JPH0892607A - Production of composite hard material - Google Patents

Production of composite hard material

Info

Publication number
JPH0892607A
JPH0892607A JP23109594A JP23109594A JPH0892607A JP H0892607 A JPH0892607 A JP H0892607A JP 23109594 A JP23109594 A JP 23109594A JP 23109594 A JP23109594 A JP 23109594A JP H0892607 A JPH0892607 A JP H0892607A
Authority
JP
Japan
Prior art keywords
hard material
cylinder
hard
composite
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23109594A
Other languages
Japanese (ja)
Inventor
Katsuhiko Maehara
克彦 前原
Hitoshi Hatano
等 畑野
Akira Egami
明 江上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23109594A priority Critical patent/JPH0892607A/en
Publication of JPH0892607A publication Critical patent/JPH0892607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To provide a method for producing a composite hard material capable of obtaining an axisymmetric long-sized composite hard material with a simple process without need for a new device or special modification by using a press- extruder and a vacuum sintering furnace. CONSTITUTION: Plural kinds of materials are optionally selected from the sintered hard alloys with WC as the hard grain and an iron-family metal as the main binder phase and the cermet alloys with TiC or Ti(C,N) as the hard grain and an iron-family metal as the main binder phase to produce a multilayer composite high-humidity material. In this case, the multilayer material is placed into a cylinder, pushed by a piston and extruded from the cylinder, and a composite hard material having an optional section is formed. The interfaces are joined by the diffusion of the main binder phase in the succeeding sintering stage. A long-sized multilayer composite hard material is obtained in this way with a simple process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ドリル、エンドミル、
パンチ、ダイなど、従来より超硬合金やサーメット合金
が用いられていた分野において、より高い強度、靭性、
耐摩耗性のある材料を得ることのできる複合構造硬質材
料の製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a drill, an end mill,
In fields such as punches and dies where cemented carbide and cermet alloys have been conventionally used, higher strength, toughness,
The present invention relates to a method of manufacturing a hard material having a composite structure, which can obtain a material having wear resistance.

【0002】[0002]

【従来の技術】積層工具材料に対する要求は従来から高
く、積層工具材料に関して多くの発明・考案が成されて
きた。これらの内の一部の例を挙げると、特公昭64−
6882号、特開昭55−31563号、特開昭56−
93877号、特開平4−319435号各公報などに
開示の発明がある。これらは、スローアウェイチップ工
具など平面的な積層に関するもので、十分な性能が得ら
れる製品に対しては、有用な発明である。しかし、硬質
材料の利用分野はこのような形状のものばかりではな
く、ドリル・エンドミルをはじめとする軸物切削工具
や、パンチ・ダイなどの軸対称耐摩耗工具なども数多く
ある。軸対称の複合構造硬質材料に関する発明として
は、特開昭61−144229号、特開平3−9053
3号、特開平3−90534号、特開平3−21124
9号各公報などに開示例がある。
2. Description of the Related Art There have been high demands for laminated tool materials, and many inventions and ideas have been made regarding laminated tool materials. Some examples of these are Japanese Patent Publication No.
6882, JP-A-55-31563, JP-A-56-
There are inventions disclosed in Japanese Patent Laid-Open No. 93877, Japanese Patent Laid-Open No. 4-319435, and the like. These are related to planar stacking such as a throw-away tip tool, and are useful inventions for products for which sufficient performance can be obtained. However, the fields of application of hard materials are not limited to such shapes, and there are many shaft cutting tools such as drills and end mills, and axisymmetric wear resistant tools such as punches and dies. Examples of inventions relating to an axisymmetric composite structure hard material include JP-A-61-144229 and JP-A-3-9053.
3, JP-A-3-90534, JP-A-3-21124.
There are disclosure examples in each gazette of No. 9, etc.

【0003】これらの内、製造方法に関する発明は特開
昭61−144229号公報に開示されている。この発
明は図7に示す工程から成っている。即ち、この発明に
よれば、芯材22と外部材23を合わせて棒状部材24
にする複合工程25と、これを熱間静油圧押出によって
超硬金型ダイス26から押し出して複合合金24Aにす
る複合合金加工工程27、これを炉内29に装入して行
う熱間等方加圧加工工程28、さらに塑性加工工程3
0、外形形状加工工程31、熱処理加工工程32(急冷
却焼入れ工程32A,焼戻し工程32B)を経ること
で、軸対称の複合構造硬質材料の製造が行われている。
また、特開平3−90533号、特開平3−90534
号各公報に開示の発明は材料構造に関するものである
が、その実施例として示されている製造方法は、プレス
によって粉末を成形する際に軸対称の多層になるように
粉末を充填したのちに圧力を付加するというものであ
る。
Of these, the invention relating to the manufacturing method is disclosed in JP-A-61-144229. The present invention comprises the steps shown in FIG. That is, according to the present invention, the core member 22 and the outer member 23 are combined to form the rod-shaped member 24.
And a composite process step 27 for extruding the composite process from the cemented carbide die 26 into a composite alloy 24A by hot hydrostatic extrusion, and a hot isostatic process for charging the composite alloy into the furnace 29. Pressure processing step 28, and further plastic processing step 3
0, an outer shape processing step 31, and a heat treatment processing step 32 (quenching and quenching step 32A, tempering step 32B), an axisymmetric composite structure hard material is manufactured.
Further, JP-A-3-90533 and JP-A-3-90534.
The invention disclosed in each of the publications relates to a material structure, but the manufacturing method shown as an example thereof is such that after the powder is filled by a press, the powder is filled into an axially symmetric multilayer. It is to apply pressure.

【0004】さらに、特開平3−211249号公報に
開示の発明も材料構造に関するものであるが、その実施
例で示されている製造方法は、成形後の圧粉体あるいは
焼結体に対して、減圧の脱炭性雰囲気での昇温工程、減
圧の弱浸炭性雰囲気による温度保持工程、加圧した不活
性ガスと浸炭性ガスの混合ガス雰囲気での冷却という熱
処理工程を経ることで、軸対称の複合構造硬質材料を得
るものである。
Further, the invention disclosed in Japanese Patent Laid-Open No. 3-211249 also relates to a material structure, but the manufacturing method shown in the embodiment is applied to a green compact or a sintered body after molding. , A heating process in a decompressed decarburizing atmosphere, a temperature holding process in a depressurized weak carburizing atmosphere, and a heat treatment process of cooling in a mixed gas atmosphere of a pressurized inert gas and a carburizing gas, A symmetric composite structural hard material is obtained.

【0005】[0005]

【発明が解決しようとする課題】上記各発明には問題点
も多い。例えば特開昭61−144229号公報に開示
の方法は種々の材料を組み合わせた複合材料が製造可能
であるが、熱間での複合合金加工工程や熱間等方加圧加
工工程、塑性加工工程、熱処理加工工程など多岐にわた
る工程を経る必要がある。これら複雑な工程を経ること
は、多大なコストを必要とすることは勿論のこと、各工
程での冷却・加熱により、材料変質をきたす場合もあ
る。
Each of the above inventions has many problems. For example, according to the method disclosed in Japanese Patent Laid-Open No. 61-144229, it is possible to manufacture a composite material by combining various materials, but a hot composite alloy working step, a hot isostatic pressing step, and a plastic working step. It is necessary to go through various processes such as heat treatment process. It goes without saying that going through these complicated steps requires a great deal of cost, and in some cases, the quality of the material may deteriorate due to cooling and heating in each step.

【0006】また、特開平3−90533号公報および
特開平3−90534号公報に開示の発明の場合は、粉
末成形プレスによるものである。粉末成形プレスは、ス
ローアウェイチップなどの厚みの小さい小物を大量生産
するには最適なものであるが、圧力を充填深さ方向に伝
えることが困難であるので、長尺品を成形するのは難し
い。円柱状の場合、長さは直径の2〜3倍が限界とされ
ており、ドリルやエンドミルを作ることはできない。ま
た仮に成形が出来たとしても、上下パンチの近傍とここ
から遠方の部分では、加わった圧力に違いがあるために
成形体密度の内部差が生じており、焼結によって収縮し
た後の品物は、中央部の径が両端部に比して細くくびれ
た鼓形に変形してしまう。従って、外周部を一様に研削
するのに多大な手間がかかり、さらには折角の外層をす
べて削り落としてしまう事態も発生することがある。
Further, in the case of the inventions disclosed in JP-A-3-90533 and JP-A-3-90534, a powder molding press is used. The powder molding press is optimal for mass-production of small items such as throw-away chips, but it is difficult to transmit pressure in the filling depth direction, so it is difficult to mold long products. difficult. In the case of a cylindrical shape, the length is limited to 2 to 3 times the diameter, and it is impossible to make a drill or an end mill. Even if molding could be done, there is an internal difference in the density of the formed body due to the difference in the applied pressure in the vicinity of the upper and lower punches and the part far from this, and the product after shrinking due to sintering , The diameter of the central part is deformed into a thin, hourglass-like shape compared to both ends. Therefore, it takes a great deal of time to uniformly grind the outer peripheral portion, and further, a situation may occur in which all the outer layers at the corners are scraped off.

【0007】さらに、特公平3−211249号公報に
開示の発明を実施するためには、脱炭性雰囲気や浸炭性
雰囲気のガス配管や安全対策など、超硬合金やサーメッ
トの製造には本来不必要な装置やプロセスを新たに加え
なければならない。本発明は、上記の問題点を課題とし
てなされたもので、従来から超硬合金やサーメットの製
造に広く用いられているプレス押出機と真空焼結炉を用
いて、装置の新設や特別な改造を必要としない単純な工
程で、長尺の複合構造硬質材料を得ることを可能とした
複合構造硬質材料の製造方法を提供しようとしたもので
ある。
Further, in order to carry out the invention disclosed in Japanese Examined Patent Publication No. 3-211249, gas pipes in a decarburizing atmosphere or a carburizing atmosphere, safety measures, etc. are originally unsuitable for the production of cemented carbide and cermet. New equipment and processes must be added. The present invention has been made to solve the above problems, using a press extruder and a vacuum sintering furnace, which have been widely used for the production of cemented carbide and cermet, to newly install or specially modify the apparatus. It is an object of the present invention to provide a method for producing a hard material having a composite structure which enables a long hard material having a composite structure to be obtained by a simple process that does not require.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明は、WCを硬質粒子とし鉄族金属を主結合相と
する超硬合金、およびTiCあるいはTi(C,N)を
硬質粒子とし鉄族金属を主結合相とするサーメット合金
のうち、任意の複数材種を選んで多層構造を成す複合構
造硬質材料の製造方法において、多層構造を成す原料を
シリンダ内に装入し、これをピストンで押すことによっ
て上記シリンダから押し出し、任意断面の複合構造硬質
材料素材を成形する工程と、その後の焼結工程における
主結合相の拡散によって界面を接合する工程とからなっ
ている。
In order to solve the above problems, the present invention provides a cemented carbide containing WC as a hard particle and an iron group metal as a main bonding phase, and TiC or Ti (C, N) as a hard particle. Among the cermet alloys having the iron group metal as the main bonding phase, in the method for producing a composite structure hard material that forms a multilayer structure by selecting any plurality of material types, the raw materials that form the multilayer structure are charged into the cylinder, and Is extruded from the cylinder by pushing with a piston to form a composite structural hard material having an arbitrary cross section, and a step of joining the interfaces by diffusion of the main binder phase in the subsequent sintering step.

【0009】[0009]

【実施例】最初に成形工程について説明する。原料粉末
には、成形体の要求スペックに応じた量の成形バインダ
が予め付与される。一般的な超硬合金にパラフィンを混
ぜる場合を例にとると、パラフィンが2.5wt%より
少ないときは原料は粉末状のままである。必要に応じて
球状に造粒される場合もある。パラフィンが2.5〜
5.0wt%のときは原料は塊状になる。さらに、パラ
フィンを増やすと原料は餅状から、さらにはゲル状に変
化する。シリンダに原料を装入する際には、これらの性
状から適当なものを選び、図1に示すように多層構造を
形成させる。例えば、粉末状のものをプレスでパイプ状
に予備成形した後にシリンダ1に装入して外層4とな
し、内層5には粉末状原料やゲル状原料を流し入れる。
或は、餅状原料を脱気式スクリュー押出機で棒状に成形
してシリンダ中央に立てて内層5となし、その周囲に球
状に造粒した原料を充填して外層4を形成させてもよ
い。
EXAMPLES First, the molding process will be described. The raw material powder is previously provided with a molding binder in an amount according to the required specifications of the molded body. Taking the case of mixing paraffin with general cemented carbide as an example, when the paraffin content is less than 2.5 wt%, the raw material remains powdery. It may be spherically granulated if necessary. Paraffin is 2.5 ~
When the content is 5.0 wt%, the raw material becomes lumpy. Furthermore, when the amount of paraffin is increased, the raw material changes from rice cake-like to gel-like. When charging the raw material into the cylinder, an appropriate material is selected from these properties to form a multilayer structure as shown in FIG. For example, a powdery material is preformed by a press into a pipe shape, then charged into the cylinder 1 to form the outer layer 4, and the inner layer 5 is filled with a powdery material or a gel material.
Alternatively, the dough-like raw material may be formed into a rod shape by a deaeration type screw extruder to stand in the center of the cylinder to form the inner layer 5, and the outer layer 4 may be formed by filling the spherically granulated raw material around it. .

【0010】シリンダ1内で多層構造を形成した原料
は、ピストン2によって押し出し、所定の長尺品とす
る。シリンダ出口に取り付けるノズル3の形状を変える
ことによって、成形品の外形や積層状態を変化させるこ
とができる。成形した素材は、脱脂炉で加熱脱脂され
る。この時に、脱脂を容易にするための水素ガスや、変
質を防止するための窒素ガス・アルゴンガスなどを用い
ることも出来る。脱脂は概ね500℃以下で終了する
が、焼結前の機械加工を可能にする必要があれば、80
0℃〜900℃まで加熱してもよい。
The raw material having a multi-layer structure formed in the cylinder 1 is extruded by the piston 2 into a predetermined long product. By changing the shape of the nozzle 3 attached to the cylinder outlet, it is possible to change the outer shape and laminated state of the molded product. The formed material is heated and degreased in a degreasing furnace. At this time, hydrogen gas for facilitating degreasing, nitrogen gas / argon gas for preventing alteration, etc. can be used. Degreasing is completed at about 500 ° C or lower, but if it is necessary to enable machining before sintering, 80
You may heat to 0 degreeC-900 degreeC.

【0011】焼結においては、1300℃〜1500℃
の温度で、所定断面・所定形状の素材を緻密なものにす
る。超硬合金やサーメットの焼結は、主結合相であるコ
バルトやニッケルなどの液相出現温度まで材料を加熱
し、液体の表面張力で硬質粒子を緻密化するものであ
る。したがって積層断面形状の素材においても、すべて
の構成材料の液相出現温度以上に加熱することによっ
て、それぞれの主結合相が液相状態で拡散し、一様で強
固な接合面が形成される。また、コバルトとニッケルは
全率固溶するので、積層材料を構成する材料の主結合相
の量、或はその組み合わせは、制限を受けない。加熱時
間を調整することで結合相の濃度変化の勾配を制御し、
結合相量の違いによって生ずる冷却後の内部応力を適正
な範囲に納めることもできる。
In sintering, 1300 ° C to 1500 ° C
At the temperature of, the material with the predetermined cross section and the predetermined shape is made dense. Sintering of cemented carbide and cermet involves heating a material to a liquid phase appearance temperature such as cobalt and nickel, which are main binding phases, and densifying hard particles by the surface tension of the liquid. Therefore, even in the case of materials having a laminated cross-sectional shape, by heating above the liquid phase appearance temperature of all the constituent materials, the respective main binding phases diffuse in the liquid phase state and a uniform and strong joint surface is formed. Further, since cobalt and nickel are solid-solved in all proportions, there is no limitation on the amount of the main bonding phase of the material constituting the laminated material or the combination thereof. By adjusting the heating time, the gradient of the concentration change of the binder phase can be controlled,
The internal stress after cooling caused by the difference in the amount of binder phase can be set within an appropriate range.

【0012】以下、実際に複合構造硬質材料を試作した
結果について説明する。 (実施例1)Co12.0wt%、残部WCの超硬合金
粉末に7.0wt%のパラフィンを混ぜて1時間混練し
て餅状になしたものを、脱気式スクリュー押出機にて外
径45mm、内径22mm、長さ250mmのパイプ状
に成形した。これをシリンダ内に装入したのち、22m
mの穴の中にCo6.0wt%、TiC1.0wt%、
残部WCの超硬合金粉末に5.0wt%のパラフィンを
混ぜた塊状の材料を圧入する。しかる後にピストンで4
0kg/cm2の圧力をかけて、外径3.4mmの棒状
に押し出した。続いて炉内を10-1〜10-3torrに
保ちつつ450℃まで25℃/時の速度で加熱してパラ
フィンを脱脂した後に、10℃/分の速度で加熱し14
20℃で1時間保持した。
The results of trial manufacture of a composite structure hard material will be described below. (Example 1) A cemented carbide powder having 12.0 wt% Co and the balance WC was mixed with 7.0 wt% paraffin and kneaded for 1 hour to form a dough. It was formed into a pipe shape having 45 mm, an inner diameter of 22 mm, and a length of 250 mm. 22m after charging this into the cylinder
In the hole of m, Co 6.0 wt%, TiC 1.0 wt%,
A lump-shaped material in which 5.0 wt% of paraffin is mixed in the remaining WC cemented carbide powder is press-fitted. After that, 4 with a piston
A pressure of 0 kg / cm 2 was applied to extrude a rod having an outer diameter of 3.4 mm. Subsequently, while maintaining the inside of the furnace at 10 -1 to 10 -3 torr, it is heated to 450 ° C at a rate of 25 ° C / hour to degrease paraffin, and then heated at a rate of 10 ° C / minute.
Hold at 20 ° C. for 1 hour.

【0013】焼結後の素材は、外径が2.7mmの棒状
であり、外側のCo12.0wt%、残部WCの超硬合
金層の厚みは0.8mm、内側のCo6.0wt%、T
iC1.0wt%、残部WCの超硬合金部分の直径は
1.1mmであった。この素材を研削加工して図2に示
すプリント基盤穴明け用ドリルを製作した。外層6に靭
性のある材料を用いることで折れに対する危険性を回避
するとともに、内層7からなるドリル部には耐熱性・耐
チッピング性に優れた材料を使用でき、ドリルの寿命を
3000穴から4500穴に向上させることができた。
さらに、外層6の材料は内層7の材料よりも安価である
ので、従来のCo6.0wt%、TiC1.0wt%、
残部WCの超硬合金の一体物に比べて原料費を低減する
ことにも成功した。
The sintered material was rod-shaped with an outer diameter of 2.7 mm, outer Co 12.0 wt%, the remaining WC cemented carbide layer had a thickness of 0.8 mm, inner Co 6.0 wt%, and T.
The diameter of the cemented carbide portion of iC 1.0 wt% and the balance WC was 1.1 mm. This material was ground to produce the drill for drilling the printed circuit board shown in FIG. By using a tough material for the outer layer 6 and avoiding the risk of breakage, a material with excellent heat resistance and chipping resistance can be used for the drill part consisting of the inner layer 7, and the life of the drill can be increased from 3000 holes to 4500 holes. Could improve on the hole.
Furthermore, since the material of the outer layer 6 is cheaper than the material of the inner layer 7, the conventional Co 6.0 wt%, TiC 1.0 wt%,
We have also succeeded in reducing the raw material cost compared to the one-piece cemented carbide with the balance WC.

【0014】(実施例2)前実施例と同様にCo12.
0wt%、残部WCの超硬合金粉末に7.0wt%のパ
ラフィンを混ぜて1時間混練して餅状になしたものを、
脱気式スクリュー押出機にて外径45mm、内径22m
m、長さ250mmのパイプ状に成形した。続いてCo
6.0wt%、TiC1.0wt%、残部WCの超硬合
金粉末に7.0wt%のパラフィンを混ぜて餅状にな
し、同押出機にて外径21mm、長さ250mmの棒状
に成形した。これら両者をシリンダ内に装入し、シリン
ダ内の空気を真空ポンプによって十分に脱気した後に、
ピストンで35kg/cm2の圧力をかけて、外径3.
4mmの棒状に押し出した。続いて、前実施例1と同様
の熱処理を施した。
(Embodiment 2) As in the previous embodiment, Co12.
Cemented carbide powder of 0 wt% and the balance WC was mixed with 7.0 wt% of paraffin and kneaded for 1 hour to form a dough.
Degassing screw extruder, outer diameter 45mm, inner diameter 22m
It was formed into a pipe having a length of m and a length of 250 mm. Then Co
Cemented carbide powder of 6.0 wt%, TiC of 1.0 wt% and the balance of WC was mixed with 7.0 wt% of paraffin to form a dough, which was formed into a rod shape with an outer diameter of 21 mm and a length of 250 mm by the same extruder. After charging both of these into the cylinder and thoroughly deaerating the air in the cylinder with a vacuum pump,
Apply a pressure of 35 kg / cm 2 with a piston to obtain an outer diameter of 3.
It was extruded into a 4 mm rod shape. Then, the same heat treatment as in Example 1 was performed.

【0015】焼結後の素材は、外径が2.7mmの棒状
であり、外側のCo12.0wt%、残部WCの超硬合
金層の厚みは0.7mm、内側のCo6.0wt%、T
iC1.0wt%、残部WCの超硬合金部分の直径は
1.3mmであった。この素材を研削加工して全実施例
と同様のプリント基盤穴明け用ドリルを製作したとこ
ろ、前実施例1と同様の性能を得た。
The material after sintering was rod-shaped with an outer diameter of 2.7 mm, the outer Co was 12.0 wt%, the remaining WC had a cemented carbide layer thickness of 0.7 mm, the inner Co was 6.0 wt%, and T was T.
The diameter of the cemented carbide portion of iC 1.0 wt% and the balance WC was 1.3 mm. When this material was ground to produce a drill for drilling a printed circuit board similar to that of all the examples, the same performance as that of the previous example 1 was obtained.

【0016】(実施例3)Ni18.0wt%、Mo1
0.0wt%、残部Ti(C,N)のサーメット粉末に
4.0wt%のパラフィンを混ぜて球状に造粒した粉末
を粉末成形プレスによって図3に示すごとく円錐台状に
成形した。この寸法は上面の直径が15mm、下面の直
径が30mm、高さは10mmである。この下部材8を
内径30mmのシリンダ内に装入した後、上部からCo
6.0wt%、残部WCの超硬合金を1.5wt%のパ
ラフィンで球状に造粒した粉末を、全体の充填深さが1
6.2mmになるように投入する。しかる後にピストン
で80kg/cm2の圧力をかけ、外径13mm、長さ
55mmの棒状に押し出した。シリンダ内には10mm
厚さの押し滓が残留した。
(Example 3) Ni 18.0 wt%, Mo1
A cermet powder of 0.0 wt% and the balance of Ti (C, N) was mixed with 4.0 wt% of paraffin, and spherically granulated powder was molded into a truncated cone shape as shown in FIG. 3 by a powder molding press. As for this dimension, the diameter of the upper surface is 15 mm, the diameter of the lower surface is 30 mm, and the height is 10 mm. After loading the lower member 8 into a cylinder having an inner diameter of 30 mm, Co
A powder obtained by spherically granulating 6.0 wt% of cemented carbide with the balance WC with 1.5 wt% of paraffin has a total filling depth of 1
Insert so that it becomes 6.2 mm. After that, a pressure of 80 kg / cm 2 was applied by a piston and extruded into a rod shape having an outer diameter of 13 mm and a length of 55 mm. 10 mm in the cylinder
Thick slag remained.

【0017】脱脂および焼結は、水素ガス5.0l(リ
ッター)/minを流しつつ450℃まで20℃/時の
速度で加熱してパラフィンを脱脂した後に、8℃/分の
速度で加熱し1460℃で2時間保持した。焼結後の素
材は、外径が10.5mm、長さ45mmの丸棒とな
る。サーメットと超硬合金の構成は図4に示すようにな
り、サーメットの下部材8は変形によって8Aのような
形状になる。この部分8Aは、エンドミルに加工した際
に刃先や外周部になる部分であり、耐熱性・耐溶着性に
優れているサーメットが好適である。また、靭性の必要
な中心部9には超硬合金が構成される。従来の超硬合金
一体物のエンドミルに比べて、ステンレス鋼などの難削
性材料の切削性能に優れ、寿命を2000mから350
0mに向上させることができた。また、サーメット一体
型のエンドミルの欠点である耐衝撃性や、高価格をも改
善することができる。
Degreasing and sintering were carried out by heating hydrogen gas up to 450 ° C. at a rate of 20 ° C./hour while degreasing the paraffin, and then heating at a rate of 8 ° C./minute. It was kept at 1460 ° C. for 2 hours. The raw material after sintering is a round bar having an outer diameter of 10.5 mm and a length of 45 mm. The structure of the cermet and the cemented carbide is as shown in FIG. 4, and the lower member 8 of the cermet is deformed into a shape like 8A. This portion 8A is a portion that becomes a cutting edge or an outer peripheral portion when processed into an end mill, and a cermet having excellent heat resistance and welding resistance is suitable. Further, a cemented carbide is formed in the central portion 9 that needs toughness. Compared with conventional end mills with one body of cemented carbide, it excels in cutting performance of difficult-to-cut materials such as stainless steel, and has a life of 2000 m to 350 m.
It was possible to improve to 0 m. Further, it is possible to improve impact resistance, which is a drawback of the cermet-integrated end mill, and high price.

【0018】(実施例4)Ni13.0wt%、Mo
7.0wt%、TaC5.0wt%、TiC18.0w
t%、残部Ti(C,N)のサーメット粉末に15.0
wt%のパラフィンを混ぜて1時間混練して餅状になし
たものを、脱気式スクリュー押出機にて外径45mm、
内径36mm、長さ250mmのパイプ状に成形した。
続いてCo6.0wt%、TiC1.0wt%、残部W
Cの超硬合金粉末に7.0wt%のパラフィンを混ぜて
餅状になし、同押出機にて外径35mm、内径26m
m、長さ250mmのパイプ状に成形した。さらに、C
o16.0wt%、残部WCの超硬合金粉末に7.0w
t%のパラフィンを混ぜて餅状になし、同押出機にて外
径25mm、長さ250mmの棒状に成形した。図5に
示すように、これら3者を装入するシリンダ1の先に、
外径12.5mmのドリル形状断面を持つノズル10を
取り付けたうえで、ピストンで50kg/cm2の圧力
をかけて押し出した。成形体は、炉内に水素ガス7.0
l(リッター)/minを流しつつ450℃まで20℃
/時の速度で加熱してパラフィンを脱脂したのちに、8
℃/分の速度で加熱し1460℃で2時間保持した。
(Example 4) Ni 13.0 wt%, Mo
7.0 wt%, TaC 5.0 wt%, TiC 18.0 w
1% for cermet powder with t% and balance Ti (C, N)
A mixture of wt% paraffin and kneaded for 1 hour to form a mochi-shaped mixture was degassed with a screw extruder and had an outer diameter of 45 mm.
A pipe having an inner diameter of 36 mm and a length of 250 mm was formed.
Subsequently, Co 6.0 wt%, TiC 1.0 wt%, balance W
The cemented carbide powder of C is mixed with 7.0 wt% of paraffin to form a dough, and the same extruder is used to form an outer diameter of 35 mm and an inner diameter of 26 m.
It was formed into a pipe having a length of m and a length of 250 mm. Furthermore, C
o 16.0 wt%, the balance WC 7.0 w for cemented carbide powder
Paraffin of t% was mixed to form a dough, and the extruder was used to form a rod having an outer diameter of 25 mm and a length of 250 mm. As shown in FIG. 5, at the end of the cylinder 1 into which these three members are loaded,
A nozzle 10 having an outer diameter of 12.5 mm and having a drill-shaped cross section was attached, and then a pressure of 50 kg / cm 2 was applied by a piston and extruded. The molded product was hydrogen gas 7.0 in the furnace.
20 ° C up to 450 ° C while flowing 1 (liter) / min
After degreasing the paraffin by heating at a speed of / hour,
The mixture was heated at a rate of ° C / min and kept at 1460 ° C for 2 hours.

【0019】焼結後の素材は、外径が10.2mmのド
リル刃状となる。3種の材料の構成は図6のごとくな
り、この溝部14に適当な金属粉末を充填して1200
℃前後で再焼結すると、外層11、中間層12、内層1
3からなる多層構造をもつドリル素材が得られる。従来
の超硬合金一体物のドリルに比べて、ステンレス鋼など
の難削性材料の切削性能に優れ、寿命を600穴から2
500穴に向上させることができた。また、サーメット
一体型ドリルの欠点である靭性不足や、高価格をも改善
することができる。
The material after sintering has a drill blade shape with an outer diameter of 10.2 mm. The structure of the three kinds of materials is as shown in FIG.
When re-sintered at around ℃, outer layer 11, middle layer 12, inner layer 1
A drill material having a multilayer structure of 3 is obtained. Compared to conventional solid carbide alloy drills, it excels in cutting performance of difficult-to-cut materials such as stainless steel and has a life of 600 holes to 2
It was possible to improve to 500 holes. In addition, the shortage of toughness, which is a drawback of the cermet integrated drill, and the high price can be improved.

【0020】[0020]

【発明の効果】以上の説明よりも明らかなように、本発
明によれば、WCを硬質粒子とし鉄族金属を主結合相と
する超硬合金、およびTiCあるいはTi(C,N)を
硬質粒子とし鉄族金属を主結合相とするサーメット合金
のうち、任意の複数材種を選んで多層構造を成す複合構
造高湿材料の製造方法において、多層構造を成す原料を
シリンダ内に装入し、これをピストンで押すことによっ
て上記シリンダから押し出し、任意断面の複合構造硬質
材料素材を成形する工程と、その後の焼結工程における
主結合相の拡散によって界面を接合する工程とからなっ
ている。
As is apparent from the above description, according to the present invention, a cemented carbide containing WC as hard particles and an iron group metal as a main bonding phase, and TiC or Ti (C, N) as hard. Among the cermet alloys which have iron group metal as the main binder phase as particles, in the manufacturing method of the composite structure high humidity material in which multiple arbitrary materials are selected to form a multilayer structure, the raw materials forming the multilayer structure are charged into the cylinder. The step of extruding this from the cylinder by pushing it with a piston to form a composite structure hard material of arbitrary cross section, and the step of joining the interface by diffusion of the main binder phase in the subsequent sintering step.

【0021】このため、従来から超硬合金やサーメット
の製造に広く用いられているプレス押出機と真空焼結炉
を用いて、装置の新設や特別な改造を必要としない単純
な工程で、長尺の多層を成す複合構造硬質材料を得るこ
とが可能になるという効果を奏する。
Therefore, by using a press extruder and a vacuum sintering furnace which have been widely used for producing cemented carbide and cermet, a simple process requiring no new equipment or special modification can be performed. This has the effect of making it possible to obtain a hard composite material having a composite structure that is a multilayer structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る製造方法における押出成形工程
においてシリンダ内で形成させる多層構造、および成形
品の多層構造の示す断面図である。
FIG. 1 is a cross-sectional view showing a multilayer structure formed in a cylinder in an extrusion molding step in a manufacturing method according to the present invention and a multilayer structure of a molded product.

【図2】 本発明に係る製造方法よって製作できるプリ
ント基盤穴明け用ドリルを示す断面図である。
FIG. 2 is a cross-sectional view showing a drill for drilling a printed circuit board that can be manufactured by the manufacturing method according to the present invention.

【図3】 本発明に係る製造方法における成形工程にお
いて用いられる粉末成形プレスによって円錐台状に成形
した内層素材を示す斜視図である。
FIG. 3 is a perspective view showing an inner layer material formed into a truncated cone shape by a powder forming press used in a forming step in the manufacturing method according to the present invention.

【図4】 図3に示す内装素材の形状にしたサーメット
と超硬合金とを成形した後の複合エンドミル用素材の構
成例を示す図である。
FIG. 4 is a diagram showing a structural example of a material for a composite end mill after molding a cermet and a cemented carbide in the shape of the interior material shown in FIG.

【図5】 本発明に係る製造方法に適用されるドリル刃
面を押出成形するためのノズルを取り付けたシリンダの
構成例を示す図である。
FIG. 5 is a diagram showing a configuration example of a cylinder to which a nozzle for extrusion molding a drill blade surface, which is applied to the manufacturing method according to the present invention, is attached.

【図6】 本発明に係る製造方法により形成されるサー
メットと2種の超硬合金の複合ドリル素材の構成例を示
す図である。
FIG. 6 is a diagram showing a configuration example of a cermet and a composite drill material of two kinds of cemented carbide formed by the manufacturing method according to the present invention.

【図7】 従来の複合構造硬質材料の製造方法の工程図
である。
FIG. 7 is a process diagram of a conventional method for manufacturing a composite structural hard material.

【符号の説明】[Explanation of symbols]

1:シリンダ 2:ピストン 3:ノズル 4:外層 5:内層 6:プリント基盤穴明け
用ドリルの外層 7:プリント基盤穴明け用ドリルの内層 8:下部材 8A:エンドミルに加工した際に刃先や外周部になる部
分 9:靭性の必要な中心部 10:ドリル形状断面を
持つノズル 11:外層 12:中間層 13:内層 14:溝部
1: Cylinder 2: Piston 3: Nozzle 4: Outer layer 5: Inner layer 6: Outer layer of drill for drilling printed circuit board 7: Inner layer of drill for drilling printed circuit board 8: Lower member 8A: Cutting edge and outer circumference when processed into end mill Part 9: central part requiring toughness 10: nozzle having a drill-shaped cross section 11: outer layer 12: middle layer 13: inner layer 14: groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 WCを硬質粒子とし鉄族金属を主結合相
とする超硬合金、およびTiCあるいはTi(C,N)
を硬質粒子とし鉄族金属を主結合相とするサーメット合
金のうち、任意の複数材種を選んで多層構造を成す複合
構造硬質材料の製造方法において、多層構造を成す原料
をシリンダ内に装入し、これをピストンで押すことによ
って上記シリンダから押し出し、任意断面の複合構造硬
質材料素材を成形する工程と、その後の焼結工程におけ
る主結合相の拡散によって界面を接合する工程とからな
ることを特徴とする複合構造硬質材料の製造方法。
1. A cemented carbide containing WC as hard particles and an iron group metal as a main bonding phase, and TiC or Ti (C, N).
Among the cermet alloys with hard particles as the main binder phase of the iron group metal, in the manufacturing method of the composite structure hard material forming a multilayer structure by selecting any plural materials, the raw materials forming the multilayer structure are charged into the cylinder. Then, it is extruded from the cylinder by pushing it with a piston to form a composite structure hard material of arbitrary cross section, and a step of joining the interface by diffusion of the main binder phase in the subsequent sintering step. A method of manufacturing a hard material having a composite structure.
JP23109594A 1994-09-27 1994-09-27 Production of composite hard material Pending JPH0892607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23109594A JPH0892607A (en) 1994-09-27 1994-09-27 Production of composite hard material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23109594A JPH0892607A (en) 1994-09-27 1994-09-27 Production of composite hard material

Publications (1)

Publication Number Publication Date
JPH0892607A true JPH0892607A (en) 1996-04-09

Family

ID=16918221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23109594A Pending JPH0892607A (en) 1994-09-27 1994-09-27 Production of composite hard material

Country Status (1)

Country Link
JP (1) JPH0892607A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250123B2 (en) 2002-03-15 2007-07-31 Kyocera Corporation Composite construction and manufacturing method thereof
WO2009034716A1 (en) * 2007-09-14 2009-03-19 Sumitomo Electric Industries, Ltd. Composite material and coated cutting tool
JP2009083096A (en) * 2007-09-14 2009-04-23 Sumitomo Electric Ind Ltd Cutting tool
JP2009102710A (en) * 2007-10-24 2009-05-14 Sumitomo Electric Ind Ltd Cemented carbide with laminated structure, method for producing the same, and tool formed from the cemented carbide
JP2009102709A (en) * 2007-10-24 2009-05-14 Sumitomo Electric Ind Ltd Cemented carbide with laminated structure, method for producing the same, and tool formed from the cemented carbide
CN108262482A (en) * 2016-12-31 2018-07-10 上海精韧激光科技有限公司 Hard material green body and its manufacturing method and purposes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250123B2 (en) 2002-03-15 2007-07-31 Kyocera Corporation Composite construction and manufacturing method thereof
WO2009034716A1 (en) * 2007-09-14 2009-03-19 Sumitomo Electric Industries, Ltd. Composite material and coated cutting tool
JP2009083096A (en) * 2007-09-14 2009-04-23 Sumitomo Electric Ind Ltd Cutting tool
JP5297381B2 (en) * 2007-09-14 2013-09-25 住友電気工業株式会社 Cutting tool insert and coated cutting tool
US8993095B2 (en) 2007-09-14 2015-03-31 Sumitomo Electric Industries, Ltd. Composite material and coated cutting tool
JP2009102710A (en) * 2007-10-24 2009-05-14 Sumitomo Electric Ind Ltd Cemented carbide with laminated structure, method for producing the same, and tool formed from the cemented carbide
JP2009102709A (en) * 2007-10-24 2009-05-14 Sumitomo Electric Ind Ltd Cemented carbide with laminated structure, method for producing the same, and tool formed from the cemented carbide
CN108262482A (en) * 2016-12-31 2018-07-10 上海精韧激光科技有限公司 Hard material green body and its manufacturing method and purposes

Similar Documents

Publication Publication Date Title
EP2900404B1 (en) Methods of forming a metallic or ceramic article having a novel composition of functionally graded material
US5543235A (en) Multiple grade cemented carbide articles and a method of making the same
RU2536015C2 (en) Composite rotary cutting tools from cemented carbide and cutting tool blanks
US7147819B2 (en) Method for producing highly porous metallic moulded bodies close to the desired final contours
US20160332236A1 (en) Cutting Tool Made by Additive Manufacturing
CA2596309A1 (en) Composite article with coolant channels and tool fabrication method
JPH0726173B2 (en) High toughness cermet and method for producing the same
US4973356A (en) Method of making a hard material with properties between cemented carbide and high speed steel and the resulting material
JPH0892607A (en) Production of composite hard material
US4244738A (en) Method of and apparatus for hot pressing particulates
CN110606745A (en) Metal-free binder phase tungsten carbide hard alloy composite material and preparation method thereof
WO2005081640A2 (en) Method of molding metal powder
JP2893886B2 (en) Composite hard alloy material
JP3250193B2 (en) Tool with oil hole and method of manufacturing the same
JP2002348601A (en) Powder metallurgy method, and sintered metallic compact
JP6766212B2 (en) Manufacturing method of sintered body
JP2003119554A (en) Method for manufacturing fiber reinforced metal
WO1985002570A1 (en) A method for manufacturing a tool suitable for cutting and/or shaping work, and a tool which has preferably been manufactured in accordance with the method
US20040219050A1 (en) Superdeformable/high strength metal alloys
KR102726784B1 (en) Manufacturing Method of Bulk for Extrusion of Different Lightweight Alloy Powder
KR0178578B1 (en) Method for manufacturing cementer carbides sintered body
JPH0938750A (en) Porous die material having excellent heat exchangeability
JP2893887B2 (en) Composite hard alloy material
SU1026965A1 (en) Method of producing bimetallic cutting tool
US20130136647A1 (en) Powder-metallurgical steel