JPH08150437A - Production of die with permeability having heating, cooling hole and die with permeability - Google Patents

Production of die with permeability having heating, cooling hole and die with permeability

Info

Publication number
JPH08150437A
JPH08150437A JP6291375A JP29137594A JPH08150437A JP H08150437 A JPH08150437 A JP H08150437A JP 6291375 A JP6291375 A JP 6291375A JP 29137594 A JP29137594 A JP 29137594A JP H08150437 A JPH08150437 A JP H08150437A
Authority
JP
Japan
Prior art keywords
mold
metal
die
powder
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6291375A
Other languages
Japanese (ja)
Inventor
Akio Okamoto
昭男 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP6291375A priority Critical patent/JPH08150437A/en
Publication of JPH08150437A publication Critical patent/JPH08150437A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To stably and in-expensively supply a die with the permeability being able to be heated or cooled by machining a cavity face of porous die blank that the clearance between a metal tube and a metal container is filled with a metal powder and chilled internally, into a prescribed shape. CONSTITUTION: A temperature regulating tube 2 which is made in a prescribed shape is assembled at a prescribed position inside a metal container 12 having a similar shape to a die 1. A rapid quench aluminum alloy powder 14 is filled in the clearance between the vessel 12 and the tube 2. A cap 15 is welded on the container 12 and the opening part 13 is sealed closely. Under the high temperature and the high pressure the powder 14 is compacted and solidified into a metal powder compacted body. The cavity face is executed with machining, etc., and it is machined into a die cavity 4. A heat transfer medium is made flow into the tube 2 and the die 1 is heated or cooled. The counter-measure to leaking of the heat transfer medium is made needless. Because the heat capacity of the aluminum alloy 14 is small, the heating or cooling time of the die 1 can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】加熱または冷却が必要な金属や樹
脂などの成形用金型に係り、特に成形圧力が比較的小さ
く、かつ、通気性を有する成形用金型で加熱・冷却を周
期的に繰返すようにした加熱・冷却孔を有する通気性金
型の製造方法および通気性金型に関するものである。
[Industrial application] This relates to molding dies for metals and resins that require heating or cooling, especially with a relatively low molding pressure and air permeability. The present invention relates to a method of manufacturing an air-permeable mold having a heating / cooling hole which is repeated as described above and an air-permeable mold.

【0002】[0002]

【従来の技術】従来の通気性低圧成形用金型において
は、 (1)鋳造あるいは機械加工した金型キャビティ面に、
通気のための細孔をドリル加工あるいは放電加工などに
より穿設していた。 (2)通気性を備えた金属多孔質体などを金型素材とし
て用いる。 (3)金型キャビティ面に電鋳加工などにより通気性を
有する層を皮膜形成させるなどによって製造されてい
た。
2. Description of the Related Art In a conventional air-permeable low-pressure molding die, (1) on a die cavity surface that has been cast or machined,
Pores for ventilation were formed by drilling or electric discharge machining. (2) A metal porous body having air permeability is used as a mold material. (3) It was manufactured by forming a layer having air permeability on the mold cavity surface by electroforming or the like.

【0003】[0003]

【発明が解決しようとする課題】ところが、(1)金型
キャビティ面に細孔を加工する場合では、 細孔の数および位置が限定されるため、金型キャビ
ティの全面に均一な通気性を有することができないた
め、成形品の品質にバラツキが生じる。 細孔の大きさに限界があるため、極微小孔の加工が
できず、そのため樹脂が細孔に入り込んで、成形品の表
面に微小突起ができて成形品の品質劣化となる。 また、細孔に樹脂が入り込むことによって目詰りを
生じ、そのため金型の通気性が低下し、金型の寿命を短
縮させることになる。
However, in the case of (1) processing the pores on the surface of the mold cavity, the number and position of the pores are limited, so that uniform air permeability is provided over the entire surface of the mold cavity. Since it cannot be held, the quality of the molded product varies. Since the size of the pores is limited, it is not possible to process extremely small pores, so that the resin enters the pores and minute projections are formed on the surface of the molded product, resulting in deterioration of the quality of the molded product. Further, when the resin enters the pores, it causes clogging, which reduces the air permeability of the mold and shortens the life of the mold.

【0004】また、(2)金属パイプの鋳ぐるみをせ
ず、金型全体を金属多孔質体で構成する場合では、 加熱・冷却孔から多孔質体内の空孔を通じて温調媒
体が金型キャビティ面に漏れ、そのため成形品の品質劣
化が生じる 温調媒体の漏れを防ぐため、金型キャビティ面に非
透過性の保護皮膜を形成させる手段を講じた場合には金
型キャビティ面の形状修正あるいは補修加工ができな
い。 別の漏れ防止策として、ドリルなどで温調孔を穿設
後、温調孔内壁面に非透過性保護皮膜を形成させる手段
を講じた場合には、ドリルなどの直線的な温調孔加工で
は、金型キャビティ面形状に沿った加工ができないた
め、加熱・冷却時間が長くなり、かつ均一な温度化も不
可能であるため、そのため成形サイクルが長くなり生産
性が低下する。
(2) In the case where the entire die is made of a metal porous body without forming a cast metal pipe, the temperature control medium passes from the heating / cooling holes through the holes in the porous body to the die cavity. To prevent the temperature control medium from leaking, in order to prevent leakage of the temperature control medium, if a means to form a non-permeable protective coating on the mold cavity surface is taken, the shape of the mold cavity surface should be modified or Repair processing is not possible. As another leak prevention measure, if a measure to form an impermeable protective film on the inner wall surface of the temperature control hole is taken after drilling the temperature control hole with a drill etc., linear temperature control hole processing such as drilling is performed. However, since it is not possible to perform processing along the mold cavity surface shape, the heating / cooling time becomes long, and it is also impossible to obtain a uniform temperature. Therefore, the molding cycle becomes long and the productivity is lowered.

【0005】(3)通気性皮膜をポーラス電鋳形成させ
る場合では、 ポーラス電鋳加工などの特別な装置を必要とし、そ
のため金型のコスト高を招く。 金属多孔質体を用いる場合と同様に、補修などの加
工ができず、その上、温調媒体の漏れ防止策を必要とす
る。 といった種々の問題点があった。
(3) When the porous film is formed by the porous electroforming, a special device such as a porous electroforming process is required, which causes an increase in the cost of the mold. As in the case of using the metal porous body, it is impossible to perform processing such as repair, and in addition, a measure for preventing leakage of the temperature control medium is required. There were various problems.

【0006】本発明は上記従来の問題点に鑑みてなされ
たもので、均一な通気性を有し、軽量かつ高強度で、金
型温調時間の短い加熱・冷却孔を有する通気性金型の製
造方法および通気性金型を提供することを目的とする。
The present invention has been made in view of the above problems of the prior art, and is a breathable mold having uniform breathability, light weight and high strength, and a heating / cooling hole with a short mold temperature control time. It is an object of the present invention to provide a method of manufacturing the same and a breathable mold.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る第1の発明では、所定形状に加工した
金属パイプを金型と類似した金属容器に組込んだ後前記
金属パイプと前記金属容器間の隙間に金属粉末を充填
し、高温・高圧の条件下で加熱または冷却媒体通路孔を
有する前記金属パイプを金型内部に鋳ぐるんで一体成形
させて通気性を有する多孔質金型素材を得た後、前記多
孔質金型素材のキャビティ面を所定形状に加工するよう
にし、第2の発明では、前記金属粉末に表面改質処理を
施した後、前記金属粉末の表面酸化膜を部分的に除去可
能な調整工程を備えたものにする。さらに、第3の発明
では前記金属粉末に粒度分布44〜149μm、凝固速
度103 〜106 ℃/secの熱容量の小さい急冷凝固
アルミニウム合金粉末を用いた金型にする。
In order to achieve the above object, according to a first aspect of the present invention, a metal pipe processed into a predetermined shape is assembled in a metal container similar to a mold, and then the metal pipe is assembled. And a metal powder filled in a gap between the metal container and the metal pipe having a heating or cooling medium passage hole under high temperature and high pressure conditions. After obtaining the mold material, the cavity surface of the porous mold material is processed into a predetermined shape, and in the second invention, the surface modification treatment is performed on the metal powder, and then the surface of the metal powder is processed. An adjustment process capable of partially removing the oxide film is provided. Further, in the third invention, a mold is used in which the metal powder is a rapidly solidified aluminum alloy powder having a particle size distribution of 44 to 149 μm and a solidification rate of 10 3 to 10 6 ° C./sec and a small heat capacity.

【0008】[0008]

【作用】金型を構成する金属粉末と、加熱・冷却孔を形
成する金属パイプを高温・高圧の条件下で一体成形する
ことにより、金型キャビティ全面に均一な通気性を有
し、かつ温調媒体の漏れが全くない通気性金型が同時に
得られる。
[Function] By integrally molding the metal powder forming the mold and the metal pipe forming the heating / cooling hole under the conditions of high temperature and high pressure, the entire surface of the mold cavity is uniformly breathable and has a high temperature. At the same time, a breathable mold can be obtained with no leakage of the preparation medium.

【0009】また、金型温調時間に大きな影響を及ぼす
金型材質は、従来考えられていた温度拡散係数のみで決
定するよりもむしろ熱容量が大きく影響し、熱容量の小
さいアルミニウム合金とすることにより、加熱・冷却効
率のよい金型温調の可能な通気性金型が得られる。さら
にまた、金型母材に急冷凝固アルミニウム合金粉末を用
いることにより、軽量かつ、高強度・高靱性な通気性を
有する成形用金型が得られる。
Further, the mold material, which has a great influence on the mold temperature control time, has a large effect on the heat capacity rather than being determined only by the conventionally considered temperature diffusion coefficient, and is made of an aluminum alloy having a small heat capacity. It is possible to obtain an air-permeable mold capable of controlling the mold temperature with good heating / cooling efficiency. Furthermore, by using the rapidly solidified aluminum alloy powder for the die base material, it is possible to obtain a lightweight molding die having high strength and high toughness and air permeability.

【0010】[0010]

【実施例】以下に、本発明に係る加熱・冷却孔を有する
通気性金型の製造方法および通気性金型の具体的な実施
例を図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a breathable mold having heating / cooling holes and a concrete example of the breathable mold according to the present invention will be described below in detail with reference to the drawings.

【0011】図1は金型材質と金型温調時間の関係図、
図2は高温・高圧の条件下で成形された通気性金型の断
面図を示す。
FIG. 1 is a diagram showing the relationship between mold material and mold temperature control time,
FIG. 2 shows a cross-sectional view of a breathable mold molded under the conditions of high temperature and high pressure.

【0012】まず、本発明者はすでに、成形用金型1に
温度拡散係数の大きい材料を使用することによって金型
温調時間を短くするという従来の考え方から、むしろ熱
容量(比熱×密度)の大小によって金型材質を選定する
方法によって金型温調時間を短縮することが適切である
といった知見を得ている。
First, the present inventor has already considered that the heat capacity (specific heat × density) rather than the conventional idea that the mold temperature control time is shortened by using a material having a large temperature diffusion coefficient for the molding die 1. We have obtained the knowledge that it is appropriate to shorten the mold temperature control time by selecting the mold material depending on the size.

【0013】すなわち、従来温調用パイプ2内を流通す
る熱媒体の層流境膜が仮に完全にないとした完全理想状
態を想定すると、成形用金型1の熱サイクルは温度拡散
係数〔金型の熱伝導率/熱容量(比熱×密度)〕が支配
的となる。このため、金型の温度拡散係数が大きい程金
型温調時間は短くなるといった考え方をしていたのに対
して、本発明者は熱媒体が完全乱流域と考えても層流境
膜はなくなることはなく薄くなるだけで、こうした半理
想状態下ではむしろ成形用金型1の熱サイクルには熱容
量の方が支配的となることを確認している。
That is, assuming a perfect ideal state in which the laminar boundary film of the heat medium flowing through the conventional temperature control pipe 2 is completely absent, the heat cycle of the molding die 1 is a temperature diffusion coefficient [die. Thermal conductivity / heat capacity (specific heat × density)] is dominant. Therefore, the larger the temperature diffusion coefficient of the mold is, the shorter the mold temperature control time is, but the present inventor considers that the heat medium is a completely turbulent region, but the laminar boundary film It is confirmed that the heat capacity is more dominant in the heat cycle of the molding die 1 under such a semi-ideal state, because the heat capacity is more dominant.

【0014】このことから、本実施例では成形用金型1
の材質には熱容量の小さいアルミニウム系合金を用い
た。ちなみに、成形用金型1の材質に用いられるアルミ
ニウム系合金(Al)、銅系合金(Cu)、鉄系合金
(Fe)の熱容量は、Al<Cu<Feとなり、前記3
つの中でアルミニウム系合金(Al)の熱容量が最も小
さく、逆に鉄系合金(Fe)が最も大きい。また、温度
拡散係数だけの比較では、Fe<Al<Cuとなり、銅
系合金が最も大きい。
Therefore, in this embodiment, the molding die 1 is used.
An aluminum alloy having a small heat capacity was used as the material. Incidentally, the heat capacity of the aluminum alloy (Al), copper alloy (Cu), and iron alloy (Fe) used for the material of the molding die 1 is Al <Cu <Fe,
Among them, the heat capacity of the aluminum alloy (Al) is the smallest, and conversely, the iron alloy (Fe) is the largest. Further, when comparing only the temperature diffusion coefficient, Fe <Al <Cu, and the copper alloy is the largest.

【0015】また、図1に示すように、熱容量の最も小
さいアルミニウム合金を用いたことにより、短い熱サイ
クルで成形用金型1の加熱・冷却を行うことができるこ
とを確認しており、熱容量の小さい順にアルミニウム合
金<銅合金<鉄系合金となり金型温調時間も短くなると
いった結果を得ている。
Further, as shown in FIG. 1, it has been confirmed that the molding die 1 can be heated and cooled in a short heat cycle by using the aluminum alloy having the smallest heat capacity. The results are that aluminum alloy <copper alloy <iron-based alloy becomes smaller and the mold temperature control time becomes shorter.

【0016】以上の結果をベースに、本実施例では成形
用金型1の材質に熱容量の小さいアルミニウム合金を基
本構成とした。
Based on the above results, in the present embodiment, the material of the molding die 1 is basically made of aluminum alloy having a small heat capacity.

【0017】これに加え、本実施例では、図2に示すよ
うに成形用金型1の成形方法として、温調用パイプ2を
金型1と類似した金属容器の所定位置へ組込み、金属容
器と温調用パイプ2の隙間にアルミニウム合金粉末14
を充填する。詳しくは、粒度44〜149μm、凝固速
度103 〜106 ℃/secからなる急冷凝固アルミニ
ウム合金粉末14を用い、これを例えば金属容器に対し
て見掛け密度を80%以上に充填し、金属容器毎、高温
・高圧の条件で成形固化させる。
In addition to this, in the present embodiment, as shown in FIG. 2, as a molding method of the molding die 1, the temperature control pipe 2 is incorporated into a predetermined position of a metal container similar to the mold 1 to form a metal container. Aluminum alloy powder 14 in the gap between the temperature control pipes 2
To fill. Specifically, a rapidly solidified aluminum alloy powder 14 having a particle size of 44 to 149 μm and a solidification rate of 10 3 to 10 6 ° C./sec is used, and this is filled with, for example, an apparent density of 80% or more in a metal container, Mold and solidify under high temperature and high pressure conditions.

【0018】こうして、温調用パイプ2と金属容器およ
びアルミニウム合金粉末14を一体成形固化させた後、
金型キャビティ4面の金属容器12部分のみを除去し他
の部分は金属容器12を残存させた状態で、例えば、機
械加工などにより所定の形状の金型1に仕上げる。
In this way, after the temperature control pipe 2, the metal container and the aluminum alloy powder 14 are integrally molded and solidified,
With only the metal container 12 on the surface of the mold cavity 4 removed and the other part of the metal container 12 left, the mold 1 having a predetermined shape is finished by, for example, machining.

【0019】こうすることにより、金型キャビティ4面
は通気性を有し、この金型の反キャビティ4面側は金属
容器12で密閉された状態となり、この金属容器12の
側面に接続治具6を取付けて排気装置8へ接続すること
によって、金型キャビティ4面から成形中の樹脂と金型
1との隙間に残存する空気などを吸引して多孔質状の母
材部分を介して通気させ得る通気性金型1を得ることが
できる。
As a result, the surface of the mold cavity 4 has air permeability, the side of the mold opposite to the surface of the cavity 4 is sealed with the metal container 12, and the side surface of the metal container 12 is connected to the connecting jig. By attaching 6 to the exhaust device 8, air remaining in the gap between the resin being molded and the mold 1 is sucked from the surface of the mold cavity 4 and vented through the porous base material portion. It is possible to obtain a breathable mold 1.

【0020】ここで、アルミニウム合金粉末14の充填
に際しては、、成形固化後の通気性に影響を与えるが、
金型1として強度確保をするとともに、固化収縮に伴う
寸法変形を最小限にするために、金属容器12に対して
限りなく見掛け密度を高く充填することが望ましく、そ
のためには、加振しながら充填すると効果が高まる。あ
るいは、あらかじめ、常温・高圧の条件下で予備成形固
化させた後、金属容器に充填することも可能である。
Here, when the aluminum alloy powder 14 is filled, the air permeability after molding and solidification is affected,
It is desirable to fill the metal container 12 with an apparently high density in order to secure strength as the mold 1 and to minimize dimensional deformation due to solidification shrinkage. The effect increases when filled. Alternatively, it is also possible to pre-form and solidify under conditions of room temperature and high pressure and then fill the metal container.

【0021】また、アルミニウム合金粉末表面には凝固
時に生成した酸化膜(例えばAl2O3 など)が数十〜
数百Åの厚さで存在しており、この酸化膜が高温・高圧
の条件下で成形固化する際に粉末同志の結合を阻害す
る。
On the surface of the aluminum alloy powder, an oxide film (such as Al2O3) formed during solidification is in the range of several tens to several.
It exists in a thickness of several hundred Å, and this oxide film hinders the bonding between powders when they solidify under high temperature and high pressure conditions.

【0022】すなわち、この阻害現象を利用して成形固
化した金属粉末成形体は、極めて微細で、かつ連通され
た空孔を金型1の全域に均一に分散させた多孔質材とな
り、これによって極めて良好な通気性を備えた金型1を
得ることができる。
That is, the metal powder compact molded and solidified by utilizing this inhibition phenomenon becomes a porous material in which extremely fine and continuous pores are uniformly dispersed in the entire area of the mold 1, and It is possible to obtain the mold 1 having extremely good air permeability.

【0023】さらに、表面改質処理にて粉末表面酸化膜
を部分的に除去した粉末を用いることにより、金属粉末
同志の結合強度を高めながら、かつ微細な通気孔を有す
ることが可能となる。
Furthermore, by using the powder in which the oxide film on the surface of the powder is partially removed by the surface modification treatment, it is possible to increase the bonding strength between the metal powders and to have fine ventilation holes.

【0024】その上、表面改質処理の程度により表面酸
化膜の部分的な除去の割合を調整することにより、金型
強度と通気性および通気孔の大きさ、通気孔の分布状態
を自由にコントロールすることができる。
Furthermore, by adjusting the rate of partial removal of the surface oxide film according to the degree of surface modification treatment, the mold strength and air permeability, the size of the air holes, and the distribution state of the air holes can be freely set. You can control.

【0025】さらに、アルミニウム合金粉末14を充填
する金属容器は高温・高圧の条件下で成形固化する際、
粉末状態から固体状態へ移行する時寸法収縮を伴うた
め、あらかじめ、収縮量に応じて金属容器寸法を計算で
求めておく必要がある。また、金属容器の材質は本実施
例で用いるアルミニウム合金粉末の場合の高温・高圧の
処理温度が、例えば500〜600℃と比較的低温であ
るため、特別な材料を必要とせず本実施例では、加工が
容易かつ安価なSS材を用いた。
Further, when the metal container filled with the aluminum alloy powder 14 is molded and solidified under high temperature and high pressure conditions,
Since the dimensional shrinkage is involved when the powder state is changed to the solid state, it is necessary to calculate the size of the metal container according to the shrinkage amount in advance. Moreover, since the processing temperature of high temperature and high pressure in the case of the aluminum alloy powder used in this embodiment is relatively low, for example, 500 to 600 ° C., the metal container is not required to be a special material in this embodiment. An SS material that is easy and inexpensive to process is used.

【0026】なお、高温・高圧の成形に際し、温調用パ
イプ2を金属容器の外側へ突出させることにより、温調
用パイプ2内にも高圧条件下で用いる例えばN2 ガスな
どが導通されるため、温調用パイプ2はアルミニウム合
金粉末14の固化収縮に伴い若干の変形・移動は認めら
れたものの加熱・冷却媒体通路孔としての機能は十分に
有していた。
During high temperature / high pressure molding, the temperature control pipe 2 is projected to the outside of the metal container so that, for example, N2 gas used under high pressure conditions is also conducted into the temperature control pipe 2, so that temperature control is performed. Although the adjustment pipe 2 was slightly deformed and moved with the solidification shrinkage of the aluminum alloy powder 14, the adjustment pipe 2 had a sufficient function as a heating / cooling medium passage hole.

【0027】さらに本発明では、多様化する成形用金型
の特性に応じて、アルミニウム合金粉末の組成を調整す
ることにより、急冷凝固特性を利用して、具体的には、
急冷凝固により機械的物性の向上に有効な元素を過飽和
に固溶させることにより鉄系合金と同等の特性を得るこ
とが可能であり、本実施例では以下に示す2種類の急冷
凝固アルミニウム合金粉末を用いた。
Further, in the present invention, the rapid solidification characteristics are utilized by adjusting the composition of the aluminum alloy powder according to the diversifying characteristics of the molding die.
It is possible to obtain the characteristics equivalent to those of the iron-based alloy by solid-solubilizing an element effective for improving mechanical properties by rapid solidification, and in the present embodiment, the following two types of rapidly solidified aluminum alloy powders are shown. Was used.

【0028】なお、ここで急冷凝固特性は、液体状態か
ら固体状態への凝固速度を大きくすることで得られる。
このためには粉末粒度を小さくすることが効果的である
との観点から粉末粒度は、44〜149μmとした。す
なわち、44μm以下の粉末では急冷凝固特性を得るの
に十分な凝固速度を有しているが、活性化が強いため取
扱いに爆発などの危険が伴うため好ましくなく、逆に1
49μm以上の粉末では凝固速度が遅く急冷凝固特性を
維持していないためである。併せて粉末製造の際に44
〜149μmの粉末粒度分布が最も歩留りがよいためで
ある。
The rapid solidification characteristic is obtained by increasing the solidification rate from the liquid state to the solid state.
To this end, the powder particle size is set to 44 to 149 μm from the viewpoint that reducing the powder particle size is effective. That is, a powder having a particle size of 44 μm or less has a solidification rate sufficient to obtain a rapid solidification property, but it is not preferable because the activation is strong and a danger such as an explosion is involved in handling.
This is because the powder of 49 μm or more has a slow solidification rate and does not maintain the rapid solidification property. Together with the powder production, 44
This is because the powder particle size distribution of ˜149 μm has the highest yield.

【0029】また、凝固速度は103 〜106 ℃/se
cとした。これは先に決めた粉末粒度と関係が強く、す
なわち、103 ℃/sec以下では有効元素を過飽和に
固溶させることは困難であり、逆に106 ℃/sec以
上では急冷凝固特性に急激な変化がないためである。併
せて粉末製造方法として比較的安価でかつ工業的生産に
一般的なガスアトマイズ法を用いることにより、コスト
ダウンが図られ、この場合の凝固速度が103 〜106
℃/secを満足していたことになる。
The solidification rate is 10 3 to 10 6 ° C / se
c. This has a strong relationship with the powder particle size determined previously, that is, it is difficult to dissolve the effective element into supersaturation at 10 3 ° C / sec or less, and conversely, at 10 6 ° C / sec or more, the rapid solidification characteristics rapidly increase. This is because there is no significant change. At the same time, by using a gas atomizing method which is relatively inexpensive as a powder manufacturing method and is generally used for industrial production, cost reduction can be achieved, and the solidification rate in this case is 10 3 to 10 6
It means that the temperature was satisfied with ° C / sec.

【0030】図2に本発明に係る実施例で得られた成形
用金型の断面図を示す。図2において、符号1は成形用
金型、2は温調用パイプ、12は金属容器、13は開口
部、14はアルミニウム合金粉末および15はフタを示
す。
FIG. 2 shows a sectional view of the molding die obtained in the example according to the present invention. In FIG. 2, reference numeral 1 is a molding die, 2 is a temperature control pipe, 12 is a metal container, 13 is an opening, 14 is an aluminum alloy powder, and 15 is a lid.

【0031】次に、この成形用金型の製造方法について
説明する。
Next, a method of manufacturing this molding die will be described.

【0032】まず図2(1)に示すように、所定形状に
加工した温調用パイプ2を金型と類似した金属容器12
の所定位置へ組込む。次に金属容器12に開口した開口
部13から急冷凝固アルミニウム合金粉末14を金属容
器12および温調用パイプ2の隙間へ充填する。なお、
アルミニウム合金粉末14の充填時には、開口部13が
上面になるようにし、充填が完了したら、フタ15を閉
じ、金属容器12と例えば溶接などによって密閉する。
First, as shown in FIG. 2A, a temperature control pipe 2 processed into a predetermined shape is used as a metal container 12 similar to a mold.
Install it in the specified position. Next, the rapidly solidified aluminum alloy powder 14 is filled into the gap between the metal container 12 and the temperature control pipe 2 through the opening 13 opened in the metal container 12. In addition,
At the time of filling the aluminum alloy powder 14, the opening 13 is made to be the upper surface, and when the filling is completed, the lid 15 is closed and sealed with the metal container 12 by, for example, welding.

【0033】同様に、温調用パイプ2と金属容器12も
溶接などによって密閉する。ここで、温調用パイプ2は
金属容器12より外側へ突出た構造とし、こうすること
により、高温・高圧条件下で成形固化させた場合、温調
用パイプ2内へ高圧にするための例えばN2 、Arなど
の不活性ガスが導通され、温調用パイプ2を破損するこ
とはない。こうして金属容器12毎に高温・高圧の条件
処理が可能な装置内へ入れ一体形成固化させる。
Similarly, the temperature control pipe 2 and the metal container 12 are also sealed by welding or the like. Here, the temperature control pipe 2 has a structure projecting to the outside of the metal container 12, so that when the temperature control pipe 2 is molded and solidified under high temperature and high pressure conditions, for example, N2 for increasing the pressure into the temperature control pipe 2, An inert gas such as Ar is conducted so that the temperature control pipe 2 is not damaged. In this way, each metal container 12 is put into an apparatus capable of high-temperature and high-pressure condition treatment and integrally formed and solidified.

【0034】ここで処理条件は、成形固化後の通気性を
有する微細空孔の残存率および急冷凝固アルミニウム合
金粉末14、および温調用パイプ2あるいは金属容器1
2の材質に応じて設定する。
Here, the treatment conditions are the residual ratio of air-permeable fine pores after molding and solidification, the rapidly solidified aluminum alloy powder 14, the temperature control pipe 2 or the metal container 1.
Set according to the material of 2.

【0035】なお、微細空孔の残存率などは、前述した
あらかじめ金属粉末に表面改質処理を施すことにより調
整可能であり、これにより成形固化時の処理条件による
影響は小さくなることを確認済みである。すなわち、成
形固化時の温度と圧力をあらかじめ所望する多孔質体に
なるように条件設定すれば、微細空孔の残存率などは成
形固化前の表面改質処理にて決まる。
The remaining rate of fine pores can be adjusted by previously subjecting the metal powder to a surface modification treatment, and it has been confirmed that the influence of the treatment conditions at the time of molding and solidification is reduced. Is. That is, if the temperature and pressure at the time of molding and solidification are set in advance so as to obtain a desired porous body, the residual rate of fine pores and the like are determined by the surface modification treatment before molding and solidification.

【0036】本実施例では、図2(2)に示すように、
温度500℃、圧力1,000kg/cm2 で行った。
高温・高圧条件で処理し、一体成形させた後、金型キャ
ビティ4面以外の金属容器12は残存させた状態で金型
キャビティ4面を所定形状に加工し、金型キャビティ4
面以外の金属容器12の側面に接続治具6を介して通気
性金型1を得るのである。
In this embodiment, as shown in FIG.
The temperature was 500 ° C. and the pressure was 1,000 kg / cm 2 .
After being processed under high temperature and high pressure conditions and integrally molded, the metal mold cavity 4 surface is processed into a predetermined shape while leaving the metal container 12 other than the metal mold cavity 4 surface.
The gas permeable mold 1 is obtained through the connecting jig 6 on the side surface of the metal container 12 other than the surface.

【0037】こうして得られた通気性金型1を用いて、
成形テストを行い表1に示す結果を得た。
Using the breathable mold 1 thus obtained,
A molding test was conducted and the results shown in Table 1 were obtained.

【0038】[0038]

【表1】 [Table 1]

【0039】表1からも明らかなように、比較例を基準
とした場合、全ての点で本実施例の成形用金型1の優位
性が証明された。なお、それぞれの金型は、巾300×
長さ400×厚さ40mmのレジャ用クーラーボックス
を成形するクーラーボックス金型とし、温調用パイプ2
は、実施例では外径12×厚さ1.5mmのステンレス
鋼を鋳ぐるんで形成し、比較例は内径9mmの機械加工
(ドリル穿設)とした。
As is clear from Table 1, the superiority of the molding die 1 of this example was proved in all points when the comparative example was used as a reference. Each mold has a width of 300 x
A cooler box mold for molding a cooler box for leisure with a length of 400 mm and a thickness of 40 mm, and a temperature control pipe 2
Was formed by casting stainless steel having an outer diameter of 12 mm and a thickness of 1.5 mm in the examples, and the comparative example was machined (drilled) to have an inner diameter of 9 mm.

【0040】実施例1:急冷凝固アルミニウム合金粉末
(Al−Fe系)を高温・高圧の条件下で成形固化させ
た通気性金型 実施例2:急冷凝固アルミニウム合金粉末(7091
系)を高温・高圧の条件下で成形固化させた通気性金型 比較例 :金型用アルミニウム圧延素材を機械加工して
得た金型で、直径0.3mmの通気孔をドリル穿設した を示す。ここで実施例1は耐熱性、実施例2は高強度を
目的として、また比較例は通常頻繁に用いられている材
料を選択した。
Example 1: Breathable mold obtained by molding and solidifying rapidly solidified aluminum alloy powder (Al-Fe system) under conditions of high temperature and high pressure Example 2: Rapidly solidified aluminum alloy powder (7091)
System) was molded and solidified under high temperature and high pressure conditions. Comparative example: A mold obtained by machining an aluminum rolled material for a mold, and a ventilation hole having a diameter of 0.3 mm was drilled. Indicates. Here, a material selected in Example 1 was heat resistance, a material in Example 2 was high strength, and a material frequently used in the comparative examples was selected.

【0041】表1に示すように、金型温調時間において
も、熱媒体通路として温調用の金属パイプを用いて金型
キャビティ4形状に沿うように配備していることによ
り、比較例に対してかなり短い金型温調時間を得ること
ができた。また、均一微細な通気孔が、金型1全域にわ
たって均一分散配備していることにより、比較例に対し
て成形品の品質は大幅に向上し、さらに、通気孔が極め
て微細なことにより、樹脂の差し込みによる目詰りは全
く生じないことが確認できた。
As shown in Table 1, even in the mold temperature control time, a metal pipe for temperature control is used as the heat medium passage so as to be arranged along the shape of the mold cavity 4. It was possible to obtain a fairly short mold temperature control time. In addition, the quality of the molded product is significantly improved as compared with the comparative example because the uniform and fine air vents are uniformly dispersed and arranged over the entire area of the mold 1. Further, since the air vents are extremely fine, the resin is It was confirmed that the plugging did not cause clogging at all.

【0042】さらに急冷凝固特性により常温および金型
成形常用温度範囲である200℃引張強さにおいても比
較例に対して極めて高い物性値を得ており、多様化する
金型使用条件に対応可能である。
Further, due to the rapid solidification property, the physical properties are much higher than those of the comparative examples even at room temperature and 200 ° C. tensile strength, which is the normal temperature range for mold forming, and it is possible to cope with diversifying mold use conditions. is there.

【0043】なお、本実施例では金型用途拡大を目的と
して、急冷凝固アルミニウム合金粉末を用いたが、応力
が比較的小さい低圧成形用金型においては普通凝固のア
ルミニウム合金粉末を用いることも可能であり、これに
よってコストダウンも図れる。
In this example, the rapidly solidified aluminum alloy powder was used for the purpose of expanding the use of the mold, but a normal solidified aluminum alloy powder can be used in the low pressure molding mold having relatively small stress. Therefore, the cost can be reduced.

【0044】[0044]

【発明の効果】以上説明したことからも明らかなよう
に、本発明に係る第1の発明では、所定形状に加工した
金属パイプを金型と類似した金属容器に組込んだ後前記
金属パイプと前記金属容器間の隙間に金属粉末を充填
し、高温・高圧の条件下で加熱または冷却媒体通路孔を
有する前記金属パイプを金型内部に鋳ぐるんで一体成形
させて通気性を有する多孔質金型素材を得た後、前記多
孔質金型素材のキャビティ面を所定形状に加工するよう
にしたことにより、 極めて微細な通気孔を有することにより、高品質な
成形体を安定して得ることができる。 熱媒体通路孔として多孔質体の中に金属パイプを鋳
ぐるんで形成することにより、熱媒体の漏れ対策が不要
となり、加熱・冷却が可能な通気性金型を低コストで安
定して供給することができる。
As is apparent from the above description, in the first invention according to the present invention, a metal pipe processed into a predetermined shape is assembled in a metal container similar to a mold, and then the metal pipe is used. Porous gold having air permeability by being filled with metal powder in the gaps between the metal containers and integrally molding the metal pipe having heating or cooling medium passage holes inside the mold under high temperature and high pressure conditions. After the mold material is obtained, the cavity surface of the porous mold material is processed into a predetermined shape, so that it has a very fine ventilation hole, so that a high quality molded product can be stably obtained. it can. By forming a metal pipe around the porous body as a heat medium passage hole, it is not necessary to take measures against leakage of the heat medium, and it is possible to stably supply a breathable mold that can be heated and cooled at low cost. be able to.

【0045】第2の発明では、金属粉末に表面改質処理
を施した後、前記金属粉末の表面酸化膜を部分的に除去
可能な調整工程を備えたことにより、通気性を有する微
小空孔の大きさ、分布などを調整できることから高品質
な通気性金型を安定して供給することができる。
According to the second aspect of the present invention, after the metal powder is subjected to the surface modification treatment, an adjusting step capable of partially removing the surface oxide film of the metal powder is provided. Since the size, distribution, etc. can be adjusted, a high quality breathable mold can be stably supplied.

【0046】さらに第3の発明では、金属粉末に粒度分
布44〜149μm、凝固速度10 3 〜106 ℃/se
cの熱容量の小さい急冷凝固アルミニウム合金粉末を用
いたことにより、高強度・高靱性な金型素材が得られる
ことから、多様化する成形用金型に対応した金型を供給
することができ、さらに、熱容量の小さいアルミニウム
合金とすることにより金型の加熱・冷却時間が短縮され
る。
Further, in the third invention, the particle size is added to the metal powder.
Cloth 44-149 μm, coagulation rate 10 3-106℃ / se
Uses rapidly solidified aluminum alloy powder with small heat capacity of c
As a result, a die material with high strength and high toughness can be obtained.
Therefore, we supply molds that are compatible with diversifying molding dies.
Can also be aluminum with a small heat capacity
By using an alloy, the heating / cooling time of the mold can be shortened.
It

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の金型材質と金型温調時間の関係図であ
る。
FIG. 1 is a diagram showing the relationship between the mold material of the present invention and the mold temperature control time.

【図2】高温・高圧の条件下で成形された通気性金型の
断面図を示し、図2(1)は排気装置を配設しない場
合、図2(2)は排気装置を配設した場合をそれぞれ示
す。
FIG. 2 is a cross-sectional view of a breathable mold molded under conditions of high temperature and high pressure. FIG. 2 (1) shows a case where an exhaust device is not installed, and FIG. 2 (2) shows an exhaust device installed. Each case is shown.

【符号の説明】[Explanation of symbols]

1 成形用金型(通気性金型) 2 温調用パイプ 4 金型キャビティ 6 接続治具 8 排気装置 12 金属容器 13 開口部 14 アルミニウム合金粉末 15 フタ 1 Mold for molding (breathable mold) 2 Pipe for temperature control 4 Mold cavity 6 Connection jig 8 Exhaust device 12 Metal container 13 Opening 14 Aluminum alloy powder 15 Lid

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B22F 1/00 N 1/02 F 3/11 B29C 33/02 9543−4F 33/10 9543−4F 33/38 9543−4F 45/73 7639−4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B22F 1/00 N 1/02 F 3/11 B29C 33/02 9543-4F 33/10 9543-4F 33/38 9543-4F 45/73 7639-4F

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定形状に加工した金属パイプを金型と
類似した金属容器に組込んだ後前記金属パイプと前記金
属容器間の隙間に金属粉末を充填し、高温・高圧の条件
下で加熱または冷却媒体通路孔を有する前記金属パイプ
を金型内部に鋳ぐるんで一体成形させて通気性を有する
多孔質金型素材を得た後、前記多孔質金型素材のキャビ
ティ面を所定形状に加工するようにしたことを特徴とす
る加熱・冷却孔を有する通気性金型の製造方法。
1. A metal pipe processed into a predetermined shape is assembled in a metal container similar to a mold, and then a metal powder is filled in a gap between the metal pipe and the metal container and heated under high temperature and high pressure conditions. Alternatively, after the metal pipe having a cooling medium passage hole is cast inside the mold to be integrally molded to obtain a porous mold material having air permeability, the cavity surface of the porous mold material is processed into a predetermined shape. A method for producing a breathable mold having heating / cooling holes.
【請求項2】 請求項1の金属粉末に表面改質処理を施
した後、前記金属粉末の表面酸化膜を部分的に除去可能
な調整工程を備えたことを特徴とする加熱・冷却孔を有
する通気性金型の製造方法。
2. A heating / cooling hole comprising an adjusting step capable of partially removing a surface oxide film of the metal powder after the surface modification treatment of the metal powder according to claim 1. A method of manufacturing a breathable mold having the same.
【請求項3】 請求項1の金属粉末に粒度分布44〜1
49μm、凝固速度103 〜106 ℃/secの熱容量
の小さい急冷凝固アルミニウム合金粉末を用いたことを
特徴とする加熱・冷却孔を有する通気性金型。
3. The particle size distribution of the metal powder according to claim 1 is 44 to 1.
A breathable mold having heating and cooling holes, which is characterized by using a rapidly solidified aluminum alloy powder having a small heat capacity of 49 μm and a solidification rate of 10 3 to 10 6 ° C./sec.
JP6291375A 1994-11-25 1994-11-25 Production of die with permeability having heating, cooling hole and die with permeability Pending JPH08150437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6291375A JPH08150437A (en) 1994-11-25 1994-11-25 Production of die with permeability having heating, cooling hole and die with permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6291375A JPH08150437A (en) 1994-11-25 1994-11-25 Production of die with permeability having heating, cooling hole and die with permeability

Publications (1)

Publication Number Publication Date
JPH08150437A true JPH08150437A (en) 1996-06-11

Family

ID=17768109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6291375A Pending JPH08150437A (en) 1994-11-25 1994-11-25 Production of die with permeability having heating, cooling hole and die with permeability

Country Status (1)

Country Link
JP (1) JPH08150437A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050038A1 (en) * 1998-03-27 1999-10-07 3D Systems, Inc. Method for forming a molding tool with thermal control elements using powder metal technology
WO1999059790A1 (en) * 1998-05-19 1999-11-25 Boechat Jean Marc Injection moulding tool and method for the production thereof
KR20020084720A (en) * 2001-05-02 2002-11-11 태광실업 주식회사 Method of making footwear press molding
JP2014509350A (en) * 2011-02-14 2014-04-17 新東工業株式会社 Mold material, mold breathable member, mold mold material and mold breathable member manufacturing method
CN108788096A (en) * 2017-04-27 2018-11-13 香港生产力促进局 The mold and its manufacturing method with conformal cooling water route based on direct metal laser sintering and Founding moldability technology
EP3936298A1 (en) * 2020-07-09 2022-01-12 FOX Velution GmbH Moulding tool for manufacturing a particle foam moulding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050038A1 (en) * 1998-03-27 1999-10-07 3D Systems, Inc. Method for forming a molding tool with thermal control elements using powder metal technology
WO1999059790A1 (en) * 1998-05-19 1999-11-25 Boechat Jean Marc Injection moulding tool and method for the production thereof
KR20020084720A (en) * 2001-05-02 2002-11-11 태광실업 주식회사 Method of making footwear press molding
JP2014509350A (en) * 2011-02-14 2014-04-17 新東工業株式会社 Mold material, mold breathable member, mold mold material and mold breathable member manufacturing method
US9545736B2 (en) 2011-02-14 2017-01-17 Sintokogio, Ltd. Mold and die metallic material, air-permeable member for mold and die use, and method for manufacturing the same
CN108788096A (en) * 2017-04-27 2018-11-13 香港生产力促进局 The mold and its manufacturing method with conformal cooling water route based on direct metal laser sintering and Founding moldability technology
EP3936298A1 (en) * 2020-07-09 2022-01-12 FOX Velution GmbH Moulding tool for manufacturing a particle foam moulding

Similar Documents

Publication Publication Date Title
US7461684B2 (en) Casting process and articles for performing same
JP2008512248A (en) High speed extrusion molding
JPS5825859A (en) Method and apparatus for producing hollow thick walled casting
US5553656A (en) Method of directionally cooling using a fluid pressure induced thermal gradient
JPH08150437A (en) Production of die with permeability having heating, cooling hole and die with permeability
US5931213A (en) Method of casting an engine block of aluminum
US7032647B2 (en) Pressure casting using a supported shell mold
US5832981A (en) Construction and method of making heat-exchanging cast metal forming tool
CN108273963A (en) A kind of casting method for preventing from generating shrinkage defect at the thick big wall of casting
US1996181A (en) Process of forming castings
JP3001144B2 (en) Manufacturing method of molding die having heating / cooling holes and molding die
EP0498808A1 (en) Method of controlling the rate of heat extraction in mould casting
EP3135399B1 (en) Method of manufactruring precision cast parts for vehicle exhaust systems
JPH0938750A (en) Porous die material having excellent heat exchangeability
JP2000042717A (en) Die with built-in pipe for adjusting temperature
JPH07236963A (en) Manufacture of molding die having heating/cooling hole and molding die
JP2000104130A (en) Manufacture of porous metal
JPH08197229A (en) Manufacture of fiber-reinforced cylinder block
JP2882562B2 (en) Temperature control method of molding die and molding die
JPH07276485A (en) Mold for molding resin
JP2787797B2 (en) Method and apparatus for manufacturing corrosion resistant member for molten aluminum and corrosion resistant member for molten aluminum
JP2000141021A (en) Cooling pipe-inserted cast iron article, and its manufacture
Novotnak et al. Full Density and Alternative Consolidation: Controlled Porosity Levels in PM Stainless Steel Tooling
JP2002346728A (en) Casting method and casting device
JPH0952231A (en) Mold with excellent heat exchangeability