JPH0340099B2 - - Google Patents
Info
- Publication number
- JPH0340099B2 JPH0340099B2 JP63056288A JP5628888A JPH0340099B2 JP H0340099 B2 JPH0340099 B2 JP H0340099B2 JP 63056288 A JP63056288 A JP 63056288A JP 5628888 A JP5628888 A JP 5628888A JP H0340099 B2 JPH0340099 B2 JP H0340099B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- particles
- wear resistance
- mold
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000838 Al alloy Inorganic materials 0.000 claims description 34
- 239000000956 alloy Substances 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 15
- 239000000843 powder Substances 0.000 claims description 15
- 239000011856 silicon-based particle Substances 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000004033 plastic Substances 0.000 claims description 7
- 229920003023 plastic Polymers 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 238000005056 compaction Methods 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000007906 compression Methods 0.000 description 6
- 238000007872 degassing Methods 0.000 description 6
- 238000003754 machining Methods 0.000 description 6
- 230000003746 surface roughness Effects 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000007731 hot pressing Methods 0.000 description 4
- 238000009849 vacuum degassing Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018507 Al—Ni Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910018619 Si-Fe Inorganic materials 0.000 description 1
- 229910008289 Si—Fe Inorganic materials 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 102220005308 rs33960931 Human genes 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Powder Metallurgy (AREA)
Description
[産業上の利用分野]
本発明は複雑な形状をもつた部品を成形すると
きの金型用材料に関するもので、特にプラスチツ
ク、ゴム、金属、またはセラミツクスなどの粉末
射出成形金型として使用されるアルミニウム合金
材料に関するものである。
[従来の技術]
プラスチツクの射出成形用金型やブロー成形用
金型は、一般に鉄鋼材料が用いられている。しか
し、多量生産を必要としない金型は、アルミニウ
ム合金が使用されている。
アルミニウム合金製の金型は、耐摩耗性、耐軟
化性、高温強度が鉄鋼材料に較べ劣るため、金型
寿命は短いが、次にあげる利点があるので、好ん
で使用されてきた。
切削性が良好なため型ほり加工速度が早く、
型製作時間が短い。また、機械加工時の工具の
寿命が長い。
比重が小さいため、金型の製作、取付けなど
のハンドリングが容易である。
耐食性が良好なため、休止時の保守管理が容
易である。
熱伝導度が高いため、金型として冷却能が高
く、成形サイクルの短縮がはかれる。
アルミニウム合金の種類は強度を必要とするの
でJIS合金では7075、7079などのAl−Zn−Mg−
Cu合金が用いられてきた。
前述のようにアルミニウム合金金型は、アルミ
ニウム合金中で、強度や耐摩耗性に優れた合金を
使用しているが、鉄鋼材料に比較すると金型寿命
が短い。たとえば、鉄鋼材料金型では10万シヨツ
ト以上型打ち可能であるが、アルミニウム合金金
型では3000〜5000シヨツト位である。このために
アルミニウム合金金型は寿命の短い簡易型の金型
として用いられるのみであつた。また、鉄鋼材料
とアルミニウム合金との金型寿命は約30倍も差が
あり、アルミニウム合金金型の優位性を生かすこ
とができなかつた。アルミニウム合金で鉄鋼の1/
10以上の寿命をもつものが開発されることが望ま
れていた。
[発明が解決しようとする課題]
本発明はこうした実情に鑑みなされたもので、
鉄鋼金型の寿命の約1/10以上の寿命をもつたアル
ミニウム合金金型材料を提供することを目的とす
るものである。
[課題を解決するための手段]
以上の問題点を解決するため、アルミニウム合
金の成分組成、溶製条件、熱処理条件および金属
組織などを種々変化させながら、強度、耐摩耗
性、切削性(表面あらさ)などへの影響について
検討した結果、粉末成形によるAl合金において
少なくともSi及びCuを合金成分として含有させ、
かつ、Siの粒径を特定範囲に保持することが有効
であることを見出し、本発明を完成した。
すなわち、第1の発明は重量%でSi17〜30%、
Cu0.5〜10%を含有し、残部Alおよび不可避的不
純物からなる成分組成の粉末成形により得られた
アルミニウム合金であつて、かつ、Si粒子の平均
径が0.3〜10μmであることを特徴とするアルミニ
ウム合金材料である。
第2の発明は重量%でSi17〜30%、Cu0.5〜10
%、Mg0.3〜6%を含有し、残部Al及び不可避的
不純物からなる成分組成の粉末成形により得られ
たアルミニウム合金であつて、かつ、Si粒子の平
均粒径が0.3〜10μmであることを特徴とするアル
ミニウム合金材料である。第3の発明は重量%で
Si17〜30%、Cu0.5〜10%を含有し、さらにFe、
MnおよびNiからなる群から選ばれた金属の1種
または2種以上を単独または合計で0.3〜6%含
有し、残部Alおよび不化避的不純物からなる成
分組成の粉末成形により得られたアルミニウム合
金であつて、かつ、Siおよびその化合物粒子の平
均径が0.3〜10μmであることを特徴とするアルミ
ニウム合金材料である。
さらに第4の発明は重量%でSi17〜30%、
Cu0.5〜10%、Mg0.3〜6%を含有し、さらに、
Fe、Mn及びNiからなる群から選ばれた金属の1
種又は2種以上を単独または合計で0.3〜6%含
有し、残部Alおよび不可避的不純物からなる成
分組成の粉末成形により得られたアルミニウム合
金であつて、かつ、Siおよびその化合物粒子の平
均径が0.3〜10μmであることを特徴とするアルミ
ニウム合金材料である。
次に本発明アルミニウム合金の組成の限定理由
について述べる。
Siは、Al基地中にSi粒子として分散し、耐摩
耗性を高める。また熱膨脹係数を下げて機械加工
時の発熱による歪を抑制するとともに弾性係数を
上げて加工時のチヤツキングによる歪を抑制す
る。
Siが15%未満では耐摩耗性が不足し、40%を越
えると加工工具のチツピングや摩耗が生じやす
く、また被加工面の面粗度が粗くなるため、15〜
40%の範囲が有効であるが、両者のかねあいで17
〜30%含有させるのが好ましい。
Cuは、合金に時効硬化性を付与し、硬さの向
上による耐摩耗性の向上をもたらす。Cuが0.5%
未満では効果が十分でなく、10%を越えると効果
が飽和するとともに耐食性の劣下が著しいため、
0.5〜10%と定めた。また、両者のかねあいで1
〜6%がより好ましい。
MgはCuと共存して時効硬化による硬さの向
上、耐摩耗性の向上をもたらす。Mgが0.3%未満
では効果が十分でなく、6%を越えると効果が飽
和するため、0.3〜6%と定めた。また、型寿命
の点から0.5%以上がより好ましい。
Fe、Mn、Niの各成分は合金の耐熱性を高め
る。すなわち、金型使用時の温度(たとえば100
〜150℃)において、硬さの低下(軟化)を抑え、
また常温〜高温の強度も高める。更に熱膨脹係数
を下げ、弾性係数を上げる効果もある。これらの
成分は各単独あるいは総和で0.3%未満の含有量
では効果が十分でなく、6%を越えると材料が脆
くなり、金型の加工時または使用時に欠けを生じ
やすくなる。
また、Siおよびその金属間化合物の粒子の平均
径は、0.3μm未満では耐摩耗性が不足し、10μm
越えると加工工具のチツピングや摩耗が生じやす
く、また被加工面の面粗度が粗くなる。なお、本
発明において前記Si粒子は、初晶、共晶の両者を
含むものである。
本発明のアルミニウム合金の製造は、各種の方
法があるが、一般に次のような方法で製造する。
すなわち、前述の組成のアルミニウム合金を溶解
した後、溶湯を急冷凝固させる。通常は100℃/
秒以上の冷却速度で冷却される。具体的にはアト
マイズ法やスプラツト−リング法が適用される。
こうして得た粉末を(a)予備圧縮−容器封入−加熱
真空脱ガス−押出、(b)予備圧縮−容器封入−加熱
真空脱ガス−ホツトプレス、(c)予備圧縮−容器封
入−加熱真空脱ガス−ホツトプレス−容器除去−
押出、(d)予備−圧縮−加熱−押出、(c)予備圧縮−
容器封入−加熱真空脱ガス−HIP(高温等方圧圧
縮)などの工程により固化成形する。具体的には
(a)の方法ではCIPまたは金型圧縮によりアルミニ
ウム合金粉末を真密度の60〜90%程度まで予備圧
縮した後所定の容器に封入して300〜550℃に加熱
しながら真空排気を行い脱ガスを行う。脱ガス時
に加熱温度が300℃未満の場合、脱ガスが不十分
となり最終製品に膨れが生じたり、気孔が生ず
る。550℃を越えるとSi粒子が成長し粗大になる。
こうして脱ガスが行われた予備圧縮品(ビレツ
ト)を300〜520℃の温度に加熱し、押出を行う。
(b)の方法は押出に代えてホツトプレス(高温で
据え込み圧縮すること)によりアルミニウム合金
材としたもので、(c)はホツトプレスの後容器を切
削除去し押出したもの、(d)は予備圧縮後空気中、
真空中またはN2、Ar等のガス中で加熱して脱ガ
スし、その後押出するもの、(c)は押出やホツトプ
レスに代えてHIP処理によりアルミニウム合金材
を得るものである。
金型のサイズが大きく、大寸法の材料が必要な
ときは、上記のいずれかの工程、中でも(b)のホツ
トプレスやHIPにより固化成形した後、鍛造や圧
延により延ばして大寸法の材料とする。
このようにして製造した合金材は従来の金型用
アルミニウム合金材より耐摩耗性、強度および硬
度、耐熱性にすぐれ、熱膨脹係数が低く、弾性係
数が高いなどの特性を有し、金型用材料として最
適である。また、熱伝導度も7075合金などとほと
んど変わらないため、機械加工の工具寿命はほと
んど短くならない。放電加工も可能である。
さらにアルマイト処理も可能である。この処理
は耐摩耗性をさらに高めるために行うもので、通
常硬質アルマイトが採用される。また金型の設計
変更を行う場合、あるいは誤つて深彫りした場合
には溶接により肉盛りすることも可能である。溶
接方法としてはTIG、MIGなども可能であるが、
できれば溶接面積を小さくできる電子ビーム溶接
あるいはプラズマアーク溶接などが望ましい。溶
加棒としてはBA4043、BA4045、BA4145、
BA4047、BA4003、BA4004、BA4005、
BA4N04などが用いられる。なお、溶接を行う場
合には、粉末の固化成形時に脱ガス温度を高く
し、あるいは脱ガス時間を長くし、材料中の水素
量を0.5c.c./100gAl以下、望ましくは0.3c.c./100
gAl以下とするのがよい。この際脱ガス温度は
490〜550℃とするのが望ましい。
実施例 1
以下に実施例を挙げ、本発明をさらに詳細に説
明する。
第1表に示すNo.1〜No.29の合金よ溶解し、エア
アトマイズにより急冷凝固粉末を作成した。得ら
れた粉末を粒径297μ以下に分級した後、CIPによ
り真密度の70〜75%まで予備圧縮し、Al容器に
挿入して加熱しながら真空脱ガスを行つた。加熱
温度は500℃とした。但し、No.18のみSi粒子を成
長させるために550℃で加熱しながら脱ガスを行
つた。このようにして得たビレツトを390℃に加
熱し、押出比14にて押出し、外径40mmの棒を得
た。これらNo.1〜No.18の押出棒に500℃×2hr→水
冷→175℃×8hrの熱処理を行つた。
第1表のNo.30の合金はNo.29と同一組成である
が、Si粒子を微細にするため溶解後、単ロール法
によりリボン状急冷凝固材を得た。この後、上記
と同様に成形した。但し、Si粒子の成長を抑制す
るため、脱ガス時の加熱温度は450℃とした。
第1表のNo.31の合金は溶解後外径150mmの鋳塊
を作成し、これを上記と同条件で押出した。押出
棒について470℃×2hr→水冷→115℃×7hr→175
℃×8hrの条件で熱処理(T73処理)を行つた。
以上の材料について、ミクロ組織における粒子
径(Si粒子、Al−Si−Fe系化合物粒子、Al−Si
−Mn系化合物粒子、Al−Ni系化合物粒子などの
すべての粒子の平均直径)、常温硬さ(ロツクウ
エルBスケール)、150℃加熱後の常温硬さ(ロツ
クウエルBスケール)、常温引張強さ、150℃で
100hr保持した後の150℃での引張強さ、大越式摩
耗試験(乾式、荷重2.1Kg、摩擦距離600m、相手
材S50C)における比摩耗量、バフ研磨後の表面
粗さ(Rnax)を測定した。
結果は第2表の通りである。本発明合金No.1〜
No.18の場合、比摩耗量が小さく、特に7075(No.33)
より大幅に小さい。また表面粗さは7075と同程度
に小さく、表面仕上げ性が良好である。また、No.
1〜No.18の中では、Mgを含まないNo.1及びNo.2
とMgを含むNo.3、No.4を比較するとMgの添加
により硬さが増す傾向が示されており、またFe、
Mnおよび/またはNiを含むNo.5〜No.18はNo.1〜
No.4より加熱後の硬さおよび150℃引張強さが高
いことがわかる。
比較合金No.19はSi量が少ないため比摩耗量が大
きく、No.20はSi量が多いために表面粗さが大であ
る。No.21はCu量が少ないために硬さが低く、比
摩耗量も大きい。No.22、No.23はCu、Mg量を各々
多くしたものてあるが、その効果はあらわれてい
ない(効果が飽和している)。No.24〜28はFe、
Mn、Ni量が単独または合計で多すぎるため、金
型の加工時に欠けを生じやすいものである。No.29
は粒子径が大きいために表面粗さが大である。No.
30は粒子径が小さいために耐摩耗性が充分でな
い。
[Industrial Application Field] The present invention relates to a mold material for molding parts with complex shapes, and is particularly used as a powder injection mold for plastics, rubber, metals, ceramics, etc. This invention relates to aluminum alloy materials. [Prior Art] Steel materials are generally used for plastic injection molding molds and blow molding molds. However, aluminum alloys are used for molds that do not require mass production. Aluminum alloy molds have a short mold life because they are inferior in wear resistance, softening resistance, and high-temperature strength compared to steel materials, but they have been preferred because they have the following advantages. Due to good machinability, mold drilling speed is fast,
Mold production time is short. It also has a long tool life during machining. Due to its low specific gravity, it is easy to handle in mold production and installation. Due to its good corrosion resistance, maintenance during suspension is easy. Due to its high thermal conductivity, it has a high cooling capacity as a mold and can shorten the molding cycle. The types of aluminum alloys require strength, so JIS alloys include Al-Zn-Mg- such as 7075 and 7079.
Cu alloys have been used. As mentioned above, aluminum alloy molds use an aluminum alloy that has excellent strength and wear resistance, but the mold life is short compared to steel materials. For example, a steel material mold can punch more than 100,000 shots, but an aluminum alloy mold can punch only 3,000 to 5,000 shots. For this reason, aluminum alloy molds have only been used as simple molds with short lifespans. In addition, there was a difference in mold life of about 30 times between steel materials and aluminum alloys, making it impossible to take advantage of the superiority of aluminum alloy molds. 1/ of steel with aluminum alloy
It was hoped that something with a lifespan of 10 or more would be developed. [Problem to be solved by the invention] The present invention has been made in view of these circumstances.
The purpose of this invention is to provide an aluminum alloy mold material that has a lifespan of approximately 1/10 or more of that of steel molds. [Means for Solving the Problems] In order to solve the above problems, the strength, wear resistance, machinability (surface As a result of studying the effects on roughness, etc., we found that at least Si and Cu are contained as alloy components in Al alloys formed by powder forming.
In addition, they discovered that it is effective to maintain the particle size of Si within a specific range, and completed the present invention. That is, the first invention has Si17 to 30% by weight,
An aluminum alloy obtained by powder compaction with a composition containing 0.5 to 10% Cu and the remainder Al and unavoidable impurities, and characterized in that the average diameter of Si particles is 0.3 to 10 μm. It is an aluminum alloy material. The second invention is Si17 to 30% and Cu0.5 to 10% by weight.
%, Mg 0.3 to 6%, and the balance is Al and inevitable impurities, and the average particle size of the Si particles is 0.3 to 10 μm. It is an aluminum alloy material characterized by: The third invention is in weight%
Contains 17~30% Si, 0.5~10% Cu, and further Fe,
Aluminum obtained by powder compaction containing 0.3 to 6% of one or more metals selected from the group consisting of Mn and Ni, singly or in total, with the balance consisting of Al and unavoidable impurities. The aluminum alloy material is an alloy and is characterized in that the average diameter of Si and its compound particles is 0.3 to 10 μm. Furthermore, the fourth invention is Si17 to 30% by weight,
Contains Cu0.5-10%, Mg0.3-6%, and
A metal selected from the group consisting of Fe, Mn and Ni
An aluminum alloy obtained by powder compaction containing one or more species alone or in total of 0.3 to 6%, with the balance consisting of Al and inevitable impurities, and the average diameter of Si and its compound particles. It is an aluminum alloy material characterized by having a diameter of 0.3 to 10 μm. Next, the reasons for limiting the composition of the aluminum alloy of the present invention will be described. Si is dispersed as Si particles in the Al base and increases wear resistance. In addition, the thermal expansion coefficient is lowered to suppress distortion caused by heat generation during machining, and the elastic modulus is increased to suppress distortion caused by chuck during processing. If Si is less than 15%, wear resistance will be insufficient, and if it exceeds 40%, chipping and wear of the machining tool will easily occur, and the surface roughness of the machined surface will become rough.
A range of 40% is effective, but depending on the balance between the two parties17
It is preferable to contain up to 30%. Cu imparts age hardenability to the alloy and improves wear resistance due to improved hardness. Cu 0.5%
If it is less than 10%, the effect will not be sufficient, and if it exceeds 10%, the effect will be saturated and the corrosion resistance will deteriorate significantly.
It was set at 0.5-10%. Also, in cooperation with both parties, 1
~6% is more preferred. Mg coexists with Cu and improves hardness and wear resistance through age hardening. If Mg is less than 0.3%, the effect will not be sufficient, and if it exceeds 6%, the effect will be saturated, so it was set at 0.3 to 6%. Further, from the viewpoint of mold life, it is more preferable that the content is 0.5% or more. Each component of Fe, Mn, and Ni increases the heat resistance of the alloy. That is, the temperature during mold use (e.g. 100
~150℃), suppresses the decrease in hardness (softening),
It also increases the strength at room temperature to high temperature. Furthermore, it has the effect of lowering the coefficient of thermal expansion and increasing the modulus of elasticity. If the content of these components is less than 0.3% individually or in total, the effect will not be sufficient, and if the content exceeds 6%, the material will become brittle and easily chipped during mold processing or use. In addition, if the average diameter of particles of Si and its intermetallic compounds is less than 0.3 μm, wear resistance will be insufficient;
If it exceeds the limit, chipping and wear of the machining tool will easily occur, and the surface roughness of the machined surface will become rough. In the present invention, the Si particles include both primary and eutectic particles. Although there are various methods for producing the aluminum alloy of the present invention, it is generally produced by the following method.
That is, after melting the aluminum alloy having the above-mentioned composition, the molten metal is rapidly solidified. Usually 100℃/
Cooled at a cooling rate of seconds or more. Specifically, the atomization method and the splattering method are applied.
The powder thus obtained is subjected to (a) pre-compression - filling in a container - heating vacuum degassing - extrusion, (b) pre-compression - filling in a container - heating vacuum degassing - hot press, (c) pre-compression - filling in a container - heating vacuum degassing. -Hot press-container removal-
Extrusion, (d) Pre-compression-Heating-Extrusion, (c) Pre-compression
It is solidified and molded through processes such as filling a container, heating vacuum degassing, and HIP (high temperature isostatic pressure). in particular
In method (a), aluminum alloy powder is pre-compressed to about 60-90% of its true density by CIP or mold compression, then sealed in a designated container, heated to 300-550°C, evacuated, and degassed. I do. If the heating temperature during degassing is less than 300°C, degassing will be insufficient and the final product will swell or have pores. When the temperature exceeds 550℃, Si particles grow and become coarse.
The pre-compressed product (billet) thus degassed is heated to a temperature of 300 to 520°C and extruded. In method (b), the aluminum alloy material is made by hot pressing (upsetting and compacting at high temperature) instead of extrusion, (c) is the method in which the container is cut and removed after hot pressing, and (d) is the preparatory material. In air after compression,
In the case of (c), the aluminum alloy material is obtained by HIP treatment instead of extrusion or hot pressing. When the size of the mold is large and a large-sized material is required, the material is solidified by any of the above processes, especially (b) hot pressing or HIP, and then expanded by forging or rolling to create a large-sized material. . The alloy material manufactured in this way has properties such as superior wear resistance, strength, hardness, and heat resistance, low coefficient of thermal expansion, and high modulus of elasticity compared to conventional aluminum alloy materials for molds, and is suitable for molds. It is ideal as a material. In addition, the thermal conductivity is almost the same as that of 7075 alloy, so the life of machining tools will not be shortened. Electric discharge machining is also possible. Furthermore, alumite treatment is also possible. This treatment is performed to further increase wear resistance, and hard alumite is usually used. In addition, if the design of the mold is changed, or if deep engraving is performed by mistake, it is also possible to build up the material by welding. TIG, MIG, etc. are also possible welding methods, but
If possible, electron beam welding or plasma arc welding, which can reduce the welding area, is preferable. Filler rods include BA4043, BA4045, BA4145,
BA4047, BA4003, BA4004, BA4005,
BA4N04 etc. are used. In addition, when welding, increase the degassing temperature or lengthen the degassing time during solidification and molding of the powder, and reduce the amount of hydrogen in the material to 0.5cc/100gAl or less, preferably 0.3cc/100gAl.
It is preferable to set it to less than gAl. At this time, the degassing temperature is
It is desirable to set it as 490-550 degrees Celsius. Example 1 The present invention will be described in further detail with reference to Examples below. Alloys No. 1 to No. 29 shown in Table 1 were melted and rapidly solidified powder was created by air atomization. The obtained powder was classified to a particle size of 297 μm or less, and then pre-compressed to 70 to 75% of the true density by CIP, inserted into an Al container, and vacuum degassed while being heated. The heating temperature was 500°C. However, only No. 18 was degassed while being heated at 550°C in order to grow Si particles. The billet thus obtained was heated to 390°C and extruded at an extrusion ratio of 14 to obtain a rod with an outer diameter of 40 mm. These extruded rods No. 1 to No. 18 were subjected to heat treatment at 500°C for 2 hours, water cooling, and 175°C for 8 hours. Alloy No. 30 in Table 1 has the same composition as No. 29, but after melting to make the Si particles fine, a ribbon-shaped rapidly solidified material was obtained by a single roll method. After that, it was molded in the same manner as above. However, in order to suppress the growth of Si particles, the heating temperature during degassing was set to 450°C. After melting the alloy No. 31 in Table 1, an ingot with an outer diameter of 150 mm was prepared, and this was extruded under the same conditions as above. About the extrusion rod 470℃ x 2hr → water cooling → 115℃ x 7hr → 175
Heat treatment (T73 treatment) was performed at ℃×8 hours. Regarding the above materials, the particle size in the microstructure (Si particles, Al-Si-Fe compound particles, Al-Si
- Average diameter of all particles such as Mn-based compound particles and Al-Ni-based compound particles), hardness at room temperature (Rockwell B scale), hardness at room temperature after heating to 150°C (Rockwell B scale), tensile strength at room temperature, at 150℃
Measurement of tensile strength at 150℃ after holding for 100 hours, specific wear amount in Okoshi type wear test (dry type, load 2.1Kg, friction distance 600m, mating material S50C), and surface roughness (R nax ) after buffing. did. The results are shown in Table 2. Invention alloy No. 1~
In the case of No. 18, the specific wear amount is small, especially 7075 (No. 33)
significantly smaller. In addition, the surface roughness is as small as 7075, and the surface finish is good. Also, No.
Among No. 1 to No. 18, No. 1 and No. 2 do not contain Mg.
Comparing No. 3 and No. 4 containing Mg, it is shown that the hardness tends to increase with the addition of Mg.
No. 5 to No. 18 containing Mn and/or Ni are No. 1 to No.
It can be seen that the hardness after heating and the tensile strength at 150°C are higher than No. 4. Comparative alloy No. 19 has a large specific wear amount because of a small amount of Si, and No. 20 has a large amount of Si and has a large surface roughness. No. 21 has a low hardness due to the small amount of Cu, and has a large specific wear amount. No. 22 and No. 23 have increased amounts of Cu and Mg, but their effects are not apparent (the effects are saturated). No.24-28 are Fe,
Since the amounts of Mn and Ni are too large individually or in combination, chipping is likely to occur during processing of the mold. No.29
has a large particle size and therefore has a large surface roughness. No.
30 does not have sufficient wear resistance due to its small particle size.
【表】【table】
【表】【table】
【表】【table】
【表】
[発明の効果]
(1) 以上説明したように、本発明のアルミニウム
合金材料は、アルミニウム合金が持つ機械加工
性、軽量性、耐食性、熱伝導性、表面処理性
(アルマイト処理性)、溶接性などの利点を損な
うことなく、耐摩耗性、耐熱性が向上してお
り、プラスチツク、ゴム、金属粉末、セラミツ
ク粉末等の成形用金型に好適で、その使用寿命
を著しく改善することができる。[Table] [Effects of the Invention] (1) As explained above, the aluminum alloy material of the present invention has the machinability, lightness, corrosion resistance, thermal conductivity, and surface treatability (anodizing property) that aluminum alloys have. It has improved wear resistance and heat resistance without sacrificing advantages such as weldability, making it suitable for molds for molding plastics, rubber, metal powders, ceramic powders, etc., and significantly improving its service life. I can do it.
第1図は実施例2で成形した部品の平面図、第
2図は同側面断面図、第3図は同斜視図。
FIG. 1 is a plan view of the part molded in Example 2, FIG. 2 is a side sectional view of the same, and FIG. 3 is a perspective view of the same.
Claims (1)
残部Alおよび不可避的不純物からなる成分組成
の粉末成形により得られたアルミニウム合金であ
つて、かつ、Si粒子の平均径が0.3〜10μmである
ことを特徴とする耐摩耗性に優れたプラスチツク
成形金型用アルミニウム合金材料。 2 重量%でSi17〜30%、Cu0.5〜10%、Mg0.3
〜6%を含有し、残部Alおよび不可避的不純物
からなる成分組成の粉末成形により得られたアル
ミニウム合金であつて、かつ、Si粒子の平均径が
0.3〜10μmであることを特徴とする耐摩耗性に優
れたプラスチツク成形金型用アルミニウム合金材
料。 3 重量%でSi17〜30%、Cu0.5〜10%を含有し、
さらにFe、MnおよびNiからなる群から選ばれた
金属の1種又は2種以上を単独および合計で0.3
〜6%含有し、残部Alおよび不可避的不純物か
らなる成分組成の粉末成形により得られたアルミ
ニウム合金であつて、かつ、Siおよびその化合物
粒子の平均径が0.3〜10μmであることを特徴とす
る耐摩耗性と耐熱性に優れたプラスチツク成形金
型用アルミニウム合金材料。 4 重量%でSi17〜30%、Cu0.5〜10%、Mg0.3
〜6%を含有し、さらにFe、MnおよびNiからな
る群から選ばれた金属の1種又は2種以上を単独
および合計で0.3〜6%含有し、残部Alおよび不
可避的不純物からなる成分組成の粉末成形により
得られたアルミニウム合金であつて、かつ、Siお
よびその化合物粒子の平均径が0.3〜10μmである
ことを特徴とする耐摩耗性と耐熱性に優れたプラ
スチツク成形金型用アルミニウム合金材料。[Claims] Contains 17 to 30% Si and 0.5 to 10% Cu at 1% by weight,
A plastic molded metal with excellent wear resistance, which is an aluminum alloy obtained by powder molding with a composition consisting of the balance Al and unavoidable impurities, and the average diameter of Si particles is 0.3 to 10 μm. Aluminum alloy material for mold. 2 Weight%: Si17-30%, Cu0.5-10%, Mg0.3
~6%, with the balance consisting of Al and unavoidable impurities, and the average diameter of the Si particles is
An aluminum alloy material for plastic molds with excellent wear resistance characterized by a thickness of 0.3 to 10 μm. 3 Contains 17 to 30% Si and 0.5 to 10% Cu by weight,
Furthermore, one or more metals selected from the group consisting of Fe, Mn, and Ni are added individually and in total to 0.3
An aluminum alloy obtained by powder compaction with a composition of ~6% and the remainder consisting of Al and unavoidable impurities, and characterized in that the average diameter of Si and its compound particles is 0.3 to 10 μm. Aluminum alloy material for plastic molds with excellent wear resistance and heat resistance. 4 Weight%: Si17-30%, Cu0.5-10%, Mg0.3
6%, and further contains 0.3 to 6% of one or more metals selected from the group consisting of Fe, Mn, and Ni, individually and in total, with the balance consisting of Al and inevitable impurities. An aluminum alloy for plastic molds having excellent wear resistance and heat resistance, which is obtained by powder compaction of material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5628888A JPH01230743A (en) | 1988-03-11 | 1988-03-11 | Aluminum alloy material for mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5628888A JPH01230743A (en) | 1988-03-11 | 1988-03-11 | Aluminum alloy material for mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01230743A JPH01230743A (en) | 1989-09-14 |
JPH0340099B2 true JPH0340099B2 (en) | 1991-06-17 |
Family
ID=13022909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5628888A Granted JPH01230743A (en) | 1988-03-11 | 1988-03-11 | Aluminum alloy material for mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01230743A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0920982A (en) * | 1991-05-10 | 1997-01-21 | Sankyo Seiki Mfg Co Ltd | Electroless composite plating treatment of metallic material |
JP2007211349A (en) * | 2007-04-02 | 2007-08-23 | Yamaha Motor Co Ltd | Cylinder liner of engine |
CN102808119A (en) * | 2012-09-07 | 2012-12-05 | 重庆大学 | Light high-temperature wear-resistant aluminum alloy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5239514A (en) * | 1975-09-25 | 1977-03-26 | Hitachi Ltd | A1 alloy dies for injection molding |
-
1988
- 1988-03-11 JP JP5628888A patent/JPH01230743A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5239514A (en) * | 1975-09-25 | 1977-03-26 | Hitachi Ltd | A1 alloy dies for injection molding |
Also Published As
Publication number | Publication date |
---|---|
JPH01230743A (en) | 1989-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2060343B1 (en) | Metal powder for metal photofabrication and method of metal photofabrication using the same | |
US5561829A (en) | Method of producing structural metal matrix composite products from a blend of powders | |
EP0202735B1 (en) | Process for making a composite powder metallurgical billet | |
GB1580493A (en) | Metal article and powder alloy and method for producing metal article from aluminum base powder alloy containing silicon and manganese | |
FR2604186A1 (en) | PROCESS FOR MANUFACTURING HYPERSILICALLY ALUMINUM ALLOY PARTS OBTAINED FROM COOLED COOLED POWDERS AT HIGH SPEED | |
CN111945121A (en) | Tantalum-aluminum alloy sputtering target and preparation method thereof | |
JPS6210237A (en) | Aluminum alloy for hot forging | |
US4368074A (en) | Method of producing a high temperature metal powder component | |
JPH068484B2 (en) | Article made from processable boron-containing stainless steel alloy and method of making the same | |
CA2597064A1 (en) | Copper-based alloys and their use for infiltration of powder metal parts | |
US4244738A (en) | Method of and apparatus for hot pressing particulates | |
KR101659199B1 (en) | Magnesium alloy member and method for manufacturing same | |
KR20130061189A (en) | High-strength magnesium alloy wire and method for manufacturing same, high-strength magnesium alloy product, and high-strength magnesium alloy spring | |
JPS60208443A (en) | Aluminum alloy material | |
JPH0340099B2 (en) | ||
CN1518609A (en) | Hot isostatic pressing of castings | |
USRE28552E (en) | Cobalt-base alloys | |
JPH03100136A (en) | Aluminum alloy material for die | |
US3861839A (en) | Diffusion molding apparatus | |
JPH03100137A (en) | Aluminum alloy material for die | |
EP0902097A1 (en) | Zinc-base alloy for mold, zinc-base alloy block for mold and method for preparing the same | |
JPH11302807A (en) | Manufacture of aluminum alloy for compressor vane | |
JPS6213422B2 (en) | ||
JP2004315877A (en) | Method of canning precompact for sintering, and method of producing sintered material thereby | |
JP2786954B2 (en) | Manufacturing method of connecting rod |