JIS H8502)を
求めた。なお、複数本のロッドについて顕微鏡試験を行
って化合物層の厚さを測定した結果、化合物層の厚さは
10〜15μmであった。
After the above series of treatments, each rod is removed from the jig, and a plurality of the rods are subjected to an analytical test of the compound layer on the surface to determine the carbon concentration distribution and the nitrogen concentration in the thickness direction. Distribution and, for other multiple tubes, conduct JIS Z2371 salt spray test,
The rating number (JIS H8502) was determined from the corrosion area ratio. In addition, as a result of performing a microscope test on a plurality of rods and measuring the thickness of the compound layer, the thickness of the compound layer is
It was 10 to 15 μm.

【0013】実施例2 実施例1と同じ寸法条件のピストンロッド素材に、実施
例1と同じガス雰囲気にて、570℃に45分保持するガス
軟窒化処理を施し、その後、実施例1と同様の手順で、
表面の化合物層の分析試験および塩水噴霧試験を行っ
た。なお、複数本のロッドについて顕微鏡観察を行って
化合物層の厚さを測定した結果、化合物層の厚さは5〜
8μmであった。
Example 2 A piston rod material having the same dimensions as in Example 1 was subjected to a gas nitrocarburizing treatment at 570 ° C. for 45 minutes in the same gas atmosphere as in Example 1, and thereafter the same as in Example 1. In the procedure,
An analysis test and a salt spray test of the compound layer on the surface were performed. In addition, as a result of performing microscopic observation on a plurality of rods and measuring the thickness of the compound layer, the thickness of the compound layer was 5 to 5.
It was 8 μm.

【0014】実施例3 実施例1と同じ寸法条件のピストンロッド素材に、実施
例1と同じガス雰囲気にて、580℃に60分保持するガス
軟窒化処理を施し、その後、実施例1と同様の手順で、
表面の化合物層の分析試験および塩水噴霧試験を行っ
た。なお、複数本のロッドについて顕微鏡観察を行って
化合物層の厚さを測定した結果、化合物層の厚さは12〜
15μmであった。
Embodiment 3 A piston rod material having the same dimensional conditions as in Embodiment 1 is subjected to a gas nitrocarburizing treatment at 580 ° C. for 60 minutes in the same gas atmosphere as in Embodiment 1, and then the same as in Embodiment 1. In the procedure,
An analysis test and a salt spray test of the compound layer on the surface were performed. In addition, as a result of measuring the thickness of the compound layer by performing microscopic observation on a plurality of rods, the thickness of the compound layer is 12 to
It was 15 μm.

【0015】実施例4 実施例1と同じピストンロッド素材およびロッド径のも
のを用い、長さをそれぞれ異ならせ、これを実施例1と
同様の表面粗さに仕上げ、一回目の処理用として前記ロ
ッド(ピストンロッド)2500本を一単位として専用の治
具にセットし、さらに二回目の処理用として前記ロッド
1250本を一単位として専用の治具にセットした。次に、
一回目の処理用の全ロッド(2500本)の重さを測定し、
その重さをガス軟窒化処理設備の制御装置に入力して、
全ロッドの表面積を演算させた。そして、この一回目の
処理用のロッド表面に付着している研削油を洗浄除去し
た後、窒化炉に装入し、アンモニアガスと、窒素と二酸
化炭素とを所定の割合で炉内に供給し、特に二酸化炭素
については、前記重さから求めた全ロッドの表面積に基
いて1.0m2当り44.0g/hとなるように供給し、浸炭窒
化性ガス雰囲気中にて、570℃に60分保持するガス軟窒
化処理を施し、その後急冷した。次に、二回目の処理用
のロッドを、一回目と同様に重さを測定して全ロッドの
表面積を求め、表面に付着している研削油を洗浄除去
し、窒化炉に装入し、アンモニアガスと、窒素と二酸化
炭素とを所定の割合で炉内に供給する。この時、二回目
の処理用ロッドは、一回目の処理用ロッドに対して測定
した重さが半分であることが分かり、その全ロッド(12
50本)の表面積は一回目の処理用の全ロッドの表面積の
半分(1/2)となる。したがって二酸化炭素の供給量
もこの表面積に基いて1.0m2当り44.0g/hとなるよう
に調整し、一回目と同じ条件でガス軟窒化処理を行っ
た。そして、上記一連の処理を終えた後、一回目および
二回目処理済みの各ロッドを治具から取り外し、所定の
表面粗さ(中心線表面粗さRa0.08μm以下)に仕上
げ、一回目処理済みのロッド80本と二回目処理済みのロ
ッド40本については、JIS Z2371塩水噴霧試験を行って
発錆状況を観察した。なお、一回目処理済みのロッド20
本と二回目処理済みのロッド10本について、顕微鏡試験
を行って化合物層の厚さを測定した結果、化合物層の厚
さは10〜13μmであった。
Example 4 The same piston rod material and rod diameter as in Example 1 were used, and the lengths thereof were made different from each other. These were finished to the same surface roughness as in Example 1, and used for the first treatment. Set 2500 rods (piston rods) as a unit in a special jig, and use the rods for the second processing.
1250 pieces were set as a unit in a special jig. next,
Measure the weight of all rods (2500) for the first treatment,
The weight is input to the control device of the gas nitrocarburizing equipment,
The surface area of all rods was calculated. After washing and removing the grinding oil adhering to the surface of the rod for the first treatment, it is charged into a nitriding furnace, and ammonia gas, nitrogen and carbon dioxide are supplied into the furnace at a predetermined ratio. In particular, carbon dioxide is supplied so as to be 44.0 g / h per 1.0 m 2 based on the surface area of the entire rod determined from the weight, and is maintained at 570 ° C. for 60 minutes in a carbonitriding gas atmosphere. Gas nitrocarburizing treatment, followed by rapid cooling. Next, the rod for the second treatment was measured in the same manner as in the first treatment to determine the surface area of all the rods, the grinding oil attached to the surface was removed by washing, and the rod was charged into a nitriding furnace. Ammonia gas, nitrogen and carbon dioxide are supplied into the furnace at a predetermined ratio. At this time, the weight of the second processing rod was found to be half that of the first processing rod, and all the rods (12
The surface area of 50 rods is half (1/2) of the surface area of all rods for the first treatment. Therefore, the supply amount of carbon dioxide was also adjusted to 44.0 g / h per 1.0 m 2 based on this surface area, and the gas soft nitriding treatment was performed under the same conditions as the first time. After the above series of treatments, the rods subjected to the first and second treatments are removed from the jig, and finished to a predetermined surface roughness (a center line surface roughness Ra of 0.08 μm or less), and the first treatment is completed. JIS Z2371 salt spray test was conducted on 80 rods of the above and 40 rods which had been subjected to the second treatment to observe the rusting state. Note that the rod 20
The thickness of the compound layer was determined to be 10 to 13 μm by performing a microscopic test on the book and the ten rods that had been subjected to the second treatment and measuring the thickness of the compound layer.

【0016】なお、全ロッドの表面積を求めるにあたっ
て、上記実施例4のように重さから求めることに限ら
ず、ロッドを液体に浸漬してその体積を測定し、その体
積とロッド径とから表面積を求めるようにしてもよい。
In determining the surface area of all the rods, the rod is not limited to the weight as in the fourth embodiment, but the rod is immersed in a liquid, the volume is measured, and the surface area is determined from the volume and the rod diameter. May be obtained.

【0017】実施例5 実施例4と同じピストンロッド素材を用いて、これを実
施例4と同様のロッド寸法および表面粗さに仕上げ、そ
の2500本を専用の治具にセットし、ロッド表面に付着し
ている研削油を洗浄除去した後、窒化炉に装入し、アン
モニアガスと、窒素と二酸化炭素とを所定の割合で炉内
に供給し、特に二酸化炭素については、予め寸法から計
算により求めた全ロッドの表面積に基いて1.0m2当り3
1.0g/hとなるように供給し、浸炭窒化性ガス雰囲気中
にて、570℃に60分保持するガス軟窒化処理を施し、そ
の後急冷した。そして、上記一連の処理を終えた後、各
ロッドを治具から取り外し、所定の表面粗さ(中心線表
面粗さRa0.08μm以下)に仕上げ、そのうちの80本に
ついて、JIS Z2371塩水噴霧試験を行って発錆状況を観
察した。なお、ロッド20本について、顕微鏡試験を行っ
て化合物層の厚さを測定した結果、化合物層の厚さは10
〜13μmであった。
Example 5 The same piston rod material as in Example 4 was used to finish it to the same rod dimensions and surface roughness as in Example 4, and 2,500 of them were set in a special jig and placed on the rod surface. After washing and removing the attached grinding oil, it is charged into a nitriding furnace, and ammonia gas, nitrogen and carbon dioxide are supplied into the furnace at a predetermined ratio. 3 per 1.0m 2 based on the surface area of all rods found
The gas was supplied at a rate of 1.0 g / h, subjected to a gas nitrocarburizing treatment in a carbonitriding gas atmosphere at 570 ° C. for 60 minutes, and then rapidly cooled. After the above series of treatments, each rod is removed from the jig and finished to a predetermined surface roughness (center line surface roughness Ra 0.08 μm or less), and 80 of them are subjected to JIS Z2371 salt spray test. The rusting condition was observed. The thickness of the compound layer was measured by performing a microscopic test on 20 rods, and as a result, the thickness of the compound layer was 10
1313 μm.

【0018】実施例6 実施例4と同じピストンロッド素材を用いて、これを実
施例4と同様のロッド寸法および表面粗さに仕上げ、そ
の2500本を専用の治具にセットし、ロッド表面に付着し
ている研削油を洗浄除去した後、窒化炉に装入し、アン
モニアガスと、窒素と二酸化炭素とを所定の割合で炉内
に供給し、特に二酸化炭素については、予め寸法から計
算により求めた全ロッドの表面積に基いて1.0m2当り5
8.8g/hとなるように供給し、浸炭窒化性ガス雰囲気中
にて、570℃に60分保持するガス軟窒化処理を施し、そ
の後急冷した。そして、上記一連の処理を終えた後、各
ロッドを治具から取り外し、所定の表面粗さ(中心線表
面粗さRa0.08μm以下)に仕上げ、そのうちの40本に
ついて、JIS Z2371塩水噴霧試験を行って発錆状況を観
察した。なお、ロッド20本について、顕微鏡試験を行っ
て化合物層の厚さを測定した結果、化合物層の厚さは10
〜13μmであった。
Example 6 Using the same piston rod material as in Example 4, this was finished to the same rod dimensions and surface roughness as in Example 4, 2500 of which were set in a special jig and placed on the rod surface. After washing and removing the attached grinding oil, it is charged into a nitriding furnace, and ammonia gas, nitrogen and carbon dioxide are supplied into the furnace at a predetermined ratio. 5 per 1.0m 2 based on the determined surface area of all rods
The gas was supplied at 8.8 g / h, gas nitrocarburizing treatment was performed at 570 ° C. for 60 minutes in a carbonitriding gas atmosphere, and then quenched. After the above series of treatments, each rod is removed from the jig and finished to a predetermined surface roughness (center line surface roughness Ra 0.08 μm or less). Forty of the rods are subjected to a JIS Z2371 salt spray test. The rusting condition was observed. The thickness of the compound layer was measured by performing a microscopic test on 20 rods, and as a result, the thickness of the compound layer was 10
1313 μm.

【0019】比較例1 実施例1と同じピストンロッド素材に、アンモニアガス
と、窒素と二酸化炭素とを、実施例1とは異なる比率で
混合した浸炭窒化性ガス雰囲気にて、 570℃に60分保持
するガス軟窒化処理を施し、その後、実施例1と同様の
手順で、表面の化合物層の分析試験および塩水噴霧試験
を行った。なお、複数本のロッドについて顕微鏡試験を
行って化合物層の厚さを測定した結果、化合物層の厚さ
は10〜15μmであった。
Comparative Example 1 The same piston rod material as in Example 1 was mixed with ammonia gas, nitrogen and carbon dioxide at a different ratio from that in Example 1 in a carbonitriding gas atmosphere at 570 ° C. for 60 minutes. The retained gas nitrocarburizing treatment was performed, and then an analysis test and a salt spray test of the compound layer on the surface were performed in the same procedure as in Example 1. In addition, as a result of performing a microscope test on a plurality of rods and measuring the thickness of the compound layer, the thickness of the compound layer was 10 to 15 μm.

【0020】比較例2 実施例4と同じピストンロッド素材を用いて、これを実
施例4と同様のロッド寸法および表面粗さに仕上げ、そ
の1250本を専用の治具にセットし、ロッド表面に付着し
ている研削油を洗浄除去した後、窒化炉に装入し、アン
モニアガスと、窒素と二酸化炭素とを所定の割合で炉内
に供給し、特に二酸化炭素については、予め寸法から計
算により求めた全ロッドの表面積に基いて1.0m2当り8
8.0g/hとなるように供給し、浸炭窒化性ガス雰囲気中
にて、570℃に60分保持するガス軟窒化処理を施し、そ
の後急冷した。そして、上記一連の処理を終えた後、各
ロッドを治具から取り外し、所定の表面粗さ(中心線表
面粗さRa0.08μm以下)に仕上げ、そのうちの40本に
ついて、JIS Z2371塩水噴霧試験を行って発錆状況を観
察した。なお、ロッド10本について、顕微鏡試験を行っ
て化合物層の厚さを測定した結果、化合物層の厚さは10
〜13μmであった。
Comparative Example 2 Using the same piston rod material as in Example 4, this was finished to the same rod dimensions and surface roughness as in Example 4, and 1250 of them were set in a special jig and placed on the rod surface. After washing and removing the attached grinding oil, it is charged into a nitriding furnace, and ammonia gas, nitrogen and carbon dioxide are supplied into the furnace at a predetermined ratio. 8 per 1.0m 2 based on the determined surface area of all rods
The mixture was supplied at a rate of 8.0 g / h, subjected to a gas nitrocarburizing treatment at 570 ° C. for 60 minutes in a carbonitriding gas atmosphere, and then rapidly cooled. After the above series of treatments, each rod is removed from the jig and finished to a predetermined surface roughness (center line surface roughness Ra 0.08 μm or less), and 40 of them are subjected to a JIS Z2371 salt water spray test. The rusting condition was observed. The thickness of the compound layer was measured as a result of performing a microscope test on the ten rods and measuring the thickness of the compound layer.
1313 μm.

【0021】比較例3 実施例4と同じピストンロッド素材を用いて、これを実
施例1と同様のロッド寸法および表面粗さに仕上げ、そ
の1250本を専用の治具にセットし、ロッド表面に付着し
ている研削油を洗浄除去した後、窒化炉に装入し、アン
モニアガスと、窒素と二酸化炭素とを所定の割合で炉内
に供給し、特に二酸化炭素については、予め寸法から計
算により求めた全ロッドの表面積に基いて1.0m2当り1
1.4g/hとなるように供給し、浸炭窒化性ガス雰囲気中
にて、570℃に60分保持するガス軟窒化処理を施し、そ
の後急冷した。そして、上記一連の処理を終えた後、各
ロッドを治具から取り外し、所定の表面粗さ(中心線表
面粗さRa0.08μm以下)に仕上げ、そのうちの40本に
ついて、JIS Z2371塩水噴霧試験を行って発錆状況を観
察した。なお、ロッド10本について、顕微鏡試験を行っ
て化合物層の厚さを測定した結果、化合物層の厚さは3
〜5μmであった。
Comparative Example 3 The same piston rod material as in Example 4 was used and finished to the same rod dimensions and surface roughness as in Example 1, and 1250 of them were set in a special jig and placed on the rod surface. After washing and removing the attached grinding oil, it is charged into a nitriding furnace, and ammonia gas, nitrogen and carbon dioxide are supplied into the furnace at a predetermined ratio. 1 per 1.0m 2 based on the surface area of all rods found
The mixture was supplied at a rate of 1.4 g / h and subjected to a gas nitrocarburizing treatment in a carbonitriding gas atmosphere at 570 ° C. for 60 minutes, followed by rapid cooling. After the above series of treatments, each rod is removed from the jig and finished to a predetermined surface roughness (center line surface roughness Ra 0.08 μm or less). Forty of the rods are subjected to a JIS Z2371 salt spray test. The rusting condition was observed. The thickness of the compound layer was measured by performing a microscopic test on ten rods.
55 μm.

【0022】試験結果 表1および図1、2は、実施例1〜3および比較例1に
ついての表面の化合物層中の炭素濃度、窒素濃度の分布
を示したものである。なお、同図中における各プロット
は、複数の分析結果の平均値を示している。これより、
化合物層の厚さ方向における炭素濃度は、実施例1、実
施例2、実施例3および比較例1の表面処理を施したピ
ストンロッド(処理材)共に、1.0重量%以下(0.2重量
%以上)に収まっている。一方、化合物層の厚さ方向に
おける窒素濃度は、実施例1、実施例2および実施例3
共に、処理材の表面側に5.0重量%以上となる領域(安
定層)が認められるのに対し、比較例1の処理材には、
そのような5.0重量%以上となる領域は認められない。
Test Results Table 1 and FIGS. 1 and 2 show the distributions of carbon concentration and nitrogen concentration in the compound layer on the surface for Examples 1 to 3 and Comparative Example 1. Note that each plot in the figure shows an average value of a plurality of analysis results. Than this,
The carbon concentration in the thickness direction of the compound layer was 1.0% by weight or less (0.2% by weight or more) in each of the surface-treated piston rods (treated materials) of Example 1, Example 2, Example 3 and Comparative Example 1. It fits in. On the other hand, the nitrogen concentration in the thickness direction of the compound layer was determined in Example 1, Example 2, and Example 3.
In both cases, a region (stable layer) of 5.0% by weight or more was observed on the surface side of the treatment material, whereas the treatment material of Comparative Example 1 contained:
Such a region having a content of 5.0% by weight or more is not recognized.

【0023】[0023]

【表1】 [Table 1]

【0024】図3は、実施例1〜3および比較例1で表
面処理を施したピストンロッド(処理材)各5本の塩水
噴霧試験(試験時間168時間)の結果を示したものであ
る。これより、実施例1、実施例2および実施例3で表
面処理を施した処理材は、比較例1の処理材に比べて耐
食性に優れていることが確認できた。実施例1、実施例
2および実施例3の処理材が耐食性に優れている理由
は、上記したように軟窒化処理により形成された化合物
層内に、炭素濃度が0.2〜1.0重量%でかつ窒素濃度が5.
0〜8.0重量%となる安定層が存在するためと推定され
る。
FIG. 3 shows the results of the salt spray test (test time: 168 hours) for each of the five piston rods (treated materials) subjected to the surface treatment in Examples 1 to 3 and Comparative Example 1. From this, it was confirmed that the treated materials subjected to the surface treatment in Examples 1, 2 and 3 had better corrosion resistance than the treated materials of Comparative Example 1. The reason why the treated materials of Examples 1, 2 and 3 are excellent in corrosion resistance is that the carbon concentration in the compound layer formed by the nitrocarburizing treatment is 0.2 to 1.0% by weight and nitrogen 5.
This is presumed to be due to the presence of a stable layer of 0 to 8.0% by weight.

【0025】以上述べたように、化合物層の厚さを、従
来技術では18〜20μmであったのを本発明では5〜15μ
mになるように薄くしている一方、その化合物層内に、
炭素農濃度が0.2〜1.0重量%の範囲でかつ窒素濃度が5.
0〜8.0重量%の範囲の安定層を設けたので、化合物層の
形成時間を大幅に短縮(従来、約2時間かかったものが
60分で済む)でき、単位時間あたりの生産数の増加を図
ることができ、しかも、耐摩耗性および耐食性の面でも
安定して優れた性能を発揮できる。
As described above, the thickness of the compound layer is from 18 to 20 μm in the prior art, but from 5 to 15 μm in the present invention.
m, while in the compound layer,
The carbon concentration is in the range of 0.2-1.0% by weight and the nitrogen concentration is 5.
Since a stable layer in the range of 0 to 8.0% by weight was provided, the formation time of the compound layer was greatly reduced (conventionally, it took about 2 hours.
60 minutes) and increase the number of production per unit time. In addition, stable and excellent performance can be achieved in terms of wear resistance and corrosion resistance.

【0026】表2は、実施例4〜6および比較例2,3
についての塩水噴霧試験の結果を示したものである。こ
れより、各実施例4〜6の処理品共に72時間試験後ま
で発錆は一本も認めれなかった。また、実施例4の一回
目処理品、二回目処理品の比較から、一回の処理数によ
る差も現われず、大量処理が可能であることが分った。
これに対し、二酸化炭素濃度を、80.0g/h・m2よりも
高く設定して処理した比較例2および20.0g/h・m2
りも低く設定して処理した比較例3の処理品は、比較的
早期(48時間以内)に発錆するものが認められ、二酸
化炭素の濃度を所定範囲に制御することが、耐食性の向
上に大きく寄与することが分った。
Table 2 shows Examples 4 to 6 and Comparative Examples 2 and 3.
3 shows the results of a salt spray test on the sample. As a result, no rust was observed in any of the treated products of Examples 4 to 6 until after the test for 72 hours. In addition, from the comparison between the first processed product and the second processed product of Example 4, no difference due to the number of processes performed at one time appeared, and it was found that large-scale processing was possible.
In contrast, the treated products of Comparative Example 2 in which the carbon dioxide concentration was set to be higher than 80.0 g / h · m 2 and Comparative Example 3 in which the carbon dioxide concentration was set to be lower than 20.0 g / hm 2 were Rust was generated relatively early (within 48 hours), and it was found that controlling the concentration of carbon dioxide within a predetermined range greatly contributed to the improvement of corrosion resistance.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】以上の説明で明らかなように、本発明に
係る表面処理鋼部材によれば、軟窒化処理により形成さ
れる化合物層内に炭素濃度および窒素濃度を所定範囲に
収めた安定層を設けると共に、化合物層の厚さを薄くし
たので、耐摩耗性はもとより、耐食性の面でも安定して
優れた性能を発揮でき、しかも、化合物層を薄くした
分、単位時間あたりの生産数の増加を図ることができ、
生産性が向上する。また、本発明に係るガス軟窒化方法
によれば、二酸化炭素の濃度を被処理材の表面積との関
係で所定の範囲に制御することで、耐摩耗性はもとよ
り、耐食性の面でも安定して優れた性能を発揮する化合
物層を形成することができる。
As is apparent from the above description, according to the surface-treated steel member of the present invention, the stable layer in which the carbon concentration and the nitrogen concentration are within a predetermined range in the compound layer formed by the nitrocarburizing treatment. And the thickness of the compound layer is reduced, so that not only abrasion resistance but also corrosion resistance can be achieved stably and excellent performance.Moreover, as the compound layer is thinner, the number of production per unit time is reduced. Increase,
Productivity is improved. Further, according to the gas nitrocarburizing method of the present invention, by controlling the concentration of carbon dioxide within a predetermined range in relation to the surface area of the material to be treated, not only the wear resistance, but also the corrosion resistance is stable. A compound layer exhibiting excellent performance can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の表面炭素濃度分布を比較例と
対比して示すグラフである。
FIG. 1 is a graph showing a surface carbon concentration distribution of an example of the present invention in comparison with a comparative example.

【図2】本発明の実施例の表面窒素濃度分布を比較例と
対比して示すグラフである。
FIG. 2 is a graph showing a surface nitrogen concentration distribution of an example of the present invention in comparison with a comparative example.

【図3】従来技術における化合物層の厚さと、炭素
(C)濃度、窒素(N)濃度および耐食性との相関を示
すグラフである。
FIG. 3 is a graph showing the correlation between the thickness of a compound layer and the carbon (C) concentration, nitrogen (N) concentration, and corrosion resistance in the prior art.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 要 神奈川県川崎市川崎区富士見1丁目6番3 号 トキコ株式会社内 Fターム(参考) 4K028 AA03 AC07 AC08  ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Kaname Ueno 1-6-3 Fujimi, Kawasaki-ku, Kawasaki-shi, Kanagawa F-term in Tokiko Corporation 4K028 AA03 AC07 AC08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 軟窒化処理により表面に、主にイプシロ
ン鉄窒化物よりなる化合物層を形成した表面処理鋼部材
において、前記化合物層内に、炭素濃度が0.2〜1.0重量
%範囲でかつ窒素濃度が5.0〜8.0重量%範囲の安定層を
設け、前記化合物層の厚さを5.0〜15.0μmの範囲に収
めたことを特徴とする表面処理鋼部材。
1. A surface-treated steel member having a compound layer mainly composed of epsilon iron nitride formed on its surface by nitrocarburizing treatment, wherein the compound layer has a carbon concentration in the range of 0.2 to 1.0% by weight and a nitrogen concentration in the compound layer. Is provided with a stable layer in the range of 5.0 to 8.0% by weight, and the thickness of the compound layer is set in the range of 5.0 to 15.0 μm.
【請求項2】 化合物層上に、さらに酸化処理により主
に四三酸化鉄よりなる酸化物層を積層形成したことを特
徴とする請求項1に記載の表面処理鋼部材。
2. The surface-treated steel member according to claim 1, wherein an oxide layer mainly composed of triiron tetroxide is further formed on the compound layer by oxidation treatment.
【請求項3】 アンモニア、窒素および二酸化炭素を含
む浸炭窒化性ガス雰囲気中で熱処理をして被処理材の表
面に主にイプシロン鉄窒化物よりなる化合物層を形成す
るガス軟窒化処理方法において、前記二酸化炭素の濃度
を、被処理材の表面積1.0 m2 当り20.0〜80.0g/hに
制御することを特徴とするガス軟窒化処理方法。
3. A gas nitrocarburizing method for performing a heat treatment in a carbonitriding gas atmosphere containing ammonia, nitrogen and carbon dioxide to form a compound layer mainly composed of epsilon iron nitride on the surface of a material to be treated. A gas nitrocarburizing method characterized in that the concentration of the carbon dioxide is controlled to 20.0 to 80.0 g / h per 1.0 m 2 of surface area of the material to be treated.
JP2001303680A 2001-01-31 2001-09-28 Method of gas soft nitriding treatment of steel members Expired - Fee Related JP4998654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001303680A JP4998654B2 (en) 2001-01-31 2001-09-28 Method of gas soft nitriding treatment of steel members

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001024223 2001-01-31
JP2001024223 2001-01-31
JP2001-24223 2001-01-31
JP2001303680A JP4998654B2 (en) 2001-01-31 2001-09-28 Method of gas soft nitriding treatment of steel members

Publications (2)

Publication Number Publication Date
JP2002302756A true JP2002302756A (en) 2002-10-18
JP4998654B2 JP4998654B2 (en) 2012-08-15

Family

ID=26608678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001303680A Expired - Fee Related JP4998654B2 (en) 2001-01-31 2001-09-28 Method of gas soft nitriding treatment of steel members

Country Status (1)

Country Link
JP (1) JP4998654B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502220A (en) * 2014-12-23 2018-01-25 アシュ.エー.エフ Method of surface treatment of steel parts by nitriding or soft nitriding, oxidation and subsequent impregnation
CN109594100A (en) * 2018-12-07 2019-04-09 东华大学 A kind of C3N4Loaded Cu/Sn alloy material and its preparation and application
CN113416918A (en) * 2021-05-28 2021-09-21 昆山三民涂赖电子材料技术有限公司 Nitrocarburizing process for extremely-thin parts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174572A (en) * 1982-04-02 1983-10-13 Oriental Eng Kk Gas soft nitriding method
JPS6452054A (en) * 1981-10-15 1989-02-28 Lucas Ind Plc Corrosion resistant steel parts and production thereof
JPH07300662A (en) * 1994-04-28 1995-11-14 Sumitomo Metal Ind Ltd Carbo-nitriding treated steel excellent in peeling resistance of surface
JPH1150141A (en) * 1997-07-31 1999-02-23 Tokico Ltd Surface hardening treatment for steel parts
JPH11100655A (en) * 1997-09-25 1999-04-13 Toyota Motor Corp Gas soft-nitriding treatment
JPH11269630A (en) * 1998-03-23 1999-10-05 Tokico Ltd Surface treated steel member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452054A (en) * 1981-10-15 1989-02-28 Lucas Ind Plc Corrosion resistant steel parts and production thereof
JPS58174572A (en) * 1982-04-02 1983-10-13 Oriental Eng Kk Gas soft nitriding method
JPH07300662A (en) * 1994-04-28 1995-11-14 Sumitomo Metal Ind Ltd Carbo-nitriding treated steel excellent in peeling resistance of surface
JPH1150141A (en) * 1997-07-31 1999-02-23 Tokico Ltd Surface hardening treatment for steel parts
JPH11100655A (en) * 1997-09-25 1999-04-13 Toyota Motor Corp Gas soft-nitriding treatment
JPH11269630A (en) * 1998-03-23 1999-10-05 Tokico Ltd Surface treated steel member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502220A (en) * 2014-12-23 2018-01-25 アシュ.エー.エフ Method of surface treatment of steel parts by nitriding or soft nitriding, oxidation and subsequent impregnation
CN109594100A (en) * 2018-12-07 2019-04-09 东华大学 A kind of C3N4Loaded Cu/Sn alloy material and its preparation and application
CN113416918A (en) * 2021-05-28 2021-09-21 昆山三民涂赖电子材料技术有限公司 Nitrocarburizing process for extremely-thin parts

Also Published As

Publication number Publication date
JP4998654B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
US9695488B2 (en) Steel for bolt use, bolt, and method for manufacturing bolt
WO2013151009A1 (en) Steel wire rod or steel bar having excellent cold forgeability
JP2009503246A (en) Austenitic stainless steel strip with bright surface finish and excellent mechanical properties
JP2013147728A (en) Steel for mechanical structure for cold working, and method for manufacturing the same
JPWO2019044970A1 (en) Carburizing steel sheet and method for manufacturing carburizing steel sheet
US20080277030A1 (en) Composition and Process for Enhanced Properties of Ferrous Components
TW201708562A (en) High strength steel exhibiting good ductility and method of production via quenching and partitioning treatment by zinc bath
CN103797144B (en) Forge hot rolling bar steel or wire rod
JPWO2012073896A1 (en) Rolled steel bar or wire rod for hot forging
TW201704499A (en) Steel wire for use in bolts that has excellent cold headability and resistance to delayed fracture after quenching and tempering, and bolt
JPS62149859A (en) Production of beta type titanium alloy wire
JP2002302756A (en) Surface treated steel member and gas soft nitriding method
JPH11269630A (en) Surface treated steel member
US11359271B2 (en) Nitriding treatment method of steel member
JP6123950B1 (en) Stainless steel plate for spring and manufacturing method thereof
JP2002302715A (en) Method for manufacturing steel product
JP2000073156A (en) Production of nitrided stainless steel
JP2010222649A (en) Production method of carbon steel material and carbon steel material
JP4806722B2 (en) Metal salt bath nitriding method and metal produced by the method
Hubbard Characterisation of a commercial active screen plasma nitriding system
JP7178832B2 (en) Method for manufacturing surface hardening material
Rousseau Metallurgical characterization and performance of high speed steel tool materials used in metal cutting applications
JP7444096B2 (en) Hot rolled steel sheet and its manufacturing method
EP4282994A1 (en) Method for producing annealed and pickled steel sheet
JPH11256233A (en) Direct spheroidizing annealing method for steel wire rod

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080630

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090902

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Ref document number: 4998654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees