JPS6349748B2 - - Google Patents

Info

Publication number
JPS6349748B2
JPS6349748B2 JP57055008A JP5500882A JPS6349748B2 JP S6349748 B2 JPS6349748 B2 JP S6349748B2 JP 57055008 A JP57055008 A JP 57055008A JP 5500882 A JP5500882 A JP 5500882A JP S6349748 B2 JPS6349748 B2 JP S6349748B2
Authority
JP
Japan
Prior art keywords
gas
nitriding
furnace
organic liquid
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57055008A
Other languages
Japanese (ja)
Other versions
JPS58174572A (en
Inventor
Kazuyoshi Kawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Engineering Co Ltd
Original Assignee
Oriental Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Engineering Co Ltd filed Critical Oriental Engineering Co Ltd
Priority to JP5500882A priority Critical patent/JPS58174572A/en
Publication of JPS58174572A publication Critical patent/JPS58174572A/en
Publication of JPS6349748B2 publication Critical patent/JPS6349748B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 この発明は、ガス軟窒化法に関し、とくに、中
性で安価に得られる窒素ガスとアンモニアガスと
有機液剤分解装置から発生させた分解ガスとから
なるガス軟窒化雰囲気ガスに、二酸化炭素を添加
してガス軟窒化処理を行なうことにより、窒化速
度を大幅に増加するとともに、操業費を低減し、
安全性を高くするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas soft nitriding method, and particularly relates to a gas soft nitriding atmosphere consisting of neutral and inexpensively obtained nitrogen gas, ammonia gas, and cracked gas generated from an organic liquid decomposition device. By adding carbon dioxide and performing gas soft nitriding treatment, the nitriding rate can be significantly increased and operating costs can be reduced.
This increases safety.

一般に、アンモニアガスによるガス窒化法は、
高価なアンモニアガスを多量に使用して処理時間
が長く、Al、Cr、Ti、V、Mn、Siなどの窒化物
生成元素を含む窒化鋼にしか適用できず、用途が
限定される等の制約がある。このガス窒化法は、
アンモニアの分解による窒化反応のみを目的とす
るものであるが、アンモニアガスと吸熱型変成ガ
スとを用いるガス軟窒化法は、窒化と浸炭との双
方の反応が同時に行なわれ、炭素の存在によつて
窒化反応が促進して被処理物の最外層に炭素を固
溶した炭窒化物(ε−Fe2-3N)が形成される点
に特徴をもつた処理法である。
Generally, the gas nitriding method using ammonia gas is
It uses a large amount of expensive ammonia gas, takes a long time to process, and can only be applied to nitriding steel containing nitride-forming elements such as Al, Cr, Ti, V, Mn, and Si, which limits its applications. There is. This gas nitriding method is
Although the purpose is only the nitriding reaction due to the decomposition of ammonia, the gas soft nitriding method that uses ammonia gas and endothermic metamorphic gas performs both nitriding and carburizing reactions at the same time, and due to the presence of carbon, This treatment method is characterized by the fact that the nitriding reaction is accelerated and carbonitride (ε-Fe 2-3 N) containing carbon as a solid solution is formed in the outermost layer of the object to be treated.

しかしながら、従来のガス窒化法やガス軟窒化
法においては、アンモニアガスの分解反応により
炉内の水素分圧が高くなつて、窒化速度が遅くな
るという問題があり、水素分圧を低下させるため
には多量のアンモニアガスを供給しなければなら
ず、高価なアンモニアガスの消費量が著しく増大
して操業費が高くなる欠点がある。
However, in the conventional gas nitriding method and gas soft nitriding method, there is a problem that the hydrogen partial pressure in the furnace increases due to the decomposition reaction of ammonia gas, and the nitriding rate becomes slow. However, a large amount of ammonia gas must be supplied, and the consumption of expensive ammonia gas increases significantly, resulting in high operating costs.

また、従来のガス軟窒化法は、吸熱型変成ガス
が炉内ガスの約50%導入されるため、一酸化炭素
やメタンガス等が多量に生成され被処理物にスー
テイングが発生し易くなるほか、ガス爆発の危険
性が高くなる欠点がある。
In addition, in the conventional gas nitrocarburizing method, endothermic converted gas is introduced to account for about 50% of the gas in the furnace, so a large amount of carbon monoxide, methane gas, etc. is generated, which tends to cause sooting of the processed material. The disadvantage is that there is a high risk of gas explosion.

さらに、従来のガス軟窒化法では、吸熱型変成
ガスを発生させるために大形の変成炉が必要とな
り、設備費が高価となるだけでなく、変成炉の運
転を常時管理しなければならないという問題があ
る。
Furthermore, in the conventional gas nitrocarburizing method, a large-sized shift furnace is required to generate endothermic shift gas, which not only increases equipment costs but also requires constant management of the operation of the shift furnace. There's a problem.

この発明は、上記の問題を解決するためになさ
れたものであり、この発明の目的は、窒化速度が
大幅に増加するガス軟窒化法を提供することにあ
り、またこの発明の目的は、安価な操業費で安全
に操業できるガス軟窒化法を提供することにあ
り、さらにこの発明の目的は、鋼種を問わず短時
間で有効な炭窒化層が得られるガス軟窒化法を提
供することにあり、さらにまた、この発明の目的
は、小形の有機液剤分解装置を用いる経済的なガ
ス軟窒化法を提供することにある。
This invention was made in order to solve the above problems, and the purpose of this invention is to provide a gas soft nitriding method in which the nitriding rate is significantly increased. It is an object of the present invention to provide a gas soft-nitriding method that can be operated safely at a low operating cost.A further object of the present invention is to provide a gas soft-nitriding method that can produce an effective carbonitrided layer in a short time regardless of the type of steel. A further object of the present invention is to provide an economical gas nitrocarburizing method using a small organic liquid decomposition device.

すなわち、この発明は、450〜650℃の温度範囲
で、窒素ガス、アンモニアガスおよび有機液剤分
解ガスよりなるガス軟窒化雰囲気ガスに、二酸化
炭素を0.1〜10容量%添加して被処理物のガス軟
窒化処理を行なうことを特徴とするガス軟窒化法
に係る。
That is, in the present invention, 0.1 to 10% by volume of carbon dioxide is added to a gas soft nitriding atmosphere consisting of nitrogen gas, ammonia gas, and organic liquid decomposition gas at a temperature range of 450 to 650°C. The present invention relates to a gas soft nitriding method characterized by performing soft nitriding treatment.

この発明のガス軟窒化法においては、キヤリア
ガスとして窒素ガスを、窒素供給用ガスとしてア
ンモニアガスを使用し、炭素供給用ガスとして有
機液剤分解ガスを使用する。
In the gas nitrocarburizing method of the present invention, nitrogen gas is used as a carrier gas, ammonia gas is used as a nitrogen supply gas, and organic liquid agent decomposition gas is used as a carbon supply gas.

有機液剤分解ガスとして、たとえばメタノール
分解ガスを使用する場合、メタノール
(CH3OH)を900〜1100℃に加熱された分解装置
に導入し、分解装置内で熱分解され、下記式(1)の
反応によつて一酸化炭素と水素とが発生する。
When using, for example, methanol decomposition gas as the organic liquid decomposition gas, methanol (CH 3 OH) is introduced into a decomposition device heated to 900 to 1100°C, and is thermally decomposed in the decomposition device, resulting in the following formula (1). The reaction generates carbon monoxide and hydrogen.

CH3OH→CO+2H2 (1) この発明においては、上記の窒素ガス、アンモ
ニアガスおよび有機液剤分解ガスよりなるガス軟
窒化雰囲気ガスに、さらに二酸化炭素を添加して
ガス軟窒化処理を行なう構成としている。
CH 3 OH→CO+2H 2 (1) In this invention, carbon dioxide is further added to the gas soft nitriding atmosphere gas consisting of the above nitrogen gas, ammonia gas, and organic liquid decomposition gas to perform gas soft nitriding treatment. There is.

この発明によるガス軟窒化処理の炉内における
ガス反応は次のようになる。
The gas reaction in the furnace of the gas nitrocarburizing treatment according to the present invention is as follows.

アンモニアガス(NH3)は、下記式(2)により
分解して窒素(N)を発生し、被処理物の窒化が
行なわれる。
Ammonia gas (NH 3 ) is decomposed according to the following formula (2) to generate nitrogen (N), and the object to be treated is nitrided.

2NH32〔N〕+3H2 (2) 有機液剤分解ガス中の一酸化炭素(CO)は、
下記式(3)の反応により炭素(C)を発生して被処理物
の浸炭が行なわれる。
2NH 3 2 [N] + 3H 2 (2) Carbon monoxide (CO) in the organic liquid decomposition gas is
Carbon (C) is generated by the reaction of formula (3) below, and the object to be treated is carburized.

2CO〔C〕+CO2 (3) 二酸化炭素(CO2)は、炉内の水素(H2)と
反応して、下記式(4)のように一酸化炭素(CO)
を発生する。
2CO[C]+CO 2 (3) Carbon dioxide (CO 2 ) reacts with hydrogen (H 2 ) in the furnace to form carbon monoxide (CO) as shown in formula (4) below.
occurs.

CO2H2CO+H2O (4) この二酸化炭素(CO2)の分解反応によつて発
生した一酸化炭素(CO)は、さらに、上記式(3)
の反応により炭素(C)を発生するから、これにより
再び被処理物の浸炭が行なわれる。
CO 2 H 2 CO + H 2 O (4) Carbon monoxide (CO) generated by this decomposition reaction of carbon dioxide (CO 2 ) is further expressed by the above formula (3).
Since carbon (C) is generated by the reaction, the material to be treated is carburized again.

上記のように、二酸化炭素を添加することによ
り、窒化反応に悪影響を及ぼす水素と反応して水
素分圧が低下するから、窒化速度を大きくするこ
とができる。また、多量のアンモニアガスを導入
して水素分圧を低下させる必要がなくなるから、
アンモニアの炉内への供給量を減少させることが
できる。さらに、二酸化炭素が水素と反応するこ
とによつて発生した一酸化炭素が再び浸炭反応を
起こすから、一酸化炭素の発生源である有機液剤
分解ガスの供給量も減少させることが可能とな
る。
As mentioned above, by adding carbon dioxide, the hydrogen partial pressure decreases by reacting with hydrogen, which has an adverse effect on the nitriding reaction, so that the nitriding rate can be increased. In addition, there is no need to introduce a large amount of ammonia gas to reduce the hydrogen partial pressure.
The amount of ammonia supplied into the furnace can be reduced. Furthermore, since carbon monoxide generated by the reaction of carbon dioxide with hydrogen causes a carburizing reaction again, it is also possible to reduce the amount of organic liquid agent decomposition gas that is the source of carbon monoxide.

このように、この発明では炉内に導入するガス
軟窒化雰囲気ガスは、窒素ガスとアンモニアガス
との割合に比べて有機液剤分解ガスの割合を少な
くすることができ、少量の有機液剤分解ガスを供
給すれば足りるから、有機液剤分解装置は、必要
最小限の量の有機液剤を分解するだけの小形のも
のを使用すればよく、従来の吸熱型ガス変成炉の
ような大形のものを使用する必要がない。
In this way, in the present invention, the gas soft-nitriding atmosphere gas introduced into the furnace can have a smaller proportion of organic liquid decomposition gas than the proportion of nitrogen gas and ammonia gas, and a small amount of organic liquid decomposition gas can be used. Since the organic liquid decomposer only needs to be supplied, it is sufficient to use a small device that decomposes the minimum amount of organic liquid necessary, or a large device such as a conventional endothermic gas conversion furnace. There's no need to.

この発明を実施するためのガス軟窒化炉の一例
を第1図に示す。同図において、符号10は炉体
であり、該炉体10内にはラジアントチユーブヒ
ータ12が設けられ、炉内上部に撹拌用フアン1
4が架設されている。このフアン14は炉頂外部
に設けたモータ16によつて回転して、炉内の雰
囲気ガスを撹拌する。また、炉体10内には、炉
内温度測定用の熱電対18を設けている。符号2
0はガス供給管であり、ガス供給側に連結された
分岐管21,22,23,24からそれぞれ窒
素、アンモニア、有機液剤分解ガス、二酸化炭素
を単独に炉体10内に供給するようにしている。
上記構成の炉体10内に被処理物25を装入して
ガス軟窒化処理が行なわれる。
An example of a gas nitrocarburizing furnace for carrying out the present invention is shown in FIG. In the figure, reference numeral 10 is a furnace body, and a radiant tube heater 12 is provided in the furnace body 10, and a stirring fan 1 is provided in the upper part of the furnace.
4 have been constructed. This fan 14 is rotated by a motor 16 provided outside the top of the furnace to stir the atmospheric gas inside the furnace. Furthermore, a thermocouple 18 for measuring the temperature inside the furnace is provided inside the furnace body 10. code 2
0 is a gas supply pipe, and nitrogen, ammonia, organic liquid decomposition gas, and carbon dioxide are individually supplied into the furnace body 10 from branch pipes 21, 22, 23, and 24 connected to the gas supply side, respectively. There is.
The object to be treated 25 is charged into the furnace body 10 having the above configuration, and gas soft nitriding treatment is performed.

炉体10内に供給するガスは、それぞれの分岐
管21,22,23,24によつて各別に導入す
ることができるから、被処理物25の材料特性に
応じてそれぞれのガス混合比を適宜選定すること
により、雰囲気ガスの窒素ポテンシヤルと炭素ポ
テンシヤルとを任意に変更することができ、被処
理物25に形成する炭窒化物の組成をその使用目
的に応じて容易に変えることができる。
Since the gases to be supplied into the furnace body 10 can be introduced separately through the respective branch pipes 21, 22, 23, and 24, the mixing ratio of each gas can be adjusted as appropriate depending on the material characteristics of the object to be treated 25. By selection, the nitrogen potential and carbon potential of the atmospheric gas can be arbitrarily changed, and the composition of carbonitride formed on the object to be treated 25 can be easily changed depending on the purpose of use.

次に、この発明の方法による処理結果について
説明する。
Next, processing results obtained by the method of the present invention will be explained.

第2図は、S45CとSPCCとを供試体としてCO2
添加量(容量%)と化合物層の厚さとの関係を示
したものである。
Figure 2 shows CO 2 using S45C and SPCC as specimens.
It shows the relationship between the amount added (volume %) and the thickness of the compound layer.

有機液剤分解ガスは、メタノール分解ガス(以
下、「D.G.」という。)を使用して、CO2を添加し
ないときのガス軟窒化雰囲気ガスの混合比を、 N2:NH3:D.G.=50:40:10 とし、CO2の添加量に相当する量だけN2の量を
減じて、570℃の温度で2時間処理した後、油冷
して得た結果である。
As the organic liquid decomposition gas, methanol decomposition gas (hereinafter referred to as "DG") is used, and the mixing ratio of the gas soft nitriding atmosphere gas when no CO2 is added is N2 : NH3 :DG=50: The results were obtained by reducing the amount of N 2 by an amount corresponding to the amount of CO 2 added, treating at a temperature of 570° C. for 2 hours, and cooling with oil.

同図から明らかなように、S45C、SPCCの双方
とも化合物層の厚さはCO2の添加量をを増すにし
たがつて増加し、CO2添加量が5%のときに最大
となるが、それ以上添加してもほぼ横這いとな
る。したがつて、最も好ましいCO2添加量は5%
であるが、0.1〜10%の範囲内であれば、必要と
する化合物層の厚さが得られる。
As is clear from the figure, the thickness of the compound layer in both S45C and SPCC increases as the amount of CO 2 added increases, and reaches its maximum when the amount of added CO 2 is 5%. Even if more than that is added, it remains almost the same. Therefore, the most preferable amount of CO2 added is 5%.
However, within the range of 0.1 to 10%, the required thickness of the compound layer can be obtained.

また、処理温度は570℃が最も好ましいが、450
〜650℃の範囲でも、上記とほぼ同等の結果が得
られることが確認された。
The most preferable treatment temperature is 570℃, but 450℃ is the most preferable treatment temperature.
It was confirmed that almost the same results as above can be obtained even in the range of ~650°C.

第3図は従来のアンモニアガスと吸熱型変成ガ
スとによるガス軟窒化処理を行つたS45CとSPCC
との化合物層のX線回折像、第4図はこの発明に
よりガス軟窒化処理したS45CとSPCCとの化合物
層のX線回折像をそれぞれ示したものである。
Figure 3 shows S45C and SPCC subjected to conventional gas nitrocarburizing treatment using ammonia gas and endothermic metamorphic gas.
FIG. 4 shows an X-ray diffraction image of a compound layer of S45C and SPCC subjected to gas nitrocarburizing according to the present invention.

従来のガス軟窒化法による処理条件は、雰囲気
ガスの混合比を NH3:RXガス=50:50 とし、570℃の温度で2時間処理した後、油冷し
たものである。
The treatment conditions for the conventional gas soft nitriding method are that the mixture ratio of atmospheric gases is NH 3 :RX gas = 50:50, and the treatment is performed at a temperature of 570° C. for 2 hours, followed by oil cooling.

この発明のガス軟窒化法による処理条件は、雰
囲気ガスの混合比を N2:NH3:D.G.:CO2=45:40:10:5 とし、570℃の温度で2時間処理した後、油冷し
たものである。
The treatment conditions for the gas nitrocarburizing method of this invention are as follows: The mixing ratio of atmospheric gases is N 2 :NH 3 :DG:CO 2 =45:40:10:5, and after treatment at a temperature of 570°C for 2 hours, oil It is cold.

第3図と第4図とを比較対照すれば明らかなよ
うに、両方法とも、S45C、SPCCの双方にε−
Fe2-3N、γ′−Fe4Nが同程度に測定されており、
両方法間に著しい差が認められないので、この発
明の方法によりガス軟窒化処理を行なうことによ
り、従来のガス軟窒化法と同等の炭窒化物が形成
されることが判る。
As is clear from comparing and contrasting Figures 3 and 4, both methods have ε-
Fe 2-3 N and γ′-Fe 4 N have been measured to the same extent;
Since no significant difference was observed between the two methods, it can be seen that by performing the gas soft nitriding treatment according to the method of the present invention, carbonitrides equivalent to those obtained by the conventional gas soft nitriding method are formed.

以上、説明したところから明らかなように、こ
の発明は、窒素ガス、アンモニアガス、有機液剤
分解ガスよりなるガス軟窒化雰囲気ガスに二酸化
炭素を添加してガス軟窒化処理を行なう構成とし
ているから、二酸化炭素により水素分圧が低下し
て窒化速度が大幅に増加し、処理時間を短縮させ
ることが可能となるだけでなく、アンモニアガス
量を減少させられ、さらに安価な窒素ガスを使用
することと相まつて操業費が著しく低減する。
As is clear from the above description, the present invention is configured to perform gas soft-nitriding treatment by adding carbon dioxide to the gas soft-nitriding atmosphere gas consisting of nitrogen gas, ammonia gas, and organic liquid decomposition gas. Carbon dioxide lowers the hydrogen partial pressure and significantly increases the nitriding rate, making it possible not only to shorten the processing time, but also to reduce the amount of ammonia gas, making it possible to use cheaper nitrogen gas. As a result, operating costs are significantly reduced.

また、この発明によれば、炭素供給用ガスとし
て従来多量に使用していた吸熱型変成ガスにかえ
て少量の有機液剤分解ガスを使用すればよいか
ら、一酸化炭素やメタンガスの発生量が少なくな
り被処理物にスーテイングが生じ難くなるほか、
中性の窒素ガスの割合が大きいから、ガス爆発の
危険がなく安全性の高い操業が可能となる。
Furthermore, according to the present invention, a small amount of organic liquid decomposition gas can be used instead of the conventionally large amounts of endothermic metamorphosed gas used as carbon supply gas, so the amount of carbon monoxide and methane gas generated is reduced. In addition to making it difficult for sooting to occur on the processed material,
Since the proportion of neutral nitrogen gas is high, there is no risk of gas explosion and highly safe operation is possible.

また、この発明においては、有機液剤分解ガス
が従来の吸熱型変成ガスと同様に被処理物に浸炭
反応を起させるから、材料それ自体では炭素を含
有しないSPCCのようなものでも表面硬しさを増
大させることができ、あらゆる鋼種を対象として
適用することができる。
In addition, in this invention, the organic liquid decomposition gas causes a carburizing reaction on the treated object in the same way as conventional endothermic metamorphosed gas, so even materials such as SPCC, which do not contain carbon, can have surface hardness. It can be applied to all types of steel.

さらに、この発明は、従来のガス軟窒化法のよ
うに大型の吸熱型ガス変成炉が不要となるから、
変成炉の運転管理の手間が省略され、小形で安価
な有機液剤分解装置に替えることにより、きわめ
て経済的なガス軟窒化装置とすることができる。
Furthermore, this invention eliminates the need for a large endothermic gas conversion furnace unlike the conventional gas nitrocarburizing method.
By omitting the trouble of managing the operation of the shift furnace and replacing it with a small and inexpensive organic liquid decomposition device, an extremely economical gas nitrocarburizing device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の方法に用いるガス軟窒化
炉の断面図、第2図は二酸化炭素添加量と化合物
層の厚さとの関係を示す図表、第3図は従来の方
法で形成された化合物層のX線回折像、第4図は
この発明の方法で形成された化合物層のX線回折
像である。 図中、10は炉体、20はガス供給管、21,
22,23,24はガス分岐管、25は被処理物
である。
Figure 1 is a cross-sectional view of the gas nitrocarburizing furnace used in the method of the present invention, Figure 2 is a chart showing the relationship between the amount of carbon dioxide added and the thickness of the compound layer, and Figure 3 is a diagram showing the relationship between the amount of carbon dioxide added and the thickness of the compound layer formed by the conventional method. X-ray diffraction image of the compound layer. FIG. 4 is an X-ray diffraction image of the compound layer formed by the method of the present invention. In the figure, 10 is a furnace body, 20 is a gas supply pipe, 21,
22, 23, and 24 are gas branch pipes, and 25 is an object to be processed.

Claims (1)

【特許請求の範囲】[Claims] 1 450〜650℃の温度範囲で、窒素ガス、アンモ
ニアガスおよび有機液剤分解ガスよりなるガス軟
窒化雰囲気ガスに、二酸化炭素を0.1〜10容量%
添加して被処理物のガス軟窒化処理を行なうこと
を特徴とするガス軟窒化法。
1 At a temperature range of 450 to 650°C, 0.1 to 10% by volume of carbon dioxide is added to the soft nitriding atmosphere consisting of nitrogen gas, ammonia gas, and organic liquid decomposition gas.
A gas soft nitriding method characterized by adding gas to perform gas soft nitriding treatment on the object to be treated.
JP5500882A 1982-04-02 1982-04-02 Gas soft nitriding method Granted JPS58174572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5500882A JPS58174572A (en) 1982-04-02 1982-04-02 Gas soft nitriding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5500882A JPS58174572A (en) 1982-04-02 1982-04-02 Gas soft nitriding method

Publications (2)

Publication Number Publication Date
JPS58174572A JPS58174572A (en) 1983-10-13
JPS6349748B2 true JPS6349748B2 (en) 1988-10-05

Family

ID=12986624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5500882A Granted JPS58174572A (en) 1982-04-02 1982-04-02 Gas soft nitriding method

Country Status (1)

Country Link
JP (1) JPS58174572A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998654B2 (en) * 2001-01-31 2012-08-15 日立オートモティブシステムズ株式会社 Method of gas soft nitriding treatment of steel members
WO2003074752A1 (en) * 2002-02-28 2003-09-12 Swagelok Company Case hardening of titanium
JP4885606B2 (en) * 2006-04-28 2012-02-29 Ntn株式会社 Carbonitriding method and machine part manufacturing method
JP5744610B2 (en) 2011-04-19 2015-07-08 Ntn株式会社 Gas soft nitriding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860031A (en) * 1971-12-03 1973-08-23
JPS50117647A (en) * 1974-02-28 1975-09-13
JPS5159734A (en) * 1974-11-21 1976-05-25 Daido Steel Co Ltd Taimamosei ojusuru tetsukozairyono seizohoho
JPS56169769A (en) * 1980-06-03 1981-12-26 Toray Eng Co Ltd Carbonitriding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860031A (en) * 1971-12-03 1973-08-23
JPS50117647A (en) * 1974-02-28 1975-09-13
JPS5159734A (en) * 1974-11-21 1976-05-25 Daido Steel Co Ltd Taimamosei ojusuru tetsukozairyono seizohoho
JPS56169769A (en) * 1980-06-03 1981-12-26 Toray Eng Co Ltd Carbonitriding method

Also Published As

Publication number Publication date
JPS58174572A (en) 1983-10-13

Similar Documents

Publication Publication Date Title
US4154629A (en) Process of case hardening martensitic stainless steels
KR100858598B1 (en) Method for activating surface of metal member
US4531984A (en) Surface hardening process for metal parts
US4108693A (en) Method for the heat-treatment of steel and for the control of said treatment
US4322255A (en) Heat treatment of steel and method for monitoring the treatment
US4175986A (en) Inert carrier gas heat treating control process
US4406714A (en) Heat treatment of metals
JPH064906B2 (en) Carburizing of metal work
JPS6349748B2 (en)
US4153485A (en) Process for heating steel powder compacts
US4208224A (en) Heat treatment processes utilizing H2 O additions
US6328819B1 (en) Method and use of an apparatus for the thermal treatment, in particular nitriding treatment, of metal workpieces
JP3976221B2 (en) Gas soft nitriding method
US4211584A (en) Methods of heat-treating steel
US3705058A (en) Soft-nitriding procedure for steel and cast iron
GB2044804A (en) Heat treatment method
GB1500476A (en) Process for carbonitriding articles of steel or cast iron
US5827375A (en) Process for carburizing ferrous metal parts
Austin et al. Chemical Equilibrium and the Control of Furnace Atmospheres
JPS61159567A (en) Gas carburizing method
SU545697A1 (en) Steel Nitriding Medium
JPH03260048A (en) Rapid gas nitriding method
RU1780340C (en) Method for thermo-chemical processing of steel details
KR100474414B1 (en) Bright heat treatment method of inert neutral-gas environment at a high temperature
SU604503A3 (en) Method of heat treatment of articles