JPS58174572A - Gas soft nitriding method - Google Patents

Gas soft nitriding method

Info

Publication number
JPS58174572A
JPS58174572A JP5500882A JP5500882A JPS58174572A JP S58174572 A JPS58174572 A JP S58174572A JP 5500882 A JP5500882 A JP 5500882A JP 5500882 A JP5500882 A JP 5500882A JP S58174572 A JPS58174572 A JP S58174572A
Authority
JP
Japan
Prior art keywords
gas
nitriding
soft nitriding
added
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5500882A
Other languages
Japanese (ja)
Other versions
JPS6349748B2 (en
Inventor
Kazuyoshi Kawada
一喜 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Engineering Co Ltd
Original Assignee
Oriental Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Engineering Co Ltd filed Critical Oriental Engineering Co Ltd
Priority to JP5500882A priority Critical patent/JPS58174572A/en
Publication of JPS58174572A publication Critical patent/JPS58174572A/en
Publication of JPS6349748B2 publication Critical patent/JPS6349748B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding

Abstract

PURPOSE:To attain to increase a nitriding speed to a large extent, to reduce operation cost and to enhance safety, by adding CO2 to a gaseous soft nitriding atmosphere comprising an N2 gas, an NH3 gas and an org. solvent decomposing gas to subject a material to be treated to gaseous soft nitridation. CONSTITUTION:A CO2 gas is added to a gaseous soft nitriding atmosphere comprising an N2 gas, an NH3 gas and an org. solvent decomposing gas such as a methanol decomposing gas in an amount of 0.1-10vol%. By using this CO2 added gaseous soft nitriding atmosphere, a material to be treated is subjected to gaseous soft nitriding treatment within a temp. range of 450-650 deg.C. When the CO2 gas is added to mentioned above, CO2 is reacted with a H2 gas imparting bad influence to nitriding reaction to lower H2 partial pressure and, therefore, a nitriding speed can be accerelated.

Description

【発明の詳細な説明】 この発明は、ガス軟窒化法に関し、とくに、中性で安価
に得られる窒素ガスとアンモニアガスと有機液剤分解装
置から発生させた分解ガスとからなるガス軟窒化雰囲気
ガスに、二酸化炭素を添加してガス軟窒化処理を行なう
ことによジ、窒化速度を大幅に増加するとともに、操業
費を低減し、安全性を高くするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas soft nitriding method, and particularly relates to a gas soft nitriding atmosphere consisting of neutral and inexpensively obtained nitrogen gas, ammonia gas, and cracked gas generated from an organic liquid decomposition device. By adding carbon dioxide to the gas soft nitriding process, the nitriding rate can be greatly increased, operating costs can be reduced, and safety can be improved.

一般に、アンモニアガスによるガス窒化法は、高他なア
ンモニアガスを多量に使用して処理時間が長く、A# 
、 Or 、 Ti 、 V 、 Mn 、 Si  
などの窒化物生成元素を含む窒化鋼にしか適用できず、
用途が限定される等の制約がある。このガス窒化法は、
アンモニアの分解による窒化反応のみを目的とするもの
であるが、アンモニアガスと吸熱型変成ガスとを用いる
ガス軟窒化法は、窒化と浸炭との双方の反応が同時に行
なわれ、炭素の存在によって窒化反応が促進して被処理
物の最外層に炭素を固溶した炭窒化物(ε−Fe>3 
N )が形成される点に特徴をもった処理法である。
Generally, the gas nitriding method using ammonia gas uses a large amount of expensive ammonia gas and takes a long time to process.
, Or, Ti, V, Mn, Si
It can only be applied to nitriding steel containing nitride-forming elements such as
There are restrictions such as limited use. This gas nitriding method is
Although the purpose is only to perform a nitriding reaction by decomposing ammonia, in the gas soft nitriding method that uses ammonia gas and an endothermic metamorphic gas, both nitriding and carburizing reactions occur at the same time, and the presence of carbon causes nitriding to occur. The reaction is accelerated and carbonitride (ε-Fe>3
This processing method is characterized by the formation of N.

しかしながら、従来のガス窒化法やガス軟窒化法におい
ては、アンモニアガスの分解反応により炉内の水素分圧
が高くなって、窒化速度が遅くなるという問題があり、
水素分圧を低下させるためには多量のアンモニアガスを
供給しなければならず、高価なアンモニアガスの消費量
が著しく増大して操業費が高くなる欠点がある。
However, in the conventional gas nitriding method and gas soft nitriding method, there is a problem that the hydrogen partial pressure in the furnace increases due to the decomposition reaction of ammonia gas, which slows down the nitriding rate.
In order to lower the hydrogen partial pressure, a large amount of ammonia gas must be supplied, which has the drawback of significantly increasing consumption of expensive ammonia gas and increasing operating costs.

また、従来のガス軟窒化法は、吸熱型変成ガスが炉内ガ
スの約50%導入されるため、−酸化炭素やメタンガス
等が多量に生成され被処理物にスーテイングが発生し易
くなるほか、ガス浄発の危険性が高くなる欠点がある。
In addition, in the conventional gas nitrocarburizing method, because about 50% of the gas in the furnace is endothermic converted gas, a large amount of carbon oxide and methane gas is generated, which tends to cause sooting in the workpiece. The disadvantage is that there is a high risk of gas purification.

さらに、従来のガス軟窒化法では、吸熱型変成ガスを発
生させるために大形の変成炉が必要となり、設備費が高
価となるだけでなく、変成炉の運転を常時管理しなけれ
ばならないという問題がある。
Furthermore, in the conventional gas nitrocarburizing method, a large-sized shift furnace is required to generate endothermic shift gas, which not only increases equipment costs but also requires constant management of the operation of the shift furnace. There's a problem.

この発明は、上記の問題を解決するためになされたもの
であり、この発明の目的は、窒化速度が大幅に増加する
ガス軟窒化法を提供することにあり、またこの発明の目
的は、安価な、操業費で安全に操業できるガス軟窒化法
を提供することにあり、さらにこの発明の目的は、fa
種を問わず短時間で有効な炭窒化層が得られるガス軟窒
化法を提供することにあり、さらにまた、この発明の目
的は、小形の有機液剤分解装置を用いる経済的なガス軟
窒化法を提供することにある。
This invention was made in order to solve the above problems, and the purpose of this invention is to provide a gas soft nitriding method in which the nitriding rate is significantly increased. Another object of the present invention is to provide a gas soft nitriding method that can be operated safely at low operating costs.
It is an object of the present invention to provide a gas soft nitriding method that can obtain an effective carbonitrided layer in a short time regardless of the species.It is also an object of the present invention to provide an economical gas soft nitriding method that uses a small organic liquid decomposition device. Our goal is to provide the following.

すなわち、この発明は、450〜650℃の温度範囲で
、窒素ガス、アンモニアガスおよび有機液剤分解ガスよ
りなるガス軟窒化雰囲気ガスに、二酸化炭素を0.1−
10容量%添加して被処理物のガス軟窒化処理を行なう
ことを特徴とするガス軟窒化法に係る。
That is, in the present invention, 0.1 - of carbon dioxide is added to a gas soft nitriding atmosphere consisting of nitrogen gas, ammonia gas, and organic liquid decomposition gas at a temperature range of 450 to 650°C.
It relates to a gas nitrocarburizing method characterized in that the material to be treated is subjected to gas nitrocarburizing treatment by adding 10% by volume.

この発明のガス軟窒化法においては、キャリアガスとし
て窒素ガスを、窒素供給用ガスとしてアンモニアガスを
使用し、炭素供給用ガスとして有機液剤分解ガスを使用
する。
In the gas nitrocarburizing method of the present invention, nitrogen gas is used as a carrier gas, ammonia gas is used as a nitrogen supply gas, and organic liquid agent decomposition gas is used as a carbon supply gas.

有機液剤分解ガスとして、たとえばメタノール分解ガス
を使用する場合、メタノール(CH30H)を900〜
1100℃に加熱された分解装置に導入し、分層装置内
で熱分解され、下記式(1)の反応によって一酸化炭素
と水素とが発生する。
When using methanol decomposition gas as the organic liquid decomposition gas, for example, methanol (CH30H) is
The mixture is introduced into a decomposition device heated to 1100° C. and thermally decomposed in the layer separation device to generate carbon monoxide and hydrogen through the reaction of the following formula (1).

CH3(JH−CO+ 2 Hz     (11この
発明においては、上記の窒素ガス、アンモニアガスおよ
び有機液剤分解ガスよりなるガス軟窒化雰囲気ガスに、
さらに二酸化炭素を添加してガス軟窒化処理を行なう構
成としている。
CH3 (JH-CO+ 2 Hz (11) In this invention, in the gas soft nitriding atmosphere gas consisting of the above nitrogen gas, ammonia gas and organic liquid decomposition gas,
Furthermore, carbon dioxide is added to perform gas nitrocarburizing treatment.

この発明によるガス軟窒化処理の炉内における::。In the furnace of gas nitrocarburizing treatment according to the present invention::.

ガス反応は次のよlうになる。The gas reaction is as follows.

アンモニアガス(NH3)は、下記式(2)により分解
して窒素(N)を発生し、被処理物の窒化が行なわれる
Ammonia gas (NH3) is decomposed according to the following formula (2) to generate nitrogen (N), and the object to be treated is nitrided.

2 NH3(−ゴ2[N)+3H2(2+有機液剤分解
ガス中の一酸化炭素(CO)は、下記式(3)の反応に
より炭素(0)を発生して被処理物の浸炭が行なわれる
2 NH3(-Go2[N)+3H2(2+) Carbon monoxide (CO) in the organic liquid decomposition gas generates carbon (0) through the reaction of the following formula (3), and carburization of the material to be treated is performed. .

2CO;:ゴ[0〕+002       (3)二酸
化炭素(CO2)は、炉内の水素(H□)と反応して、
下記式(4)のように−酸化炭素(CO)を発生する。
2CO;:go[0]+002 (3) Carbon dioxide (CO2) reacts with hydrogen (H□) in the furnace,
Carbon oxide (CO) is generated as shown in the following formula (4).

CO2+ H2=士CO+H20(4)この二酸化炭素
(002)  の分解反応によって発生した一酸化炭素
(CO)は、さらに、上記式(3)の反応により炭素(
C)を発生するから、これにより再び被処理物の浸炭が
行なわれる。
CO2 + H2 = CO + H20 (4) Carbon monoxide (CO) generated by the decomposition reaction of carbon dioxide (002) is further converted to carbon (CO) by the reaction of the above formula (3).
Since C) is generated, the object to be treated is carburized again.

上記のように、二酸化炭素を添加することにより、窒化
反応に悪影響を及ぼす水素と反応して水素分圧が低下す
るから、窒化速度を大きくすることができる。また、多
量のアンモニアガスを導入して水素分圧を低下させる必
要がなくなるから、アンモニアの炉内への供給量を減少
させることができる。さらに、二酸化炭素が水素と反応
することによって発生した一酸化炭素が再び浸炭反応を
起こすから、−酸化炭素の発生源である有機溶剤分解ガ
スの供給量も減少させることが可能となる。
As mentioned above, by adding carbon dioxide, the hydrogen partial pressure decreases by reacting with hydrogen, which has an adverse effect on the nitriding reaction, so that the nitriding rate can be increased. Furthermore, since there is no need to introduce a large amount of ammonia gas to lower the hydrogen partial pressure, it is possible to reduce the amount of ammonia supplied into the furnace. Furthermore, since carbon monoxide generated by the reaction of carbon dioxide with hydrogen causes a carburizing reaction again, it is also possible to reduce the amount of organic solvent decomposition gas that is the source of carbon oxide.

このように、この発明では炉内に導入するガス軟窒化雰
囲気ガスは、窒素ガスとアンモニアガスとの割合に比べ
て有機液剤分解ガスの割合を少なくすることができ、少
量の有機液剤分解ガスを供給すれば足りるから、有機液
剤分解装置は、必要較小限の量の有機液剤を分解するだ
けの小形のものを使用すればよく、従来の吸熱型ガス変
成炉のような大形のものを使用する必要がない。
In this way, in the present invention, the gas soft-nitriding atmosphere gas introduced into the furnace can have a smaller proportion of organic liquid decomposition gas than the proportion of nitrogen gas and ammonia gas, and a small amount of organic liquid decomposition gas can be used. Since it is sufficient to supply the organic liquid, it is sufficient to use a small-sized organic liquid decomposition device that can only decompose the required amount of organic liquid; instead of a large-sized one such as a conventional endothermic gas conversion furnace. There is no need to use it.

この発明を実施するだめのガス軟窒化炉の一例を第1図
に示す。同図において、符号10は灼体であり、該炉体
10内にはラジアントチューブヒータ12が設けられ、
炉内上部に攪拌用ファン14が架設されている。このフ
ァン14は炉頂外部に設けたモーター乙によって回転し
て、炉内の雰囲気ガスを攪拌する。また、炉体10内に
は、炉内温度測定用の熱電対18を設けている。符号2
0はガス供給管であり、ガス供給側に連結された分岐管
21,22,23.24からそれぞれ窒素、アンモニア
、有機液剤分解ガス、二散化炭素を単独に炉体10内に
供給するようにしている。上記構成の炉体10内に被処
理物25を装入してガス軟窒化処理が行なわれる。
An example of a gas soft nitriding furnace for carrying out this invention is shown in FIG. In the figure, reference numeral 10 is a furnace body, and a radiant tube heater 12 is provided inside the furnace body 10.
A stirring fan 14 is installed in the upper part of the furnace. This fan 14 is rotated by a motor B provided outside the top of the furnace to agitate the atmospheric gas inside the furnace. Furthermore, a thermocouple 18 for measuring the temperature inside the furnace is provided inside the furnace body 10. code 2
0 is a gas supply pipe, and nitrogen, ammonia, organic liquid decomposition gas, and dispersion carbon are individually supplied into the furnace body 10 from branch pipes 21, 22, 23, and 24 connected to the gas supply side, respectively. I have to. The object to be treated 25 is charged into the furnace body 10 having the above configuration, and gas soft nitriding treatment is performed.

炉体10内に供給するガスは、それぞれの分岐管21,
22,23.24によって各別に導入することができる
から、被処理物25の材料特性に応じてそれぞれのガス
混合比を適宜選定することにより、雰囲気ガスの窒素ポ
テンシャルと炭素ポテンシャルとを任意に変更すること
ができ、被処理物25に形成する炭窒化物の組成をその
便用目的に応じて容易に変えることができる。
Gas supplied into the furnace body 10 is supplied to each branch pipe 21,
22, 23, and 24 can be introduced separately, so the nitrogen potential and carbon potential of the atmospheric gas can be arbitrarily changed by appropriately selecting the mixing ratio of each gas according to the material characteristics of the object to be treated 25. Therefore, the composition of carbonitride formed on the object to be treated 25 can be easily changed depending on the purpose of use.

□、、− 次に、この発明の方法による処理結果について説明する
□,,- Next, processing results obtained by the method of the present invention will be explained.

第2図は、8450と5pacとを供試体とじてCO,
添加量(容量%)と化合物層の厚さとの関係を示したも
のである。
Figure 2 shows CO and 8450 and 5pac as specimens.
It shows the relationship between the amount added (volume %) and the thickness of the compound layer.

有機液剤分解ガスは、メタノール分解ガス(以下、FD
、0.4という。)を使用して、002を添加しないと
きのガス軟窒化雰囲気ガスの混合比を、N2 :NH3
:D、Ga =50: 40: 10とし、C02の添
加量に相当する量だけN2  の量を減じて、570℃
の温度で2時間処理した後、油冷して得た結果である。
Organic liquid decomposition gas is methanol decomposition gas (hereinafter referred to as FD
, 0.4. ), the mixture ratio of the gas soft-nitriding atmosphere when 002 is not added is N2:NH3
: D, Ga = 50: 40: 10, and the amount of N2 was reduced by the amount equivalent to the amount of C02 added, and the temperature was 570°C.
The results were obtained by cooling in oil after treatment at a temperature of 2 hours.

同図から明らかなように、8450.8POOの双方と
も化合物層の厚さはCO2の添加量を増すにしたがって
増加し、CO2添加量が5%のときに最大となるが、そ
れ以上添加してもほぼ横這いとなる。したがって、最も
好ましいCO2添加量は5%であるが、01〜10%の
範囲内であれば、必要とする化合物層□の厚さが得られ
る。
As is clear from the figure, the thickness of the compound layer in both cases of 8450.8POO increases as the amount of CO2 added increases, reaching a maximum when the amount of added CO2 is 5%, but when more than 5% is added, the thickness of the compound layer increases. It will remain almost flat. Therefore, the most preferable amount of CO2 added is 5%, but within the range of 0.1 to 10%, the required thickness of the compound layer □ can be obtained.

また、処理ll1ii1度ぼ570℃が最も好ましいが
、450〜650℃の範囲でも、上記とほぼ同等の結果
が得られることが確認された。
Further, although the most preferable treatment temperature is 570°C, it has been confirmed that almost the same results as above can be obtained even in the range of 450 to 650°C.

第3図は従来のアンモニアガスと吸熱型変成ガスとによ
るガス軟窒化処理を行った845Cと5POCとの化合
物層のX48!回折像、第4図はこの発明によりガス軟
窒化処理した8450と5PCCとの化合物層のX線回
折像をそれぞれ示したものである。
Figure 3 shows X48! of a compound layer of 845C and 5POC that has been subjected to conventional gas nitrocarburizing treatment using ammonia gas and endothermic metamorphic gas. Diffraction Image: FIG. 4 shows the X-ray diffraction image of a compound layer of 8450 and 5PCC subjected to gas nitrocarburizing treatment according to the present invention.

従来のガス軟窒化法による処理条件は、雰囲気ガスの混
合比を N831Xガス=50:50 とし、570℃の湿度で2時間処理した後、油冷したも
のである。
The treatment conditions for the conventional gas nitrocarburizing method are as follows: The mixing ratio of the atmospheric gas is N831X gas = 50:50, and the treatment is performed at a humidity of 570° C. for 2 hours, followed by oil cooling.

この発明のガス軟窒化法による処理条件は、雰囲気ガス
の混合比を N2 :NH3:D、G、:002 =45:40:1
0:5とし、570℃の温度で2時間処理した後、油冷
したものである。
The processing conditions for the gas nitrocarburizing method of this invention are as follows: The mixing ratio of atmospheric gas is N2:NH3:D,G, :002 =45:40:1
0:5, treated at a temperature of 570°C for 2 hours, and then cooled in oil.

第3図と第4図とを比較対照すれは明らかなように、両
方法とも、S 450,5POOの双方にε−Fe2−
s N 、 T’ −Fe4 Nが同程度に測定されて
おり、両方法間に著しい差が認められないので、この発
明の方法によりガス軟窒化処理を行なうことにより、従
来のガス軟窒化法と同等の炭窒化物が形成さnることか
判る。
As is clear from comparing and contrasting Figures 3 and 4, both methods produce ε-Fe2- in both S450,5POO.
s N and T' -Fe4 N were measured to the same extent, and no significant difference was observed between the two methods. Therefore, by performing gas soft nitriding treatment by the method of the present invention, it is superior to the conventional gas soft nitriding method. It can be seen that equivalent carbonitrides are formed.

以上、説明したところから明らかなように、この発明は
、窒素ガス、アンモニアガス、有機液剤分解ガスよりな
るガス軟窒化雰囲気ガスに二酸化炭素を添加してガス軟
窒化処理を行なう構成としているから、二酸化炭素によ
り水素分圧が低下して窒化速度が大幅に増加し、処理時
間を急縮させることが可能となるだけでなく、アンモニ
アガスt’に減少させられ、さらに安価な窒素ガスを使
用することと相まって操業費が著しく低減する。
As is clear from the above description, the present invention is configured to perform gas soft-nitriding treatment by adding carbon dioxide to the gas soft-nitriding atmosphere gas consisting of nitrogen gas, ammonia gas, and organic liquid decomposition gas. Not only does carbon dioxide reduce the hydrogen partial pressure and greatly increase the nitriding rate, making it possible to rapidly shorten the processing time, but it is also reduced to ammonia gas t', allowing the use of cheaper nitrogen gas. Coupled with this, operating costs are significantly reduced.

また、この発明によれば、炭素供給用ガスとして従来多
量に使用していた吸熱型変成ガスにかえて少量の有機液
剤分解ガスを使用すればよいから、−、[化炭素やメタ
ンガスの発生量が少なくなV被処理物にスーテイングが
生じ難くなるelか、中性の窒素ガスの割合が大きいか
ら、ガス爆発の危険がな(安全性の高い操業が可能とな
る。
Furthermore, according to the present invention, a small amount of organic liquid decomposition gas can be used in place of the endothermic metamorphosed gas that has conventionally been used in large amounts as a carbon supply gas. Since the proportion of neutral nitrogen gas is high, there is no risk of gas explosion (highly safe operation is possible).

また、この発明においては、有機液剤分解ガスが従来の
吸熱型変成ガスと同様に被処理物に浸炭反応を起させる
から、材料それ自体では炭素を含有しない5pcc  
のようなものでも表面硬さを増大させることができ、あ
らゆる鋼種を対象として通用することができる。
In addition, in this invention, since the organic liquid decomposition gas causes a carburizing reaction in the treated material in the same manner as conventional endothermic gas, the material itself does not contain carbon.
It is also possible to increase the surface hardness, and it can be used for all types of steel.

さらに、この発明は、従来のガス軟窒化法のように大形
の吸熱型ガス変成炉が不要となるから、変成炉の運転管
理の手間が省略され、小形で安価な有機液剤分解装置に
替えることにより、きわめて経済的なガス軟窒化装置と
することができる。
Furthermore, this invention eliminates the need for a large endothermic gas conversion furnace as in the conventional gas nitrocarburizing method, which eliminates the trouble of managing the operation of the conversion furnace and allows it to be replaced with a small and inexpensive organic liquid decomposition device. This makes it possible to provide an extremely economical gas soft-nitriding apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の方法に用いるガス軟窒化炉の断面
図、第2図は二酸化炭素添加量と化合物層の厚さとの関
係を示す図表、第3図は従来の方法で形成された化合物
層のXj回折像、第4図はこの発明の方法で形成された
化合物層のX@回折像である。 図中、10は炉体、20はガス供給管、21゜22.2
5.24はガス分岐管、25は被処理物である。 特許出願人  オリエンタルエンヂニアリング株式会社
代理人 弁理士   森    哲 也弁理士   内
 藤 嘉 昭 弁理士   清 水    正 弁理士   梶 山 枯 是 丈 −〜#)%S C−〜 〜 〜 i!!1 −           〜 m           柵 ■ 「
Figure 1 is a cross-sectional view of the gas nitrocarburizing furnace used in the method of the present invention, Figure 2 is a chart showing the relationship between the amount of carbon dioxide added and the thickness of the compound layer, and Figure 3 is a diagram showing the relationship between the amount of carbon dioxide added and the thickness of the compound layer formed by the conventional method. Xj diffraction image of the compound layer. FIG. 4 is an X@ diffraction image of the compound layer formed by the method of the present invention. In the figure, 10 is the furnace body, 20 is the gas supply pipe, 21°22.2
5.24 is a gas branch pipe, and 25 is an object to be processed. Patent Applicant Oriental Engineering Co., Ltd. Agent Patent Attorney Tetsuya Mori Patent Attorney Yoshiaki Naito Patent Attorney Masaru Shimizu Patent Attorney Kaji Yama Korejo - ~ #) %S C - ~ ~ ~ i! ! 1 - ~ m fence ■ "

Claims (1)

【特許請求の範囲】[Claims] 450〜650℃の温度範囲で、窒素ガス、アンモニア
ガスおよび有機液剤分解ガスよりなるガス軟窒化雰囲気
ガスに、二酸化炭素を0.1−10容量%添加して被処
理物のガス軟窒化処理を行なうことを特徴とするガス軟
窒化法。
At a temperature range of 450 to 650°C, 0.1 to 10% by volume of carbon dioxide is added to a gas soft nitriding atmosphere consisting of nitrogen gas, ammonia gas, and organic liquid decomposition gas to perform gas soft nitriding treatment on the object to be treated. A gas nitrocarburizing method characterized by:
JP5500882A 1982-04-02 1982-04-02 Gas soft nitriding method Granted JPS58174572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5500882A JPS58174572A (en) 1982-04-02 1982-04-02 Gas soft nitriding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5500882A JPS58174572A (en) 1982-04-02 1982-04-02 Gas soft nitriding method

Publications (2)

Publication Number Publication Date
JPS58174572A true JPS58174572A (en) 1983-10-13
JPS6349748B2 JPS6349748B2 (en) 1988-10-05

Family

ID=12986624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5500882A Granted JPS58174572A (en) 1982-04-02 1982-04-02 Gas soft nitriding method

Country Status (1)

Country Link
JP (1) JPS58174572A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302756A (en) * 2001-01-31 2002-10-18 Tokico Ltd Surface treated steel member and gas soft nitriding method
WO2003074752A1 (en) * 2002-02-28 2003-09-12 Swagelok Company Case hardening of titanium
WO2007125767A1 (en) * 2006-04-28 2007-11-08 Ntn Corporation Carbonitriding process, process for production of macine parts, and machine parts
WO2012144365A1 (en) 2011-04-19 2012-10-26 Ntn株式会社 Gas soft nitriding method and method for manufacturing bearing component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860031A (en) * 1971-12-03 1973-08-23
JPS50117647A (en) * 1974-02-28 1975-09-13
JPS5159734A (en) * 1974-11-21 1976-05-25 Daido Steel Co Ltd Taimamosei ojusuru tetsukozairyono seizohoho
JPS56169769A (en) * 1980-06-03 1981-12-26 Toray Eng Co Ltd Carbonitriding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860031A (en) * 1971-12-03 1973-08-23
JPS50117647A (en) * 1974-02-28 1975-09-13
JPS5159734A (en) * 1974-11-21 1976-05-25 Daido Steel Co Ltd Taimamosei ojusuru tetsukozairyono seizohoho
JPS56169769A (en) * 1980-06-03 1981-12-26 Toray Eng Co Ltd Carbonitriding method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302756A (en) * 2001-01-31 2002-10-18 Tokico Ltd Surface treated steel member and gas soft nitriding method
WO2003074752A1 (en) * 2002-02-28 2003-09-12 Swagelok Company Case hardening of titanium
WO2007125767A1 (en) * 2006-04-28 2007-11-08 Ntn Corporation Carbonitriding process, process for production of macine parts, and machine parts
JP2007297663A (en) * 2006-04-28 2007-11-15 Ntn Corp Carbo-nitriding process, method for manufacturing machine part, and machine part
US8128761B2 (en) 2006-04-28 2012-03-06 Ntn Corporation Carbonitriding method, machinery component fabrication method, and machinery component
WO2012144365A1 (en) 2011-04-19 2012-10-26 Ntn株式会社 Gas soft nitriding method and method for manufacturing bearing component
US10047429B2 (en) 2011-04-19 2018-08-14 Ntn Corporation Gas nitrocarburizing method and method for manufacturing bearing part

Also Published As

Publication number Publication date
JPS6349748B2 (en) 1988-10-05

Similar Documents

Publication Publication Date Title
KR100858598B1 (en) Method for activating surface of metal member
US4154629A (en) Process of case hardening martensitic stainless steels
US4531984A (en) Surface hardening process for metal parts
CA1125011A (en) Inert carrier gas heat treating control process
GB1461295A (en) Process for the production of epsilon-carconitride layers on ferrous metal parts
FR2446322A2 (en) METHOD FOR HEAT TREATMENT OF STEEL AND CONTROL OF SAID TREATMENT
US4406714A (en) Heat treatment of metals
JPH064906B2 (en) Carburizing of metal work
US4152177A (en) Method of gas carburizing
JPS58174572A (en) Gas soft nitriding method
US4236941A (en) Method of producing heat treatment atmosphere
US4153485A (en) Process for heating steel powder compacts
US4208224A (en) Heat treatment processes utilizing H2 O additions
JP3976221B2 (en) Gas soft nitriding method
US2998303A (en) Method for purifying hydrogen contaminated with methane
US4211584A (en) Methods of heat-treating steel
JP4823670B2 (en) Carburizing atmosphere gas generation method
GB2044804A (en) Heat treatment method
US5827375A (en) Process for carburizing ferrous metal parts
JP2006233261A (en) Gas nitriding method
JPH04268062A (en) Atomsphere carburization method for steel
SU545697A1 (en) Steel Nitriding Medium
GB2076023A (en) Gas carburising
JPS6127964Y2 (en)
Austin et al. Chemical Equilibrium and the Control of Furnace Atmospheres