JPH0938750A - Porous die material having excellent heat exchangeability - Google Patents

Porous die material having excellent heat exchangeability

Info

Publication number
JPH0938750A
JPH0938750A JP7194478A JP19447895A JPH0938750A JP H0938750 A JPH0938750 A JP H0938750A JP 7194478 A JP7194478 A JP 7194478A JP 19447895 A JP19447895 A JP 19447895A JP H0938750 A JPH0938750 A JP H0938750A
Authority
JP
Japan
Prior art keywords
thermal conductivity
mold
alloy
porous
kinds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7194478A
Other languages
Japanese (ja)
Inventor
Atsushi Funakoshi
淳 船越
Takashi Nishi
隆 西
Akira Kosaka
晃 小阪
Ryutaro Motoki
龍太郎 元木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP7194478A priority Critical patent/JPH0938750A/en
Publication of JPH0938750A publication Critical patent/JPH0938750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the heat exchangeability of a die member which is used for molding resins, casting nonferrous metals, etc., and consists of a porous metallic sintered compact. SOLUTION: This die member consists of the porous metallic body in which plural kinds of metallic particles varying in thermal conductivity are uniformly dispersed to coexist and which is a hot isotropic press sintered compact having porosity of 7 to 50% and pore diameter of <=500μm. The material kinds of plural kinds of the metals constituting the die member are preferably obtd. by combining the material kinds, such as iron or iron alloy, cobalt or cobalt alloy, or nickel or nickel alloy, having low thermal conductivity and the material kinds, such as copper or copper alloy, or aluminum or aluminum alloy, having the high thermal conductivity. The compounding ratio of the material kinds having the high thermal conductivity is 5 to 95% (vol.%).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂の成形用金
型、非鉄金属の鋳造用金型等として使用される、熱交換
性にすぐれた多孔質金型材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous mold material having excellent heat exchange properties, which is used as a resin molding mold, a non-ferrous metal casting mold, and the like.

【0002】[0002]

【従来の技術】樹脂の熱成形(射出成形,圧空成形,発
泡成形,ブロー成形等)、非鉄金属の鋳造(例えば、ア
ルミ合金のダイキャスト)等に使用される金型は、成形
・鋳造操業の反復により型温度が上昇する。型温度が過
度に上昇すると、樹脂成形では、例えば成形品表面に焼
けを生じ易く、非鉄金属の鋳造金型では、溶損・焼き付
き等のトラブルを生じ易くなる。型温度を一定の温度域
に維持制御することは、成形・鋳造操業の効率的な遂行
および製品品質の確保に重要であり、このため、上記金
型には、銅パイプやスパイラル管等の熱交換用媒体流通
路を設け、強制冷却作用により、型温度の調節を行うよ
うにしている。
Molds used for thermoforming of resins (injection molding, pressure molding, foam molding, blow molding, etc.) and casting of non-ferrous metals (for example, die casting of aluminum alloys) are molding and casting operations. By repeating the above, the mold temperature rises. If the mold temperature rises excessively, in resin molding, for example, the surface of the molded product is likely to be burned, and in a non-ferrous metal casting mold, troubles such as melting loss and seizure are likely to occur. Maintaining and controlling the mold temperature within a certain temperature range is important for efficient execution of molding / casting operations and ensuring product quality. A medium exchange passage for exchange is provided, and the mold temperature is controlled by the forced cooling action.

【0003】また、上記金型は、キャビティ内の空気お
よびキャビティに注入される樹脂や溶融金属から発生す
るガスを外部に排出するためのガス抜き構造が設けら
れ、成形・鋳造操業の1サイクル毎に、キャビティから
のガス抜き操作が行われる。キャビティ内にガスが残留
すると、製品内のガスの巻き込み、製品表面の気泡転写
等の製品欠陥を生じるからである。そのガス抜き効果を
高めるための工夫として、エアーベント等を設けていた
従来の構造に代え、多孔質焼結体を金型構成部材とし、
多孔質体の微細な通気孔を介してガス抜きを行うように
した金型も実用され、多孔質体の材種や製造法に関して
種々の提案がなされている(特開昭60−130446
号公報,特開平3−239509号公報,特開平4−7
2004号公報,特開平4−83603号公報,特開平
6−33112号公報等)。
Further, the mold is provided with a degassing structure for discharging the gas generated from the air in the cavity and the resin or molten metal injected into the cavity to the outside, and each cycle of the molding / casting operation is performed. First, the gas is removed from the cavity. This is because, if the gas remains in the cavity, the gas in the product is entrained and product defects such as bubble transfer on the product surface occur. As a device for enhancing the gas venting effect, a porous sintered body was used as a mold constituent member instead of the conventional structure in which an air vent was provided.
A mold in which gas is vented through fine ventilation holes of a porous body has also been put into practical use, and various proposals have been made regarding the material type and the manufacturing method of the porous body (JP-A-60-130446).
JP, JP-A-3-239509, JP, 4-7
2004, JP 4-83603 A, JP 6-33112 A, etc.).

【0004】[0004]

【発明が解決しようとする課題】金型に多孔質体を適用
することは、キャビティからのガス抜きを極めて効果的
に行うことを可能とする。しかし、その反面、多孔質体
であることによる断熱性のために、型の熱伝導率が大き
く低下する。通常この種の金型はスレンレス鋼や工具鋼
等が適用され、これらは熱伝導率の低い材種であり、多
孔質体の断熱性が重複する結果として、冷却装置による
冷却作用が減殺され、金型を所望の温度範囲に維持制御
することが困難となる。この対策として、熱交換用媒体
の送給管路を増設する等、冷却構造の設計変更により冷
却作用を強化することも考えられるが、それだけ構造が
複雑化することになる。また、金型のキャビティ形状等
により、媒体送給管路の形設箇所や管路のサイズ・本数
等の制約を受け、均一かつ充分な冷却効果を得ることが
困難な場合も少なくない。
The application of the porous body to the mold makes it possible to degas the cavity extremely effectively. However, on the other hand, the thermal conductivity of the mold is greatly reduced due to the heat insulation due to the porous body. Usually, this type of mold is applied with stainless steel, tool steel, etc., which are materials with low thermal conductivity, and as a result of overlapping the heat insulating properties of the porous body, the cooling action by the cooling device is diminished, It becomes difficult to maintain and control the mold within a desired temperature range. As a countermeasure against this, it is conceivable to strengthen the cooling action by changing the design of the cooling structure, such as adding a heat transfer medium supply pipe, but the structure becomes more complicated. In addition, it is often the case that it is difficult to obtain a uniform and sufficient cooling effect due to restrictions such as the forming location of the medium feeding pipe and the size and number of pipes due to the cavity shape of the mold.

【0005】樹脂成形操業では、型温度が上昇して成形
品に焼けを生じた場合、その表面品質を修復するための
手当てとして塗装を行い、金属鋳造操業では、金型の溶
損・焼き付き防止策として、キャビティ表面に塗型剤を
コーティングすることが行われているが、いずれも工程
の煩瑣を免れず、また得られる効果も充分満足し得るも
のとはいえない。別法として、成形・鋳造操業の1サイ
クル毎に、冷却・降温のための待ち時間を設定すること
も考えられるが、操業効率・生産性の大幅な低下を余儀
なくされる。本発明は、成形・鋳造用金型に関する上記
問題を解決することを目的とし、多孔質体としての優れ
たガス抜きを有すると共に、多孔質体でありながら、型
温度の制御に必要な改良された熱伝導性を有する金型材
を提供するものである。
In the resin molding operation, when the mold temperature rises and the molded product is burnt, painting is performed as a measure to restore the surface quality, and in the metal casting operation, melting damage and seizure of the mold are prevented. As a measure, a coating agent is applied to the surface of the cavity. However, none of them is unavoidable in the complexity of the process, and the obtained effect cannot be said to be sufficiently satisfactory. Alternatively, it is possible to set a waiting time for cooling / cooling for each cycle of the molding / casting operation, but it is inevitable that the operation efficiency / productivity is significantly reduced. The present invention aims to solve the above-mentioned problems relating to a mold for molding / casting, and has an excellent degassing as a porous body, and, while being a porous body, an improvement necessary for controlling the mold temperature is improved. The present invention provides a mold material having excellent thermal conductivity.

【0006】[0006]

【課題を解決するための手段】本発明の多孔質金型材
は、熱伝導率の異なる複数種の金属粒子が均一に分散混
合した、気孔率7〜50%、気孔径500μm以下の熱
間等方加圧焼結体である金属多孔質体からなることを特
徴としている。
Means for Solving the Problems The porous mold material of the present invention comprises a plurality of kinds of metal particles having different thermal conductivities uniformly dispersed and mixed, and has a porosity of 7 to 50% and a pore diameter of 500 μm or less. It is characterized in that it is composed of a metal porous body which is a pressure-pressurized sintered body.

【0007】本発明の金型材は、気孔率7〜50%、気
孔径500μm以下の多孔質体であることによる良好な
ガス抜き性を有する。その多孔質体は、熱伝導率の異な
る複数種の金属粒子からなる混合体であることにより、
その混合比率に応じて調節された熱伝導性を有する。す
なわち、金型材料として通常使用されているステンレス
鋼等は、熱伝導率の低い材種であるが、これに高い熱伝
導率を有する材種を混合することにより、ステンレス鋼
等の単一材種の多孔質体に比し、熱交換性のよい金型を
構成することができ、熱交換性の改善効果として、熱交
換用媒体の送給による金型温度の維持制御が容易化され
る。熱交換性の改善効果は、金型を冷却降温する場合だ
けでなく、成形・鋳造操業に際して、金型温度を成形・
鋳造操業に適した温度に予熱保持する場合における加熱
昇温を効率よく行うことを可能にする。
The mold material of the present invention has a good degassing property because it is a porous body having a porosity of 7 to 50% and a pore diameter of 500 μm or less. The porous body is a mixture composed of a plurality of types of metal particles having different thermal conductivity,
It has a thermal conductivity adjusted according to the mixing ratio. That is, stainless steel or the like, which is usually used as a mold material, has a low thermal conductivity, but by mixing it with a material having a high thermal conductivity, a single material such as stainless steel can be obtained. It is possible to form a mold having a better heat exchange property than that of a porous material of a kind, and as the effect of improving the heat exchange property, it is easy to maintain and control the mold temperature by feeding the heat exchange medium. . The effect of improving heat exchange is not only when cooling and cooling the mold, but also when molding and casting operations
It enables efficient heating and heating when preheating is maintained at a temperature suitable for casting operation.

【0008】[0008]

【発明の実施の形態】本発明の多孔質金型材を構成する
熱伝導率の異なる複数種の金属材種は、低い熱伝導率を
有する材種と低い熱伝導率を有する材種とに類別され
る。熱伝導率κの低いグループに属する材種の例とし
て、鉄(κ:73 W/m・K, 300℃)、もしくは鉄系合金、
例えばSUS 304 スレンレス鋼(κ:19 W/m・K, 300℃)
、12Crステンレス鋼(κ:24W/m ・K, 100℃)、コ
バルト(κ:69W/m ・K, 100℃)、もしくはコバルト合
金、例えばステライト♯6 (κ:15W/m ・K, 20 ℃)、
ステライト♯12(κ:15W/m ・K, 20 ℃)、ニッケル
(κ:90 W/m・K, 300℃)、もしくはニッケル合金、例
えばIn 625(κ:12W/m ・K, 400℃)、Nimonic (κ:
13W/m ・K, 100℃)等が挙げられる。これらの金属材種
は、耐食性,強度,耐摩耗性等、樹脂成形や非鉄金属の
鋳造(アルミダイキャスト等)の金型材料として望まし
い材料特性を有する材種である。
BEST MODE FOR CARRYING OUT THE INVENTION A plurality of types of metal materials having different thermal conductivities constituting the porous mold material of the present invention are classified into a type having a low thermal conductivity and a type having a low thermal conductivity. To be done. Examples of materials belonging to the group with low thermal conductivity κ are iron (κ: 73 W / mK, 300 ° C), iron-based alloys,
For example, SUS 304 stainless steel (κ: 19 W / m ・ K, 300 ℃)
, 12Cr stainless steel (κ: 24W / m · K, 100 ° C), cobalt (κ: 69W / m · K, 100 ° C), or cobalt alloy such as Stellite # 6 (κ: 15W / m · K, 20 ° C) ),
Stellite # 12 (κ: 15 W / m · K, 20 ° C), nickel (κ: 90 W / m · K, 300 ° C), or nickel alloy, such as In 625 (κ: 12 W / m · K, 400 ° C) , Nimonic (κ:
13W / mK, 100 ° C) and the like. These metal grades have desirable material properties such as corrosion resistance, strength, and wear resistance as mold materials for resin molding and nonferrous metal casting (aluminum die casting, etc.).

【0009】他方、熱伝導率の高いグループに属する金
属材種の例として、アルミニウム(κ: 210 W/m・K, 3
00℃)、もしくはアルミニウム合金、例えばAl-Mg-Si合
金(κ:150 W/m ・K, 100℃)、銅(κ:390 W/m・K,
300℃)、もしくは銅合金、例えば、Cu-Zn 合金(κ:
200 W/m ・K, 100℃)等が挙げられる。
On the other hand, as an example of a metal material belonging to the group having a high thermal conductivity, aluminum (κ: 210 W / m · K, 3
00 ℃), or aluminum alloys such as Al-Mg-Si alloy (κ: 150 W / m · K, 100 ℃), copper (κ: 390 W / m · K,
300 ° C), or a copper alloy, such as a Cu-Zn alloy (κ:
200 W / mK, 100 ° C) and the like.

【0010】本発明の多孔質金型材は、異種金属混合効
果としての熱伝導性向上効果を充分ならしめるために、
熱伝導率の低いグループに属する材種の熱伝導率と、高
いグループに属する材種の熱伝導率との比が約2以上と
なるような材種の組合せとするのが効果的である。な
お、各グループに属する材種として2種以上を併用する
場合は、各グループ内における複数種の粉末の配合比率
を考慮した合成則により、各グループの平均熱伝導率を
算出し、その平均熱伝導率の比が2以上となるように材
種の選択・組合せを行えばよい。低い熱伝導率の材種と
高い熱伝導率の材種とからなる金属多孔質体において、
高い熱伝導率を有する材種の占める比率(体積率)は、
5〜95%の範囲とするのがよい。5%以下では、配合
効果としての熱交換性の向上効果に乏しく、他方95%
を越えると、金型に必要な強度や耐摩耗性等を確保する
ことが困難となるからである。より好ましくは、10〜
50%である。
The porous mold material of the present invention has a sufficient effect of improving the thermal conductivity as the effect of mixing different kinds of metals.
It is effective to use a combination of materials such that the ratio of the thermal conductivity of the materials belonging to the low thermal conductivity group to the thermal conductivity of the materials belonging to the high thermal conductivity group is about 2 or more. When two or more types of materials belonging to each group are used in combination, the average thermal conductivity of each group is calculated according to a synthesis rule that takes into account the compounding ratio of multiple types of powder within each group, and the average heat The material types may be selected and combined so that the conductivity ratio is 2 or more. In a metal porous body composed of a material having a low thermal conductivity and a material having a high thermal conductivity,
The ratio (volume ratio) occupied by materials with high thermal conductivity is
It is preferable that the range is 5 to 95%. If it is 5% or less, the effect of improving the heat exchange property as a blending effect is poor, while 95% is less.
If it exceeds, it becomes difficult to secure the strength and wear resistance required for the mold. More preferably, 10
50%.

【0011】本発明の金型材の気孔率7〜50%と規定
したのは、7%未満では、ガス抜き性を確保するための
開気孔の分布の不足をきたし、50%を越えると、金型
部材として必要な機械強度を確保し難くなるからであ
り、また気孔径を500μm以下に限定しているのは、
それを越える粗大な気孔が分布すると、機械強度の低下
が大きくなり、金型材としての適性が損なわれるからで
ある。この金型の気孔分布は、原料粉末の粒度構成およ
び焼結条件等により制御することができる。
The porosity of the die material of the present invention is defined as 7 to 50%. When the porosity is less than 7%, the distribution of open pores for ensuring degassing is insufficient, and when the porosity exceeds 50%, the porosity is increased. This is because it becomes difficult to secure the mechanical strength required for the mold member, and the pore diameter is limited to 500 μm or less.
This is because if coarse pores exceeding that amount are distributed, the mechanical strength is greatly reduced, and the suitability as a die material is impaired. The pore distribution of this mold can be controlled by the particle size composition of the raw material powder, the sintering conditions, and the like.

【0012】本発明の金型材を、熱間等方加圧焼結体と
して形成することとしたのは、高圧力の均一な作用下で
の焼結反応により、その焼結体に、金型の形状(殊に凹
凸を有する複雑なキャビティ形状)の如何に拘らず、均
質な多孔特性をもたせることができ、また多孔質体であ
りながら、良好な機械強度を付与することができるから
である。本発明の金型の金属多孔質体は、複数種の金属
粉末の混合物を焼結原料とし、熱間等方加圧処理(HI
P処理)工程を含む種々のプロセス、例えば焼結原料粉
末混合物をカプセルに充填し、脱気密封して熱間等方加
圧処理(HIP処理)する方法、または焼結原料粉末混
合物を、加圧成形加工により圧粉成形体としたうえ、H
IP処理する方法等により製造される。複数種の金属粉
末からなる焼結原料粉末混合物は、焼結製品の均質性を
確保するために均一に混合すべきことはいうまでもな
い。
The mold material of the present invention is formed as a hot isotropically pressurized sintered body by the sintering reaction under the uniform action of high pressure. This is because regardless of the shape (particularly, a complicated cavity shape having irregularities), it is possible to have a uniform porosity characteristic, and it is possible to impart good mechanical strength to the porous body. . The metal porous body of the mold of the present invention uses a mixture of plural kinds of metal powders as a sintering raw material, and is subjected to hot isostatic pressing (HI).
P treatment), for example, a method of filling a capsule with a sintering raw material powder mixture, degassing and sealing, and performing hot isostatic pressing (HIP treatment), or a sintering raw material powder mixture. In addition to forming into a powder compact by pressing, H
It is manufactured by a method such as IP treatment. It goes without saying that the sintering raw material powder mixture composed of a plurality of kinds of metal powders should be uniformly mixed in order to ensure the homogeneity of the sintered product.

【0013】本発明の金型材の製造プロセスとして、焼
結原料粉末をカプセルに充填しHIP処理する工程を適
用する場合におけるHIP処理は、温度約0.2〜0.
85mp°K〔mpは混合粉末のうち、低融点の金属の
融点(絶対温度)〕、加圧力約0.5〜150MPaの
加圧・加熱条件下に、その焼結反応を好適に達成するこ
とができる。HIP処理の後、所望により、その焼結体
に温度約0.5〜0.98mp°K(mpは前記と同
義)の熱処理が施される。この熱処理は、HIP処理に
より形成された焼結体の多孔性を損なわずに、焼結体内
の粒子間結合を強化し、焼結体の機械強度等を高めるの
に有効である。他方、焼結原料粉末混合物を加圧成形し
た後、HIP処理する工程を適用する場合において、粉
末の加圧成形に、冷間静水圧加圧成形法を適用すること
は、形状の如何に拘らず成形体に良好な均質性を付与す
るのに有効である。また、圧粉成形体のHIP処理は、
これをカプセルに密封せず、そのままの状態(カプセル
・フリー)で行ってよい。カプセルフリーのHIP処理
を行う場合は、圧粉成形体の空隙内に圧力媒体が侵入す
ることにより、圧粉成形体の外側表面と内部とから静水
圧媒体の高圧力が作用する効果として、圧粉成形体の多
孔性を保持しつつ、焼結反応による粒子間結合を充分に
強化することが可能である。そのHIP処理は、温度約
0.5〜0.98mp°K(mpは前記と同義)、加圧
力約0.5〜150MPaの処理条件下に好適に達成さ
れる。
As a manufacturing process of the die material of the present invention, when the step of filling the capsule with the sintering raw material powder and performing the HIP treatment is applied, the HIP treatment is performed at a temperature of about 0.2 to 0.
85mp ° K [mp is the melting point (absolute temperature) of the low melting point metal in the mixed powder], and the sintering reaction is preferably achieved under the pressurizing / heating conditions of a pressing force of about 0.5 to 150 MPa. You can After the HIP treatment, the sintered body is optionally subjected to a heat treatment at a temperature of about 0.5 to 0.98 mp ° K (mp is the same as above). This heat treatment is effective in strengthening the interparticle bond in the sintered body and increasing the mechanical strength of the sintered body without impairing the porosity of the sintered body formed by the HIP treatment. On the other hand, in the case of applying the step of HIPing the sintering raw material powder mixture after pressure molding, applying the cold isostatic pressing method to the powder pressure molding does not depend on the shape. It is effective in imparting good homogeneity to the molded product. In addition, the HIP treatment of the powder compact is
This may be performed as it is (capsule-free) without sealing in a capsule. When the capsule-free HIP process is performed, the pressure medium enters the voids of the powder compact and the high pressure of the hydrostatic medium acts from the outer surface and the inside of the powder compact as the effect. It is possible to sufficiently strengthen the interparticle bond by the sintering reaction while maintaining the porosity of the powder compact. The HIP treatment is suitably achieved under a treatment condition of a temperature of about 0.5 to 0.98 mp ° K (mp has the same meaning as above) and a pressure of about 0.5 to 150 MPa.

【0014】本発明の金型材は、金型の一部ないしその
全体を構成する。図1は本発明の金型材を適用した金型
10の構成例を示している。11は、金属多孔質焼結体
からなる金型本体部材であり、その内側表面111 はキ
ャビティを形成する。12は、金型本体部材11の背面
に組み合わされた外型部材(金属製)である。13はガ
ス抜き管路であり、該ガス抜き管路13は、金型本体部
材11の多孔質体の気孔に連通している。14は熱交換
用媒体送給管路であり、図の媒体送給管路14は、外型
部材12を貫通しているが、本体部材(多孔質体)11
を貫通する構成とすることもでき、その設計変更は自由
である。
The mold material of the present invention constitutes a part or the whole of the mold. FIG. 1 shows a structural example of a mold 10 to which the mold material of the present invention is applied. Reference numeral 11 denotes a mold body member made of a porous metal sintered body, and the inner surface 11 1 thereof forms a cavity. Reference numeral 12 is an outer mold member (made of metal) combined with the back surface of the mold body member 11. Reference numeral 13 denotes a gas vent pipe line, and the gas vent pipe line 13 communicates with the pores of the porous body of the mold body member 11. Reference numeral 14 denotes a heat exchange medium feeding pipe line, and the medium feeding pipe line 14 in the drawing penetrates the outer mold member 12, but a main body member (porous body) 11
It is also possible to have a structure that penetrates through, and its design change is free.

【0015】[0015]

【実施例】【Example】

〔1〕多孔質金型部材の製造:複数種の金属粉末からな
る均一な混合物を焼結原料として多孔質焼結体を得る。
比較例として、単一材種の金属粉末を焼結原料として多
孔質焼結体を得る。表1に原料粉末の組成配合および製
造条件等を示し、表2に得られた多孔質焼結体の特性を
示す。
[1] Production of porous mold member: A porous sintered body is obtained by using a uniform mixture of plural kinds of metal powders as a sintering raw material.
As a comparative example, a porous sintered body is obtained by using a metal powder of a single material as a sintering raw material. Table 1 shows the composition and production conditions of the raw material powder, and Table 2 shows the characteristics of the obtained porous sintered body.

【0016】(1)原料粉末 表1中、粉末材種・配合欄の記号は次のとおりである
(Pa1, a2, a3:高い熱伝導率のグループに属する
材種、Pb1, b2:低い熱伝導率のグループに属する材
種)。 Pa1:SUS 304 ステンレス鋼(κ 19 W/m ・K, at300
℃),粒度−150 μm Pa2:In 625(κ 12 W/m ・K, at400℃),粒度−150
μm、 Pa3:ステライト♯12(κ 15 W/m ・K, at20 ℃),粒
度−150 μm、 Pb1:銅(κ 390 W/m・K, at300℃),粒度−100 μ
m、 Pb2:アルミニウム(κ 233 W/m・K, at300℃),粒度
−100 μm、 なお、No.5, No.6(高熱伝導率のグループに属する2材
種を併用)における熱伝導率の比は、低熱伝導率の2種
の熱伝導率を合成則により算出し、その算出値と高熱伝
導率の材種の熱伝導率との比を示している。No.12 (低
熱伝導率のグループの2材種を混合使用)では、両者の
熱伝導率の比を示した。
(1) Raw material powder In Table 1, the symbols in the powder material type / mixing column are as follows (P a1, P a2, P a3 : material types belonging to the high thermal conductivity group, P b1, P b2 : a material type belonging to the group of low thermal conductivity). P a1 : SUS 304 stainless steel (κ 19 W / m ・ K, at300
℃), particle size −150 μm P a2 : In 625 (κ 12 W / m · K, at 400 ℃), particle size −150
μm, P a3 : Stellite # 12 (κ 15 W / m · K, at 20 ° C), grain size −150 μm, P b1 : Copper (κ 390 W / m · K, at 300 ° C), grain size −100 μm
m, P b2 : Aluminum (κ 233 W / m · K, at 300 ° C), grain size −100 μm, No. 5, No. 6 (combined use of two materials belonging to the group with high thermal conductivity) The ratio of the coefficients indicates the ratio of the calculated value and the thermal conductivity of the material having the high thermal conductivity, which is obtained by calculating the thermal conductivity of two types of low thermal conductivity according to the synthesis rule. No.12 (mixed use of two materials in the low thermal conductivity group) shows the ratio of the thermal conductivity of both materials.

【0017】(2)製造工程 表1中、製造工程欄の記号A, Bは次のとおりである。 A工程:原料粉末混合物をカプセル(軟鋼製)に充填
し、脱気密封(1×10 -2Torr)したうえ、HIP処理
する。ついで、カプセルを除去し、焼結体の粒子間結合
を強化するための熱処理を施したうえ(もしくは施すこ
となく)機械加工を加え、直方体の多孔質焼結体(100
×100 ×50,mm )を得る。 B工程:原料粉末混合物を、ゴム型に充填しCIP処理
により圧粉体を成形したうえ、HIP処理(カプセル・
フリー)に付す。処理後、機械加工を加え、矩形状の多
孔質焼結体(形状・サイズは上記と同じ)を得る。
(2) Manufacturing Process In Table 1, symbols A and B in the manufacturing process column are as follows. Step A: Fill the capsule (mild steel) with the raw material powder mixture
And degassed (1 × 10 -2Torr) and HIP processing
I do. Next, the capsule is removed, and the interparticle bonding of the sintered body is performed.
Heat treatment (or
Machine work was performed, and a rectangular porous sintered body (100
× 100 × 50, mm). Step B: The raw material powder mixture is filled in a rubber mold and subjected to CIP treatment.
And then HIP treatment (capsule
Free). After processing, add machining
A porous sintered body (shape and size are the same as above) is obtained.

【0018】(3)多孔質焼結体の特性 強度:3点曲げ試験による曲げ強度(試験温度: 常温) 耐摩耗性:大越式迅速摩耗試験による比摩耗量の比率 ガス抜き性:ガス圧力0.2 kgf/cm2 における試験片(厚
さ5mm)の通過ガス流量(cc/min・cm2
(3) Properties of Porous Sintered Body Strength: Bending strength by 3-point bending test (test temperature: normal temperature) Abrasion resistance: Ratio of specific wear amount by Ogoshi-type rapid wear test Ventability: Gas pressure 0.2 Passing gas flow rate (cc / min · cm 2 ) of the test piece (thickness 5 mm) at kgf / cm 2

【0019】表2に示したように、発明例の多孔質焼結
体(No. 1〜6)は、比較材No.11(ステンレス鋼単一
材)やNo.12 (ステンレス鋼−Ni合金複合材)に比し
著しく高い熱伝導率を有している。また、高多孔質性を
備え、ガス抜き性も良好であると共に、樹脂成形や非鉄
金属鋳造の金型の構成部材として必要な機械強度,耐摩
耗性等も備えている。
As shown in Table 2, the porous sintered bodies of the invention examples (Nos. 1 to 6) were comparative materials No. 11 (stainless steel single material) and No. 12 (stainless steel-Ni alloy). It has a significantly higher thermal conductivity than composite materials). Further, it has high porosity, good degassing property, and also has mechanical strength, wear resistance and the like required as a constituent member of a mold for resin molding or non-ferrous metal casting.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明の金型材は、多孔質体であること
による良好なガス抜き性を有と同時に、熱伝導率の異な
る複数種の金属粒子の複合効果として、多孔質体であり
ながら、改良された熱交換性を有し、熱交換用媒体の送
給による金型温度の維持制御を効果的に行うことがで
き、樹脂の熱成形・非鉄金属の鋳造等の成形・鋳造サイ
クルの短縮,成形・鋳造品の品質の向上・安定化等に寄
与するものである。
EFFECT OF THE INVENTION The mold material of the present invention has a good degassing property because it is a porous body, and at the same time, it is a porous body as a composite effect of plural kinds of metal particles having different thermal conductivity. With improved heat exchange performance, it is possible to effectively control the mold temperature by feeding the heat exchange medium, and to perform molding / casting cycles such as thermoforming of resin and casting of non-ferrous metal. It contributes to shortening, improving and stabilizing the quality of molded and cast products.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の金型材を使用して金型を構成した例を
示す断面説明図である。
FIG. 1 is a cross-sectional explanatory view showing an example in which a mold is formed using the mold material of the present invention.

【符号の説明】[Explanation of symbols]

10:金型 11:金型本体部材(金属多孔質体) 111 :キャビティ表面 12:外型部材 13:ガス抜き管路、 14:熱交換用媒体送給管路10: Mold 11: Mold Main Body Member (Metallic Porous Body) 11 1 : Cavity Surface 12: Outer Mold Member 13: Gas Venting Pipeline, 14: Heat Exchange Medium Feeding Pipeline

───────────────────────────────────────────────────── フロントページの続き (72)発明者 元木 龍太郎 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryutaro Motoki 1-1-1, Nakamiya Oike, Hirakata City, Osaka Prefecture Kubota Hirakata Factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱伝導率の異なる複数種の金属粒子が均
一に分散混合した、気孔率7〜50%、気孔径500μ
m以下の熱間等方加圧焼結体である金属多孔質体からな
ることを特徴とする熱交換性にすぐれた多孔質金型材。
1. A plurality of kinds of metal particles having different thermal conductivities are uniformly dispersed and mixed, and have a porosity of 7 to 50% and a pore diameter of 500 μm.
A porous mold material having excellent heat exchange characteristics, which is characterized by comprising a metal porous body that is a hot isotropically pressurized sintered body of m or less.
【請求項2】 金属多孔質体を構成する複数種の金属の
粒子が、高い熱伝導率を有するグループに属するもの
と、低い熱伝導率を有するグループに属するものとから
なり、両者の熱伝導率の比が2以上であることを特徴と
する請求項1に記載の熱交換性にすぐれた多孔質金型
材。
2. A plurality of kinds of metal particles constituting a porous metal body belong to a group having a high thermal conductivity and a particle having a low thermal conductivity. The porous mold material having excellent heat exchange properties according to claim 1, wherein the ratio of the rates is 2 or more.
【請求項3】 低い熱伝導率を有するグループに属する
金属粒子の材種が、鉄もしくは鉄合金、コバルトもしく
はコバルト合金、またはニッケルもしくはニッケル合金
であり、高い熱伝導率を有するグループに属する金属粒
子の材種が、銅もしくは銅合金、またはアルミニウムも
しくはアルミニウム合金であることを特徴とする請求項
2に記載の熱交換性にすぐれた金型材。
3. The metal particles belonging to the group having a low thermal conductivity are iron or iron alloys, cobalt or a cobalt alloy, or nickel or a nickel alloy, and the metal particles belonging to the group having a high thermal conductivity. 3. The mold material having excellent heat exchange properties according to claim 2, wherein the material type is copper or a copper alloy, or aluminum or an aluminum alloy.
【請求項4】 高い熱伝導率を有する金属粒子の占める
体積比率が、5〜95%であることを特徴とする請求項
3に記載の熱交換性にすぐれた金型材。
4. The mold material excellent in heat exchange property according to claim 3, wherein the volume ratio of the metal particles having high thermal conductivity is 5 to 95%.
JP7194478A 1995-07-31 1995-07-31 Porous die material having excellent heat exchangeability Pending JPH0938750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7194478A JPH0938750A (en) 1995-07-31 1995-07-31 Porous die material having excellent heat exchangeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7194478A JPH0938750A (en) 1995-07-31 1995-07-31 Porous die material having excellent heat exchangeability

Publications (1)

Publication Number Publication Date
JPH0938750A true JPH0938750A (en) 1997-02-10

Family

ID=16325218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7194478A Pending JPH0938750A (en) 1995-07-31 1995-07-31 Porous die material having excellent heat exchangeability

Country Status (1)

Country Link
JP (1) JPH0938750A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017908A (en) * 2008-07-09 2010-01-28 Opm Laboratory Co Ltd Air-pressure molding die
WO2012124828A1 (en) * 2011-03-17 2012-09-20 パナソニック株式会社 Production method for three-dimensionally shaped object and three-dimensionally shaped object
JP2020093274A (en) * 2018-12-11 2020-06-18 宇部興産機械株式会社 Die casting device and die casting method
CN111644573A (en) * 2020-06-12 2020-09-11 沈阳明禾石英制品有限责任公司 Silicon carbide reinforced silicon-based ceramic core and preparation method thereof
WO2022113399A1 (en) * 2020-11-27 2022-06-02 株式会社ブリヂストン Mold, degassing tool, and method for producing resin foam

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017908A (en) * 2008-07-09 2010-01-28 Opm Laboratory Co Ltd Air-pressure molding die
WO2012124828A1 (en) * 2011-03-17 2012-09-20 パナソニック株式会社 Production method for three-dimensionally shaped object and three-dimensionally shaped object
JPWO2012124828A1 (en) * 2011-03-17 2014-07-24 パナソニック株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP5776004B2 (en) * 2011-03-17 2015-09-09 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
US9902113B2 (en) 2011-03-17 2018-02-27 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
JP2020093274A (en) * 2018-12-11 2020-06-18 宇部興産機械株式会社 Die casting device and die casting method
CN111644573A (en) * 2020-06-12 2020-09-11 沈阳明禾石英制品有限责任公司 Silicon carbide reinforced silicon-based ceramic core and preparation method thereof
WO2022113399A1 (en) * 2020-11-27 2022-06-02 株式会社ブリヂストン Mold, degassing tool, and method for producing resin foam

Similar Documents

Publication Publication Date Title
CN1290649C (en) Method for producing sintered components from a sinterable material
CN108441827A (en) Aluminium-scandium alloy target preparation method
US20110286874A1 (en) Sintered 17-4ph steel part and method for forming
JP3497461B2 (en) Method for producing porous metal
JPH0938750A (en) Porous die material having excellent heat exchangeability
CN106987743A (en) A kind of composite electron of alusil alloy based on crystalline flake graphite encapsulates the preparation method of functionally gradient material (FGM)
JP3271737B2 (en) Porous mold material for casting and method for producing the same
CN112893843A (en) Preparation method of MoNiB metal ceramic threaded element
US5336527A (en) Method of covering substrate surface with sintered layer and powdery raw material used for the method
JPH0952231A (en) Mold with excellent heat exchangeability
JP2742603B2 (en) Multi-screw cylinder with water cooling jacket for kneading / extrusion molding apparatus and method for producing the same
JPH08150437A (en) Production of die with permeability having heating, cooling hole and die with permeability
JPH0892607A (en) Production of composite hard material
JP3107723B2 (en) Plunger sleeve for die casting machine
JP2935404B2 (en) Manufacturing method of molding die having heating / cooling holes and molding die
JPH1062096A (en) Heat exchange member
JP2023010380A (en) Casting method and casting using the same
JP2005272934A (en) Method for manufacturing metal member using fine atomized metal powder, and metal member using fine atomized metal powder
KR900004597B1 (en) Material sheet for metal sintered body and method for manufacturing the same and method for manufacturing metal sintered body
JPH0340099B2 (en)
Hanko et al. Extrusion & Hot Forming Technologies: Powder Extrusion of Different Aluminium Based PM-Feedstocks
JPH10204564A (en) Cobalt based sintered alloy for nonferrous molten metal
JPH05245609A (en) Production of high strength structural member with use of rapid solidified alloy powder
JPH03264607A (en) Manufacture of complex cylinder and screw for injection and extrusion compacting machine
CN117505781A (en) Casting mold, preparation method and application thereof, and preparation method of heavy rare earth cast ingot