JP2882562B2 - Temperature control method of molding die and molding die - Google Patents

Temperature control method of molding die and molding die

Info

Publication number
JP2882562B2
JP2882562B2 JP12747393A JP12747393A JP2882562B2 JP 2882562 B2 JP2882562 B2 JP 2882562B2 JP 12747393 A JP12747393 A JP 12747393A JP 12747393 A JP12747393 A JP 12747393A JP 2882562 B2 JP2882562 B2 JP 2882562B2
Authority
JP
Japan
Prior art keywords
mold
temperature control
temperature
pipe
control pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12747393A
Other languages
Japanese (ja)
Other versions
JPH06335763A (en
Inventor
昭男 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP12747393A priority Critical patent/JP2882562B2/en
Publication of JPH06335763A publication Critical patent/JPH06335763A/en
Application granted granted Critical
Publication of JP2882562B2 publication Critical patent/JP2882562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,加熱または冷却が必要
な金属や樹脂等の成形用金型,特に成形圧力の比較的小
さい成形用金型で加熱・冷却を同期的に繰返す成形用金
型の温調方法および成形用金型に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for molding a metal or a resin which requires heating or cooling, in particular, a mold for which heating and cooling are repeated synchronously with a molding mold having a relatively small molding pressure. The present invention relates to a mold temperature control method and a molding die.

【0002】[0002]

【従来の技術】従来の低圧成形用金型においては,金型
母材に鉄系の低合金材料が主として使用されていたが,
金型温調時間が長くなるため,温調時間を短くするよう
な改善策として銅合金製の成形用金型が利用されるとと
もに,ドリル加工で金型に穴を開け,必要に応じて盲プ
ラグ等を挿入して加熱または冷却媒体通路孔を形成した
ものが用いられている。
2. Description of the Related Art In conventional low-pressure molding dies, an iron-based low alloy material is mainly used as a mold base material.
As the mold temperature control time becomes longer, copper alloy forming dies are used as an improvement measure to shorten the temperature control time, and holes are made in the mold by drilling, and blind A heating or cooling medium passage hole is formed by inserting a plug or the like.

【0003】[0003]

【発明が解決しようとする課題】ところが,前記従来の
成形用金型では,成形用金型内に油,水またはガス等の
加熱または冷却媒体通路孔,いわゆる熱媒体通路孔を形
成するに際し,ドリル加工で穴を開けた穴の直線の組合
わせでは金型キャビティ面に沿った所望の熱媒体通路の
形成が難しいといった穴加工上の制約があって,実用化
の面で限界が生じていた。さらに,こうした問題点を解
決するため,熱媒体通路用の金属パイプを予備成形した
後,金型母材金属溶湯で鋳ぐるんで低圧成形用金型を製
作する方法が試験的に行なわれているが,理論が構築さ
れておらず,実用化に至っていなかった。
However, in the conventional molding die, when forming a heating or cooling medium passage hole for oil, water or gas, etc., a so-called heat medium passage hole, in the molding die. There is a restriction in drilling that it is difficult to form a desired heat medium passage along the mold cavity surface with a straight line combination of drilled holes, which limits the practical application. . Furthermore, in order to solve these problems, a method of preforming a metal pipe for a heat medium passage and then casting the same with a molten metal as a base material of a metal mold to produce a mold for low pressure molding is being tested. However, the theory had not been established and it had not been put to practical use.

【0004】こうした上記のごとき現状を成形用金型の
母材材質として可能性のある鉄系,銅系,アルミニウム
系の各合金について加熱・冷却理論および金型製作技術
の両面から見た場合,次のような課題がある。まず,
(1)加熱・冷却理論から見た場合, 材質特性として,温度拡散係数〔熱伝導率/(比熱
×密度)〕が大きく,かつ実用化のためには鋳造性が優
れていること。因みに,温度拡散係数は銅(0.7〜
1.3),アルミニウム(1),鉄(0.2)の比率と
なる。 また,熱媒体側の層流境膜は薄く,かつ熱媒体流量
が大であることが望ましい。
[0004] In view of the current situation as described above, iron-based, copper-based, and aluminum-based alloys which may be used as a base material of a molding die are viewed from both the heating / cooling theory and the die manufacturing technology. There are the following issues. First,
(1) From the viewpoint of heating and cooling theory, the material must have a large temperature diffusion coefficient [thermal conductivity / (specific heat × density)] and excellent castability for practical use. Incidentally, the temperature diffusion coefficient is copper (0.7 ~
1.3), aluminum (1), iron (0.2). Further, it is desirable that the laminar flow film on the heat medium side is thin and the flow rate of the heat medium is large.

【0005】つぎに,(2)金型製作技術から見た場
合, 〈金型母材側〉 銅系の金型母材材質は,金属溶湯温度が高いため金
属パイプ材質の選定が難しく,鋳ぐるみが困難であると
ともに,金型母材の酸化が激しく,かつ高価である。 アルミニウム系の金型母材材質は,鋳ぐるみが容易
で母材も比較的安価である。 鉄系の金型母材材質は,価格は安価であるものの,
前記銅系と同様に,金属溶湯温度が高いため金属パイプ
材質の選定が難しく鋳ぐるみが困難であるとともに,金
型母材の酸化が激しい。 〈鋳ぐるみ金属パイプ側〉 銅系の金属パイプの場合には,金型母材材質にアル
ミニウム系および銅系を用いると,鋳造時に溶損する。 アルミニウム系の金属パイプの場合には,金型母材
材質にアルミニウム系および銅系を用いると,前記銅系
の金属パイプよりさらに激しく溶損する。 上記,のような金属パイプの溶損対策として,
金属パイプ外表面に溶損防止剤を塗布すると,断熱層が
できるため伝熱を妨げる。 鉄系の金属パイプの場合には,溶損しにくいが,温
度拡散係数が小さく伝熱しにくい。 といった多くの問題点が充分解明されずに現在に至って
いる。
[0005] Next, from the viewpoint of (2) mold manufacturing technology, <Mold base metal side> Since the temperature of the molten metal is high, it is difficult to select a metal pipe material for the copper base metal base material. It is difficult to loosen, and the mold base material is highly oxidized and expensive. Aluminum mold base material is easy to cast and the base material is relatively inexpensive. Iron-based mold base materials are inexpensive,
As in the case of the copper-based alloy, the high temperature of the molten metal makes it difficult to select the material of the metal pipe, making it difficult to cast the metal, and severely oxidizing the mold base material. <As-cast metal pipe side> In the case of copper-based metal pipes, if aluminum or copper is used as the base material of the mold, it will melt during casting. In the case of an aluminum-based metal pipe, if an aluminum-based or copper-based material is used as a mold base material, the aluminum-based metal pipe is more severely melted than the copper-based metal pipe. As a countermeasure against metal pipe erosion as described above,
When the erosion inhibitor is applied to the outer surface of the metal pipe, heat transfer is hindered because a heat insulating layer is formed. In the case of iron-based metal pipes, it is difficult to melt, but the temperature diffusion coefficient is small and heat transfer is difficult. Many problems such as this have not been sufficiently elucidated and have been brought to the present.

【0006】本発明は,上記従来の問題点に着目し,成
形品の表面不良,変形および焼付等の成形不良が防止で
きる最適なパイプ径や肉厚を有した鋳ぐるみパイプを備
えた成形用金型の温調方法および成形用金型を提供する
ことを目的とするものである。
The present invention focuses on the above-mentioned conventional problems, and is directed to a molding machine having a cast-in pipe having an optimum pipe diameter and wall thickness capable of preventing molding defects such as surface defects, deformation and seizure of molded products. It is an object of the present invention to provide a mold temperature control method and a molding die.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に,本発明に係る成形用金型の温調方法および成形用金
型の第1の発明では,金型を貫設した複数の温調管に液
体よりなる加熱または冷却媒体を流通させて金型温度を
調節するようにした成形用金型の温調方法において,
型キャビティ面に沿って鋳ぐるまれた前記温調管内を流
れる加熱または冷却媒体のレイノルズ数を6,000〜
12,000として温度制御を行なうようにした。さら
に,第2の発明では,金属パイプを金型内部に鋳ぐるむ
ことにより,前記金型のキャビティ部近傍に加熱または
冷却媒体通路孔を備えた成形用金型であって,前記成形
用金型の母材材質にアルミニウム合金を,また前記金属
パイプに鉄系材質を用いるとともに,前記金属パイプの
寸法を内径7〜13mm,外径/内径比を1.2〜1.
7,金属パイプの配列ピッチを金属パイプ内径の1.5
〜3倍とし,さらに,金型キャビティ面から金属パイプ
外周上面までの深さを5〜25mmとした。
In order to achieve the above object, a method for controlling the temperature of a molding die and a first invention of a molding die according to the present invention provide a method of controlling a temperature of a plurality of molding dies penetrating a die. in mold temperature control method which is adapted to adjust the is allowed by the mold temperature flowing heating or cooling medium consisting of liquid tone tube, gold
6,000 The Reynolds number of the heating or cooling medium flowing through was insert cast along the mold cavity surface the temperature control pipe
The temperature was controlled at 12,000. Further, in the second invention, a metal mold is provided with a heating or cooling medium passage hole near a cavity of the metal mold by casting a metal pipe inside the metal mold. An aluminum alloy is used as a base material of the mold, and an iron-based material is used as the metal pipe. The dimensions of the metal pipe are 7 to 13 mm in inner diameter, and the ratio of outer to inner diameter is 1.2 to 1.
7. Arrange pitch of metal pipe to 1.5 times of metal pipe inner diameter.
The depth from the mold cavity surface to the outer peripheral upper surface of the metal pipe was 5 to 25 mm.

【0008】[0008]

【作用】上記構成によれば, 金型母材材質にアルミニウム系合金を,また金属パ
イプに鉄系合金を用いて,成形用金型の総熱容量を最小
とするとともに,鋳ぐるみ性をよくし,さらに金属パイ
プを自由度の高い金型キャビティ面に沿った熱媒体通路
形状にする。 鉄系の金属パイプの肉厚を必要最小限とするととも
にレイノズル数を6,000〜12,000にして,金
属パイプ部とこのパイプの内壁面に生じる層流境膜部の
熱伝導性を改善する。 金属パイプの内,外径の寸法および配置に際して,
熱伝導性,予備成形性,熱媒体循環動力を考慮した最適
化を行なう。ことができる。
According to the above configuration, the total heat capacity of the molding die is minimized by using an aluminum-based alloy for the base material of the mold and an iron-based alloy for the metal pipe, and the castability is improved. Further, the metal pipe is formed into a heat medium passage shape along a mold cavity surface having a high degree of freedom. Minimize the thickness of the iron-based metal pipe and reduce the number of Reynolds nozzles to 6,000 to 12,000 to improve the thermal conductivity of the metal pipe and the laminar film formed on the inner wall of the pipe. I do. When dimensioning and arranging the inside and outside diameters of metal pipes,
Perform optimization taking into account thermal conductivity, preformability, and heat medium circulation power. be able to.

【0009】こうしたことより,金型温調のために加熱
または冷却媒体通路孔としての金属パイプを鋳ぐるみ鋳
造法により形成させる。前記媒体通路孔内を流れるレイ
ノルズ(Re)数を6,000〜12,000に設定す
ることにより,金属パイプの内径7〜13mm,外径/
内径比1.2〜1.7,金属パイプの配列ピッチを金属
パイプ内径の1.5〜3倍,金型キャビティ面から金属
パイプ外周上面までの深さ5〜25mmを満足する。さ
らに,金属パイプに銅合金のみならず鉄系あるいはステ
ンレス鋼を用いることが可能である。さらに,加熱また
は冷却を効率よく行なうための金型材質は,温度拡散係
数のみで決定するよりもむしろ熱容量が大きく影響し,
熱容量の小さいアルミニウム合金(AC4C)とするこ
とにより,加熱・冷却効率のよい金型温調の可能な成形
用金型が得られる。
For this reason, a metal pipe serving as a heating or cooling medium passage hole for controlling the temperature of the mold is formed by the insert casting method. By setting the Reynolds (Re) number flowing in the medium passage hole to 6,000 to 12,000, the inner diameter of the metal pipe is 7 to 13 mm,
The inner diameter ratio is 1.2 to 1.7, the arrangement pitch of the metal pipes is 1.5 to 3 times the inner diameter of the metal pipe, and the depth from the mold cavity surface to the outer peripheral upper surface of the metal pipe is 5 to 25 mm. Further, not only a copper alloy but also an iron-based or stainless steel can be used for the metal pipe. In addition, the mold material for efficient heating or cooling has a large influence on the heat capacity rather than being determined only by the temperature diffusion coefficient.
By using an aluminum alloy (AC4C) having a small heat capacity, a molding die having good heating and cooling efficiency and capable of controlling the temperature of the die can be obtained.

【0010】[0010]

【実施例】以下に,本発明に係る成形用金型の温調方法
および成形用金型の具体的実施例を図面を参照して詳細
に説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a molding die according to the present invention.

【0011】図1は成形用金型の温調配管図,図2はレ
イノルズ数と金型加熱時間の関係図,図3は熱媒体によ
って金型を加熱するための説明図,図4は加熱または冷
却媒体通路孔を形成する温調用パイプの内径寸法と金型
の加熱時間の関係図,図5は温調用パイプの外径/内径
比と金型の加熱時間の関係図,図6は温調用パイプの配
列ピッチと金型加熱時間の関係図,図7は金型キャビテ
ィ面から温調用パイプ上面までの距離と金型加熱時間の
関係図,図8は成形用金型材質と成形サイクルタイムの
関係図,図9は本発明の実施例に係る温調用パイプの別
の配管方法を用いた金型正面図を示す。
FIG. 1 is a diagram showing the temperature control piping of a molding die, FIG. 2 is a diagram showing the relationship between Reynolds number and die heating time, FIG. 3 is an explanatory diagram for heating the die by a heat medium, and FIG. 5 is a diagram showing the relationship between the inner diameter of the temperature control pipe forming the cooling medium passage hole and the heating time of the mold, FIG. 5 is a diagram showing the relationship between the outer diameter / inner diameter ratio of the temperature control pipe and the heating time of the mold, and FIG. Figure 7 shows the relationship between the arrangement pitch of the adjusting pipe and the mold heating time. Fig. 7 shows the relationship between the distance from the mold cavity surface to the top of the temperature adjusting pipe and the mold heating time. Fig. 8 shows the mold material and molding cycle time. FIG. 9 is a front view of a mold using another piping method for the temperature control pipe according to the embodiment of the present invention.

【0012】図1に示すごとく,まず成形用金型内に温
調用の加熱・冷却媒体通路用孔を設けるため,例えば温
調用パイプ2として銅パイプを鋳型のキャビティ内の所
定位置に設置し,鋳型のキャビティ部へ金属溶湯を注入
し,金属溶湯を固化した後,鋳型から取出して成形用金
型を成形した。また,鋳ぐるみ温調用パイプ2には前記
した銅パイプの他に鉄(SGP),ステンレス鋼(SU
S鋼)等も用い,各金属パイプ(以下,温調用パイプと
いう)2の内径は7〜13mm,また外径/内径比1.
2〜1.7とし,さらに温調用パイプ2の配列ピッチを
金属パイプの内径の1.5〜3倍,金型キャビティ面か
ら温調用パイプ外周上面までの深さを5〜25mmとし
た。
As shown in FIG. 1, first, a copper pipe as a temperature control pipe 2 is set at a predetermined position in a cavity of a mold in order to provide a hole for a heating / cooling medium passage for temperature control in a molding die. The molten metal was poured into the cavity of the mold, and after solidifying the molten metal, it was taken out of the mold to form a molding die. In addition to the above-mentioned copper pipe, iron (SGP), stainless steel (SU)
S), etc., and the inner diameter of each metal pipe (hereinafter referred to as a temperature control pipe) 2 is 7 to 13 mm, and the outer diameter / inner diameter ratio is 1.
The arrangement pitch of the temperature control pipes 2 was 1.5 to 3 times the inner diameter of the metal pipe, and the depth from the mold cavity surface to the outer peripheral upper surface of the temperature control pipes was 5 to 25 mm.

【0013】こうして製作された成形用金型1を用い
て,金型1のキャビティ内に高温の溶融樹脂を充填して
成形した後に,金型冷却用温調機4から送油された冷却
媒体を温調用パイプ2に通して溶融樹脂を冷却固化させ
る場合には,その最適な冷却温度は樹脂の種類,成形品
の形状,大きさ等により異なるため,樹脂の種類等に応
じて金型1の温度調整を行なうことが必要となる。逆
に,金型1のキャビティ内に高温の溶融樹脂を充填する
前は,金型加熱用温調機5から送油された加熱媒体を温
調用パイプ2に通して金型1の温度調整を行なうことが
必要となる。
Using the molding die 1 thus manufactured, the cavity of the mold 1 is filled with a high-temperature molten resin and molded, and then the cooling medium sent from the mold temperature controller 4 is cooled. When the molten resin is cooled and solidified by passing it through the temperature control pipe 2, the optimal cooling temperature varies depending on the type of the resin, the shape and the size of the molded product, and the like. Needs to be adjusted. Conversely, before filling the high-temperature molten resin into the cavity of the mold 1, the heating medium sent from the mold heating temperature controller 5 is passed through the temperature control pipe 2 to adjust the temperature of the mold 1. Need to be done.

【0014】このため,図1に示すように,金型冷却用
温調機4または金型加熱用温調機5から温調用パイプ2
を介して成形用金型1と循環接続してあり,各温調機
4,5に設けた切換弁4a,4b,5a,5bを切換え
ることによって所定温度に制御した油,水等の液体より
なる冷却媒体または加熱媒体(以下,熱媒体という)を
温調用パイプ2内に循環させて,金型温度を所望の温度
に制御し得るようになっている。また,コネクタ9によ
って金型1または温調用パイプ2の材質や管径の異なる
種々の成形用金型1との交換が可能となっている。金型
温度を測定する熱電対11が,成形用金型1の中央部の
温調用パイプ2間に配設されている。符号3は配管,6
は流量調整弁,7,8は集合管,10は流量計,11は
熱電対を示す。なお,配管3および集合管7,8は放熱
を防止するため保温材等で被覆がしてある。
For this reason, as shown in FIG. 1, the temperature control pipe 4 is connected to the mold cooling temperature controller 4 or the mold heating temperature controller 5.
And a liquid such as oil or water controlled to a predetermined temperature by switching the switching valves 4a, 4b, 5a and 5b provided in the temperature controllers 4 and 5, respectively. A cooling medium or a heating medium (hereinafter, referred to as a heat medium) is circulated in the temperature control pipe 2 so that the mold temperature can be controlled to a desired temperature. Further, the connector 9 allows the mold 1 or the temperature control pipe 2 to be replaced with various molding dies 1 having different materials and pipe diameters. A thermocouple 11 for measuring the mold temperature is provided between the temperature control pipes 2 at the center of the molding mold 1. Symbol 3 is piping, 6
Denotes a flow control valve, 7 and 8 denote collecting pipes, 10 denotes a flow meter, and 11 denotes a thermocouple. The pipe 3 and the collecting pipes 7 and 8 are covered with a heat insulating material or the like to prevent heat radiation.

【0015】上記構成において,本発明の作用について
説明する。図1において,まず金型加熱用温調機5の切
換弁5a,5bを開にしておく(金型冷却用温調機4の
切換弁4a,4bを閉のままとする)。次いで,流量計
10を見ながら金型加熱用温調機5の吐出側の切換弁5
aから吐出された熱媒体のレイノルズ数が温調用パイプ
2内で10,000になるように流量調整弁6の開度調
整を行なう。加熱媒体は流量計10を通った後,配管3
c,集合管7,温調用パイプ2(成形用金型1を加
熱),集合管8,配管3d,3eを介して戻り側の切換
弁5bから再度金型加熱用温調機5へ戻るようになって
いる。なお,レイノルズ数が5,000〜6,000の
場合が層流と乱流の境界とされ,6,000以上であれ
ば乱流になるとされており,特に金型温調の場合には,
レイノルズ数10,000以上が金型の温調効率を高め
るために望ましいと考えられている。
The operation of the present invention in the above configuration will be described. In FIG. 1, first, the switching valves 5a and 5b of the mold heating temperature controller 5 are opened (the switching valves 4a and 4b of the mold cooling temperature controller 4 are kept closed). Next, while watching the flow meter 10, the switching valve 5 on the discharge side of the temperature controller 5 for heating the mold is provided.
The opening degree of the flow control valve 6 is adjusted so that the Reynolds number of the heat medium discharged from a in the temperature control pipe 2 becomes 10,000. After the heating medium has passed through the flow meter 10, the piping 3
c, return to the mold heating temperature controller 5 from the return-side switching valve 5b via the collecting pipe 7, the temperature control pipe 2 (heating the molding die 1), the collecting pipe 8, and the pipes 3d and 3e. It has become. Note that the boundary between laminar flow and turbulent flow is when the Reynolds number is 5,000 to 6,000, and that turbulent flow occurs when the Reynolds number is 6,000 or more.
It is considered that a Reynolds number of 10,000 or more is desirable for increasing the temperature control efficiency of the mold.

【0016】なお,本実験では,温調用パイプ2内を流
れる加熱媒体によって成形用金型1を所望温度に加熱す
る際,金型加熱時間に及ぼす各因子,例えば,温調用パ
イプ内を流れる熱媒体の流動状態,温調用パイプ内径,
温調用パイプの外径と内径比,温調用パイプの配列ピッ
チ,金型キャビティ面から温調用パイプの外周上面まで
の距離,温調用パイプ材質および金型材質等について理
論を展開し,その裏付けの実験を行なった。その結果,
図2,図4,図5,図6,図7および図8に示す結果を
得た。特に本実施例においては,金型1に温度拡散係数
の大きい材料を使用することによって成形サイクルタイ
ムを短くするという従来の考え方から,むしろ熱容量
(比熱×密度)の大小によって金型材質を選定する方法
によって金型加熱時間または成形サイクルタイムを短縮
することが適切であるといった知見を得た。
In this experiment, when the molding die 1 is heated to a desired temperature by the heating medium flowing through the temperature control pipe 2, various factors affecting the mold heating time, for example, the heat flowing through the temperature control pipe 2 Medium flow state, temperature control pipe inner diameter,
Based on the theory of the outside diameter and inside diameter ratio of the temperature control pipe, the arrangement pitch of the temperature control pipe, the distance from the mold cavity surface to the outer peripheral upper surface of the temperature control pipe, the temperature control pipe material and the mold material, etc. An experiment was performed. as a result,
The results shown in FIGS. 2, 4, 5, 6, 7, and 8 were obtained. In particular, in the present embodiment, the mold material is selected based on the heat capacity (specific heat × density) rather than the conventional idea that the molding cycle time is shortened by using a material having a large temperature diffusion coefficient for the mold 1. It has been found that it is appropriate to shorten the mold heating time or the molding cycle time depending on the method.

【0017】これは,従来温調用パイプ2内を流通する
熱媒体の層流境膜が仮に完全に無いとした完全理想状態
を想定すると,金型1の熱サイクルは温度拡散係数〔金
型の熱伝導率/熱容量(比熱×密度)〕が支配的とな
る。このため,金型の温調拡散係数が大きい程加熱サイ
クルタイムは短くなるといった考え方をしていたのに対
して,本実施例では熱媒体が完全乱流域と考えても層流
境膜は無くなることはなく薄くなるだけで,こうした半
理想状態下ではむしろ金型1の熱サイクルには熱容量の
方が支配的となることが判明した。このことから,本実
施例では成形用金型1の材質には熱容量の小さいアルミ
ニウム系合金を用いた。因みに,金型1の材質に用いら
れるアルミニウム系合金(Al),銅系合金(Cu),
鉄系合金(Fe)の熱容量は,Al<Cu<Feとな
り,前記3つの中でアルミニウム系合金(Al)の熱容
量が最も小さく,逆に鉄系合金(Fe)が最も大きい。
また,温度拡散係数だけの比較では,Fe<Al<Cu
となり,銅系合金が最も大きい。
This is because, assuming a perfect ideal state in which the laminar flow film of the heat medium flowing through the conventional temperature control pipe 2 is completely eliminated, the heat cycle of the mold 1 has a temperature diffusion coefficient [a mold diffusion coefficient]. Thermal conductivity / heat capacity (specific heat × density)] becomes dominant. For this reason, although it was considered that the heating cycle time becomes shorter as the temperature control diffusion coefficient of the mold becomes larger, in the present embodiment, the laminar flow film disappears even if the heat medium is considered to be a completely turbulent region. It has been found that the heat capacity is more dominant in the heat cycle of the mold 1 under such a semi-ideal condition. For this reason, in the present embodiment, an aluminum-based alloy having a small heat capacity was used as the material of the molding die 1. Incidentally, aluminum alloy (Al), copper alloy (Cu),
The heat capacity of the iron-based alloy (Fe) is Al <Cu <Fe, and among the three, the heat capacity of the aluminum-based alloy (Al) is the smallest, and conversely, the iron-based alloy (Fe) is the largest.
In comparison of only the temperature diffusion coefficient, Fe <Al <Cu
The copper alloy is the largest.

【0018】次に,温調用パイプ2内を流れる熱媒体が
レイノルズ数の小さい状態またはレイノルズ数の大きい
状態を呈した時に,熱媒体の保有熱量が金型1の加熱時
間に及ぼす影響について理論的に説明する。まず,図3
(1)に示すレイノルズ数が小さい状態では,厚い層流
境膜Bのために伝熱抵抗が大きくなり,熱媒体の温度T
aが温調用パイプ2との接点部において温度Tcと大き
く低下する。さらに,温調用パイプ2内を通って金型1
との接点部において温調用パイプ2材質,寸法等の因子
により温度Tdと低下する。この極めて低下した温度T
dと金型1との熱交換は,ΔT=Td−T0 によって支
配的に決定される。ここで,ΔT=Td−T0 が低い状
態であるため,温調用パイプ2材質の違いによる熱伝導
率の差,および温調用パイプ寸法の違いによる伝熱距離
の差による温度Tdの変化量が,結果的には,ΔT=T
d−T0 に大きく影響し,そのため,金型1の加熱時間
に大きな差を生じる。
Next, when the heat medium flowing through the temperature control pipe 2 assumes a state with a small Reynolds number or a state with a large Reynolds number, the effect of the amount of heat held by the heat medium on the heating time of the mold 1 is theoretically described. Will be described. First, FIG.
In the state where the Reynolds number shown in (1) is small, the heat transfer resistance becomes large due to the thick laminar flow film B, and the temperature T
“a” greatly decreases to the temperature Tc at the contact point with the temperature control pipe 2. Further, the mold 1 is passed through the temperature control pipe 2.
The temperature Td decreases at the contact point between the temperature control pipe 2 and other factors such as the material and size of the temperature control pipe 2. This extremely low temperature T
The heat exchange between d and the mold 1 is dominantly determined by ΔT = Td−T 0 . Here, since ΔT = Td−T 0 is in a low state, the difference in the thermal conductivity due to the difference in the material of the temperature control pipe 2 and the change in the temperature Td due to the difference in the heat transfer distance due to the difference in the size of the temperature control pipe are small. , And consequently, ΔT = T
This greatly affects d-T 0, and therefore causes a large difference in the heating time of the mold 1.

【0019】これに対して,図3(2)に示すレイノル
ズ数が大きい状態では,層流境膜Bが極めて薄くなるた
め,温調用パイプ2との接点部において温度Tc’は高
い状態に維持される。そのため,温調用パイプ2内を通
り金型1との接点部における温度Td’は極めて高い状
態にあり,金型1との熱交換の際の支配的因子であるΔ
T’=Td’−T0 は大きく,その結果,金型1の加熱
時間は短くなる。また,ΔT’=Td’−T0 が高い状
態であるため,温調用パイプ2の材質および温調用パイ
プ2寸法の違いによる温度Td’の変化量はΔT’=T
d’−T0 に対して極めて小さいので,金型1の加熱時
間に対してはレイノルズ数が小さい場合よりは影響が小
さくなる。
On the other hand, in the state where the Reynolds number shown in FIG. 3 (2) is large, the laminar flow boundary film B becomes extremely thin, so that the temperature Tc 'at the contact point with the temperature control pipe 2 is kept high. Is done. Therefore, the temperature Td 'at the contact point with the mold 1 passing through the temperature control pipe 2 is in an extremely high state, and ΔT which is a dominant factor in heat exchange with the mold 1 is used.
T ′ = Td′−T 0 is large, and as a result, the heating time of the mold 1 is short. Further, since ΔT ′ = Td′−T 0 is high, the amount of change in temperature Td ′ due to the difference in the material of the temperature control pipe 2 and the size of the temperature control pipe 2 is ΔT ′ = T
Since it is extremely small with respect to d′−T 0 , the influence on the heating time of the mold 1 is smaller than when the Reynolds number is small.

【0020】さらに,温調用パイプ2寸法の適正化,例
えば,温調用パイプ2の内径および外径/内径比の適正
化を行なうことにより,温調用パイプ2と金型1との接
点部における温度Td’の変動を小さく,かつ金型1の
加熱時間のバラツキを小さくする。また,温調用パイプ
2の材質を銅合金とした場合,アルミニウム溶湯によっ
て温調用パイプ2を鋳ぐるむ際に,溶損防止処理を施し
たことにより残存する温調用パイプ2と金型1との接合
金の断熱層による非常に大きな伝熱抵抗の影響を予め防
ぐことが可能となる。
Further, by optimizing the dimensions of the temperature control pipe 2, for example, by optimizing the inner diameter and the outer diameter / inner diameter ratio of the temperature control pipe 2, the temperature at the contact point between the temperature control pipe 2 and the mold 1 is improved. The variation of Td 'is reduced, and the variation of the heating time of the mold 1 is reduced. Further, when the material of the temperature control pipe 2 is a copper alloy, when the temperature control pipe 2 is cast with an aluminum melt, the temperature control pipe 2 and the mold 1 are left untreated by the erosion prevention treatment. It is possible to prevent the influence of a very large heat transfer resistance due to the heat insulating layer of the bonding metal in advance.

【0021】以上述べた考え方をベースにして検証実験
を行ない,図2,図4,図5,図6,図7および図8に
示す実験結果を得た。まず,図2に示すように,金型内
部に鋳ぐるまれた温調用パイプ2の材質をそれぞれステ
ンレス鋼,鉄系合金および銅系合金に変えた場合,温調
用パイプ2内を流れる熱媒体のレイノルズ数の変化が成
形用金型1の加熱時間に及ぼす影響について,下記条件
下で試験を行なった。 〈実験条件〉 金型 材質;アルミニウム合金(AC4C) 寸法;幅100×長さ200×厚さ40mm 鋳ぐるみ温調用パイプ 材質;銅,ステンレス鋼,鉄(SGP) 内径;7〜13mm パイプ間ピッチ;25mm 金型キャビティ面から温調用パイプ外周上面までの
深さ;10mm 熱媒体 種類;市販の熱媒体油 温度;180℃
A verification experiment was performed based on the above-described concept, and the experimental results shown in FIGS. 2, 4, 5, 6, 7, and 8 were obtained. First, as shown in FIG. 2, when the material of the temperature control pipe 2 cast in the mold is changed to stainless steel, an iron-based alloy and a copper-based alloy, respectively, The effect of the change in the Reynolds number on the heating time of the molding die 1 was tested under the following conditions. <Experiment conditions> Mold material; Aluminum alloy (AC4C) Dimensions: Width 100 x length 200 x thickness 40 mm Pipe for temperature control of cast-in material Material: Copper, stainless steel, iron (SGP) Inner diameter; 7-13 mm Pitch between pipes; 25 mm Depth from mold cavity surface to temperature control pipe outer peripheral upper surface; 10 mm Heat medium type; commercially available heat medium oil Temperature: 180 ° C.

【0022】実験の結果,乱流域を形成するレイノルズ
数が6,000以上では,温調用パイプ2にステンレス
鋼,鉄(SGP),銅をそれぞれ用いた場合でも,成形
用金型1の所定温度までの加熱時間差が次第になくな
り,レイノルズ数10,000ではほぼ一致した。逆
に,レイノルズ数が6,000以下では,温調用パイプ
2の材質によって金型1の加熱時間に差異が生じ,銅<
鉄<ステンレス鋼の順に熱媒体からの伝熱が困難にな
り,温調用パイプ2の材質の違いが顕著に現われ,図3
で述べた考え方と一致する。以上,前記した理由によ
り,レイノルズ数を6,000〜12,000に設定す
れば,温調用パイプ2材質は溶損防止処理が不要な鉄あ
るいはステンレスパイプを用いることが可能となり,ま
た金型1の加熱時間も大差ないものとなる。
As a result of the experiment, when the Reynolds number forming the turbulent flow region is 6,000 or more, even if stainless steel, iron (SGP), or copper is used for the temperature control pipe 2, the predetermined temperature of the molding die 1 is increased. The heating time difference gradually disappeared, and almost coincided at a Reynolds number of 10,000. On the other hand, when the Reynolds number is 6,000 or less, the heating time of the mold 1 varies depending on the material of the temperature control pipe 2, and the copper <
The heat transfer from the heat medium becomes difficult in the order of iron <stainless steel, and the difference in the material of the temperature control pipe 2 appears remarkably.
This is in line with the idea described in. For the reasons described above, if the Reynolds number is set to 6,000 to 12,000, the temperature control pipe 2 can be made of an iron or stainless steel pipe which does not require erosion prevention treatment. And the heating time is not much different.

【0023】図4に,金型内部に鋳ぐるまれた温調用パ
イプ2内に異なる温度の熱媒体をそれぞれ流した場合,
温調用パイプ2の内径変化が成形用金型1の加熱時間に
及ぼす影響について,下記条件下で実験を行なった実験
結果を示す。 〈実験条件〉 金型 材質;アルミニウム合金(AC4C) 寸法;幅100×長さ200×厚さ40mm 鋳ぐるみ温調用パイプ 材質;ステンレス鋼(SUS) 内径;3〜14mm パイプ間ピッチ;25mm 金型キャビティ面から温調用パイプ外周上面までの
深さ;10mm レイノルズ数(Re) 10,000(−) 熱媒体 種類;市販の熱媒体油 温度;180℃と200℃ なお,上記レイノルズ数(Re)は次式にて算出した。
FIG. 4 shows a case in which heat mediums of different temperatures are respectively flown into the temperature control pipe 2 cast in the mold.
The results of an experiment conducted on the effect of the change in the inner diameter of the temperature control pipe 2 on the heating time of the molding die 1 under the following conditions are shown. <Experiment conditions> Mold material; Aluminum alloy (AC4C) Dimensions: Width 100 x Length 200 x Thickness 40 mm Cast-in temperature control pipe Material: Stainless steel (SUS) Inner diameter: 3 to 14 mm Pitch between pipes: 25 mm Mold cavity Depth from the surface to the top surface of the outer periphery of the temperature control pipe; 10 mm Reynolds number (Re) 10,000 (-) Heat medium type; commercially available heat medium oil Temperature; 180 ° C and 200 ° C The Reynolds number (Re) is It was calculated by the formula.

【0024】[0024]

【数1】Re=d,v/μ(−)## EQU1 ## Re = d, v / μ (-)

【0025】ここで,dはパイプ内径(mm),vは熱
媒体流速(m/sec),μは熱媒体の動粘性係数(m
2 /sec)である。
Here, d is the pipe inner diameter (mm), v is the heat medium flow rate (m / sec), and μ is the kinematic viscosity coefficient (m
2 / sec).

【0026】実験の結果,温調用パイプ2の内径が大き
くなるにつれて,成形用金型1が所望温度に加熱される
までの加熱時間が短くなる傾向を示した。これは,温調
用パイプ2内を流れる熱媒体の温度Taが層流境膜B,
温調用パイプ2を介して金型1へ伝熱するに際し,温調
用パイプ2内を通る伝熱面積の因子(ここでは温調用パ
イプ2の内径,すなわち,温調用パイプ2の内周面積)
の影響であり,伝熱面積が大きい程(すなわち,温調用
パイプ2内径が大きい程),金型1の加熱時間が短くな
ることを示している。
As a result of the experiment, as the inner diameter of the temperature control pipe 2 became larger, the heating time until the molding die 1 was heated to a desired temperature tended to become shorter. This is because the temperature Ta of the heat medium flowing in the temperature control pipe 2 is changed by the laminar flow film B,
The factor of the heat transfer area passing through the inside of the temperature control pipe 2 when transferring heat to the mold 1 via the temperature control pipe 2 (here, the inner diameter of the temperature control pipe 2, that is, the inner peripheral area of the temperature control pipe 2).
The larger the heat transfer area (ie, the larger the inner diameter of the temperature control pipe 2), the shorter the heating time of the mold 1 is.

【0027】しかしながら,熱媒体温度が180℃と2
00℃の2種類の場合とも,温調用パイプ2の内径が7
mm以上では金型加熱時間は次第に小さくなっており,
13mm以上では金型加熱時間にほとんど差がなくなる
ことが確認され,温調用パイプ2の適正化を図ることに
よって,金型1の加熱時間差が小さくなるという図3で
述べた考え方と一致する。ここで,温調用パイプ2の内
径が7mm以下では金型加熱時間差が生じ金型加熱時間
は長くなる。しかし,温調用パイプ2内径が7mm以下
の場合であっても短時間に所望する金型温度を得るため
には,温調用パイプ2の本数を多くすることも考えられ
るが,鋳ぐるみ鋳造時に温調用パイプ2の取付加工工程
が複雑となる。しかも温調用パイプ2内の圧力損失が極
めて大きくなり,熱媒体のレイノルズ数を10,000
に保持するためには,金型加熱用温調機5および付帯設
備が大型化される。
However, when the heat medium temperature is 180 ° C. and 2 ° C.
The inner diameter of the temperature control pipe 2 is 7
mm or more, the mold heating time gradually decreases,
It is confirmed that there is almost no difference in the mold heating time at 13 mm or more, which is consistent with the concept described in FIG. 3 that the heating time difference of the mold 1 is reduced by optimizing the temperature control pipe 2. Here, when the inner diameter of the temperature control pipe 2 is 7 mm or less, a mold heating time difference occurs, and the mold heating time becomes longer. However, even if the inner diameter of the temperature control pipe 2 is 7 mm or less, it is conceivable to increase the number of the temperature control pipes 2 in order to obtain a desired mold temperature in a short time. The mounting process of the adjusting pipe 2 becomes complicated. In addition, the pressure loss in the temperature control pipe 2 becomes extremely large, and the Reynolds number of the heat medium is reduced to 10,000.
In order to maintain the temperature, the mold heating temperature controller 5 and the auxiliary equipment are enlarged.

【0028】逆に,温調用パイプ2の内径が13mm以
上になると成形用金型1の加熱時間差はほとんどないも
のの,レイノルズ数を10,000に保持するためには
温調用パイプ2内を流れる熱媒体流量が大きくなり,金
型加熱用温調機5および付帯設備に大型の設備が必要と
なる。以上,前記した理由によりレイノルズ数を6,0
00〜12,000に設定した場合,温調用パイプ2の
内径が7〜13mmの範囲にあることが望ましい。
Conversely, when the inner diameter of the temperature control pipe 2 is 13 mm or more, there is almost no difference in the heating time of the molding die 1, but in order to maintain the Reynolds number at 10,000, the heat flowing through the temperature control pipe 2 is required. The medium flow rate increases, and large-sized equipment is required for the mold heating temperature controller 5 and the accompanying equipment. As described above, the Reynolds number is set to 6,0 for the reason described above.
When it is set to 00 to 12,000, it is desirable that the inner diameter of the temperature control pipe 2 is in the range of 7 to 13 mm.

【0029】次に,図5に示すように,温調用パイプ2
の外径/内径比の変化が金型加熱時間に及ぼす影響につ
いて,図4と同様の実験条件下で実験を行なった。実験
の結果,温調用パイプ2の外径/内径比が大きくなるに
つれて,成形用金型1が所望温度に加熱されるまでの加
熱時間が長くなる傾向を示したものの,温調用パイプ2
の外径/内径比が1.2〜1.7の範囲においては,金
型1の加熱時間の差は極めて小さく,温調用パイプ2の
適正寸法化を図ることによって,金型1の加熱時間の差
は小さくなるという図3で述べた考え方と一致する。
Next, as shown in FIG.
The effect of the change in the outer diameter / inner diameter ratio on the mold heating time was tested under the same experimental conditions as in FIG. As a result of the experiment, although the heating time until the molding die 1 was heated to the desired temperature tended to increase as the outer diameter / inner diameter ratio of the temperature control pipe 2 increased, the temperature control pipe 2
When the outside diameter / inner diameter ratio is in the range of 1.2 to 1.7, the difference in the heating time of the mold 1 is extremely small, and by appropriately dimensioning the temperature control pipe 2, the heating time of the mold 1 is reduced. Is consistent with the idea described in FIG.

【0030】図5において,温調用パイプ2の外径/内
径比が1.2以下では,成形用金型1が所定温度に加熱
されるまでの加熱時間は短くなるものの,温調用パイプ
2の肉厚が薄いため鋳ぐるみ鋳造中に溶損してしまい,
加熱・冷却媒体通路用孔を形成することが困難であり,
製作面からの制限がある。また,温調用パイプ2の溶損
防止のために温調用パイプ2表面に耐熱被覆剤等の溶損
防止処理を施したとしても,温調用パイプ2の強度不足
のために鋳ぐるみ鋳造中に温調用パイプ2が変形してし
まい,所望する箇所に加熱または冷却媒体通路用孔を形
成維持させることは困難となるうえ,温調用パイプ2と
金型1との間に耐熱被覆された断熱層が残存し,伝熱効
率を低下させる。
In FIG. 5, when the outside diameter / inside diameter ratio of the temperature control pipe 2 is 1.2 or less, the heating time until the molding die 1 is heated to a predetermined temperature is shortened. Because of the thin wall thickness, it is melted down during insert casting,
It is difficult to form holes for heating and cooling medium passages,
There are restrictions on production. Even if the surface of the temperature control pipe 2 is treated to prevent erosion, such as a heat-resistant coating agent, to prevent the temperature control pipe 2 from being melted, the temperature control pipe 2 may not be sufficiently hot during casting due to lack of strength. The heat control pipe 2 is deformed, making it difficult to form and maintain a hole for a heating or cooling medium passage at a desired location. In addition, a heat-insulating layer coated with heat is provided between the heat control pipe 2 and the mold 1. Remains and reduces heat transfer efficiency.

【0031】逆に,温調用パイプ2の外径/内径比が
1.7以上では,成形用金型1が所定温度まで加熱され
るまでの加熱時間は長くなる結果を得た。また,温調用
パイプ2のパイプ外径/内径比が大きくなるにつれて,
すなわち,温調用パイプ2の肉厚が大き過ぎるため,所
望形状に温調用パイプ2を加工することが困難となり,
金型キャビティ面に沿って加熱・冷却媒体通路用孔を形
成することは不可能となる。以上,前記した理由によ
り,レイノルズ数を6,000〜12,000に設定し
た場合,温調用パイプ2の外径/内径比が1.2〜1.
7の範囲にあるものを使用することが望ましい。
Conversely, when the outside diameter / inside diameter ratio of the temperature control pipe 2 is 1.7 or more, the heating time until the molding die 1 is heated to the predetermined temperature is long. Also, as the pipe outer diameter / inner diameter ratio of the temperature control pipe 2 increases,
That is, since the thickness of the temperature control pipe 2 is too large, it becomes difficult to process the temperature control pipe 2 into a desired shape.
It becomes impossible to form the heating / cooling medium passage hole along the mold cavity surface. For the reasons described above, when the Reynolds number is set to 6,000 to 12,000, the outer diameter / inner diameter ratio of the temperature control pipe 2 is 1.2 to 1.
It is desirable to use one in the range of 7.

【0032】次に,図6において,温調用パイプ2の配
列ピッチの変化が金型加熱時間に及ぼす影響について,
下記条件下で実験を行なった実験結果を示す。 〈実験条件〉 金型 材質;アルミニウム合金(AC4C) 寸法;幅100×長さ200×厚さ40mm 鋳ぐるみ温調用パイプ 材質;ステンレス鋼(SUS) 内径;7〜13mm パイプ間ピッチ;金属パイプ内径の1.5〜4倍 金型キャビティ面から温調用パイプ外周上面までの
深さ;10mm レイノルズ数(Re) 10,000(−) 熱媒体 種類;市販の熱媒体油 温度;180℃
Next, in FIG. 6, the influence of the change in the arrangement pitch of the temperature control pipes 2 on the mold heating time will be described.
The results of an experiment conducted under the following conditions are shown. <Experiment conditions> Mold material; Aluminum alloy (AC4C) Dimensions: Width 100 x Length 200 x Thickness 40 mm Cast-in temperature control pipe Material: Stainless steel (SUS) Inner diameter: 7 to 13 mm Pitch between pipes: Metal pipe inner diameter 1.5 to 4 times Depth from the mold cavity surface to the outer peripheral upper surface of the temperature control pipe; 10 mm Reynolds number (Re) 10,000 (-) Heat medium Type: Commercial heat medium oil Temperature: 180 ° C

【0033】実験の結果,温調用パイプ2の配列ピッチ
が温調用パイプ2内径の1.5倍以下では,温調用パイ
プ2の本数が不必要に増えるうえ,場合によっては温調
用パイプ2同士が重なり合って鋳ぐるみが不可能にな
る。また,金型1裏面から金型キャビティ面へ貫通させ
るような,例えばベント孔等の機械加工において温調用
パイプ2間の隙間が小さく,加工が困難である。さら
に,温調用パイプ2同士が接近し過ぎているため,鋳ぐ
るみ鋳造において特に,温調用パイプ2近傍の湯回り不
良が生じやすく,その結果,健全な金型1を得ることが
困難となる。逆に,3倍以上では,金型1の温調に必要
なパイプ本数が不足し,その結果,金型1の加熱時間が
長くなる。
As a result of the experiment, when the arrangement pitch of the temperature control pipes 2 is 1.5 times or less the inner diameter of the temperature control pipes 2, the number of the temperature control pipes 2 is unnecessarily increased. Overlay makes casting impossible. In addition, the gap between the temperature control pipes 2 is small in machining such as a vent hole to penetrate from the back surface of the mold 1 to the cavity surface of the mold, and machining is difficult. Furthermore, since the temperature control pipes 2 are too close to each other, poor running of the metal near the temperature control pipe 2 is likely to occur particularly in cast-in casting, and as a result, it is difficult to obtain a sound mold 1. On the other hand, if it is three times or more, the number of pipes necessary for controlling the temperature of the mold 1 becomes insufficient, and as a result, the heating time of the mold 1 becomes longer.

【0034】図7に,金型キャビティ面から温調用パイ
プ2の外周上面までの距離の変化が金型加熱時間に及ぼ
す影響について,下記条件下で実験を行なった実験結果
を示す。 〈実験条件〉 金型 材質;アルミニウム合金(AC4C) 寸法;幅100×長さ200×厚さ40mm 鋳ぐるみ温調用パイプ 材質;ステンレス鋼(SUS) 内径;7〜13mm パイプ間ピッチ;25mm 金型キャビティ面までの距離;5〜25mm レイノルズ数(Re) 10,000(−) 熱媒体 種類;市販の熱媒体油 温度;180℃
FIG. 7 shows the results of an experiment conducted on the effect of the change in the distance from the mold cavity surface to the outer peripheral upper surface of the temperature control pipe 2 on the mold heating time under the following conditions. <Experiment conditions> Mold material; Aluminum alloy (AC4C) Dimensions: Width 100 x Length 200 x Thickness 40 mm Cast-in temperature control pipe Material: Stainless steel (SUS) Inner diameter: 7 to 13 mm Pitch between pipes: 25 mm Mold cavity Distance to surface: 5 to 25 mm Reynolds number (Re) 10,000 (-) Heat medium type: Commercial heat medium oil Temperature: 180 ° C

【0035】実験の結果,金型キャビティ面から温調用
パイプ2の外周上面までの距離が5mm以下では,温調
用パイプ2内を流れる熱媒体の保有する熱量が途中で金
型1全体を均等に加熱されずに金型キャビティ面側へ流
れてしまい,局部加熱の原因となる。逆に,25mm以
上では,金型キャビティ部の肉厚が不必要に増し,その
結果,金型1の加熱時間が長くなる。
As a result of the experiment, when the distance from the mold cavity surface to the outer peripheral upper surface of the temperature control pipe 2 is 5 mm or less, the amount of heat held by the heat medium flowing in the temperature control pipe 2 is uniform throughout the mold 1 in the middle. It flows to the mold cavity surface side without being heated, causing local heating. Conversely, if the thickness is 25 mm or more, the thickness of the mold cavity is unnecessarily increased, and as a result, the heating time of the mold 1 is prolonged.

【0036】図8には,成形用金型1の材質の違いによ
る成形サイクルタイムについて,下記条件下で実験を行
なった。 〈実験条件〉 成形用金型 自動車用スポイラを作るスポイラ金型を用いた。 材質;本実施例(アルミニウム合金AC4C) 比較例(1)(銅合金) 比較例(2)(鉄系合金) 寸法;幅300×長さ1400×厚さ50mm 鋳ぐるみ温調用パイプ 材質;ステンレス鋼 寸法;外径/12×肉厚1.5mm パイプ間ピッチ;25mm レイノルズ数(Re) 10,000(−) 冷却媒体および加熱媒体 種類;市販の熱媒体油 冷却媒体温度;40℃ 加熱媒体温度;200℃
FIG. 8 shows an experiment conducted on the molding cycle time depending on the material of the molding die 1 under the following conditions. <Experimental conditions> Mold for molding A spoiler mold for producing an automotive spoiler was used. Material: This example (aluminum alloy AC4C) Comparative example (1) (copper alloy) Comparative example (2) (iron-based alloy) Dimensions: width 300 x length 1400 x thickness 50 mm Cast-in temperature control pipe Material: stainless steel Dimensions: Outer diameter / 12 x wall thickness 1.5 mm Pitch between pipes: 25 mm Reynolds number (Re) 10,000 (-) Cooling medium and heating medium Type: Commercial heating medium oil Cooling medium temperature; 40 ° C Heating medium temperature; 200 ° C

【0037】実験結果を図8に示す。図8からも明らか
なように,本実施例では熱容量の小さいアルミニウム合
金(AC4C)を用いたことにより,短い成形サイクル
タイムで金型1の加熱・冷却を行なうことができる。ま
た,比較例(1)で用いた銅系合金の場合は,比較例
(2)で用いた鉄系合金より熱容量が小さく成形サイク
ルタイムも短くなった。このことは,温調用パイプ2内
を流通する熱媒体の層流境膜が存在する限りでは,金型
1の熱サイクルには,温度拡散係数よりもむしろ熱容量
が支配的となるといった本発明での考え方と一致する。
以上のことから,熱容量の小さい順にアルミニウム合金
>銅合金>鉄系合金となり,成形サイクルタイムも短く
なるといった結果を得た。
FIG. 8 shows the experimental results. As is clear from FIG. 8, in this embodiment, the use of the aluminum alloy (AC4C) having a small heat capacity enables heating and cooling of the mold 1 in a short molding cycle time. In addition, in the case of the copper-based alloy used in Comparative Example (1), the heat capacity was smaller and the molding cycle time was shorter than the iron-based alloy used in Comparative Example (2). This is because in the present invention, as long as the laminar film of the heat medium flowing through the temperature control pipe 2 exists, the heat cycle of the mold 1 is dominated by the heat capacity rather than the temperature diffusion coefficient. Consistent with the idea of
From the above, aluminum alloy> copper alloy> iron-based alloy in the order of smaller heat capacity, and the result was that the molding cycle time became shorter.

【0038】本実施例では,以上の実験から得られた種
々の知見をもとに,表1に示す本実施例と比較例との優
位性の比較検討を行なった。
In this example, based on the various findings obtained from the above experiments, the superiority of this example and the comparative example shown in Table 1 were compared and studied.

【0039】[0039]

【表1】 [Table 1]

【0040】表1からも明らかなように,比較例2の基
準値を1とした場合,全ての点で本実施例の成形用金型
1の優位性が証明された。なお,本実施例では熱媒体温
度は180〜200℃としたが,180℃以下では成形
サイクルタイムが長くなり,逆に200℃以上では配管
等の部品の耐熱性の問題および成形サイクルタイムの短
縮に寄与する割合が小さい等の点から,180〜200
℃が望ましい。また,本実施例では図2,図4,図5,
図6および図7に示すように,温調用パイプ内径,温調
用パイプ外径/内径比およびレイノルズ数が成形用金型
1の加熱時間に及ぼす影響について種々実験を行なった
が,冷却媒体による成形用金型1の冷却時間に及ぼす影
響についても加熱時間とほぼ同様の実験結果が得られ
た。
As is clear from Table 1, when the reference value of Comparative Example 2 was set to 1, the superiority of the molding die 1 of this example was proved in all respects. In this embodiment, the temperature of the heat medium is set to 180 to 200 ° C., but if the temperature is 180 ° C. or less, the molding cycle time becomes longer. From 180 to 200
C is desirable. In the present embodiment, FIGS.
As shown in FIGS. 6 and 7, various experiments were conducted on the effects of the temperature control pipe inner diameter, the temperature control pipe outer diameter / inner diameter ratio, and the Reynolds number on the heating time of the molding die 1. Regarding the effect on the cooling time of the mold 1, almost the same experimental results as the heating time were obtained.

【0041】[0041]

【発明の効果】以上説明したことからも明らかなよう
に,本発明では,金型を貫設した複数の温調管に液体よ
りなる加熱または冷却媒体を流通させて金型温度を調節
するようにした成形用金型の温調方法において,金型キ
ャビティ面に沿って鋳ぐるまれた前記温調管内を流れる
加熱または冷却媒体のレイノルズ数を6,000〜1
2,000として温度制御を行ない,さらに,金属パイ
プを金型内部に鋳ぐるむことにより,前記金型のキャビ
ティ部近傍に加熱または冷却媒体通路孔を備えた成形用
金型であって,前記成形用金型の母材材質にアルミニウ
ム合金を,また前記金属パイプに鉄系材質を用いるとと
もに,前記金属パイプの寸法を内径7〜13mm,外径
/内径比を1.2〜1.7,金属パイプの配列ピッチを
金属パイプ内径の1.5〜3倍とし,さらに,金型キャ
ビティ面から金属パイプ外周上面までの深さを5〜25
mmとしたことにより,金型キャビティ面の加熱,冷却
時間が短縮され,成形サイクルが大幅に短縮され,生産
性が向上する。
As is apparent from the above description, according to the present invention, the temperature of the mold is adjusted by flowing a heating or cooling medium made of a liquid through a plurality of temperature control tubes penetrating the mold. in mold method temperature control mold key
The Reynolds number of the heating or cooling medium flowing through the Yabiti surface was cast Guruma along the temperature control pipe 6,000~1
A molding die having a heating or cooling medium passage hole near a cavity of the die by casting a metal pipe inside the die; An aluminum alloy is used as a base material of a molding die, and an iron-based material is used for the metal pipe. The dimensions of the metal pipe are 7 to 13 mm in inner diameter, the outer diameter / inner diameter ratio is 1.2 to 1.7, The arrangement pitch of the metal pipes is 1.5 to 3 times the inner diameter of the metal pipe, and the depth from the mold cavity surface to the outer surface of the metal pipe is 5 to 25.
By setting mm, the heating and cooling time of the mold cavity surface is reduced, the molding cycle is significantly reduced, and the productivity is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】成形用金型の温調配管図である。FIG. 1 is a temperature control piping diagram of a molding die.

【図2】レイノルズ数と金型加熱時間の関係図である。FIG. 2 is a diagram showing the relationship between Reynolds number and mold heating time.

【図3】熱媒体によって金型を加熱するための説明図で
ある。
FIG. 3 is an explanatory diagram for heating a mold by a heat medium.

【図4】加熱・冷却媒体通路孔を形成する温調用パイプ
の内径寸法と金型の加熱時間の関係図である。
FIG. 4 is a diagram illustrating a relationship between an inner diameter of a temperature control pipe forming a heating / cooling medium passage hole and a heating time of a mold.

【図5】温調用パイプの外径/内径比と金型の加熱時間
の関係図である。
FIG. 5 is a diagram showing a relationship between an outer diameter / inner diameter ratio of a temperature control pipe and a heating time of a mold.

【図6】温調用パイプの配列ピッチと金型加熱時間の関
係図である。
FIG. 6 is a diagram illustrating a relationship between an arrangement pitch of temperature control pipes and a mold heating time.

【図7】金型キャビティ面から温調用パイプ上面までの
距離と金型加熱時間の関係図である。
FIG. 7 is a diagram showing the relationship between the distance from the mold cavity surface to the upper surface of the temperature control pipe and the mold heating time.

【図8】成形用金型材質と成形サイクルタイムの関係図
である。
FIG. 8 is a relationship diagram between a molding die material and a molding cycle time.

【図9】本発明の実施例に係る温調用パイプの別の配管
方法を用いた金型正面図である。
FIG. 9 is a front view of a mold using another piping method for the temperature control pipe according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 成形用金型 2 鋳ぐるみ用金属パイプ(温調用パイプ) 3(3a,3b,3c,3d,3e,3f,3g) 配
管 4 金型冷却用温調機 5 金型加熱用温調機 6 流量調整弁 7,8 集合管 9 コネクタ 10 流量計 11 熱電対
REFERENCE SIGNS LIST 1 Molding die 2 Casting metal pipe (temperature control pipe) 3 (3a, 3b, 3c, 3d, 3e, 3f, 3g) Piping 4 Mold cooling temperature controller 5 Mold heating temperature controller 6 Flow control valve 7, 8 Collecting pipe 9 Connector 10 Flow meter 11 Thermocouple

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B22D 27/04 B22C 9/06 B29C 45/00 Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) B22D 27/04 B22C 9/06 B29C 45/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金型を貫設した複数の温調管に液体より
なる加熱または冷却媒体を流通させて金型温度を調節す
るようにした成形用金型の温調方法において,金型キャ
ビティ面に沿って鋳ぐるまれた前記温調管内を流れる加
熱または冷却媒体のレイノルズ数を6,000〜12,
000として温度制御を行なうようにしたことを特徴と
する成形用金型の温調方法。
1. A mold process temperature control which is adapted to a plurality of temperature control pipes that penetrated the mold by circulating a heating or cooling medium consisting of liquid to adjust the mold temperature, the mold calibration
The was insert cast along the Activity surface Reynolds number of heating or cooling medium flowing through the temperature control pipe 6,000~12,
A method for controlling the temperature of a molding die, wherein the temperature is controlled as 000.
【請求項2】 金属パイプを金型内部に鋳ぐるむことに
より,前記金型のキャビティ部近傍に加熱または冷却媒
体通路孔を備えた成形用金型であって,前記成形用金型
の母材材質にアルミニウム合金を,また前記金属パイプ
に鉄系材質を用いるとともに,前記金属パイプの寸法を
内径7〜13mm,外径/内径比を1.2〜1.7,金
属パイプの配列ピッチを金属パイプ内径の1.5〜3倍
とし,さらに,金型キャビティ面から金属パイプ外周上
面までの深さを5〜25mmとしたことを特徴とする成
形用金型。
2. A molding die provided with a heating or cooling medium passage hole in the vicinity of a cavity of the die by casting a metal pipe inside the die. An aluminum alloy is used for the material, and an iron-based material is used for the metal pipe. The dimensions of the metal pipe are 7 to 13 mm in inner diameter, the ratio of outer to inner diameter is 1.2 to 1.7, and the arrangement pitch of the metal pipe is A molding die having a diameter of 1.5 to 3 times the inner diameter of the metal pipe and a depth of 5 to 25 mm from the die cavity surface to the outer peripheral upper surface of the metal pipe.
JP12747393A 1993-05-28 1993-05-28 Temperature control method of molding die and molding die Expired - Lifetime JP2882562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12747393A JP2882562B2 (en) 1993-05-28 1993-05-28 Temperature control method of molding die and molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12747393A JP2882562B2 (en) 1993-05-28 1993-05-28 Temperature control method of molding die and molding die

Publications (2)

Publication Number Publication Date
JPH06335763A JPH06335763A (en) 1994-12-06
JP2882562B2 true JP2882562B2 (en) 1999-04-12

Family

ID=14960802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12747393A Expired - Lifetime JP2882562B2 (en) 1993-05-28 1993-05-28 Temperature control method of molding die and molding die

Country Status (1)

Country Link
JP (1) JP2882562B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010045884A (en) * 1999-11-09 2001-06-05 조충환 Gravity Casting Method of Spine Grids for Lead Storage Battery

Also Published As

Publication number Publication date
JPH06335763A (en) 1994-12-06

Similar Documents

Publication Publication Date Title
CN106735003B (en) A kind of non-vacuum melting horizontal casting production technology of high-strength highly-conductive Cu-Cr-Zr alloy bar materials
EP0740588B1 (en) Metallic articles having heat transfer channels
JP2005138179A (en) Device for cooling die casting mold
CN113399641B (en) High-density die-casting forming method of aluminum alloy die casting
CN105750499A (en) Method of utilizing conformal cold iron and forced convection to locally cool investment casting
JP4518012B2 (en) Mold cooling structure and cooling method
JP2004299399A (en) Cast hot runner manifold for injection molding device
CN114505467B (en) Aluminum alloy casting mold and method utilizing electromagnetic induction to supplement temperature
JP2882562B2 (en) Temperature control method of molding die and molding die
CN1318159C (en) Method for manufacturing die containing interior passageway and its application in directional solidification
CN104385542A (en) Cooling and temperature controlling system for molten object forming mold
CN100574937C (en) The device of a kind of manufacture method of metal composite pipe blank and manufacturing metal composite pipe blank
JPS62144861A (en) Water cooled type molding tool
JPH06328452A (en) Method for controlling temperature of mold metal mold
JP3001144B2 (en) Manufacturing method of molding die having heating / cooling holes and molding die
JP2935404B2 (en) Manufacturing method of molding die having heating / cooling holes and molding die
JPH08150437A (en) Production of die with permeability having heating, cooling hole and die with permeability
KR102043547B1 (en) Continuors casting apparatus
JP3339503B2 (en) Mold for cast-in pipe
WO1998024573A1 (en) Die casting and like moulds
JP3379907B2 (en) Mold for injection molding of plastic products and method of manufacturing this mold
CN208178399U (en) A kind of novel aluminum alloy founding thermometric heat preservation casting disk device
CN110202121B (en) Alloy casting method for obtaining fine secondary dendrite arm spacing by using double cooling conditions
JPH0315237Y2 (en)
JPH11277212A (en) Metal mold for half melting of half solidifying