JPH05245609A - Production of high strength structural member with use of rapid solidified alloy powder - Google Patents

Production of high strength structural member with use of rapid solidified alloy powder

Info

Publication number
JPH05245609A
JPH05245609A JP8610092A JP8610092A JPH05245609A JP H05245609 A JPH05245609 A JP H05245609A JP 8610092 A JP8610092 A JP 8610092A JP 8610092 A JP8610092 A JP 8610092A JP H05245609 A JPH05245609 A JP H05245609A
Authority
JP
Japan
Prior art keywords
semi
structural member
molten material
alloy powder
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8610092A
Other languages
Japanese (ja)
Inventor
Haruo Shiina
治男 椎名
Nobuhiro Saito
信広 斉藤
Takeyoshi Nakamura
武義 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP8610092A priority Critical patent/JPH05245609A/en
Priority to PCT/JP1993/000030 priority patent/WO1993013895A1/en
Priority to EP93901538A priority patent/EP0572683B1/en
Priority to CA002105968A priority patent/CA2105968C/en
Priority to US08/119,066 priority patent/US5394931A/en
Priority to DE69327195T priority patent/DE69327195T2/en
Publication of JPH05245609A publication Critical patent/JPH05245609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a high strength structural member excellent in mechanical property inherent in a rapid cooled and solidified Al alloy powder as well as a high degree of freedom for shape. CONSTITUTION:A high density solid material is manufactured by a rapid solidified Al alloy powder and successively by hot extruding. Then, the solid material is heated to be made to a partially solidified material, in which a solid and liquid phase coexist. This partially solidified material is charged into the charging hole 6 of the die 1, successively, the partially solidified material is filled into the cavity 4 through the gate 5 by the pressurizing plunger 9, subsequently, holding the plunger 9 at a stroke end to apply a pressurizing force on the partially solidified material filled in the cavity 4, and then a structural member is made with solidifying the partially solidified material under pressurizing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、急冷凝固合金粉末を用
いた高強度構造部材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high strength structural member using a rapidly solidified alloy powder.

【0002】前記合金粉末は急冷凝固法の適用下で製造
されるため、合金組成の設定自由度が高く、また合金元
素を多量に添加し得ることから、高強度、特に優れた高
温強度を有し、また剛性の高い材料として実用化されて
いる。
Since the alloy powder is manufactured under the application of the rapid solidification method, the alloy composition has a high degree of freedom in setting the alloy composition and a large amount of alloying elements can be added, so that it has high strength, particularly excellent high temperature strength. In addition, it has been put to practical use as a highly rigid material.

【0003】[0003]

【従来の技術】急冷凝固合金粉末は、前記のように優れ
た機械的特性を有する反面、難加工性である、といった
欠点を有するため、この種粉末より、その機械的特性を
損うことなく構造部材を得るためには、主として熱間押
出し加工が適用されている。
2. Description of the Related Art A rapidly solidified alloy powder has the above-described excellent mechanical properties, but has the drawback of being difficult to process. To obtain the structural member, hot extrusion is mainly applied.

【0004】しかしながら熱間押出し加工によったので
は構造部材の形状自由度が低く、したがって要求形状の
構造部材を得ることができない、という問題があった。
However, the hot extrusion process has a problem that the degree of freedom of the shape of the structural member is low, and therefore the structural member having the required shape cannot be obtained.

【0005】そこで、比較的形状自由度の高い構造部材
の製造方法として、特開平2−268961号公報に開
示された方法が提案されている。
Therefore, as a method of manufacturing a structural member having a relatively high degree of freedom in shape, the method disclosed in Japanese Patent Laid-Open No. 2-268961 has been proposed.

【0006】この方法においては、前記粉末をるつぼに
投入して、加熱下で固相と液相とが共存した半溶融材料
を調製し、次いでその半溶融材料を金型に移して加圧下
で成形加工を行う、といった手段が採用されている。こ
のような半溶融材料を用いる理由は、急冷凝固合金粉末
の持つ機械的特性を極力失わないようにするためであ
る。
In this method, the powder is put into a crucible to prepare a semi-molten material in which a solid phase and a liquid phase coexist under heating, and then the semi-molten material is transferred to a mold and pressurized. Means such as molding is adopted. The reason for using such a semi-molten material is to prevent the mechanical properties of the rapidly solidified alloy powder from being lost as much as possible.

【0007】[0007]

【発明が解決しようとする課題】ところが、前記方法に
おいては前記粉末の集合物内に無数の空隙が存するため
次のような問題のあることが判明した。
However, it has been found that the above method has the following problems due to the existence of innumerable voids in the powder aggregate.

【0008】即ち、それら空隙が、加熱時において前記
粉末相互間の熱伝導を妨げるため半溶融材料の均熱度が
悪化し易く、その結果、加圧下での成形過程で半溶融材
料の流れがその全体に亘って均一に行われず、部材の形
状が複雑である場合には欠け等の成形不良を発生し易
い。また前記空隙に起因して部材に巣を生じ易いため、
十分な高強度化を達成することができないことがある。
That is, since the voids hinder the heat conduction between the powders during heating, the soaking degree of the semi-molten material is apt to deteriorate, and as a result, the flow of the semi-molten material is reduced during the molding process under pressure. If it is not performed uniformly over the whole and the shape of the member is complicated, defective molding such as chipping is likely to occur. Also, because the member is likely to have a nest due to the void,
In some cases, it may not be possible to achieve a sufficiently high strength.

【0009】本発明は前記に鑑み、前記粉末の集合体に
おける空隙を極力減少させて前記問題を解決し得るよう
にした前記製造方法を提供することを目的とする。
In view of the above, it is an object of the present invention to provide the above-mentioned manufacturing method capable of solving the above problems by reducing the voids in the powder aggregate as much as possible.

【0010】[0010]

【課題を解決するための手段】本発明に係る急冷凝固合
金粉末を用いた高強度構造部材の製造方法は、急冷凝固
合金粉末に成形固化加工を施して高密度な固体材料を調
製し、次いで前記固体材料を加熱して固相と液相とが共
存した半溶融材料を調製し、その後前記半溶融材料を用
いて加圧下で成形加工を行うことを特徴とする。
A method for producing a high-strength structural member using a rapidly solidified alloy powder according to the present invention is to prepare a high-density solid material by subjecting the rapidly solidified alloy powder to a forming and solidifying process, and then It is characterized in that the solid material is heated to prepare a semi-molten material in which a solid phase and a liquid phase coexist, and then the semi-molten material is used to perform molding under pressure.

【0011】[0011]

【実施例】高密度固体材料の調製において、急冷凝固合
金粉末を用いた成形固化加工法としては、通常の粉末冶
金法で適用される圧縮成形加工法またはその圧縮成形加
工に次いで熱間押出し加工を行う二段加工法が適用され
る。
[Examples] In the preparation of a high-density solid material, as a forming and solidifying method using a rapidly solidified alloy powder, a compression forming method applied by an ordinary powder metallurgy method or the compression forming method followed by hot extrusion processing is used. The two-step processing method of performing is applied.

【0012】また半溶融材料の調製に当っては、加熱時
間の短縮と均熱加熱とを狙って低周波誘導加熱炉が用い
られる。
Further, in the preparation of the semi-molten material, a low frequency induction heating furnace is used for the purpose of shortening the heating time and soaking and heating.

【0013】半溶融材料に対する加圧下での成形加工法
としては、加圧鋳造法、鍛造法等が適用される。
As a molding method for the semi-molten material under pressure, a pressure casting method, a forging method and the like are applied.

【0014】図1は、加圧鋳造法の実施に用いられる加
圧鋳造装置の概略を示す。
FIG. 1 schematically shows a pressure casting apparatus used for carrying out the pressure casting method.

【0015】その加圧鋳造装置の金型1は、固定金型2
と、それと対向する可動金型3とよりなり、両型2,3
は熱間金型用合金工具鋼(JIS SKD61相当材)
より構成される。両型2,3により断面円形の成形用キ
ャビティ4およびその一端に連通するゲート5が形成さ
れ、そのゲート5は固定金型2の半溶融材料用装入口6
に連通する。固定金型2に、装入口6に連通するスリー
ブ8が設けられ、そのスリーブ8に、装入口6に挿脱さ
れる加圧プランジャ9が摺動自在に嵌合される。キャビ
ティ4は、ゲート5に連通する比較的容量の大きな入口
側領域4a、その領域4aに連通する比較的容量の小さ
な中間部領域4bおよびその領域4bに連通する比較的
容量の大きな奥部領域4cよりなる。
The mold 1 of the pressure casting apparatus is a fixed mold 2.
And the movable mold 3 facing it, both molds 2, 3
Is an alloy tool steel for hot molds (JIS SKD61 equivalent material)
It is composed of A molding cavity 4 having a circular cross section and a gate 5 communicating with one end of the molding cavity 4 are formed by both molds 2 and 3, and the gate 5 is a charging port 6 for the semi-molten material of the fixed mold 2.
Communicate with. The fixed mold 2 is provided with a sleeve 8 that communicates with the loading port 6, and a pressure plunger 9 that is inserted into and removed from the loading port 6 is slidably fitted into the sleeve 8. The cavity 4 has a relatively large capacity inlet side region 4a communicating with the gate 5, a relatively small capacity intermediate region 4b communicating with the region 4a, and a relatively large capacity deep region 4c communicating with the region 4b. Consists of.

【0016】構造部材の製造に当っては、例えば、次の
各工程が順次実施される。 (a) 急冷凝固合金粉末を用いて二段加工法を行うこ
とにより高密度の円柱状固体材料を調製する。 (b) 固体材料を低周波誘導加熱炉内で加熱して、固
相と液相とが共存した半溶融材料を調製する。 (c) 加圧鋳造装置の装入口6に半溶融材料を装入す
る。 (d) 加圧プランジャ9を装入口6に挿入してその加
圧プランジャ9により半溶融材料をゲート5を通じてキ
ャビティ4に充填する。 (e) 加圧プランジャ9をストローク終端に保持し
て、キャビティ4に充填された半溶融材料に加圧力を付
与し、その加圧下で半溶融材料を凝固させて構造部材を
得る。
In manufacturing the structural member, for example, the following steps are sequentially carried out. (A) A high-density cylindrical solid material is prepared by performing a two-step processing method using a rapidly solidified alloy powder. (B) A solid material is heated in a low frequency induction heating furnace to prepare a semi-molten material in which a solid phase and a liquid phase coexist. (C) The semi-molten material is charged into the charging port 6 of the pressure casting device. (D) The pressure plunger 9 is inserted into the charging port 6, and the semi-molten material is filled into the cavity 4 through the gate 5 by the pressure plunger 9. (E) While holding the pressure plunger 9 at the end of the stroke, a pressure is applied to the semi-molten material filled in the cavity 4, and the semi-molten material is solidified under the pressure to obtain a structural member.

【0017】急冷凝固合金粉末としては、アトマイズ法
により得られた急冷凝固Al合金粉末が用いられる。そ
のAl合金粉末は、下記の各化学成分と残部Alとより
なる。
As the rapidly solidified alloy powder, rapidly solidified Al alloy powder obtained by the atomizing method is used. The Al alloy powder is composed of the following chemical components and the balance Al.

【0018】17.0重量%≦Si≦18.0重量% 4.0重量%≦Fe≦4.5重量% 2.0重量%≦Cu≦2.5重量% 1.8重量%≦Mn≦2.2重量% 0.3重量%≦Mg≦0.5重量% Al合金粉末の製造時における冷却速度CrはCr≧1
2 ℃/secに設定され、これにより金属間化合物の
最大粒径DがD=15μmのAl合金粉末が得られる。
ただし、前記冷却速度CrがCr<102 ℃/secで
は、急冷凝固法独特の微細金属組織を備えたAl合金粉
末を得ることができず、そのため半溶融材料調製時にお
ける粘度コントロールが難しくなる。このことは、金属
間化合物の最大粒径DがD>15μmとなった場合につ
いても言える。
17.0 wt% ≦ Si ≦ 18.0 wt% 4.0 wt% ≦ Fe ≦ 4.5 wt% 2.0 wt% ≦ Cu ≦ 2.5 wt% 1.8 wt% ≦ Mn ≦ 2.2 wt% 0.3 wt% ≤ Mg ≤ 0.5 wt% Cooling rate Cr during production of Al alloy powder is Cr ≥ 1
The temperature is set to 0 2 ° C / sec, whereby an Al alloy powder in which the maximum particle diameter D of the intermetallic compound is D = 15 µm is obtained.
However, when the cooling rate Cr is Cr <10 2 ° C./sec, an Al alloy powder having a fine metal structure unique to the rapid solidification method cannot be obtained, which makes it difficult to control the viscosity when preparing the semi-molten material. This can be said even when the maximum particle size D of the intermetallic compound is D> 15 μm.

【0019】Al合金粉末の各化学成分において、Si
は、構造部材の耐摩耗性、ヤング率等を向上し、また熱
膨脹係数を低下させる効果を有する。ただし、Siの含
有量がSi<17.0重量%では前記効果が少なく、一
方、Si>18.0重量%では機械加工性が悪化する。
In each chemical component of the Al alloy powder, Si
Has the effect of improving the wear resistance and Young's modulus of the structural member and reducing the coefficient of thermal expansion. However, if the Si content is Si <17.0% by weight, the above effect is small, while if Si> 18.0% by weight, the machinability deteriorates.

【0020】Feは、構造部材の高温強度およびヤング
率を向上させると共に金型1に対する半溶融材料の焼付
きを防止する効果を有する。この高温強度向上機構は、
AlFeMn金属間化合物の分散強化による。ただし、
Feの含有量がFe<4.0重量%では前記効果が少な
く、一方、Fe>4.5重量%では構造部材の伸びおよ
び靱性が低下する。
Fe has the effects of improving the high temperature strength and Young's modulus of the structural member and preventing seizure of the semi-molten material on the mold 1. This high temperature strength improvement mechanism is
This is due to the dispersion strengthening of the AlFeMn intermetallic compound. However,
If the Fe content is Fe <4.0% by weight, the above effect is small, while if Fe> 4.5% by weight, the elongation and toughness of the structural member decrease.

【0021】Cuは、熱処理によりAl2 Cu金属間化
合物を析出して構造部材の強度を向上させる効果を有す
る。ただし、Cuの含有量がCu<2.0重量%では強
度向上効果が少なく、一方、Cu>2.5重量%では構
造部材の耐食性が低下する。
Cu has the effect of precipitating an Al 2 Cu intermetallic compound by heat treatment and improving the strength of the structural member. However, when the Cu content is Cu <2.0 wt%, the strength improving effect is small, while when Cu> 2.5 wt%, the corrosion resistance of the structural member is reduced.

【0022】Mnは、構造部材の高温強度を向上させる
効果を有し、またAlFe金属間化合物を塊状化する機
能を有する。ただし、Mnの含有量がMn<1.8重量
%では前記効果が少なく、一方、Mn>2.2重量%で
は構造部材の伸びおよび靱性が低下する。
Mn has the effect of improving the high temperature strength of the structural member, and also has the function of agglomerating the AlFe intermetallic compound. However, if the Mn content is Mn <1.8% by weight, the above effect is small, while if Mn> 2.2% by weight, the elongation and toughness of the structural member decrease.

【0023】Mgは、Siと共働して構造部材の強度を
向上させる効果を有する。ただし、Mgの含有量がMg
<0.3重量%では強度向上効果が少なく、一方、Mg
>0.5重量%では構造部材の伸びおよび靱性が低下す
る。
Mg has the effect of improving the strength of the structural member in cooperation with Si. However, if the content of Mg is Mg
If it is less than 0.3% by weight, the effect of improving the strength is small, while Mg
When it is> 0.5% by weight, the elongation and toughness of the structural member decrease.

【0024】固体材料の相対密度dは70%≦d≦10
0%といったように高く設定される。このように固体材
料の相対密度dを高くすると、その気孔率がゼロか、ま
たは極めて低くなるので、固体材料における熱伝導が効
率良く、且つ均一に行われて半溶融材料の均熱度を良好
にすることができ、また構造部材における巣の発生を極
力抑制することができる。ただし、固体材料の相対密度
dがd<70%では、半溶融材料の均熱度が悪化し、ま
た構造部材に巣が発生し易くなる。
The relative density d of the solid material is 70% ≦ d ≦ 10
It is set as high as 0%. When the relative density d of the solid material is increased as described above, the porosity of the solid material is zero or extremely low, so that the heat conduction in the solid material is performed efficiently and uniformly to improve the soaking degree of the semi-molten material. It is also possible to suppress the generation of cavities in the structural member as much as possible. However, when the relative density d of the solid material is d <70%, the soaking degree of the semi-molten material is deteriorated, and cavities are easily generated in the structural member.

【0025】固体材料より半溶融材料を得る場合におい
て、その加熱条件は次のように設定される。固体材料の
平均昇温速度HrはHr≧0.2℃/sec、加熱保持
温度Tは固相線温度TS と液相線温度TL との間の温
度、即ちTS <T<TL 、加熱保持時間tは、極力短い
方が望ましく、固体材料の大きさにもよるが、t≦30
分間、半溶融材料における均熱度ΔTはΔT≦4℃、半
溶融材料の粘度μは0.1Pa・sec≦μ≦2000
Pa・secである。このように加熱条件を設定する
と、半溶融材料の調製および取扱いを能率良く行い、ま
た構造部材の鋳造品質を向上させて、その機械的特性を
良好にすることができる。
When obtaining a semi-molten material from a solid material, the heating conditions are set as follows. The average heating rate Hr of the solid material is Hr ≧ 0.2 ° C./sec, the heating holding temperature T is the temperature between the solidus temperature T S and the liquidus temperature T L , that is, T S <T <T L It is desirable that the heating and holding time t be as short as possible, and depending on the size of the solid material, t ≦ 30.
The soaking degree ΔT of the semi-molten material is ΔT ≦ 4 ° C., and the viscosity μ of the semi-molten material is 0.1 Pa · sec ≦ μ ≦ 2000.
Pa · sec. By setting the heating conditions in this way, it is possible to efficiently prepare and handle the semi-molten material, improve the casting quality of the structural member, and improve its mechanical properties.

【0026】ただし、固体材料の平均昇温速度HrがH
r<0.2℃/secになると、半溶融材料の調製に長
時間を要するため、金属間化合物の粗大化を招来して成
形性が低下すると共に金型の摩耗が発生し易くなり、ま
た構造部材の機械的特性等が損われる。
However, the average heating rate Hr of the solid material is H
When r <0.2 ° C./sec, it takes a long time to prepare the semi-molten material, which causes coarsening of the intermetallic compound, lowers moldability, and easily causes mold wear. The mechanical properties and the like of the structural member are impaired.

【0027】平均昇温速度Hrの最適範囲はHr≧1.
0℃/secである。その理由は、平均昇温速度Hrが
Hr<1.0℃/secになると、生産性の低下、金属
組織の粗大化、表面酸化等を招き易くなるからである。
The optimum range of the average heating rate Hr is Hr ≧ 1.
It is 0 ° C./sec. The reason is that when the average heating rate Hr is Hr <1.0 ° C./sec, the productivity is likely to decrease, the metal structure is coarsened, and the surface oxidation is likely to occur.

【0028】加熱保持温度Tは、T≦TS +0.5(T
L −TS )℃であることが望ましい。T>TS +0.5
(TL −TS )℃では、金属間化合物の粗大化を招来し
て前記同様の不具合を生じる。また加熱保持時間tがt
>30分間では、前記同様に金属間化合物の粗大化を生
じる。
The heating and holding temperature T is T≤T S +0.5 (T
L -T S) is desirably ° C.. T> T S +0.5
At (T L −T S ) ° C., coarsening of the intermetallic compound is caused and the same problem as described above occurs. Further, the heating holding time t is t
For> 30 minutes, coarsening of the intermetallic compound occurs as described above.

【0029】さらに半溶融材料における均熱度ΔTがΔ
T>4℃になると、半溶融材料において粘度μが部分的
に異なるため、溶け出し部分が発生したり、またキャビ
ティ4における未充填箇所、したがって構造部材におけ
る欠けの発生を招来する。均熱度の最適範囲はΔT≦3
℃である。その理由は、このような範囲においては半溶
融材料の自動的取扱いが可能であり、これにより構造部
材の生産性を向上し得るからである。
Further, the soaking degree ΔT in the semi-molten material is Δ
When T> 4 ° C., the viscosity μ is partially different in the semi-molten material, so that a melted-out portion is generated, and an unfilled portion in the cavity 4, that is, a chip in the structural member is generated. The optimum range of soaking degree is ΔT ≦ 3
℃. The reason is that the semi-molten material can be automatically handled in such a range, which can improve the productivity of the structural member.

【0030】半溶融材料の粘度μは、鋳込み時のそれと
同一に設定されている。その粘度μがμ<0.1Pa・
secになると、溶け出し部分が発生して半溶融材料の
取扱い性が悪化し、一方、粘度μがμ>2000Pa・
secになると、後述するように構造部材の鋳造品質が
低下する。
The viscosity μ of the semi-molten material is set to be the same as that at the time of casting. Its viscosity μ is μ <0.1Pa
At sec, a melted-out portion is generated and the handling property of the semi-molten material is deteriorated, while the viscosity μ is μ> 2000 Pa.
At sec, the casting quality of the structural member deteriorates as described later.

【0031】鋳込みの際のゲート5通過時における半溶
融材料の性状、即ち半溶融材料の粘度μ、レイノルズ数
Reおよび速度Vは次のように特定される。
The properties of the semi-molten material at the time of passing through the gate 5 during casting, that is, the viscosity μ of the semi-molten material, the Reynolds number Re and the velocity V are specified as follows.

【0032】半溶融材料の粘度μは前記のように0.1
Pa・sec≦μ≦2000Pa・secに設定され
る。このように粘度μを設定すると、半溶融材料による
ガスの巻込み、したがって構造部材における気孔の発生
を防止してその鋳造品質を向上させることができる。
The viscosity μ of the semi-molten material is 0.1 as described above.
Pa · sec ≦ μ ≦ 2000 Pa · sec is set. By setting the viscosity μ in this way, it is possible to prevent the gas from being entrained by the semi-molten material, and thus prevent the formation of pores in the structural member, and improve the casting quality.

【0033】ただし、半溶融材料の粘度μがμ<0.1
Pa・secになると、半溶融材料の低粘度化に伴いそ
れが乱流状態となってガスおよび酸化物を巻込み易くな
る。一方、粘度μがμ>2000Pa・secになる
と、半溶融材料の高粘度化に伴いその変形抵抗による圧
力損失が大きくなるため、半溶融材料のゲート通過が困
難となってキャビティ4において未充填箇所が発生す
る。
However, the viscosity μ of the semi-molten material is μ <0.1
When the pressure becomes Pa · sec, the viscosity of the semi-molten material becomes low, and it becomes a turbulent state, so that the gas and the oxide are easily entrained. On the other hand, when the viscosity μ becomes μ> 2000 Pa · sec, the pressure loss due to the deformation resistance of the semi-molten material increases as the viscosity of the semi-molten material increases, so that it becomes difficult for the semi-molten material to pass through the gate and the unfilled portion in the cavity 4 Occurs.

【0034】半溶融材料における粘度μの最適範囲は1
Pa・sec≦μ≦1000Pa・secである。その
理由は、このような粘度範囲は、従来の金型温度制御機
構を持つ加圧鋳造装置によって容易に実現し得るからで
ある。ただし、粘度μがμ<1Pa・secといったよ
うに低くなると、ゲート5通過時における半溶融材料の
速度を低速で、且つ精密に制御しなければならず、この
ような制御は、従来の加圧鋳造装置では難しくなる。一
方、粘度μがμ>1000Pa・secといったように
高くなると、半溶融材料が金型1により冷却されること
もあって急激に高粘度化するが、これを防ぐためには金
型1の温度を高く制御しなければならず、このような制
御は、従来の加圧鋳造装置では難しい。
The optimum range of the viscosity μ in the semi-molten material is 1
Pa · sec ≦ μ ≦ 1000 Pa · sec. The reason is that such a viscosity range can be easily realized by a pressure casting apparatus having a conventional mold temperature control mechanism. However, when the viscosity μ becomes low, such as μ <1 Pa · sec, the speed of the semi-molten material when passing through the gate 5 must be controlled at a low speed and precisely, and such control is performed by the conventional pressurization. Difficult with casting equipment. On the other hand, when the viscosity μ is high such that μ> 1000 Pa · sec, the semi-molten material is cooled by the mold 1 and the viscosity is rapidly increased. However, in order to prevent this, the temperature of the mold 1 is increased. It must be controlled to a high level, and such control is difficult with conventional pressure casting equipment.

【0035】半溶融材料のレイノルズ数ReはRe≦1
500に設定される。このようにレイノルズ数Reを設
定すると、半溶融材料を層流状態にしてガスの巻込みお
よび湯境(コールドシャット)の発生を防止することが
できる。ただし、レイノルズ数ReがRe>1500に
なると、半溶融材料が乱流状態となってガス等を巻込み
易くなる。
The Reynolds number Re of the semi-molten material is Re ≦ 1
It is set to 500. By setting the Reynolds number Re in this way, it is possible to prevent the gas from entraining and the occurrence of a cold boundary in the semi-molten material. However, when the Reynolds number Re becomes Re> 1500, the semi-molten material becomes in a turbulent state, and it becomes easy to entrain gas or the like.

【0036】レイノルズ数Reの最適範囲はRe≦10
0である。その理由は、このような半溶融材料における
レイノルズ数Reは従来の加圧鋳造装置により容易に実
現し得るからである。ただし、レイノルズ数ReがRe
>100になると、キャビティ4の形状およびゲート5
の形状によっては慣性力の影響が大きくなってキャビテ
ィ4に対する半溶融材料の充填がスムーズに行われず、
ガスの巻込み、湯境等が発生するおそれがある。
The optimum range of Reynolds number Re is Re ≦ 10.
It is 0. The reason is that the Reynolds number Re in such a semi-molten material can be easily realized by a conventional pressure casting apparatus. However, Reynolds number Re is Re
> 100, the shape of cavity 4 and gate 5
Depending on the shape of, the influence of the inertial force becomes large and the filling of the semi-molten material into the cavity 4 cannot be performed smoothly,
There is a risk of gas entrapment and hot water.

【0037】半溶融材料の速度Vは0.2m/sec≦
V≦30m/secに設定される。このように速度Vを
設定すると、適当な加圧力を以て半溶融材料をキャビテ
ィ4にスムーズに充填することができる。ただし、速度
VがV<0.2m/secでは、キャビティ4への半溶
融材料の充填時間が長くなるため、生産性が低下する。
一方、速度VがV>30m/secでは、半溶融材料の
粘度μが高い場合、大きな加圧力を必要とするため実用
性に欠ける。
The velocity V of the semi-molten material is 0.2 m / sec ≦
V ≦ 30 m / sec is set. By setting the speed V in this way, the semi-molten material can be smoothly filled into the cavity 4 with an appropriate pressure. However, when the speed V is V <0.2 m / sec, the filling time of the semi-molten material into the cavity 4 becomes long, so that the productivity is reduced.
On the other hand, when the velocity V is V> 30 m / sec, when the viscosity μ of the semi-molten material is high, a large pressing force is required, which is not practical.

【0038】構造部材の鋳造品質を向上させるために
は、前記半溶融材料のレイノルズ数Reと共に金型1に
おける断面積拡大率Rsが問題となる。ここで、断面積
拡大率Rsは、図1においてゲート5の断面積をS0
し、またキャビティ4における入口側領域4aの断面積
をS1 としたとき、Rs=S1 /S0 で表わされる。
In order to improve the casting quality of the structural member, the Reynolds number Re of the semi-molten material and the cross-sectional area enlargement ratio Rs in the mold 1 become a problem. Here, the cross-sectional area enlargement ratio Rs is the cross-sectional area of the gate 5 and S 0 1, also when the cross-sectional area of the inlet-side region 4a in the cavity 4 was set to S 1, represented by Rs = S 1 / S 0 Be done.

【0039】断面積拡大率Rsは、Rs≦10に設定さ
れる。このように断面積拡大率Rsを設定すると、半溶
融材料によるガスの巻込みおよび湯境の発生を防止する
ことができる。ただし、断面積拡大率RsがRs>10
になると、半溶融材料がゲート5から噴出流となってキ
ャビティ4に注入され、その充填順序が奥部領域4c、
それに次ぐ入口側領域4aとなるため湯境が発生する。
The cross-sectional area enlargement ratio Rs is set to Rs ≦ 10. By setting the cross-sectional area enlargement ratio Rs in this way, it is possible to prevent the entrainment of gas by the semi-molten material and the occurrence of a molten metal boundary. However, the cross-sectional area expansion rate Rs is Rs> 10
Then, the semi-molten material becomes a jet flow from the gate 5 and is injected into the cavity 4, and the filling order is the inner region 4c,
Since it is next to the entrance side area 4a, a hot water boundary occurs.

【0040】断面積拡大率Rsの最適範囲は1≦Rs≦
5である。その理由は、このような断面積拡大率Rsは
従来の加圧鋳造装置により容易に実現し得るからであ
る。ただし、断面積拡大率RsがRs>5になると、実
質的にゲート5の断面積が小さくなるため、ゲート5に
おける半溶融材料の凝固がキャビティ4における半溶融
材料の最終凝固に先行し、その結果、押湯効果を得るこ
とができなくなって、入口側領域4aおよび奥部領域4
cに対応する構造部材の両厚肉部に引けを発生するおそ
れがある。一方、断面積拡大率RsがRs<1になる
と、ゲート5の断面積がキャビティ4の入口側領域4a
の断面積に略等しくなるため、ゲート5に対応したスク
ラップ部分の増加に伴い構造部材の歩留りが低下する、
といった操業上の問題を生じる。
The optimum range of the cross-sectional area enlargement ratio Rs is 1 ≦ Rs ≦
It is 5. The reason is that such a cross-sectional area enlargement ratio Rs can be easily realized by a conventional pressure casting device. However, when the cross-sectional area expansion ratio Rs becomes Rs> 5, the cross-sectional area of the gate 5 is substantially reduced, so that the solidification of the semi-molten material in the gate 5 precedes the final solidification of the semi-molten material in the cavity 4, As a result, the feeder effect cannot be obtained, and the inlet side region 4a and the inner region 4 are
There is a risk that shrinkage will occur in both thick-walled portions of the structural member corresponding to c. On the other hand, when the cross-sectional area enlargement ratio Rs becomes Rs <1, the cross-sectional area of the gate 5 becomes the entrance side region 4 a of the cavity 4.
Since the cross-sectional area is substantially equal to the cross-sectional area of, the yield of structural members decreases as the scrap portion corresponding to the gate 5 increases.
Causes operational problems.

【0041】さらに、構造部材の鋳造品質を向上させる
ために、キャビティ4に充填された半溶融材料に対する
加圧力Pは10MPa≦P≦120MPaに設定され
る。ただし、加圧力PがP<10MPaでは、高粘度な
半溶融材料を十分に加圧することができなくなるため、
キャビティ4内に未充填箇所が発生する。一方、加圧力
PがP>120MPaでは、装置の大型化を招来するた
め実用性に欠ける。
Further, in order to improve the casting quality of the structural member, the pressure P applied to the semi-molten material filled in the cavity 4 is set to 10 MPa≤P≤120 MPa. However, when the applied pressure P is P <10 MPa, the high-viscosity semi-molten material cannot be sufficiently pressurized,
An unfilled portion occurs in the cavity 4. On the other hand, when the applied pressure P is P> 120 MPa, the apparatus becomes large in size, which is not practical.

【0042】以下、具体例について説明する。Specific examples will be described below.

【0043】先ず、固体材料の相対密度dと半溶融材料
の均熱度ΔTとの関係について考察する。
First, the relationship between the relative density d of the solid material and the soaking degree ΔT of the semi-molten material will be considered.

【0044】急冷凝固Al合金粉末として、表1の組成
を有するものを選定した。
As the rapidly solidified Al alloy powder, one having the composition shown in Table 1 was selected.

【0045】[0045]

【表1】 このAl合金粉末は、アトマイズ法により得られたもの
で、その製造時における冷却速度CrはCr=102
2×104 ℃/sec、金属間化合物の最大粒径DはD
=7μm、固相線温度TS はTS =510℃、液相線温
度TL はTL =690℃であった。
[Table 1] This Al alloy powder was obtained by the atomization method, and the cooling rate Cr during its production was Cr = 10 2
2 × 10 4 ° C / sec, maximum particle size D of intermetallic compound is D
= 7 μm, the solidus temperature T S was T S = 510 ° C., and the liquidus temperature T L was T L = 690 ° C.

【0046】Al合金粉末を用いて圧縮成形加工を行う
ことにより圧粉体を成形し、次いでその圧粉体に、押出
し温度420℃、最大加圧力2500ton、押出し比
12の条件下で熱間押出し加工を施して相対密度dがd
=100%の固体材料を得た。
A compact is formed by performing compression molding using an Al alloy powder, and then the compact is hot extruded under the conditions of an extrusion temperature of 420 ° C., a maximum pressing force of 2500 ton and an extrusion ratio of 12. After processing, the relative density d is d
= 100% solid material was obtained.

【0047】また前記熱間押出し加工において、押出し
比を変えることによって、相対密度dがd=90%、8
0%、70%の3種の固体材料を製造した。
In the hot extrusion process, the relative density d is changed to d = 90%, 8 by changing the extrusion ratio.
Three solid materials of 0% and 70% were produced.

【0048】次いで、固体材料に機械加工を施して直径
70mm、長さ100mmの短円柱状固体テストピースを製
作した。
Then, the solid material was machined to produce a short cylindrical solid test piece having a diameter of 70 mm and a length of 100 mm.

【0049】その後、固体テストピースを内径70mm、
深さ100mmのアルミナ製るつぼに嵌入し、そのるつぼ
を低周波誘導加熱炉内に設置して、急速に均熱加熱する
出力パターンにて固体テストピースを570℃まで加熱
し、得られた半溶融テストピースの温度分布を測定し
た。各半溶融テストピースについて、測定温度の最大値
と最小値との差を均熱度ΔTとして求めたところ、表2
の結果を得た。
Then, the solid test piece was set to an inner diameter of 70 mm,
Inserted in a 100 mm deep alumina crucible, installed the crucible in a low-frequency induction heating furnace, and heated the solid test piece to 570 ° C. with the output pattern of rapid soaking and heating. The temperature distribution of the test piece was measured. For each semi-molten test piece, the difference between the maximum value and the minimum value of the measured temperature was determined as the soaking degree ΔT.
Got the result.

【0050】表2において、比較例は、前記Al合金粉
末を前記るつぼに充填して、前記と同一寸法の固体テス
トピースを得、その固体テストピースに前記と同一条件
下で加熱処理を施して半溶融テストピースを調製した場
合である。
In Table 2, in the comparative example, the Al alloy powder was filled in the crucible to obtain a solid test piece having the same size as the above, and the solid test piece was subjected to heat treatment under the same conditions as described above. This is the case where a semi-molten test piece was prepared.

【0051】[0051]

【表2】 表2より、実施例半溶融テストピースは比較例半溶融テ
ストピースに比べて優れた均熱度ΔTを有することが判
る。これは、実施例においては、相対密度dの高い固体
テストピースが用いられたことに起因する。
[Table 2] From Table 2, it can be seen that the semi-melted test piece of the example has an excellent soaking degree ΔT as compared with the semi-melted test piece of the comparative example. This is because the solid test piece having a high relative density d was used in the examples.

【0052】次に、前記Al合金粉末を用いた構造部材
の製造方法について説明する。
Next, a method of manufacturing a structural member using the Al alloy powder will be described.

【0053】先ず、Al合金粉末を用いて圧縮成形加工
を行うことにより圧粉体を成形し、次いでその圧粉体
に、押出し温度420℃、最大加圧力2500ton、
押出し比12の条件下で熱間押出し加工を施して固体材
料を得た。
First, a green compact is formed by performing compression molding using an Al alloy powder, and then the green compact is extruded at a temperature of 420 ° C. and a maximum pressure of 2500 tons.
A solid material was obtained by hot extrusion under an extrusion ratio of 12.

【0054】この固体材料においては、Al合金粉末相
互間が焼結されており、その相対密度dはd=100%
であり、また金属間化合物の最大粒径DはD=7μmで
あった。
In this solid material, the Al alloy powders are sintered together and their relative density d is 100%.
And the maximum particle size D of the intermetallic compound was D = 7 μm.

【0055】金型1において、そのゲート5の断面積S
0 とキャビティ4の入口側領域4aの断面積S1 との間
に成立する断面積拡大率Rs(S1 /S0 )をRs=4
に設定した。
In the die 1, the cross-sectional area S of the gate 5 is
The cross-sectional area expansion ratio Rs (S 1 / S 0 ) established between 0 and the cross-sectional area S 1 of the inlet side region 4a of the cavity 4 is Rs = 4.
Set to.

【0056】次いで、固体材料を低周波誘導加熱炉内に
設置して加熱し、その際、平均昇温速度Hr=1.3℃
/sec、加熱保持温度T=567℃、加熱保持時間t
=1分間に設定して、均熱度ΔT=3℃、固相の体積分
率Vf=70%の半溶融材料を調製した。この固相は前
記固体材料と同様の金属組織を保有している。 前記半
溶融材料を金型1の装入口6に装入し、次いで加圧プラ
ンジャ9により半溶融材料をゲート5を通じてキャビテ
ィ4に充填した。この場合、加圧プランジャ9の移動速
度は約78mm/secに設定され、ゲート5通過時にお
ける半溶融材料の速度VはV=3.0m/sec、粘度
μはμ=300Pa・sec、レイノルズ数ReはRe
=0.21であった。
Next, the solid material is placed in a low-frequency induction heating furnace and heated, with an average heating rate Hr = 1.3 ° C.
/ Sec, heat retention temperature T = 567 ° C., heat retention time t
= 1 minute, a semi-molten material having a soaking degree ΔT = 3 ° C. and a solid phase volume fraction Vf = 70% was prepared. This solid phase has the same metallic structure as the solid material. The semi-molten material was charged into the charging port 6 of the mold 1, and then the cavity 4 was filled with the semi-molten material through the gate 5 by the pressure plunger 9. In this case, the moving speed of the pressure plunger 9 is set to about 78 mm / sec, the speed V of the semi-molten material when passing through the gate 5 is V = 3.0 m / sec, the viscosity μ is μ = 300 Pa · sec, and the Reynolds number is Re is Re
Was 0.21.

【0057】また図1に示すように、金型1におけるゲ
ート5の下部位置G、キャビティ4の入口側領域4aの
上部位置U1および下部位置L1ならびに奥部領域4c
の上部位置U2および下部位置L2の温度上昇開始点を
測定することによって、半溶融材料の充填挙動を調べた
ところ、その充填順序は、G→L1→U1→L2と略同
時にU2、であり、鋳造欠陥の発生を回避する上で理想
的であることが確認された。
Further, as shown in FIG. 1, the lower position G of the gate 5 in the mold 1, the upper position U1 and the lower position L1 of the inlet side region 4a of the cavity 4, and the inner region 4c.
When the filling behavior of the semi-molten material was examined by measuring the temperature rising start points of the upper position U2 and the lower position L2 of, the filling sequence was G → L1 → U1 → L2 and U2 at approximately the same time, It was confirmed to be ideal for avoiding the occurrence of casting defects.

【0058】加圧プランジャ9をストローク終端に保持
して、キャビティ4に充填された半溶融材料に加圧力を
付与し、その加圧下で半溶融材料を凝固させて構造部材
を得た。この場合、半溶融材料に対する加圧力P=30
〜90MPaであり、金型1の分割面10に発生するば
りは極めて少ないことが確認された。
While holding the pressure plunger 9 at the end of the stroke, a pressure was applied to the semi-molten material filled in the cavity 4, and the semi-molten material was solidified under the pressure to obtain a structural member. In this case, the pressure P on the semi-molten material is P = 30
It was confirmed that it was up to 90 MPa, and that the flash generated on the dividing surface 10 of the mold 1 was extremely small.

【0059】図2は、前記加圧鋳造法により得られた構
造部材の金属組織を示す顕微鏡写真(400倍)であ
り、また図3は、前記固体材料の金属組織を示す顕微鏡
写真(400倍)である。
FIG. 2 is a photomicrograph (400 times) showing the metal structure of the structural member obtained by the pressure casting method, and FIG. 3 is a photomicrograph showing the metal structure of the solid material (400 times). ).

【0060】図2、図3において、濃灰色の点状部分が
金属間化合物である。図2より金属間化合物の最大粒径
Dは、D=15μmであり、図3のそれと比較すると若
干大きくなることが判る。このような金属組織が得られ
る理由は、半溶融材料の固相における金属間化合物の最
大粒径DがD=7μmであり、また液相から晶出する金
属間化合物は、液相がゲート5通過時において剪断力を
受け、また加圧下で凝固することから、その微細化が達
成されるからである。
In FIGS. 2 and 3, the dark gray dot-like portions are intermetallic compounds. It can be seen from FIG. 2 that the maximum particle size D of the intermetallic compound is D = 15 μm, which is slightly larger than that of FIG. The reason why such a metallographic structure is obtained is that the maximum particle diameter D of the intermetallic compound in the solid phase of the semi-molten material is D = 7 μm, and that the intermetallic compound crystallized from the liquid phase has This is because the fineness is achieved because it is subjected to shearing force during passage and solidifies under pressure.

【0061】また、この構造部材には、図2から明らか
なように、湯境、ガスの巻込みによる気孔等の発生がな
く、またキャビティ4への半溶融材料の未充填に起因し
た欠けの発生もないもので、したがって、この構造部材
は優れた鋳造品質を有することが判明した。
Further, as is clear from FIG. 2, this structural member does not have a boundary between the molten metal and pores due to the entrainment of gas, and has no chipping due to the non-filling of the semi-molten material into the cavity 4. It has also been found that this structural member has excellent casting quality.

【0062】機械的特性を比較するため、室温、200
℃および300℃における前記構造部材(鋳造部材)と
前記固体材料(押出し部材)との引張強さσB および
0.2%耐力を測定したところ、表3の結果を得た。
To compare the mechanical properties, room temperature, 200
When the tensile strength σ B and the 0.2% proof stress of the structural member (cast member) and the solid material (extruded member) at 0 ° C and 300 ° C were measured, the results shown in Table 3 were obtained.

【0063】[0063]

【表3】 表3から明らかなように、室温下においては、構造部材
よりも固体材料の方が強度的にはやや優れているが、高
温下においては、両者は略同一である。
[Table 3] As is clear from Table 3, at room temperature, the solid material is slightly superior in strength to the structural member, but at high temperature, the two are substantially the same.

【0064】したがって、前記加圧鋳造法によれば、優
れた高温強度を有し、また熱間押出し加工法に比べて形
状自由度を高めた構造部材を提供することができる。
Therefore, according to the pressure casting method, it is possible to provide a structural member having excellent high-temperature strength and having a higher degree of freedom in shape as compared with the hot extrusion method.

【0065】比較のため、前記Al合金粉末をるつぼに
充填して相対密度dがd=60%の固体材料を調製し、
次いでそのるつぼを低周波誘導加熱炉内に設置して前記
と同一加熱条件下で均熱度ΔT=7℃、固相の体積分率
Vf=70%の半溶融材料を調製した。半溶融材料を金
型1の装入口6に装入して前記と同一鋳造条件下で比較
例構造部材を得た。
For comparison, a crucible was filled with the Al alloy powder to prepare a solid material having a relative density d = 60%,
Then, the crucible was placed in a low-frequency induction heating furnace to prepare a semi-molten material having a soaking degree ΔT = 7 ° C. and a solid phase volume fraction Vf = 70% under the same heating conditions as described above. The semi-molten material was charged into the charging port 6 of the mold 1 to obtain a comparative structural member under the same casting conditions as described above.

【0066】図4は比較例構造部材の金属組織を示す顕
微鏡写真(100倍)であり、本図より比較例構造部材
には巣(黒色部分)が発生していることが判る。この巣
は、固体材料の相対密度dが低く、その材料に無数の空
隙が存在していたことに起因する。
FIG. 4 is a photomicrograph (100 times) showing the metal structure of the comparative structural member. From this figure, it can be seen that the comparative structural member has cavities (black portions). This nest is due to the fact that the relative density d of the solid material is low and that the material has numerous voids.

【0067】[0067]

【発明の効果】本発明によれば、急冷凝固合金粉末より
なる高密度な固体材料を用いることによって、その急冷
凝固合金粉末の有する優れた機械的特性を備え、しかも
形状自由度の高い高強度な構造部材を得ることができ
る。
According to the present invention, by using a high-density solid material composed of a rapidly solidified alloy powder, the rapidly solidified alloy powder has excellent mechanical properties and high strength with a high degree of freedom in shape. It is possible to obtain various structural members.

【図面の簡単な説明】[Brief description of drawings]

【図1】加圧鋳造装置の縦断面図である。FIG. 1 is a vertical cross-sectional view of a pressure casting device.

【図2】構造部材の金属組織を示す顕微鏡写真である。FIG. 2 is a micrograph showing a metal structure of a structural member.

【図3】固体材料の金属組織を示す顕微鏡写真である。FIG. 3 is a micrograph showing a metal structure of a solid material.

【図4】比較例構造部材の金属組織を示す顕微鏡写真で
ある。
FIG. 4 is a micrograph showing a metal structure of a comparative structural member.

【符号の説明】[Explanation of symbols]

1 金型 4 キャビティ 5 ゲート 6 装入口 9 加圧プランジャ 1 Mold 4 Cavity 5 Gate 6 Loading Port 9 Pressurizing Plunger

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年1月14日[Submission date] January 14, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】急冷凝固合金粉末としては、例えば、アト
マイズ法により得られた急冷凝固Al合金粉末が用いら
れる。そのAl合金粉末は、下記の各化学成分と残部A
lとよりなる。
As the rapidly solidified alloy powder, for example, rapidly solidified Al alloy powder obtained by the atomizing method is used. The Al alloy powder has the following chemical components and the balance A
and l.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0064[Correction target item name] 0064

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0064】したがって、前記加圧鋳造法によれば、優
れた高温強度を有し、また熱間押出し加工法に比べて形
状自由度を高めた構造部材を得ることができる。
Therefore, according to the pressure casting method, it is possible to obtain a structural member having excellent high-temperature strength and having a higher degree of freedom in shape as compared with the hot extrusion method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 急冷凝固合金粉末に成形固化加工を施し
て高密度な固体材料を調製し、次いで前記固体材料を加
熱して固相と液相とが共存した半溶融材料を調製し、そ
の後前記半溶融材料を用いて加圧下で成形加工を行うこ
とを特徴とする、急冷凝固合金粉末を用いた高強度構造
部材の製造方法。
1. A rapidly solidified alloy powder is compacted and solidified to prepare a high-density solid material, and then the solid material is heated to prepare a semi-molten material in which a solid phase and a liquid phase coexist. A method for producing a high-strength structural member using a rapidly solidified alloy powder, characterized in that the semi-molten material is used for forming under pressure.
JP8610092A 1992-01-13 1992-03-10 Production of high strength structural member with use of rapid solidified alloy powder Pending JPH05245609A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8610092A JPH05245609A (en) 1992-03-10 1992-03-10 Production of high strength structural member with use of rapid solidified alloy powder
PCT/JP1993/000030 WO1993013895A1 (en) 1992-01-13 1993-01-12 Method for casting aluminum alloy casting and aluminum alloy casting
EP93901538A EP0572683B1 (en) 1992-01-13 1993-01-12 Method for casting aluminum alloy casting and aluminum alloy casting
CA002105968A CA2105968C (en) 1992-01-13 1993-01-12 Aluminum-based alloy cast product and process for producing the same
US08/119,066 US5394931A (en) 1992-01-13 1993-01-12 Aluminum-based alloy cast product and process for producing the same
DE69327195T DE69327195T2 (en) 1992-01-13 1993-01-12 Process for casting aluminum alloys and castings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8610092A JPH05245609A (en) 1992-03-10 1992-03-10 Production of high strength structural member with use of rapid solidified alloy powder

Publications (1)

Publication Number Publication Date
JPH05245609A true JPH05245609A (en) 1993-09-24

Family

ID=13877295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8610092A Pending JPH05245609A (en) 1992-01-13 1992-03-10 Production of high strength structural member with use of rapid solidified alloy powder

Country Status (1)

Country Link
JP (1) JPH05245609A (en)

Similar Documents

Publication Publication Date Title
EP0572683B1 (en) Method for casting aluminum alloy casting and aluminum alloy casting
US9999921B2 (en) Method of making aluminum or magnesium based composite engine blocks or other parts with in-situ formed reinforced phases through squeeze casting or semi-solid metal forming and post heat treatment
Kim et al. A feasibility study of the partial squeeze and vacuum die casting process
GB1580493A (en) Metal article and powder alloy and method for producing metal article from aluminum base powder alloy containing silicon and manganese
US5865238A (en) Process for die casting of metal matrix composite materials from a self-supporting billet
CN108251710A (en) The tough silumin of height and its preparation process of a kind of suitable extrusion casint
EP0765946A1 (en) Processes for producing Mg-based composite materials
Chen et al. Thixocasting of hypereutectic Al–25Si–2.5 Cu–1Mg–0.5 Mn alloys using densified powder compacts
Chen et al. A novel method for net-shape forming of hypereutectic Al–Si alloys by thixocasting with powder preforms
US4518441A (en) Method of producing metal alloys with high modulus of elasticity
JPH11501990A (en) Manufacturing method of thin pipe
US4244738A (en) Method of and apparatus for hot pressing particulates
EP0904875A1 (en) Mold structure for injection molding of a light alloy and method of injection molding a light alloy using the same
JP3271737B2 (en) Porous mold material for casting and method for producing the same
Ivanchev et al. Rheo-processing of semi-solid metal alloys: a new technology for manufacturing automotive and aerospace components: research in action
JPH05245609A (en) Production of high strength structural member with use of rapid solidified alloy powder
JP2832662B2 (en) Manufacturing method of high strength structural member
JP2832660B2 (en) Casting method of Al-based alloy casting
JPS6233730A (en) Wear resistant composite material
JP2923823B2 (en) Casting method of Al-based alloy casting
Chen et al. Net-shape formation of hypereutectic Al–Si alloys by thixocasting of gas-atomised powder preforms
JPH0938750A (en) Porous die material having excellent heat exchangeability
JPH0288735A (en) Composite material combining ductility and wear resistance, its manufacture and its application
US20030135977A1 (en) Continuous production of large diameter bars for semi-solid forming
JPH1157965A (en) Production of aluminum alloy casting