JP4518012B2 - Mold cooling structure and cooling method - Google Patents

Mold cooling structure and cooling method Download PDF

Info

Publication number
JP4518012B2
JP4518012B2 JP2005355510A JP2005355510A JP4518012B2 JP 4518012 B2 JP4518012 B2 JP 4518012B2 JP 2005355510 A JP2005355510 A JP 2005355510A JP 2005355510 A JP2005355510 A JP 2005355510A JP 4518012 B2 JP4518012 B2 JP 4518012B2
Authority
JP
Japan
Prior art keywords
cooling
mold
pipe
pipes
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005355510A
Other languages
Japanese (ja)
Other versions
JP2007152425A (en
Inventor
達也 増田
洋道 久米
健次 八下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005355510A priority Critical patent/JP4518012B2/en
Publication of JP2007152425A publication Critical patent/JP2007152425A/en
Application granted granted Critical
Publication of JP4518012B2 publication Critical patent/JP4518012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明はいわゆる広義の金型鋳造法(ダイカスト鋳造法)や樹脂成形法に用いる金型の冷却構造および冷却方法に関し、特に金型冷却用の冷却孔内に冷却媒体を通流させて強制冷却するようにした金型の冷却構造および冷却方法に関する。   The present invention relates to a mold cooling structure and a cooling method used in a so-called broad mold casting method (die casting method) and a resin molding method, and more particularly to forced cooling by passing a cooling medium through cooling holes for mold cooling. The present invention relates to a mold cooling structure and a cooling method.

例えば、いわゆる広義の金型鋳造法の一つである低圧鋳造法においては、金型内に充填された溶湯の凝固を促進してサイクルタイムの短縮化を図るために金型を冷却することが行われている。   For example, in the low pressure casting method, which is one of the so-called mold casting methods in a broad sense, the die may be cooled in order to promote the solidification of the molten metal filled in the die and shorten the cycle time. Has been done.

この種の技術としては、金型に貫通形成した冷却孔内に冷却媒体を通流させ、冷却媒体と金型との間で直接的に熱交換する直接冷却タイプの冷却技術のほか、前記冷却孔にその冷却孔とほぼ同径で熱伝導性の良い冷却パイプを挿入し、その冷却パイプ内に冷却媒体を通流させることで、冷却媒体が冷却パイプを介して金型との間で熱交換する間接冷却タイプの冷却技術とがあり、これら双方の技術が特許文献1に記載されている。また、間接冷却タイプの冷却技術では、冷却パイプのうち製品の特定部位に対応する位置にて冷却パイプの外周面を局部的に切り欠いて薄肉化することで金型と冷却パイプとの間に空気断熱層を形成し、この空気断熱層を形成した部分とそうでない部分とで冷却媒体が金型に及ぼす冷却効果に差を持たせて、金型の各部位を適切な冷却条件で冷却することも提案されている。
特許第2762563号公報
This type of technology includes direct cooling type cooling technology in which a cooling medium is passed through cooling holes formed in the mold and heat is directly exchanged between the cooling medium and the mold. Insert a cooling pipe with the same diameter and good thermal conductivity into the hole, and let the cooling medium flow through the cooling pipe, so that the cooling medium is heated between the mold and the mold through the cooling pipe. There is an indirect cooling type cooling technique to be replaced, and both of these techniques are described in Patent Document 1. Moreover, in the indirect cooling type cooling technology, the outer peripheral surface of the cooling pipe is locally cut out at a position corresponding to a specific part of the cooling pipe to reduce the thickness between the mold and the cooling pipe. An air insulation layer is formed, and the cooling medium has a different cooling effect on the mold between the part where the air insulation layer is formed and the part where it is not, and each part of the mold is cooled under appropriate cooling conditions. It has also been proposed.
Japanese Patent No. 2762563

金型を冷却する上では、製品各部の肉厚や鋳造方案等に応じて金型の各部位を適切な冷却条件で冷却する必要があり、良好な品質の製品を得るためには金型のうち要冷却部位とそうでない部位とで冷却媒体が金型に及ぼす冷却効果に顕著な差を持たせて、金型全体としての温度をできるだけ下げずに金型の要冷却部位のみを部分的に冷却することが望ましい。   In order to cool the mold, it is necessary to cool each part of the mold under appropriate cooling conditions according to the thickness of each part of the product, the casting method, etc. In order to obtain a good quality product, Among them, the cooling effect of the cooling medium on the mold is significantly different between the part that requires cooling and the part that does not, so that only the part requiring cooling of the mold is partially reduced without reducing the temperature of the entire mold as much as possible. It is desirable to cool.

しかしながら、前記直接冷却タイプの冷却技術では、冷却媒体が金型の要冷却部位のみならず冷却孔の全長にわたって常に金型と直接接触しているため金型全体としての温度低下を免れず、金型の特定部位のみを部分的に冷却するのにも限界がある。   However, in the direct cooling type cooling technology, since the cooling medium is always in direct contact with the mold not only at the required cooling portion of the mold but also along the entire length of the cooling hole, the temperature of the mold as a whole cannot be reduced. There is a limit to partially cooling only a specific part of the mold.

また、前記間接冷却タイプの冷却技術では、冷却媒体と金型との間には常に冷却パイプが介在しているため冷却媒体が金型に及ぼす冷却効果は全体として緩慢となる上に、パイプと金型との間に空気断熱層を設けたとしてもその空気断熱層の厚みはパイプの肉厚により制限されるため、金型の各部位間における冷却効果の差を持たせにくいという不具合がある。   Further, in the indirect cooling type cooling technology, since a cooling pipe is always interposed between the cooling medium and the mold, the cooling effect of the cooling medium on the mold becomes slow as a whole, Even if an air heat insulation layer is provided between the molds, the thickness of the air heat insulation layer is limited by the thickness of the pipe, so there is a problem that it is difficult to have a difference in cooling effect between each part of the mold. .

本発明は上記課題に着目してなされたものであり、金型の要冷却部位とそうでない部位との冷却効果の差を顕著なものとして、金型の要冷却部位を部分的に且つ効率よく冷却できるようにした金型の冷却構造および冷却方法を提供することを目的としている。   The present invention has been made paying attention to the above-mentioned problems, and the difference in the cooling effect between the portion requiring cooling of the mold and the portion not cooling is conspicuous, and the portion requiring cooling of the mold is partially and efficiently provided. It is an object of the present invention to provide a mold cooling structure and a cooling method capable of cooling.

請求項1に記載の発明は、製品形状部空間に溶融材料を充填して冷却固化させることにより所定形状の製品を成形する金型の一部に冷却孔を貫通形成するとともに、その冷却孔には冷却媒体を通流させるパイプを挿入して、金型の特定部位を強制冷却するようにした金型の冷却構造であることを前提とした上で、冷却孔の両端からそれぞれパイプを挿入するとともに、その冷却孔のうち金型の特定部位に対応する位置にて双方のパイプの先端同士を非連続に所定距離だけ離間させて非突き合わせ状態とすることにより、冷却孔の一部に当該冷却孔の内壁面と冷却媒体が直接接触し且つ冷却孔の他の部位よりも冷却効果の大きな冷却チャンバーを形成して、この冷却チャンバーをもって金型の特定部位を強制冷却するようにしたことを特徴としている。 According to the first aspect of the present invention, a cooling hole is formed in a part of a mold for forming a product of a predetermined shape by filling a product shape portion space with a molten material and cooling and solidifying the space. Is assumed to be a mold cooling structure that inserts a pipe through which a cooling medium flows and forcibly cools a specific part of the mold, and then inserts a pipe from each end of the cooling hole. together, by its is separated by a predetermined distance in a non-continuous tips of both pipes at a position corresponding to a specific portion of the inner mold cooling holes non butted state, those wherein a portion of the cooling holes A cooling chamber is formed in which the inner wall surface of the cooling hole and the cooling medium are in direct contact with each other and has a cooling effect greater than that of other parts of the cooling hole, and a specific part of the mold is forcibly cooled with this cooling chamber. As a feature There.

ここで、金型としてはいわゆる広義の金型鋳造法に用いられる金型のほか、射出成形法に代表されるような樹脂成形法に用いられる金型も対象としている。   Here, as a mold, in addition to a mold used in a so-called broad mold casting method, a mold used in a resin molding method represented by an injection molding method is also a target.

さらに、請求項2に記載のように、双方のパイプの内周面と冷却孔の内壁面との間に断熱層を設けてあることが、冷却チャンバーとそれ以外の部分での冷却効果に大きな差をもたせる上で望ましく、具体的には、請求項3に記載のように、双方のパイプと冷却孔の内壁面との間に空気断熱層を設けるとともに、双方のパイプの先端部には冷却チャンバーと空気断熱層とを隔離しつつ両者の間をシールするシール部を設けるものとする。 Furthermore, as described in claim 2, the provision of a heat insulating layer between the inner peripheral surface of both pipes and the inner wall surface of the cooling hole has a large cooling effect in the cooling chamber and other portions. It is desirable to provide a difference. Specifically, as described in claim 3 , an air heat insulating layer is provided between both pipes and the inner wall surface of the cooling hole, and cooling is provided at the tips of both pipes. A seal portion is provided for sealing between the chamber and the air insulation layer while isolating the chamber and the air insulation layer.

請求項7に記載の発明は請求項1に記載の技術を冷却方法として捉えたものであって、製品形状部空間に溶融材料を充填して冷却固化させることにより所定形状の製品を成形する金型の一部に冷却孔を貫通形成するとともに、その冷却孔にパイプを挿入し、そのパイプに冷却媒体を通流させて金型の特定部位を強制冷却する金型の冷却方法であることを前提とした上で、冷却孔の両端からそれぞれパイプを挿入するとともに、その冷却孔のうち金型の特定部位に対応する位置にて双方のパイプの先端同士を非連続に所定距離だけ離間させて非突き合わせ状態とすることにより、冷却孔の一部に冷却孔の他の部位よりも冷却効果の大きな冷却チャンバーを形成し、この冷却チャンバーにて冷却孔の内壁面と冷却水を直接接触させて金型の特定部位を強制冷却することを特徴としている。 The invention described in claim 7 comprising which is assumed as a cooling method the techniques described in claim 1, gold for molding a product having a predetermined shape by cooling and solidifying by filling a molten material into the product shape portion space This is a mold cooling method in which a cooling hole is formed through a part of the mold, a pipe is inserted into the cooling hole, and a cooling medium is passed through the pipe to forcibly cool a specific part of the mold. Based on the premise, pipes are inserted from both ends of the cooling holes, and the tips of both pipes are discontinuously separated from each other by a predetermined distance at positions corresponding to specific parts of the mold. with non-abutting state, also form a large cooling chamber of the cooling effect than other parts of the cooling holes in a part of the cooling holes, the cooling water and the inner wall surface of the cooling hole at the cooling chamber directly the contacted Part specific to mold It is characterized in that forced cooling of.

したがって、少なくとも請求項1,7に記載の発明では、金型内を通流する冷却媒体は冷却孔のうち特定の部位で冷却孔の内壁面と直接接触して金型を強制冷却する一方で、冷却孔の他の部位では冷却媒体と冷却孔の内壁面を直接接触させずに断熱することで冷却媒体が金型に及ぼす冷却効果が著しく緩慢なものとなる。その結果として、金型の特定部位以外の他の部位に熱的影響を与えることなく、局部的に限定された金型の特定部位のみを効率よく冷却することが可能となる。 Therefore, in the invention according to at least claims 1 and 7, the cooling medium flowing through the mold is in direct contact with the inner wall surface of the cooling hole at a specific portion of the cooling holes while forcibly cooling the mold. In other parts of the cooling hole, the cooling medium and the inner wall surface of the cooling hole are insulated without being in direct contact with each other, so that the cooling effect of the cooling medium on the mold is remarkably slow. As a result, it is possible to efficiently cool only a specific part of the die that is locally limited without affecting other parts other than the specific part of the mold.

請求項1,7に記載の発明によれば、冷却孔の特定の部位では冷却媒体と金型とが直接接触するのに対して、冷却孔の他の部位では冷却媒体が金型と直接接触しないため、金型の特定部位に対する冷却効果が金型の他の部位に対する冷却効果よりも著しく大きくなり、金型を全体として冷却することなく金型の特定部位のみを効果的に冷却できる効果がある。 According to the first and seventh aspects of the invention, the cooling medium and the mold are in direct contact with each other at a specific part of the cooling hole, whereas the cooling medium is in direct contact with the mold at other parts of the cooling hole. Therefore, the cooling effect on the specific part of the mold is significantly larger than the cooling effect on the other part of the mold, and only the specific part of the mold can be effectively cooled without cooling the mold as a whole. is there.

図1は本発明の好ましい実施の形態として本発明に係る金型の冷却構造が適用される低圧鋳造用の金型1を示す垂直断面図である。   FIG. 1 is a vertical sectional view showing a low pressure casting mold 1 to which a mold cooling structure according to the present invention is applied as a preferred embodiment of the present invention.

金型1は上型2および下型3からなり、図1に示すように上型2および下型3の型締め状態をもってキャビティRが製品形状部空間として形成される。このキャビティRに例えばAl合金やZn合金等の溶融材料たる溶湯を充填して冷却固化させることにより所定形状の製品を鋳造することとなる。   The mold 1 includes an upper mold 2 and a lower mold 3, and a cavity R is formed as a product shape portion space with the upper mold 2 and the lower mold 3 being clamped as shown in FIG. A product having a predetermined shape is cast by filling the cavity R with a molten metal such as an Al alloy or Zn alloy and cooling and solidifying the melt.

下型3にはその下型3を水平方向に貫通する均一径で且つストレート状の冷却孔4が穿設されており、冷却孔4にはその両端から後述する流入パイプ5および流出パイプ6をそれぞれ挿入しつつ着脱可能に固定してある。流入パイプ5および流出パイプ6はともに耐熱性があり下型3の材料よりも熱膨張係数が大きい金属製で、それぞれが同一形状の円管であり、流入パイプ5は冷却孔4の一端に結合された流入ニップル7を介して金型1外部の流入ホース8に接続される一方、流出パイプ6は冷却孔4の他端に結合された流出ニップル9を介して金型1外部の流出ホース10に接続されている。これによって温度調節された冷却水が冷却媒体として流入パイプ5および流出パイプ6の内部を通流するようになっている。なお、冷却媒体としては水のほか、油等の液体や圧縮空気等の気体を用いてもよい。   The lower die 3 has a uniform diameter and straight cooling hole 4 penetrating the lower die 3 in the horizontal direction. The cooling hole 4 has an inflow pipe 5 and an outflow pipe 6 described later from both ends thereof. Removably fixed while inserting each. Both the inflow pipe 5 and the outflow pipe 6 are made of metal having a heat resistance and a thermal expansion coefficient larger than that of the material of the lower mold 3, and each is a circular pipe having the same shape, and the inflow pipe 5 is coupled to one end of the cooling hole 4. The outflow pipe 6 is connected to the inflow hose 8 outside the mold 1 through the inflow nipple 7, while the outflow pipe 6 is connected to the other end of the cooling hole 4 through the outflow nipple 9. It is connected to the. Thereby, the temperature-controlled cooling water flows through the inside of the inflow pipe 5 and the outflow pipe 6 as a cooling medium. In addition to water, a liquid such as oil or a gas such as compressed air may be used as the cooling medium.

また、冷却孔4のうち凝固遅れによる鋳造欠陥を防止するために冷却が必要な要冷却部位Pに対応する位置にて双方のパイプ5,6の先端同士を非連続に所定距離だけ離間させて非突き合わせ状態とすることで、冷却水の通流を許容する冷却チャンバー11を形成している。すなわち、流入パイプ5と冷却チャンバー11および流出パイプ6で冷却媒体が通流する冷却管路を構成している。   In addition, the tips of both pipes 5 and 6 are discontinuously separated from each other by a predetermined distance at a position corresponding to a required cooling portion P that needs to be cooled in order to prevent a casting defect due to a solidification delay in the cooling hole 4. The cooling chamber 11 that allows the flow of the cooling water is formed by setting the non-matching state. That is, the inflow pipe 5, the cooling chamber 11, and the outflow pipe 6 constitute a cooling pipe line through which the cooling medium flows.

双方のパイプ5,6は一般部5b,6bとその先端にフランジ状に張設されたシール部5a,6aとからなる。一般部5b,6bの外径を冷却孔4よりも小径に設定することで一般部5b,6bの外壁面と冷却孔4の内壁面との間に空気断熱層12を介在させてあるとともに、シール部5a,6aの外径を冷却孔4とほぼ同径に設定することで、シール部5a,6aにて空気断熱層12と冷却チャンバー11とを隔成しつつ両者11,12の間をシールしてある。   Both pipes 5 and 6 are composed of general portions 5b and 6b and seal portions 5a and 6a that are stretched in the form of flanges at their tips. An air heat insulating layer 12 is interposed between the outer wall surface of the general parts 5b and 6b and the inner wall surface of the cooling hole 4 by setting the outer diameter of the general parts 5b and 6b to be smaller than the cooling hole 4. By setting the outer diameter of the seal portions 5a and 6a to be substantially the same as that of the cooling hole 4, the air insulation layer 12 and the cooling chamber 11 are separated from each other by the seal portions 5a and 6a. Sealed.

以上のように構成された金型1の冷却構造では、鋳造作業中に高温となった下型3が熱膨張して冷却孔4は大径となるが、それ以上にシール部5a,6aが熱膨張することでシール部5a,6aと下型3との間に隙間がなくなっていわゆる締り嵌め状態となり、空気断熱層12と冷却チャンバー11の間が確実にシールされる。   In the cooling structure of the mold 1 configured as described above, the lower mold 3 that has become high temperature during the casting operation is thermally expanded and the cooling hole 4 has a large diameter, but the seal portions 5a and 6a are more than that. Due to the thermal expansion, there is no gap between the seal portions 5a, 6a and the lower mold 3, and a so-called interference fit state is established, and the space between the air heat insulation layer 12 and the cooling chamber 11 is reliably sealed.

冷却水が冷却孔内を通流する過程では、冷却チャンバー11内にて冷却水が冷却孔4の内壁面と直接接触して下型3との間で直接的に熱交換する一方で、冷却チャンバー11へ冷却水を供給および排出する双方のパイプ5,6内では冷却水が冷却孔4の内壁面と直接接触することがない上に空気断熱層12により冷却水と下型3との間が確実に断熱されているため、下型3のうち冷却チャンバー11に対応する部位とその他の部位での冷却効果を大きく異ならしめることができる。   In the process in which the cooling water flows through the cooling holes, the cooling water directly contacts the inner wall surface of the cooling holes 4 in the cooling chamber 11 and directly exchanges heat with the lower mold 3. In both the pipes 5 and 6 for supplying and discharging the cooling water to and from the chamber 11, the cooling water does not come into direct contact with the inner wall surface of the cooling hole 4. Therefore, the cooling effect in the part corresponding to the cooling chamber 11 in the lower mold 3 and the other parts can be greatly different.

したがって以上のような冷却構造によれば、下型3に対して確実に断熱しつつ冷却チャンバー11に冷却水を供給および排出するため、下型3のうち冷却チャンバー11に対応する部位は低温の冷却水にて直接的に強制冷却されるのに対し、下型3のうちその他の部位における冷却効果は著しく緩慢となり、金型1の要冷却部位とそうでない部位とで冷却効果を大幅に変化させたいわゆるめりはりのある冷却をすることができる。すなわち、金型1全体としての温度を下げることなく製品の要冷却部位Pに対応する金型1の特定部位のみを部分的に効率よく冷却することが可能となる。   Therefore, according to the cooling structure as described above, the cooling water is supplied to and discharged from the cooling chamber 11 while reliably insulating the lower mold 3. While the forced cooling is directly performed by the cooling water, the cooling effect in the other parts of the lower mold 3 is remarkably slow, and the cooling effect is greatly changed between the part requiring the cooling of the mold 1 and the part that is not. Cooling with a so-called beam can be performed. That is, it becomes possible to partially and efficiently cool only a specific part of the mold 1 corresponding to the part P requiring cooling of the product without lowering the temperature of the mold 1 as a whole.

その上、何回かの鋳造を行って製品の仕上がり状態をチェックした段階で冷却条件の見直しが必要となった場合には、双方のパイプ5,6の長さを変えて冷却チャンバー11の位置および長さを調整することで、金型1を作り直すことなく容易に冷却条件を変更でき、金型1を作り直すのに比べてコスト的にも時間的にも有利となる。   In addition, when it is necessary to review the cooling conditions after several times of casting and checking the finished product, the position of the cooling chamber 11 is changed by changing the lengths of both pipes 5 and 6. And by adjusting the length, the cooling conditions can be easily changed without remaking the mold 1, which is advantageous in terms of cost and time compared to remaking the mold 1.

また、特に冷却孔4が長い場合には、冷却孔4の両端から穴を穿設してそれぞれの穴を連続させることで冷却孔4を下型3に貫通形成するが、冷却チャンバー11内には双方のパイプ5,6が存在しないため、冷却孔4を貫通形成する際にそれぞれの穴の連続部となる冷却チャンバー11にて多少の段差を生じても双方のパイプ5,6を冷却孔4に挿入する上では差し支えなく、冷却孔4の加工が容易となりコスト的に有利となる。   In particular, when the cooling hole 4 is long, holes are formed from both ends of the cooling hole 4 and the holes are made continuous to form the cooling hole 4 through the lower mold 3. Since both pipes 5 and 6 do not exist, both pipes 5 and 6 are cooled even if a slight level difference occurs in the cooling chamber 11 that is a continuous part of the holes when the cooling holes 4 are formed through. The cooling hole 4 can be easily processed and is advantageous in terms of cost.

なお、以上の実施の形態では本発明に係る金型の冷却構造を下型3のみに適用したが、必要に応じて上型2等の他の金型要素にも適用できることは言うまでもない。   In the above embodiment, the mold cooling structure according to the present invention is applied only to the lower mold 3, but it goes without saying that it can be applied to other mold elements such as the upper mold 2 as necessary.

図2は本発明の第2の実施の形態を示す図で、低圧鋳造用の金型13のうち下型14内の冷却管路を示す水平断面図である。なお、図2において先に説明した図1と同様または相当部分には図1と同一の符号を付してある。   FIG. 2 is a diagram showing a second embodiment of the present invention, and is a horizontal sectional view showing a cooling pipe line in the lower die 14 of the die 13 for low pressure casting. In FIG. 2, the same reference numerals as those in FIG.

第2の実施の形態は、図2に示すように冷却管路の基本構造を第1の実施の形態と同様とした上で、下型14に貫通形成された冷却孔15を冷却チャンバー16に相当する位置にて所定角度だけ曲折させたものである。また、下型13に結合する流出ニップル9の座面の座りをよくするために、冷却孔15の冷却水流出側端部に座ぐり部17を設けてある。したがって、冷却水が冷却チャンバー16にて下型14と直接接触する一方で、双方のパイプ5,6内の冷却水は下型14に対して断熱されていることは第1の実施の形態と同様であり、第1の実施の形態と同様の効果が得られる。その上、冷却チャンバー11にて冷却孔4を曲折させているため冷却管路のレイアウトの自由度が高く、鋳造設備の他の装置類との整合性のほか作業性や安全性を確保する上で有利となるメリットがある。   In the second embodiment, as shown in FIG. 2, the basic structure of the cooling pipe is the same as that of the first embodiment, and cooling holes 15 penetrating the lower mold 14 are formed in the cooling chamber 16. It is bent by a predetermined angle at a corresponding position. Further, in order to improve the sitting of the seating surface of the outflow nipple 9 coupled to the lower mold 13, a counterbore portion 17 is provided at the cooling water outflow side end of the cooling hole 15. Therefore, while the cooling water is in direct contact with the lower mold 14 in the cooling chamber 16, the cooling water in both the pipes 5 and 6 is insulated from the lower mold 14 as in the first embodiment. The same effects as those in the first embodiment are obtained. In addition, since the cooling holes 4 are bent in the cooling chamber 11, the layout of the cooling pipes is highly flexible, and the workability and safety are ensured in addition to the consistency with other equipment of the casting equipment. There is an advantage to be advantageous.

図3〜5は本発明の第3〜5の実施の形態を示す図であって、第1の実施の形態における冷却管路の変形例を示している。なお、図3〜5において先に説明した図1と同様または相当部分には同一の符号を付してある。   3-5 is a figure which shows the 3rd-5th embodiment of this invention, Comprising: The modification of the cooling pipe line in 1st Embodiment is shown. 3 to 5, the same or corresponding parts as those in FIG. 1 described above are denoted by the same reference numerals.

図3に示す第3の実施の形態は、金型18のうち下型19に貫通形成した冷却孔20を冷却水の上流側から穿設した小径冷却孔20aと冷却水の下流側から穿設した小径冷却孔20aよりも大径の大径冷却孔20bとからなるいわゆる段付きタイプとし、冷却チャンバー21を小径冷却孔20aおよび大径冷却孔20bの両者にまたがるように設けたものである。また、流入パイプ5の内径に対して流出パイプ22の内径を大径とするとともに、流出ニップル23および流出ホース24の内径もそれぞれ流入ニップル7および流入ホース8の内径よりも大径としてある。なお、冷却管路の基本構造は第1の実施の形態と同様であり、流出パイプ22はシール部22aおよび一般部22bからなる。   In the third embodiment shown in FIG. 3, the cooling hole 20 formed through the lower mold 19 in the mold 18 is drilled from the cooling water upstream side and the cooling water 20a is drilled from the cooling water downstream side. A so-called stepped type comprising a large-diameter cooling hole 20b larger than the small-diameter cooling hole 20a is provided, and the cooling chamber 21 is provided so as to straddle both the small-diameter cooling hole 20a and the large-diameter cooling hole 20b. In addition, the inner diameter of the outflow pipe 22 is larger than the inner diameter of the inflow pipe 5, and the inner diameters of the outflow nipple 23 and the outflow hose 24 are also larger than the inner diameters of the inflow nipple 7 and the inflow hose 8, respectively. The basic structure of the cooling pipe is the same as that of the first embodiment, and the outflow pipe 22 includes a seal portion 22a and a general portion 22b.

この第3の実施の形態によれば、第1の実施の形態と同様の効果が得られるほか、冷却水が冷却チャンバー21にて下型19と接触すると、冷却水が爆発的に気化することで冷却水の通流抵抗が増加するが、流出パイプ22の内径を流入パイプ5の内径よりも大径としたことで膨張した冷却水が冷却チャンバー20からスムーズに排出されるため、冷却水を通流させてから冷却効果が現れるまでの間に生じるタイムラグを緩和し、金型18における冷却効果の応答性が向上するメリットがある。   According to the third embodiment, the same effects as those of the first embodiment can be obtained, and when the cooling water comes into contact with the lower mold 19 in the cooling chamber 21, the cooling water vaporizes explosively. However, since the expanded cooling water is smoothly discharged from the cooling chamber 20 by setting the inner diameter of the outflow pipe 22 to be larger than the inner diameter of the inflow pipe 5, There is a merit that the time lag that occurs between when the flow is made and the cooling effect appears is alleviated, and the responsiveness of the cooling effect in the mold 18 is improved.

図4に示す第4の実施の形態は、それぞれシール部25a,26aおよび一般部25b,26bからなる流入パイプ25および流出パイプ26のうちシール部25a,26aをそれぞれの内径が他方のパイプに向かって拡径するテーパ状としたものであって、双方のパイプ25,26の内周面と冷却孔4の内壁面を段差なく連続させてある。なお、冷却管路の基本構造は第1の実施の形態と同様としている。   In the fourth embodiment shown in FIG. 4, of the inflow pipe 25 and the outflow pipe 26 each composed of the seal portions 25a and 26a and the general portions 25b and 26b, the seal portions 25a and 26a are directed toward the other pipe. The inner diameter of both the pipes 25 and 26 and the inner wall surface of the cooling hole 4 are made continuous without any step. The basic structure of the cooling pipeline is the same as that of the first embodiment.

この第4の実施の形態によれば、第1の実施の形態と同様の効果が得られる上に、冷却水が流入パイプ25から冷却チャンバー11へ流入する際および冷却チャンバー11から流出パイプ26へ排出される際における冷却管路の断面積変化を緩やかにすることで、冷却水の通流抵抗が小さくなり冷却性能が向上する利点がある。   According to the fourth embodiment, the same effects as those of the first embodiment can be obtained, and when the cooling water flows into the cooling chamber 11 from the inflow pipe 25 and from the cooling chamber 11 to the outflow pipe 26. By gently changing the cross-sectional area of the cooling pipe when discharged, there is an advantage that the cooling water flow resistance is reduced and the cooling performance is improved.

図5に示す第5の実施の形態は、冷却管路の基本構造を第1の実施の形態と同様とした上で、金型27のうち下型28に貫通形成された冷却孔29における冷却チャンバー30のほぼ中央にその断面積を縮小化した絞り部31を設けたものであり、第1の実施の形態の効果に加えて、冷却水の流れの断面積が絞り部31にて減少することで冷却水の流速が上がるとともに、冷却水と下型28との接触面積が増加するため冷却性能が向上する利点がある。   In the fifth embodiment shown in FIG. 5, the basic structure of the cooling pipe is the same as that of the first embodiment, and cooling is performed in a cooling hole 29 formed through the lower mold 28 of the mold 27. In the center of the chamber 30, a constricted portion 31 having a reduced cross-sectional area is provided. In addition to the effect of the first embodiment, the cross-sectional area of the flow of cooling water is reduced in the constricted portion 31. As a result, the flow rate of the cooling water is increased, and the contact area between the cooling water and the lower mold 28 is increased, so that the cooling performance is improved.

なお、例えば第2の実施の形態のように冷却孔を曲折させると同時に第3の実施の形態のように冷却孔を段付きタイプとすることが可能であるほか、以上に説明した第2〜5の実施の形態における冷却管路の特徴を組み合わせて用いることも勿論可能である。   For example, the cooling holes can be bent as in the second embodiment and at the same time the cooling holes can be stepped as in the third embodiment. Of course, it is possible to combine the features of the cooling pipes in the fifth embodiment.

本発明の第1の実施の形態を示す図で、低圧鋳造用金型の垂直断面図。It is a figure which shows the 1st Embodiment of this invention and is a vertical sectional view of the low-pressure casting mold. 本発明の第2の実施の形態を示す図で、低圧鋳造用金型のうち下型の水平断面図。It is a figure which shows the 2nd Embodiment of this invention, and is a horizontal sectional view of a lower mold | type among low pressure casting molds. 本発明の第3の実施の形態を示す図で、低圧鋳造用金型の垂直断面図。It is a figure which shows the 3rd Embodiment of this invention, and is a vertical sectional view of the low-pressure casting mold. 本発明の第4の実施の形態を示す図で、低圧鋳造用金型の垂直断面図。It is a figure which shows the 4th Embodiment of this invention, and is a vertical sectional view of the low-pressure casting mold. 本発明の第5の実施の形態を示す図で、低圧鋳造用金型の垂直断面図。It is a figure which shows the 5th Embodiment of this invention, and is a vertical sectional view of the low-pressure casting mold.

符号の説明Explanation of symbols

1…金型
4…冷却孔
5…流入パイプ
5a…シール部
6…流出パイプ
6a…シール部
11…冷却チャンバー
12…空気断熱層
13…金型
15…冷却孔
16…冷却チャンバー
18…金型
20…冷却孔
21…冷却チャンバー
22…流出パイプ
22a…シール部
25…流入パイプ
25a…シール部
26…流出パイプ
26a…シール部
27…金型
29…冷却孔
30…冷却チャンバー
31…絞り部
R…キャビティ(製品形状部空間)
DESCRIPTION OF SYMBOLS 1 ... Mold 4 ... Cooling hole 5 ... Inflow pipe 5a ... Seal part 6 ... Outflow pipe 6a ... Seal part 11 ... Cooling chamber 12 ... Air insulation layer 13 ... Mold 15 ... Cooling hole 16 ... Cooling chamber 18 ... Mold 20 ... cooling hole 21 ... cooling chamber 22 ... outflow pipe 22a ... seal part 25 ... inflow pipe 25a ... seal part 26 ... outflow pipe 26a ... seal part 27 ... mold 29 ... cooling hole 30 ... cooling chamber 31 ... throttle part R ... cavity (Product shape space)

Claims (7)

製品形状部空間に溶融材料を充填して冷却固化させることにより所定形状の製品を成形する金型の一部に冷却孔を貫通形成するとともに、その冷却孔には冷却媒体を通流させるパイプを挿入して、金型の特定部位を強制冷却するようにした金型の冷却構造において、
冷却孔の両端からそれぞれパイプを挿入するとともに、その冷却孔のうち金型の特定部位に対応する位置にて双方のパイプの先端同士を非連続に所定距離だけ離間させて非突き合わせ状態とすることにより、冷却孔の一部に当該冷却孔の内壁面と冷却媒体が直接接触し且つ冷却孔の他の部位よりも冷却効果の大きな冷却チャンバーを形成して、この冷却チャンバーをもって金型の特定部位を強制冷却するようにしたことを特徴とする金型の冷却構造。
The product shape part space is filled with a molten material and cooled and solidified to form a cooling hole in a part of a mold for forming a product of a predetermined shape, and a pipe through which a cooling medium flows is provided in the cooling hole. In the mold cooling structure that is inserted and forcedly cooled a specific part of the mold,
Pipes are inserted from both ends of the cooling holes, and the ends of both pipes are discontinuously separated from each other by a predetermined distance at a position corresponding to a specific portion of the mold in the cooling holes to be in a non-butting state. the inner wall surface and the cooling medium of those said cooling holes in a part of the cooling holes to form a large cooling chamber of the cooling effect than other parts of the direct contact and cooling holes, specific mold with the cooling chamber A mold cooling structure characterized in that the part is forcibly cooled.
双方のパイプの内周面と冷却孔の内壁面との間に断熱層を設けてあることを特徴とする請求項1に記載の金型の冷却構造。 2. The mold cooling structure according to claim 1, wherein a heat insulating layer is provided between the inner peripheral surface of both pipes and the inner wall surface of the cooling hole. 双方のパイプと冷却孔の内壁面との間に空気断熱層を設けてあるとともに、双方のパイプの先端部には冷却チャンバーと空気断熱層とを隔離しつつ両者の間をシールするシール部を設けてあることを特徴とする請求項2に記載の金型の冷却構造。 An air insulation layer is provided between both pipes and the inner wall surface of the cooling hole, and a seal portion is provided at the tip of both pipes to seal between the two while isolating the cooling chamber and the air insulation layer. The mold cooling structure according to claim 2, wherein the mold cooling structure is provided. 一方のパイプを冷却媒体の流入パイプとするとともに他方のパイプを冷却媒体の流出パイプとして、流出パイプの内径を流入パイプの内径よりも大径としたことを特徴とする請求項3に記載の金型の冷却構造。 4. The gold according to claim 3, wherein one pipe is used as a cooling medium inflow pipe and the other pipe is used as a cooling medium outflow pipe, and an inner diameter of the outflow pipe is larger than an inner diameter of the inflow pipe. Mold cooling structure. 双方のパイプの先端部をその内径が他方のパイプに向かって連続的に拡径するテーパ状のものとして、両パイプの内周面と冷却チャンバーにおける冷却孔の内壁面とを段差なく連続させたことを特徴とする請求項3に記載の金型の冷却構造。 The tip of both pipes has a tapered shape with the inner diameter continuously expanding toward the other pipe, and the inner peripheral surface of both pipes and the inner wall surface of the cooling hole in the cooling chamber are made continuous without any step. The mold cooling structure according to claim 3 , wherein: 冷却チャンバーにはその一部の断面積を縮小化することで絞り部を形成してあることを特徴とする請求項3に記載の金型の冷却構造。 4. The mold cooling structure according to claim 3, wherein the cooling chamber has a narrowed portion formed by reducing a partial cross-sectional area thereof. 製品形状部空間に溶融材料を充填して冷却固化させることにより所定形状の製品を成形する金型の一部に冷却孔を貫通形成するとともに、その冷却孔にパイプを挿入し、そのパイプに冷却媒体を通流させて金型の特定部位を強制冷却する金型の冷却方法であって、
冷却孔の両端からそれぞれパイプを挿入するとともに、その冷却孔のうち金型の特定部位に対応する位置にて双方のパイプの先端同士を非連続に所定距離だけ離間させて非突き合わせ状態とすることにより、冷却孔の一部に冷却孔の他の部位よりも冷却効果の大きな冷却チャンバーを形成し、この冷却チャンバーにて冷却孔の内壁面と冷却水を直接接触させて金型の特定部位を強制冷却することを特徴とする金型の冷却方法。
By filling the product shape space with molten material and cooling and solidifying it, a cooling hole is formed in a part of the mold that molds the product of a predetermined shape, and a pipe is inserted into the cooling hole, and the pipe is cooled. A mold cooling method for forcibly cooling a specific part of a mold by flowing a medium,
Pipes are inserted from both ends of the cooling holes, and the ends of both pipes are discontinuously separated from each other by a predetermined distance at a position corresponding to a specific portion of the mold in the cooling holes to be in a non-butting state. As a result, a cooling chamber having a larger cooling effect than other parts of the cooling hole is formed in a part of the cooling hole, and the inner wall surface of the cooling hole and the cooling water are brought into direct contact with this cooling chamber so that a specific part of the mold is formed. A mold cooling method characterized by forced cooling.
JP2005355510A 2005-12-09 2005-12-09 Mold cooling structure and cooling method Active JP4518012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005355510A JP4518012B2 (en) 2005-12-09 2005-12-09 Mold cooling structure and cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005355510A JP4518012B2 (en) 2005-12-09 2005-12-09 Mold cooling structure and cooling method

Publications (2)

Publication Number Publication Date
JP2007152425A JP2007152425A (en) 2007-06-21
JP4518012B2 true JP4518012B2 (en) 2010-08-04

Family

ID=38237426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005355510A Active JP4518012B2 (en) 2005-12-09 2005-12-09 Mold cooling structure and cooling method

Country Status (1)

Country Link
JP (1) JP4518012B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551508A (en) * 2013-11-14 2014-02-05 邵宏 Energy-saving lower metal die with heat radiating function
CN103551507A (en) * 2013-11-14 2014-02-05 邵宏 Energy-saving metal mould with air-cooling device
CN103612349A (en) * 2013-11-28 2014-03-05 江门市君盛实业有限公司 Evenly-cooled die core structure
JP6070653B2 (en) * 2014-07-30 2017-02-01 トヨタ自動車株式会社 Mold and mold manufacturing method
CN108973034A (en) * 2018-09-01 2018-12-11 苏州百盛精密工业有限公司 The cooling branching block of integrated form and its production technology
CN109510051A (en) * 2018-11-08 2019-03-22 江苏通光强能输电线科技有限公司 A kind of mold making aluminium alloy conductor connector and method
CN112059146A (en) * 2020-09-18 2020-12-11 常州机电职业技术学院 Die casting die cooling device
KR102412878B1 (en) * 2020-12-29 2022-06-27 엠에이치기술개발 주식회사 Pipe with varing cross section area and method of manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182758U (en) * 1984-10-31 1986-05-31
JPS62144861A (en) * 1985-12-19 1987-06-29 Honda Motor Co Ltd Water cooled type molding tool
JPH0743608U (en) * 1993-04-06 1995-09-05 広島アルミニウム工業株式会社 Cooling water fittings
JPH09253825A (en) * 1996-03-27 1997-09-30 Hitachi Metals Ltd Device for supplying cooling water for low pressure casting metallic mold
JP2762563B2 (en) * 1989-05-24 1998-06-04 日産自動車株式会社 Mold and its manufacturing method
JP2000005845A (en) * 1998-06-24 2000-01-11 Aisin Seiki Co Ltd Local cooling structure of die

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182758U (en) * 1984-10-31 1986-05-31
JPS62144861A (en) * 1985-12-19 1987-06-29 Honda Motor Co Ltd Water cooled type molding tool
JP2762563B2 (en) * 1989-05-24 1998-06-04 日産自動車株式会社 Mold and its manufacturing method
JPH0743608U (en) * 1993-04-06 1995-09-05 広島アルミニウム工業株式会社 Cooling water fittings
JPH09253825A (en) * 1996-03-27 1997-09-30 Hitachi Metals Ltd Device for supplying cooling water for low pressure casting metallic mold
JP2000005845A (en) * 1998-06-24 2000-01-11 Aisin Seiki Co Ltd Local cooling structure of die

Also Published As

Publication number Publication date
JP2007152425A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP4518012B2 (en) Mold cooling structure and cooling method
EP2520385B1 (en) Casting method and casting device for cast-metal object
JP4650067B2 (en) Manufacturing method of mold cooling structure
US8985188B2 (en) Core pin for casting
JP5024175B2 (en) Mold cooling system
JP5616122B2 (en) Core pin, core pin manufacturing method, die casting mold, and die casting mold manufacturing method
EA020127B1 (en) Method for producing a cooling element for pyrometallurgical reactor and the cooling element
KR100734793B1 (en) Mould of wide cross section for the hot-top vertical continuous casting of metals
US20050173091A1 (en) Method and apparatus for manufacturing strong thin-walled castings
JP5563438B2 (en) Cylinder head casting mold cooling apparatus and control method thereof
JP5593241B2 (en) Mold cooling structure and manufacturing method thereof
TW201109104A (en) Casting mold
KR100985114B1 (en) Diffusion bonding device for inner and outer jacket of recooling combustion chamber
JP2762563B2 (en) Mold and its manufacturing method
KR102043547B1 (en) Continuors casting apparatus
JP2000042717A (en) Die with built-in pipe for adjusting temperature
JP2004268061A (en) Cooling structure for core pin, and casting method using the structure
JP5606354B2 (en) Mold cooling structure
KR100587988B1 (en) Method for manufacturing block for cooling jacket
JPH03142057A (en) Method for casting by embedding
JP2002086259A (en) Metallic mold for inserting pipe
JP2011218401A (en) Method for repairing mold for continuous casting, and repaired mold for continuous casting
JP2021122846A (en) Die casting mold
JPH1157972A (en) Pressure casting device
JPH0713898Y2 (en) Mold for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4518012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4