JP4650067B2 - Manufacturing method of mold cooling structure - Google Patents

Manufacturing method of mold cooling structure Download PDF

Info

Publication number
JP4650067B2
JP4650067B2 JP2005109542A JP2005109542A JP4650067B2 JP 4650067 B2 JP4650067 B2 JP 4650067B2 JP 2005109542 A JP2005109542 A JP 2005109542A JP 2005109542 A JP2005109542 A JP 2005109542A JP 4650067 B2 JP4650067 B2 JP 4650067B2
Authority
JP
Japan
Prior art keywords
casing
mold
cooling hole
cooling
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005109542A
Other languages
Japanese (ja)
Other versions
JP2006289382A (en
Inventor
隆之 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005109542A priority Critical patent/JP4650067B2/en
Publication of JP2006289382A publication Critical patent/JP2006289382A/en
Application granted granted Critical
Publication of JP4650067B2 publication Critical patent/JP4650067B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3828Moulds made of at least two different materials having different thermal conductivities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0013Conductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

本発明は、冷却水によって金型を冷却する金型冷却構造の製造方法に関するものである。 The present invention relates to a manufacturing method of mold cooling structure for cooling the mold by the cooling water.

従来からダイカスト金型のキャビティ面を冷却するため金型の外表面からキャビティ面近傍まで達する冷却穴を開け、この冷却穴内に冷却水を連続的に供給することが行われる。しかしながら、金型冷却穴とキャビティの間で金型に割れを生じた場合には、冷却穴の冷却水が割れに沿ってキャビティ内に滲み出し鋳造製品の品質に悪影響を及ぼす要因となる。   Conventionally, in order to cool the cavity surface of a die casting mold, a cooling hole reaching from the outer surface of the mold to the vicinity of the cavity surface is formed, and cooling water is continuously supplied into the cooling hole. However, when a crack occurs in the mold between the mold cooling hole and the cavity, the cooling water in the cooling hole oozes out into the cavity along the crack, and becomes a factor that adversely affects the quality of the cast product.

このために、冷却穴内面に熱伝導性の高い金属チューブによるライニングを施すことで、冷却水が金型の割れ部分に侵入することを防止する金型冷却構造が知られている(特許文献1、2参照)。
特開平9−29416号公報 特開平11−156520号公報
For this reason, a mold cooling structure is known in which cooling water is prevented from entering a cracked part of the mold by lining the inner surface of the cooling hole with a metal tube having high thermal conductivity (Patent Document 1). 2).
JP-A-9-29416 JP-A-11-156520

ところで、ライニングを施そうとする金型の冷却穴表面には、冷却穴を開ける際に生じる微細なツールマーク等の凹凸があり、ライニングとの間に微細な空間が生ずるため、例えば、ペースト状の充填剤を冷却穴内面に塗布した後にライニングを圧入したとしても熱伝導性(冷却能力)が著しく落ちる問題点がある。また、特許文献2に示すように、ライニングを薄肉として内圧により冷却穴の内面に密着させるものにおいては、金型保全作業(メンテナンス)等の際、冷却穴の内面に密着しているため、ライニングが取り外せない不具合があった。   By the way, the surface of the cooling hole of the mold to be lined has irregularities such as fine tool marks generated when the cooling hole is opened, and a fine space is formed between the lining and, for example, paste-like Even if the lining is pressed after the filler is applied to the inner surface of the cooling hole, there is a problem that the thermal conductivity (cooling capacity) is remarkably lowered. In addition, as shown in Patent Document 2, in the case where the lining is thin and is in close contact with the inner surface of the cooling hole by internal pressure, the lining is in close contact with the inner surface of the cooling hole during mold maintenance work (maintenance). There was a problem that could not be removed.

そこで本発明は、上記問題点に鑑みてなされたもので、高い冷却能力を発揮し且つメンテナンスに好適な金型冷却構造の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a high delivers cooling capacity and a manufacturing method of a preferred mold cooling structure for maintenance.

本発明は、金型の外表面からキャビティ近傍に達するよう設けた冷却穴に挿入されたケーシング内に通水管を通して冷却水を連続的に供給可能とした金型冷却構造の製造方法において、前記ケーシングの外径と金型の冷却穴の内径とを隙間嵌めの嵌め合いとなる寸法に設定し、前記金型の冷却穴周辺を低融点金属の融点以上の温度に加熱する工程と、加熱溶融した低融点金属を加熱した金型の冷却穴に注入する工程と、前記溶融した低融点金属が注入された冷却穴内にケーシングを挿入する工程と、前記ケーシングが冷却穴に挿入された状態で冷却する工程と、を備えるようにした。 The present invention relates to a method for manufacturing a mold cooling structure in which cooling water can be continuously supplied through a water pipe into a casing inserted into a cooling hole provided so as to reach the vicinity of the cavity from the outer surface of the mold. The outer diameter of the mold and the inner diameter of the cooling hole of the mold are set to dimensions that fit the gap fit, and the periphery of the cooling hole of the mold is heated to a temperature equal to or higher than the melting point of the low-melting-point metal; A step of injecting a low melting point metal into a cooling hole of a heated mold, a step of inserting a casing into the cooling hole into which the molten low melting point metal is injected, and cooling with the casing inserted in the cooling hole. And a process .

したがって、本発明では、ケーシングの外径と金型の冷却穴の内径とを隙間嵌めの嵌め合いとなる寸法に設定し、前記金型の冷却穴周辺を低融点金属の融点以上の温度に加熱する工程と、加熱溶融した低融点金属を加熱した金型の冷却穴に注入する工程と、前記溶融した低融点金属が注入された冷却穴内にケーシングを挿入する工程と、前記ケーシングが冷却穴に挿入された状態で冷却する工程と、を備える金型冷却構造の製造方法であるため、冷却穴へのケーシングの挿入時に、ケーシングと冷却穴との隙間から空気を押出しつつ低融点金属の溶湯が隙間に充填され、両者間に空気溜りが生ずることが防止され、伝熱効率の高い伝熱層を形成することができる。
また、ケーシングの外径と金型の冷却穴の内径とを隙間嵌めの嵌め合いとなる寸法に設定しているため、ケーシングを金型の冷却穴に容易に挿入できると共に、ケーシングと冷却穴との間に介在する溶融金属の厚さ寸法を薄くでき、冷却穴内面とケーシングとの熱伝導性能が低下することを抑制することができる。
しかも、金型の冷却穴に加熱溶融した低融点金属を注入する工程に先立って、金型の冷却穴周辺を低融点金属の融点以上の温度に加熱する工程を備えているため、注入された低融点合金が金型により冷却されて冷却穴3内で流動性が低下されることがなく、金型の冷却穴内面の細かい凹凸部に低融点合金を満遍なく行き渡らせることができ、確実に冷却穴を埋め、熱伝導性能を高めることができる。
Accordingly, in the present invention, the outer diameter of the casing and the inner diameter of the cooling hole of the mold are set to dimensions that allow the fitting of the clearance fit, and the periphery of the cooling hole of the mold is heated to a temperature equal to or higher than the melting point of the low melting point metal. A step of injecting a molten metal with a low melting point into a cooling hole of a heated mold, a step of inserting a casing into the cooling hole into which the molten low melting point metal has been injected, and the casing into the cooling hole. And a step of cooling in the inserted state, and a method of manufacturing a mold cooling structure, and when inserting the casing into the cooling hole, the molten metal of the low melting point metal is extruded while extruding air from the gap between the casing and the cooling hole. It is possible to form a heat transfer layer with high heat transfer efficiency by preventing the air from being left between the two because the gap is filled.
In addition, since the outer diameter of the casing and the inner diameter of the cooling hole of the mold are set to dimensions that fit in the clearance fit, the casing can be easily inserted into the cooling hole of the mold, and the casing and the cooling hole The thickness dimension of the molten metal interposed between the two can be reduced, and the heat conduction performance between the cooling hole inner surface and the casing can be prevented from being lowered.
In addition, prior to the step of injecting the low melting point metal melted into the mold cooling hole, the step of heating the periphery of the mold cooling hole to a temperature equal to or higher than the melting point of the low melting point metal was injected. The low melting point alloy is not cooled by the mold and the fluidity is not lowered in the cooling hole 3, and the low melting point alloy can be spread evenly on the fine irregularities on the inner surface of the cooling hole of the mold, so that the cooling is reliably performed. The hole can be filled to improve the heat conduction performance.

以下、本発明の金型冷却構造およびその製造方法の一実施形態を図1〜図6に基づいて説明する。図1は本発明を適用した金型冷却構造の第1実施例を示す断面図、図2は図1のA部の詳細断面図、図3および図4は製造方法を示す説明図、図5および図6は金型冷却構造の第2実施例を示す断面図および分解状態を示す断面図である。   Hereinafter, an embodiment of a mold cooling structure and a manufacturing method thereof according to the present invention will be described with reference to FIGS. 1 is a cross-sectional view showing a first embodiment of a mold cooling structure to which the present invention is applied, FIG. 2 is a detailed cross-sectional view of part A of FIG. 1, FIGS. 3 and 4 are explanatory views showing a manufacturing method, FIG. FIG. 6 is a cross-sectional view showing a second embodiment of the mold cooling structure and a cross-sectional view showing an exploded state.

図1において、第1実施例の金型冷却構造は、ダイカスト鋳造等で使用される金型1の外側面からキャビティ面2近傍まで達するように開けられた冷却穴3内に挿入されるケーシング4と、ケーシング4内に挿入されて冷却水をケーシング4内の奥側に導く通水管5と、通水管5の基部を支持し且つケーシング4の開口端に固定され、給水コネクタ6Aに供給される冷却水を通水管5に供給し且つケーシング4内の冷却水を排水コネクタ6Bに導く図示しない通路を備える配管継手6とを備える。前記配管継手6と通水管5とは一体に形成され、これらとケーシング4とは一体に合体されているが、分解可能であっても、また、ロウ付け等により非分解となっているものであってもよい。   In FIG. 1, the mold cooling structure of the first embodiment is a casing 4 inserted into a cooling hole 3 opened so as to reach from the outer surface of a mold 1 used in die casting or the like to the vicinity of a cavity surface 2. And a water pipe 5 that is inserted into the casing 4 to guide the cooling water to the inner side of the casing 4, supports the base of the water pipe 5, is fixed to the open end of the casing 4, and is supplied to the water supply connector 6A. A pipe joint 6 including a passage (not shown) for supplying cooling water to the water pipe 5 and guiding the cooling water in the casing 4 to the drainage connector 6B is provided. The pipe joint 6 and the water pipe 5 are integrally formed, and the casing 4 and the casing 4 are united together. However, even if it can be disassembled, it is not disassembled by brazing or the like. There may be.

前記ケーシング4は、断面が円筒形であり、先端は半球殻形をなし、基部が配管継手6に固定されて閉空間を形成しており、熱伝導率に優れる銅(Cu)等の材質で製作される。このケーシング4の外径は、金型1の冷却穴3の内径よりも若干小さめに形成するも両者間に少しの隙間が存在する「すきま嵌め」程度の嵌め合いとして冷却穴3に容易に挿入可能としている。また、先端の半球殻表面の半径も、冷却穴3の穴底に形成される半球状の窪みの半径よりも若干小さめに形成して両者間に少しの隙間が存在する程度の大きさとする。また、ケーシング4の軸方向長さは、冷却穴3の軸方向の深さより大きく形成して、ケーシング4を冷却穴3に挿入した際に、ケーシング4の基部が金型1の外表面から突出するようにする。このため、ケーシング4の基部に固定される配管継手6は、金型1の外表面から所定間隔をあけて配置されることとなって、配管継手6の給水コネクタ6Aおよび排水コネクタ6Bも金型1の外表面から浮かせて配置でき、各コネクタ6A、6Bへのホース接続がし易くなる。   The casing 4 is cylindrical in cross section, has a hemispherical shell at the tip, and a base is fixed to the pipe joint 6 to form a closed space. The casing 4 is made of a material such as copper (Cu) having excellent thermal conductivity. Produced. Although the outer diameter of the casing 4 is slightly smaller than the inner diameter of the cooling hole 3 of the mold 1, it is easily inserted into the cooling hole 3 as a “slip fit” fit with a slight gap between them. It is possible. In addition, the radius of the surface of the hemispherical shell at the tip is also made slightly smaller than the radius of the hemispherical depression formed at the bottom of the cooling hole 3 so that there is a small gap between them. Further, the axial length of the casing 4 is formed larger than the axial depth of the cooling hole 3, and the base of the casing 4 protrudes from the outer surface of the mold 1 when the casing 4 is inserted into the cooling hole 3. To do. For this reason, the pipe joint 6 fixed to the base of the casing 4 is arranged at a predetermined interval from the outer surface of the mold 1, and the water supply connector 6 </ b> A and the drain connector 6 </ b> B of the pipe joint 6 are also molds. 1 can be hung from the outer surface of 1 and hose connection to each connector 6A, 6B becomes easy.

そして、ケーシング4の冷却穴3への挿入状態において、ケーシング4の外周面と冷却穴3の内周面との間の隙間には、図2に示すように、低融点合金7、例えば、溶融させたはんだ材料が流し込まれて両者間に空気層が介在しないようにしてあると共に、同じ低融点合金が冷えて固化することで冷却穴3内にケーシング4を固定するようにしている。このため、金型1とケーシング4とは低融点合金を介して伝熱することとなり、この間に空気層が存在する場合に比較して飛躍的に冷却能力を向上させることができる。この低融点合金7は、例えば、図1に示すように、金型1のキャビティ2へ連なる割れCがある場合には、金型1による鋳物の生産工程での使用時に繰返し生ずる金型1の温度上昇および温度下降の過程で、前記隙間から割れCに浸透して金型1の割れCを修復するようにも機能する。   And in the insertion state to the cooling hole 3 of the casing 4, in the clearance gap between the outer peripheral surface of the casing 4 and the inner peripheral surface of the cooling hole 3, as shown in FIG. The solder material thus poured is poured so that there is no air layer between them, and the same low melting point alloy is cooled and solidified to fix the casing 4 in the cooling hole 3. For this reason, the mold 1 and the casing 4 conduct heat through the low melting point alloy, and the cooling capacity can be dramatically improved as compared with the case where an air layer exists between them. For example, as shown in FIG. 1, when the low melting point alloy 7 has a crack C continuous to the cavity 2 of the mold 1, the low melting point alloy 7 of the mold 1 is repeatedly generated when used in the casting production process. It also functions to repair the crack C of the mold 1 by penetrating into the crack C through the gap in the process of temperature increase and temperature decrease.

以上の構成の金型冷却構造においては、給水コネクタ6Aに図示しない給水ホースを接続し、且つ、排水コネクタ6Bに排水ホースを接続することで、使用することができる。給水コネクタ6Aへ供給された冷却水は配管継手6の通路を経由して通水管5に導かれ、通水管5の先端からケーシング4の先端に噴出され、ケーシング4内を先端から基部側に流れ、配管継手6の通路を経由して排水コネクタ6Bに排出され、図示しない排水ホースにより排出される。ケーシング4内の冷却水の通過によりキャビティ2内に注入された溶湯を部分的に冷却し、これにより各部分での溶湯の凝固速度を可及的に均一化して、巣や引け、割れ等の鋳造欠陥の発生を抑制する。   The mold cooling structure having the above configuration can be used by connecting a water supply hose (not shown) to the water supply connector 6A and connecting the drainage hose to the drainage connector 6B. The cooling water supplied to the water supply connector 6A is guided to the water pipe 5 through the passage of the pipe joint 6, and is jetted from the tip of the water pipe 5 to the tip of the casing 4, and flows in the casing 4 from the tip to the base side. Then, it is discharged to the drainage connector 6B through the passage of the pipe joint 6 and discharged by a drainage hose (not shown). The molten metal injected into the cavity 2 is partially cooled by the passage of the cooling water in the casing 4, thereby uniformizing the solidification rate of the molten metal in each portion as much as possible, such as nests, shrinkage, cracks, etc. Suppresses the occurrence of casting defects.

そして鋳造サイクル毎に繰り返される熱負荷による影響によって、金型1に金属疲労が生じ易い。この金属疲労により金型1にクラックCが生じる場合には、冷却穴3の内側に低融点合金7により固定したケーシング4が存在するため、冷却水は低融点合金7およびケーシング4により外部への漏洩が阻止され、これにより冷却水と溶湯との反応による危険性を回避することができて安全性を向上することができる。また、低融点合金7により金型1の冷却穴3とケーシング4との間の熱伝達効率を高めることができ、それだけ溶湯の冷却効果を向上することができる。   And metal fatigue tends to occur in the mold 1 due to the influence of the thermal load repeated every casting cycle. When a crack C occurs in the mold 1 due to this metal fatigue, the casing 4 fixed by the low melting point alloy 7 exists inside the cooling hole 3, so that the cooling water is discharged to the outside by the low melting point alloy 7 and the casing 4. Leakage is prevented, thereby avoiding the danger due to the reaction between the cooling water and the molten metal and improving the safety. Moreover, the heat transfer efficiency between the cooling hole 3 of the metal mold | die 1 and the casing 4 can be improved with the low melting-point alloy 7, and the cooling effect of a molten metal can be improved that much.

次に、図3および図4に基づいて金型冷却構造の製造方法を、以下に説明する。   Next, a method for manufacturing the mold cooling structure will be described below with reference to FIGS.

図3に示すように、先ず、低融点合金7を加熱溶融する一方、金型1の冷却穴3の近辺の温度が低融点合金の融点以上となるように加熱する。次いで、低融点合金7の溶湯を金型1の冷却穴3に充填する。金型1の冷却穴3周辺は低融点合金7の融点以上の温度に加熱されているため、低融点合金7が金型1により冷却されて冷却穴3内で直に固化することがない。   As shown in FIG. 3, first, the low melting point alloy 7 is heated and melted, and is heated so that the temperature in the vicinity of the cooling hole 3 of the mold 1 is equal to or higher than the melting point of the low melting point alloy. Next, the molten metal of the low melting point alloy 7 is filled in the cooling hole 3 of the mold 1. Since the periphery of the cooling hole 3 of the mold 1 is heated to a temperature equal to or higher than the melting point of the low melting point alloy 7, the low melting point alloy 7 is not cooled by the mold 1 and solidifies directly in the cooling hole 3.

次いで、ケーシング4(配管継手6および通水管5との組立状態になっている場合でもよい。以下では、ケーシング4のみを記載するが、同様のことを意味している)を冷却穴3内に挿入し、ケーシング4の先端の半球殻部が冷却穴3の底の半球形の窪みに当接するまで押込む。このケーシング4の冷却穴3への押込みにより、冷却穴3内に充填された低融点合金7の溶湯は、ケーシング4と冷却穴3との隙間から空気を上方へ押出しつつ両者間の隙間を通って上昇し、両者間に満遍なく充填される。このように、空気を押出しつつ溶湯が上昇するため、両者間に空気溜りが生ずることが防止される。隙間を埋めた余剰の低融点合金7の溶湯はケーシング4と金型1の冷却穴3の開口との隙間から流れ出す。このとき、配管継手6のコネクタ6A、6Bの向き等をケーシング4若しくは配管継手6を冷却穴3内で軸回りに回転させて調整する。   Next, the casing 4 (which may be in an assembled state with the pipe joint 6 and the water pipe 5 may be used. In the following, only the casing 4 is described, but the same thing is meant) is placed in the cooling hole 3. Insert and push until the hemispherical shell at the tip of the casing 4 abuts the hemispherical depression at the bottom of the cooling hole 3. As the casing 4 is pushed into the cooling hole 3, the molten metal of the low melting point alloy 7 filled in the cooling hole 3 passes through the gap between the casing 4 and the cooling hole 3 while extruding air upward from the gap between the casing 4 and the cooling hole 3. And rises evenly between the two. Thus, since the molten metal rises while extruding air, it is prevented that an air pool is generated between them. The surplus molten metal of the low melting point alloy 7 filling the gap flows out from the gap between the casing 4 and the opening of the cooling hole 3 of the mold 1. At this time, the direction of the connectors 6A and 6B of the pipe joint 6 is adjusted by rotating the casing 4 or the pipe joint 6 around the axis in the cooling hole 3.

この状態で、金型1の温度を低下させることにより、冷却穴3内に低融点合金7の凝固・固着によりケーシング4を固定することができる。   In this state, by lowering the temperature of the mold 1, the casing 4 can be fixed in the cooling hole 3 by solidification and fixation of the low melting point alloy 7.

なお、ケーシング4内若しくは通水管5の分解や清掃若しくはケーシング4の交換等のために、ケーシング4を金型1の冷却穴3から分解する場合には、金型1特に冷却穴3周辺を低融点合金7の融点以上に加熱して低融点合金7を溶融させることにより、ケーシング4を冷却穴3から容易に取出すことができ、冷却穴3内に溜まった低融点合金7を取出せば作業は完了する。取出して固化させた低融点合金7は、次回のケーシング4の固定に再び使用することができる。   When disassembling the casing 4 from the cooling hole 3 of the mold 1 for disassembling or cleaning the casing 4 or the water pipe 5 or replacing the casing 4, the mold 1, particularly the periphery of the cooling hole 3 is lowered. The casing 4 can be easily taken out from the cooling hole 3 by heating the melting point of the melting point alloy 7 or higher to melt the low melting point alloy 7, and if the low melting point alloy 7 accumulated in the cooling hole 3 is taken out, the operation is performed. Complete. The low melting point alloy 7 taken out and solidified can be used again for the next fixing of the casing 4.

なお、上記製造方法において、溶湯となった低融点合金7を冷却穴3に注入するものについて説明したが、図示しないが、低融点金属7の小片を加熱した金型1の冷却穴3内に投入して冷却穴3内で溶融させるようにしてもよい。   In the above manufacturing method, the low melting point alloy 7 that has become a molten metal is poured into the cooling hole 3. Although not shown, the small piece of the low melting point metal 7 is heated in the cooling hole 3 of the mold 1. It may be charged and melted in the cooling hole 3.

図5に示す第2実施例の金型冷却構造においては、配管継手6と通水管5とは、図6に示すように、一体に形成されているが、ケーシング4をこれらと独立させて形成したものである。ケーシング4は、単独に形成されているため、その開口部4Aを厚肉に形成して、開口部4Aでの変形等が生じるのを防止していると共に、開口部4Aの内周にねじ4Bを形成して、配管継手6に設けた取付ねじ部6Cをねじ込むことにより配管継手6と一体化可能となっている。また、金型1の冷却穴3への挿入においても、ケーシング4単独で挿入することも配管継手6と一体となった状態で挿入することも可能となっている。その他の構成および製造方法は図1〜図4に示す第1実施例と同様である。   In the mold cooling structure of the second embodiment shown in FIG. 5, the pipe joint 6 and the water pipe 5 are integrally formed as shown in FIG. 6, but the casing 4 is formed independently of these. It is a thing. Since the casing 4 is formed independently, the opening 4A is formed thick so as to prevent deformation or the like in the opening 4A, and a screw 4B is provided on the inner periphery of the opening 4A. Is formed, and it can be integrated with the pipe joint 6 by screwing the mounting screw portion 6 </ b> C provided in the pipe joint 6. In addition, when the mold 1 is inserted into the cooling hole 3, it is possible to insert the casing 4 alone or in a state of being integrated with the pipe joint 6. Other configurations and manufacturing methods are the same as those of the first embodiment shown in FIGS.

この金型冷却構造においては、通水管5が一体となった配管継手6をケーシング4から分離することができるため、ケーシング4内面の水垢除去等の補修や通水管5および配管継手6の補修・交換等のメンテナンスを容易に行える効果がある。また、ケーシング4のみを冷却穴3から取り外して交換・補修することもできる。   In this mold cooling structure, since the pipe joint 6 in which the water pipe 5 is integrated can be separated from the casing 4, repair such as removal of scale on the inner surface of the casing 4, repair of the water pipe 5 and the pipe joint 6, There is an effect that maintenance such as replacement can be easily performed. Further, only the casing 4 can be removed from the cooling hole 3 for replacement / repair.

本実施形態においては、以下に記載する効果を奏することができる。   In the present embodiment, the following effects can be achieved.

(ア)金型1の外表面からキャビティ2近傍に達するよう設けた冷却穴3に挿入されたケーシング4内に通水管5を通して冷却水を連続的に供給可能とした金型冷却構造において、前記ケーシング4は冷却穴3の全内周面を内方から覆って冷却穴3に挿入され、冷却穴3内面との隙間に低融点金属よりなる溶融金属材7が充填固化されて伝熱層を形成するため、冷却水のキャビティ2側への漏れを確実に防止でき且つ伝熱層により高い冷却能力を発揮でき、伝熱層を加熱により溶融させればケーシング4等の構成部品を冷却穴3から取り外すことができ、メンテナンスが容易である。   (A) In the mold cooling structure in which cooling water can be continuously supplied through a water pipe 5 into a casing 4 inserted into a cooling hole 3 provided so as to reach the vicinity of the cavity 2 from the outer surface of the mold 1. The casing 4 covers the entire inner peripheral surface of the cooling hole 3 from the inside and is inserted into the cooling hole 3, and a molten metal material 7 made of a low melting point metal is filled and solidified in the gap with the inner surface of the cooling hole 3 to form a heat transfer layer. Therefore, if the heat transfer layer is melted by heating, the components such as the casing 4 can be cooled by the cooling hole 3. It is easy to maintain.

(イ)冷却水を通水管5に導くと共に通水管5とケーシング4との間の冷却水を外部に排出する通路を備える配管継手6をケーシング4の開口端に固定して一体化されているため、溶融した低融点金属7が注入された冷却穴3に、これらが一体化されたケーシング4を挿入し冷却するのみで、金型冷却構造を構成することができる。   (A) The pipe joint 6 having a passage for guiding the cooling water to the water pipe 5 and discharging the cooling water between the water pipe 5 and the casing 4 to the outside is fixed to the opening end of the casing 4 and integrated. Therefore, the mold cooling structure can be configured only by inserting and cooling the casing 4 integrated with the cooling hole 3 into which the molten low melting point metal 7 is injected.

(ウ)この場合、配管継手6と一体不可分に形成した場合には、冷却穴3に挿入されるケーシング4等の構成部材は、ユニット毎に交換することとなるが、配管継手6を分離可能に固定した場合には、配管継手6および通水管5を冷却穴3に固定されているケーシング4から分離して、補修することができ、ケーシング4内面の補修も可能となる。   (C) In this case, when formed integrally with the pipe joint 6, components such as the casing 4 inserted into the cooling hole 3 are replaced for each unit, but the pipe joint 6 can be separated. When the pipe joint 6 and the water pipe 5 are fixed to the cooling hole 3, the pipe joint 6 and the water pipe 5 can be separated and repaired from the casing 4 fixed to the cooling hole 3, and the inner surface of the casing 4 can be repaired.

(エ)前記ケーシング4の開口端を冷却穴3の開口より突出させて配置すると、ケーシング4と冷却穴3との隙間から溢れた低融点金属7がケーシング4内に流れ込むことが防止でき、ケーシング4内面からの低融点金属7の除去等を行う作業を削減できる。   (D) When the opening end of the casing 4 is arranged so as to protrude from the opening of the cooling hole 3, the low melting point metal 7 overflowing from the gap between the casing 4 and the cooling hole 3 can be prevented from flowing into the casing 4, and the casing 4 The work of removing the low melting point metal 7 from the inner surface can be reduced.

(オ)金型1の冷却穴3周辺を低融点金属7の融点以上の温度に加熱する工程と、加熱溶融した低融点金属7を加熱した金型1の冷却穴3に注入するか、もしくは、金型1の冷却穴3内で低融点金属7を溶融させる工程と、前記溶融した低融点金属7が注入された冷却穴3内にケーシング4を挿入する工程と、前記ケーシング4が冷却穴3に挿入された状態で冷却する工程と、を備える金型冷却構造の製造方法であるため、冷却穴3へのケーシング4の挿入時に、ケーシング4と冷却穴3との隙間から空気を押出しつつ低融点金属7の溶湯が隙間に充填され、両者間に空気溜りが生ずることが防止され、伝熱効率の高い伝熱層を形成することができる。   (E) heating the periphery of the cooling hole 3 of the mold 1 to a temperature equal to or higher than the melting point of the low melting point metal 7 and injecting the heat-melted low melting point metal 7 into the cooling hole 3 of the heated mold 1; , A step of melting the low melting point metal 7 in the cooling hole 3 of the mold 1, a step of inserting the casing 4 into the cooling hole 3 into which the molten low melting point metal 7 is injected, and the casing 4 is a cooling hole 3 is a method of manufacturing a mold cooling structure including a step of cooling in a state of being inserted into the cooling hole 3, so that air is pushed out from the gap between the casing 4 and the cooling hole 3 when the casing 4 is inserted into the cooling hole 3. The molten metal of the low melting point metal 7 is filled in the gap, preventing air from being trapped between the two, and a heat transfer layer with high heat transfer efficiency can be formed.

本発明の一実施形態の第1実施例を示す金型冷却構造の断面図。Sectional drawing of the metal mold | die cooling structure which shows the 1st Example of one Embodiment of this invention. 同じく図1のA部の詳細断面図。The detailed sectional view of the A section of Drawing 1 similarly. 金型冷却構造の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of a metal mold | die cooling structure. 図3に続く金型冷却構造の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of the metal mold | die cooling structure following FIG. 第2実施例を示す金型冷却構造の断面図。Sectional drawing of the metal mold | die cooling structure which shows 2nd Example. 図5に示す金型冷却構造の分解図。FIG. 6 is an exploded view of the mold cooling structure shown in FIG. 5.

符号の説明Explanation of symbols

1 金型
2 キャビティ面
3 冷却穴
4 ケーシング
5 通水管
6 配管継手
7 低融点金属
1 Mold 2 Cavity surface 3 Cooling hole 4 Casing 5 Water pipe 6 Piping joint 7 Low melting point metal

Claims (1)

金型の外表面からキャビティ近傍に達するよう設けた冷却穴に挿入されたケーシング内に通水管を通して冷却水を連続的に供給可能とした金型冷却構造の製造方法において、
前記ケーシングの外径と金型の冷却穴の内径とを隙間嵌めの嵌め合いとなる寸法に設定し、
前記金型の冷却穴周辺を低融点金属の融点以上の温度に加熱する工程と、
加熱溶融した低融点金属を加熱した金型の冷却穴に注入する工程と、
前記溶融した低融点金属が注入された冷却穴内にケーシングを挿入する工程と、
前記ケーシングが冷却穴に挿入された状態で冷却する工程と、を備えることを特徴とする金型冷却構造の製造方法。
In the manufacturing method of the mold cooling structure that can continuously supply the cooling water through the water pipe into the casing inserted in the cooling hole provided so as to reach the vicinity of the cavity from the outer surface of the mold,
Set the outer diameter of the casing and the inner diameter of the cooling hole of the mold to a dimension that fits the gap fit,
Heating the periphery of the cooling hole of the mold to a temperature equal to or higher than the melting point of the low melting point metal;
Engineering and as you inject heating and melting the low melting point metal in the cooling holes of a mold heated,
Inserting a casing into the cooling hole filled with the molten low melting point metal;
And a step of cooling the casing in a state of being inserted into the cooling hole.
JP2005109542A 2005-04-06 2005-04-06 Manufacturing method of mold cooling structure Expired - Fee Related JP4650067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005109542A JP4650067B2 (en) 2005-04-06 2005-04-06 Manufacturing method of mold cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005109542A JP4650067B2 (en) 2005-04-06 2005-04-06 Manufacturing method of mold cooling structure

Publications (2)

Publication Number Publication Date
JP2006289382A JP2006289382A (en) 2006-10-26
JP4650067B2 true JP4650067B2 (en) 2011-03-16

Family

ID=37410547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005109542A Expired - Fee Related JP4650067B2 (en) 2005-04-06 2005-04-06 Manufacturing method of mold cooling structure

Country Status (1)

Country Link
JP (1) JP4650067B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4704315B2 (en) * 2006-10-30 2011-06-15 本田技研工業株式会社 Mold repair method
JP2008284555A (en) * 2007-05-15 2008-11-27 Mitsubishi Electric Corp Die for die casting
JP5412386B2 (en) * 2009-08-17 2014-02-12 株式会社スグロ鉄工 Thin-walled bottomed cylindrical metal member and manufacturing method thereof
JP5593241B2 (en) * 2011-01-27 2014-09-17 ジヤトコ株式会社 Mold cooling structure and manufacturing method thereof
JP5487242B2 (en) 2011-06-15 2014-05-07 佳代 渡▲邊▼ Water flow mechanism, manufacturing method thereof, and bushing device
JP5912870B2 (en) * 2011-07-29 2016-04-27 住友重機械工業株式会社 Injection molding machine
JP5839482B2 (en) * 2012-05-29 2016-01-06 住友重機械工業株式会社 Injection molding machine
CN104853865B (en) * 2012-12-13 2017-11-14 渡边佳代 The manufacture method of the sealing structure of filler and filler
JP6351319B2 (en) * 2014-03-18 2018-07-04 ジヤトコ株式会社 Mold cooling structure and manufacturing method thereof
JP6613805B2 (en) * 2015-10-23 2019-12-04 トヨタ自動車株式会社 Mold cooling structure
CN105750499B (en) * 2016-04-21 2018-02-09 清华大学 A kind of method using profile-followed chill and forced convertion to investment-casting Local cooling
JP6170265B1 (en) * 2016-08-22 2017-07-26 有限会社豊岡製作所 Bottomed cooling pipe structure for cooling structure
JP2020006404A (en) * 2018-07-09 2020-01-16 トヨタ自動車株式会社 Formation method of cooling structure
CN112620587A (en) * 2020-12-03 2021-04-09 广东鸿泰科技股份有限公司 Mold cooling device with water separation sleeve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399767A (en) * 1989-09-12 1991-04-24 Toyota Motor Corp Method for manufacturing internal chilling piping in casting metallic mold
JPH05169189A (en) * 1991-12-24 1993-07-09 Honda Motor Co Ltd Cooling pipe device for casting metallic mold
JPH0929416A (en) * 1995-07-25 1997-02-04 Yoneya Seisakusho:Kk Method of cooling molten metal for die and device therefor and molten metal cooling pin for die
JP2000210940A (en) * 1999-01-25 2000-08-02 Hitachi Metals Ltd Mold cooling structure and mold cooling method
JP2004322470A (en) * 2003-04-24 2004-11-18 Mitsuboshi Belting Ltd Mold for vulcanizing rubber and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399767A (en) * 1989-09-12 1991-04-24 Toyota Motor Corp Method for manufacturing internal chilling piping in casting metallic mold
JPH05169189A (en) * 1991-12-24 1993-07-09 Honda Motor Co Ltd Cooling pipe device for casting metallic mold
JPH0929416A (en) * 1995-07-25 1997-02-04 Yoneya Seisakusho:Kk Method of cooling molten metal for die and device therefor and molten metal cooling pin for die
JP2000210940A (en) * 1999-01-25 2000-08-02 Hitachi Metals Ltd Mold cooling structure and mold cooling method
JP2004322470A (en) * 2003-04-24 2004-11-18 Mitsuboshi Belting Ltd Mold for vulcanizing rubber and its production method

Also Published As

Publication number Publication date
JP2006289382A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4650067B2 (en) Manufacturing method of mold cooling structure
JP2006150976A (en) Mold for working plastic material
CN103561886B (en) Bushing device, drainage mechanism and manufacture method thereof
JP4518012B2 (en) Mold cooling structure and cooling method
KR101820812B1 (en) Bonding method for cooling line of die-casting mold using explosive welding
JP3053042B2 (en) Manufacturing method of molding die having heating / cooling passage hole
KR102398651B1 (en) Cooling apparatus for die-casting die
KR101824500B1 (en) Chill Vent for Die Casting
JP5593241B2 (en) Mold cooling structure and manufacturing method thereof
CN111644596A (en) Casting method of integral water-cooled motor shell with prefabricated spiral water channel
RU2549817C2 (en) Control system composed of bar and feed pipe for heating of distribution pipe structures used at metal casting
JP2000254768A (en) Metallic mold for inserting pipe as cast-in
JP2007222880A (en) Die
CN105156588A (en) Plug-in steel wire rope connector and manufacturing method thereof
KR101061947B1 (en) Die casting mold equipment
WO2017067317A1 (en) Process for manufacturing variable cross section metal flow channel water-cooling heat dissipation die-cast cavity
JP2010538835A (en) MOLD FOR CONTINUOUS METAL CASTING AND METHOD FOR PRODUCING THE MOLD
JP3339503B2 (en) Mold for cast-in pipe
JP2000042717A (en) Die with built-in pipe for adjusting temperature
KR101864323B1 (en) Cooler assembly and manufacturing method thereof
KR20040001777A (en) A bore pin for cooling in die casting metallic pattern
JP4692114B2 (en) Continuous casting mold
JP5164893B2 (en) Long nozzle and manufacturing method thereof
JPH1157972A (en) Pressure casting device
JP6624574B2 (en) Mold and mold manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Ref document number: 4650067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees