JP2008284555A - Die for die casting - Google Patents

Die for die casting Download PDF

Info

Publication number
JP2008284555A
JP2008284555A JP2007128770A JP2007128770A JP2008284555A JP 2008284555 A JP2008284555 A JP 2008284555A JP 2007128770 A JP2007128770 A JP 2007128770A JP 2007128770 A JP2007128770 A JP 2007128770A JP 2008284555 A JP2008284555 A JP 2008284555A
Authority
JP
Japan
Prior art keywords
die
outer member
cooling
molten metal
inner member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007128770A
Other languages
Japanese (ja)
Inventor
Hidenori Ida
英紀 伊田
Kazuya Matsumoto
和也 松本
Hiroyuki Nakatsuma
浩之 中妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007128770A priority Critical patent/JP2008284555A/en
Publication of JP2008284555A publication Critical patent/JP2008284555A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a die for die casting, which die can improve its cooling performance without lowering its safety performance. <P>SOLUTION: The die 1 for die casting comprises a cooling portion 100 composed of an outer member 101 having a surface 107 to be brought into contact with molten metal, and an inner member 103 which is formed such that its one surface side is buried in the outer member 101 on the opposite side of the surface 107 of the outer member 101 to be brought into contact with molten metal, and is composed of a copper member provided with a cooling water flowing portion 102 on the opposite surface side of the outer member 101. The cooling portion 100 comprises an interface layer portion 104 between the outer member 101 and the inner member 103, wherein interface layer portion 104 has the heat conductivity higher than that of the outer member 101, and has particles. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、ダイカスト金型に関するものであり、特に安全性能を低下することなく冷却性能を高めたものである。   The present invention relates to a die-casting mold, and in particular, has improved cooling performance without deteriorating safety performance.

従来のダイカスト金型は、キャビティ内に注入された溶融金属を凝固させるため、金型の内部に冷却水を通水するための冷却水用通路が設けられている。プランジャーチップによって高速で射出され、高圧で押圧された溶融金属(以下、「溶湯」と示す)が衝突する部位は、この押圧に耐えることができるように金型の肉厚を厚くする必要がある。このため、従来のダイカスト金型においては、冷却水用通路に冷却水を通水したとしても、冷却水から溶湯接触面までの距離が長く、所望の冷却効果が得られないという問題があった。そこで特許文献1には、このような問題を解決するための技術として、溶湯が接する部分の金型の肉厚を比較的薄肉(5〜15mm)とするが、冷却水空間内に当該薄肉部を内側から支える部材を設置することで、ダイカスト金型の強度確保と冷却性能との両立を図っている。   The conventional die casting mold is provided with a cooling water passage for passing cooling water through the mold in order to solidify the molten metal injected into the cavity. It is necessary to increase the thickness of the mold so that the molten metal (hereinafter referred to as “molten metal”) injected at high speed by the plunger tip and collided with high pressure can withstand this pressing. is there. For this reason, the conventional die casting mold has a problem that even if the cooling water is passed through the cooling water passage, the distance from the cooling water to the molten metal contact surface is long and a desired cooling effect cannot be obtained. . Therefore, in Patent Document 1, as a technique for solving such a problem, the thickness of the mold at the portion where the molten metal comes into contact is relatively thin (5 to 15 mm). By installing a member that supports the inside from the inside, the strength of the die casting mold is ensured and the cooling performance is compatible.

特開2005−74445号公報(4頁37〜44行、図3)Japanese Patent Laying-Open No. 2005-74445 (page 4, lines 37 to 44, FIG. 3)

従来のダイカスト金型は、冷却水と溶湯接触面との間は薄肉の単一部材で構成されているため、ダイカスト金型にクラックが発生、進展した場合には、冷却水用通路と溶湯が注入されるキャビティとが連通することに成り、冷却水がキャビティに噴出し、ダイカスト成形することができなくなるという問題があった。また、噴出した水と溶湯とが接触することによって水蒸気爆発が生じるおそれがあるという問題点があった。   Since the conventional die casting mold is composed of a thin single member between the cooling water and the molten metal contact surface, when a crack is generated or progresses in the die casting mold, the cooling water passage and the molten metal are not formed. There was a problem that the injected cavity communicated with each other, and cooling water was ejected into the cavity, making it impossible to die-cast. Further, there has been a problem that a steam explosion may occur due to contact between the jetted water and the molten metal.

この発明は上記のような課題を解決するために成されたものであり、安全性能を低下させることなく、冷却性能を高めることができるダイカスト金型を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a die casting mold that can improve cooling performance without deteriorating safety performance.

この発明は、溶湯が接する面を有す外側部材と、外側部材の溶湯が接する面と相反する面側に一方面側が埋設されて形成され外側部材と相反する面側に冷却水通水部が設けられた銅または銅合金にて構成される内側部材とにて構成される冷却部を備えたダイカスト金型において、
冷却部は、外側部材と内側部材との間に外側部材の熱伝導率より熱伝導率が高く、かつ粒子を具備する界面層部を備えたものである。
According to the present invention, an outer member having a surface with which the molten metal comes into contact, and a surface through which the molten metal of the outer member is opposed to the surface with which the molten metal comes into contact are embedded, and a cooling water passage portion is formed on the side opposite to the outer member. In a die-casting die provided with a cooling part constituted by an inner member constituted by provided copper or copper alloy,
The cooling part includes an interface layer part having a thermal conductivity higher than that of the outer member and having particles between the outer member and the inner member.

この発明のダイカスト金型は、溶湯が接する面を有す外側部材と、外側部材の溶湯が接する面と相反する面側に一方面側が埋設されて形成され外側部材と相反する面側に冷却水通水部が設けられた銅または銅合金にて構成される内側部材とにて構成された冷却部を備えたダイカスト金型において、
冷却部は外側部材と内側部材との間に外側部材の熱伝導率より熱伝導率が高く、かつ粒子を具備する界面層部を備えたので、安全性能を低下させることなく冷却性能が向上する。
The die casting mold according to the present invention includes an outer member having a surface in contact with the molten metal, and a cooling water on a surface side opposite to the outer member formed by embedding one surface side on the surface side opposite to the surface in contact with the molten metal of the outer member. In a die-casting die having a cooling part constituted by an inner member constituted by copper or a copper alloy provided with a water passage part,
The cooling part has a higher thermal conductivity than that of the outer member between the outer member and the inner member, and has an interface layer part having particles, so that the cooling performance is improved without deteriorating the safety performance. .

実施の形態1.
以下、本願発明の実施の形態について説明する。図1はこの発明の実施の形態1によるダイカスト金型の冷却部の構成を示した断面図、図2は図1に示したダイカスト金型の有効性を示すための表を示した図、図3および図4は図1に示した冷却部のダイカスト金型の設置位置を示す断面図である。そしてここでは、型締力350トンのダイカスト金型の一部である分流子型を例に説明する(尚、「分流子型」とはプランジャーチップにより射出された溶湯を、スリーブからキャビティに連通している複数の湯道に分岐させる役目をする金型部品である。)。図において、ダイカスト金型1の冷却部100は、溶湯が接する面107を有す外側部材101と、外側部材101の溶湯が接する面107と相反する面側に一方面側が埋設されて形成される内側部材103と、この内側部材103の外側部材101と相反する面側に冷却水を通水するための形成された冷却水通水部102と、外側部材101と内側部材103との間に外側部材103の熱伝導率より熱伝導率が高く、かつ粒子を具備する界面層部104とにて構成されている。
Embodiment 1 FIG.
Embodiments of the present invention will be described below. 1 is a cross-sectional view showing the configuration of a cooling unit of a die-casting die according to Embodiment 1 of the present invention, FIG. 2 is a diagram showing a table for showing the effectiveness of the die-casting die shown in FIG. 3 and 4 are cross-sectional views showing the installation positions of the die casting molds of the cooling section shown in FIG. In this example, a diverter mold that is a part of a die casting mold having a clamping force of 350 tons will be described as an example. (Note that the “flow diverter mold” refers to the molten metal injected by the plunger tip from the sleeve to the cavity. This is a mold part that serves to diverge into a plurality of communicating runners.) In the figure, the cooling part 100 of the die-casting die 1 is formed by embedding one side of the outer member 101 having a surface 107 in contact with the molten metal and the surface of the outer member 101 opposite to the surface 107 in contact with the molten metal. An inner member 103, a cooling water passage portion 102 for passing cooling water on a surface side opposite to the outer member 101 of the inner member 103, and an outer side between the outer member 101 and the inner member 103. The thermal conductivity of the member 103 is higher than that of the member 103, and the interface layer portion 104 includes particles.

外側部材101はダイカスト金型1として一般的に用いられる例えば、熱間工具鋼のSKD61材(熱伝導率27W/(m・K))から構成される。また、内側部材103は例えば、熱伝導率の高い純銅(「純銅」とは、例えば工業用純銅「タフピッチ銅(JIS C1100)」を用いており、熱伝導率390W/(m・K)である)から構成されている。尚、銅合金にて構成されることも考えられる。そして、この実施の形態1においては、外側部材101の溶湯が接触する部分の肉厚tは5mm程度を有し、また、内側部材103の冷却水通水部102の先端と外側部材101の溶湯が接する面107の対向面との肉厚tは10mm程度有している。内側部材103の冷却水通水部102には例えばスポット式の冷却管108が挿入され、循環する冷却水によって、溶湯から入熱された熱を排熱する。また、界面層部104の厚みは、外側部材101の内側部材103が挿入する際のクリアランスにて成るため、0.1mm±0.05mm程度を有している。 The outer member 101 is made of, for example, a hot-work tool steel SKD61 material (thermal conductivity 27 W / (m · K)), which is generally used as the die casting mold 1. Further, the inner member 103 uses, for example, pure copper having high thermal conductivity (“pure copper” is, for example, industrial pure copper “tough pitch copper (JIS C1100)”, and has a thermal conductivity of 390 W / (m · K). ). In addition, it can also be comprised with a copper alloy. Then, in the first embodiment, the portion where the molten metal of the outer member 101 contacts the wall thickness t 1 has about 5 mm, also the cooling water passage of water 102 of the inner member 103 distal the outer member 101 thick t 2 of the opposing surface of the surface 107 of molten metal is in contact has approximately 10 mm. For example, a spot-type cooling pipe 108 is inserted into the cooling water passage portion 102 of the inner member 103, and the heat input from the molten metal is exhausted by the circulating cooling water. Further, the thickness of the interface layer portion 104 is about 0.1 mm ± 0.05 mm because of the clearance when the inner member 103 of the outer member 101 is inserted.

次に上記のように構成された実施の形態1における冷却部100の製造方法について説明する。外側部材101の溶湯が接する面107と相反する面側に内側部材103を埋設するための凹部を形成する。そしてこの凹部に、例えば、平均粒径10μm程度の窒化ホウ素(BN)、または、グラファイト(C)、または、二硫化モリブデン(MoS)の3種類の粒子のいずれかをスプレー塗布する。この際、例えば窒化ホウ素、グラファイト、二硫化モリブデン等の粒子は酢酸ブチルなどに分散された状態にて噴霧されると、酢酸ブチルは残存することなく気化し、窒化ホウ素、グラファイト、二硫化モリブデン等の粒子のみが残存することと成る。次に、内側部材103を外側部材101に埋設されるように挿入し、外側部材101と内側部材103との間には界面層部104が満たされるように製作された。ここで、粒子を具備する部材を用いたのは、粒子を具備する部材の場合、先に示したように例えば酢酸ブチルなどの溶剤に分散してスプレー塗布での噴霧が容易に可能と成り、噴霧後に溶剤などが残存する可能性が極めて少ない。これに比較して、溶剤に溶解した状態の溶解部材の場合には、塗布した後に溶剤が残存する可能性が大きく、その溶剤が熱伝導に不具合を生じる可能性が大きい。このため粒子を具備する部材が適当であると考えられる。 Next, a method for manufacturing cooling unit 100 according to Embodiment 1 configured as described above will be described. A recess for embedding the inner member 103 is formed on the side of the outer member 101 opposite to the surface 107 with which the molten metal contacts. Then, for example, boron nitride (BN), graphite (C), or molybdenum disulfide (MoS 2 ) having an average particle diameter of about 10 μm is spray-applied to the recess. At this time, for example, when particles of boron nitride, graphite, molybdenum disulfide, etc. are sprayed in a state dispersed in butyl acetate, the butyl acetate is vaporized without remaining, boron nitride, graphite, molybdenum disulfide, etc. Only the remaining particles remain. Next, the inner member 103 was inserted so as to be embedded in the outer member 101, and the interface layer portion 104 was filled between the outer member 101 and the inner member 103. Here, in the case of a member having particles, the member having particles is dispersed in a solvent such as butyl acetate as described above, and spraying by spray coating can be easily performed. There is very little possibility of solvent remaining after spraying. Compared to this, in the case of a dissolving member in a state dissolved in a solvent, there is a high possibility that the solvent will remain after application, and the solvent is likely to cause a problem in heat conduction. For this reason, it is considered that a member having particles is suitable.

尚、界面層部104(上記粒子の積層厚さ)は実測では、0.15mm程度の厚さを有している。また、上記説明においては、内側部材103を外側部材101の凹部に挿入した例を示したが、内側部材103の端部をプレス機械等で塑性変形させ、内側部材103をかしめることにより、内側部材103の外側部材101への固定をより確実に製造することも可能である。また、ここでは界面層部104が窒化ホウ素(BN)、または、グラファイト(C)、または、二硫化モリブデン(MoS)にて成る例を示したがこれに限られることはなく、外側部材101の熱伝導率より熱伝導率が高く、かつ粒子を具備する界面層部104を形成することが可能であれば、同様の効果を得ることが可能と成る。 Note that the interface layer portion 104 (lamination thickness of the particles) has a thickness of about 0.15 mm in actual measurement. In the above description, the example in which the inner member 103 is inserted into the recess of the outer member 101 is shown. However, the inner member 103 is caulked by deforming the end of the inner member 103 with a press machine or the like. It is also possible to manufacture the fixing of the member 103 to the outer member 101 more reliably. Here, an example in which the interface layer portion 104 is made of boron nitride (BN), graphite (C), or molybdenum disulfide (MoS 2 ) is shown, but the present invention is not limited to this, and the outer member 101 is not limited thereto. The same effect can be obtained if the thermal conductivity is higher than the thermal conductivity of and the interface layer portion 104 having particles can be formed.

次に上記のように構成された実施の形態1における冷却部100および比較例について、ヒータを用いて溶湯が接する面107から一定入熱300Wを与え、その際の位置Aにおける熱抵抗値(熱抵抗値とは1Wの熱量を負荷したときの温度上昇値を言う)を測定した。その結果、図2に示すような測定値が得られた。すなわち、界面層部104が空隙(比較例)の場合より、窒化ホウ素(実施例1)、グラファイト(実施例2)、または、二硫化モリブデン(実施例3)で構成することにより、熱抵抗を大きく低減すること確認された。このことにより、冷却部100の冷却性能は大幅に向上する。   Next, with respect to the cooling unit 100 and the comparative example in the first embodiment configured as described above, a constant heat input 300 W is applied from the surface 107 with which the molten metal contacts using a heater, and the thermal resistance value (heat The resistance value is a temperature rise value when a heat amount of 1 W is applied). As a result, measured values as shown in FIG. 2 were obtained. That is, since the interface layer portion 104 is made of boron nitride (Example 1), graphite (Example 2), or molybdenum disulfide (Example 3), compared with the case of a void (Comparative Example), the thermal resistance is reduced. It was confirmed that it was greatly reduced. As a result, the cooling performance of the cooling unit 100 is greatly improved.

このように構成された冷却部100のダイカスト金型1への具体的な配設箇所について説明する。まず、図3に示すように、プランジャーチップ201によって高速射出された溶湯をキャビティ202内に連通する湯道に分岐させる位置に配設される。これは実鋳造においては、鋳造後にビスケット203と呼ばれる(350トンダイカストマシンの場合)直径70〜80mm、厚さ30〜50mmの分流子型に接する余肉部分をロボットに掴ませて、ダイカスト製品をダイカスト金型1から取り出す方法が一般的に採用されている。通常、このビスケット203が製品において熱容量の最も大きい箇所と成り、完全に凝固するまでの時間が最も長い場所と成る。この部分が完全に凝固する前に製品を取り出すと、この余肉部をロボットがうまく掴むことができず、製品を型から取り出すことができなくなる。そこで、この余肉部分の凝固完了を待ってから製品を金型から取り出す必要がある。すなわち、この部分がサイクルタイムの律速箇所と成る。   The specific arrangement | positioning location to the die-casting die 1 of the cooling unit 100 comprised in this way is demonstrated. First, as shown in FIG. 3, the molten metal injected at high speed by the plunger tip 201 is disposed at a position where it is branched into a runner communicating with the cavity 202. In actual casting, this is called biscuit 203 after casting (in the case of a 350-ton die casting machine). A method of taking out from the die casting mold 1 is generally employed. Usually, this biscuit 203 is the place where the heat capacity is the largest in the product, and the place where the time to complete solidification is the longest. If the product is taken out before this part is completely solidified, the robot cannot grasp the surplus portion and the product cannot be taken out from the mold. Therefore, it is necessary to take out the product from the mold after waiting for the solidification of the surplus portion. That is, this part becomes the rate-determining part of the cycle time.

よって、実施の形態1においてこの部分に冷却部100を配設し、前述したように従来のSKD61材単体から構成される分流子型よりも冷却能力が高いため、この分流子型を用いることによって熱容量の大きいビスケット203の凝固を従来の場合に比較して促進させることができる。その結果、サイクルタイムの短縮が可能と成る。これによって、生産性を大幅に向上させることができ、製品1個当たりの単価を低減することができる。   Therefore, the cooling unit 100 is disposed in this portion in the first embodiment, and as described above, the cooling capacity is higher than that of the conventional shunt 61 composed of a single SKD61 material. Solidification of the biscuits 203 having a large heat capacity can be promoted as compared with the conventional case. As a result, the cycle time can be shortened. Thereby, the productivity can be greatly improved, and the unit price per product can be reduced.

また、他の例として例えば、図4に示すように製品部を形成する金型キャビティ102(「製品部キャビティ」)を構成する部分に冷却部100を適用することも可能である。尚、冷却部100の形状は図1とは若干異なってはいるものの、同一符号の部分は同様に形成されているものであることは言うまでもない。このように、ダイカスト金型1の冷却部100を金型キャビティ102に適用することにより、製品部の凝固時間(チルタイム)を短縮することが可能と成り、特に、厚肉製品の場合、製造コストの削減効果が大きい。   As another example, for example, as shown in FIG. 4, it is possible to apply the cooling unit 100 to a part constituting a mold cavity 102 (“product part cavity”) that forms a product part. Although the shape of the cooling unit 100 is slightly different from that in FIG. 1, it goes without saying that the same reference numerals are formed in the same manner. Thus, by applying the cooling part 100 of the die casting mold 1 to the mold cavity 102, it becomes possible to shorten the solidification time (chill time) of the product part. The reduction effect is great.

上記のように構成された実施の形態1のダイカスト金型においては、冷却部が外側部材と内側部材との間にはクリアランスによる隙間が残存しても、その隙間に界面層部が形成されるため所望の冷却性能を得ることができる。また、外側部材と内側部材との間は界面層部に充填されるため、外側部材と内側部材と加工精度が低下して対応可能と成り、金型の加工コストの低減が期待できる。また、冷却水通水部が設けられている内側部材は純銅または銅合金という伸びが大きく、鉄鋼材料よりも耐食性の良い材料で構成されているため、従来のSKD61材に比べて冷却水通水部にクラックが入りにくいというメリットもある。また万一、外側部材にクラックが発生しても、冷却水通水部は内側部材で覆われているため、冷却水が溶湯が接する面に噴出することもなく、鋳造作業の安全性を高めることができる。また、冷却水は外側部材と接触しないため、外側部材の応力腐食割れを抑制することができ、ダイカスト金型の長寿命化が期待できる。   In the die-casting die according to the first embodiment configured as described above, even when a clearance gap remains between the outer member and the inner member in the cooling portion, an interface layer portion is formed in the gap. Therefore, a desired cooling performance can be obtained. In addition, since the interface layer portion is filled between the outer member and the inner member, the processing accuracy of the outer member and the inner member can be reduced, so that the processing cost of the mold can be reduced. Further, the inner member provided with the cooling water passage portion has a large elongation of pure copper or a copper alloy and is made of a material having better corrosion resistance than the steel material. Therefore, compared with the conventional SKD61 material, the cooling water passage portion is provided. There is also an advantage that cracks are difficult to enter in the part. In addition, even if a crack occurs in the outer member, the cooling water water passing portion is covered with the inner member, so that the cooling water does not spout onto the surface that contacts the molten metal, thereby improving the safety of the casting operation. be able to. Further, since the cooling water does not come into contact with the outer member, stress corrosion cracking of the outer member can be suppressed, and a long life of the die casting mold can be expected.

この発明の実施の形態1によるダイカスト金型の冷却部の構成を示す断面図である。It is sectional drawing which shows the structure of the cooling part of the die-casting die by Embodiment 1 of this invention. 図1に示したダイカスト金型の有効性を示すための表を示した図である。It is the figure which showed the table | surface for showing the effectiveness of the die-casting die shown in FIG. 図1に示した冷却部のダイカスト金型の設置位置を示す断面図である。It is sectional drawing which shows the installation position of the die-casting die of the cooling unit shown in FIG. 図1に示した冷却部のダイカスト金型の設置位置を示す断面図である。It is sectional drawing which shows the installation position of the die-casting die of the cooling unit shown in FIG.

符号の説明Explanation of symbols

1 ダイカスト金型、100 冷却部、101 外側部材、102 冷却水通水部、
103 内側部材、104 界面層部、107 溶湯が接する面。
DESCRIPTION OF SYMBOLS 1 Die-cast metal mold | die, 100 cooling part, 101 outer member, 102 cooling water water flow part,
103 Inner member, 104 Interface layer part, 107 Surface where molten metal contacts.

Claims (2)

溶湯が接する面を有す外側部材と、上記外側部材の上記溶湯が接する面と相反する面側に一方面側が埋設されて形成され上記外側部材と相反する面側に冷却水通水部が設けられた銅または銅合金にて構成される内側部材とにて構成される冷却部を備えたダイカスト金型において、
上記冷却部は、上記外側部材と上記内側部材との間に上記外側部材の熱伝導率より熱伝導率が高く、かつ粒子を具備する界面層部を備えたことを特徴とするダイカスト金型。
An outer member having a surface in contact with the molten metal, and a surface of the outer member opposite to the surface in contact with the molten metal is formed by embedding one surface side, and a cooling water passage portion is provided on the surface opposite to the outer member. In a die-casting die provided with a cooling part composed of an inner member composed of copper or a copper alloy,
The die casting mold, wherein the cooling part includes an interface layer part having a higher thermal conductivity than the outer member and having particles between the outer member and the inner member.
上記界面層部は、窒化ホウ素またはグラファイトまたは二硫化モリブデンの少なくともいずれかの粒子を含むことを特徴とする請求項1に記載のダイカスト金型。 2. The die casting mold according to claim 1, wherein the interface layer portion includes particles of at least one of boron nitride, graphite, or molybdenum disulfide.
JP2007128770A 2007-05-15 2007-05-15 Die for die casting Pending JP2008284555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007128770A JP2008284555A (en) 2007-05-15 2007-05-15 Die for die casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007128770A JP2008284555A (en) 2007-05-15 2007-05-15 Die for die casting

Publications (1)

Publication Number Publication Date
JP2008284555A true JP2008284555A (en) 2008-11-27

Family

ID=40144776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128770A Pending JP2008284555A (en) 2007-05-15 2007-05-15 Die for die casting

Country Status (1)

Country Link
JP (1) JP2008284555A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162822A (en) * 2009-01-19 2010-07-29 Japan Steel Works Ltd:The Mold apparatus
JP2012240062A (en) * 2011-05-16 2012-12-10 Toyota Motor Corp Die casting apparatus
JP2014065057A (en) * 2012-09-26 2014-04-17 Ryobi Ltd Flow divider and die cast method using this flow divider
JP2015167994A (en) * 2014-03-10 2015-09-28 リョービ株式会社 Die-casting mold insert and die-casting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810898A (en) * 1994-06-30 1996-01-16 Unisia Jecs Corp Device for heating metallic mold for casting
JP2000225952A (en) * 1999-02-05 2000-08-15 Trw Automot Safety Syst Gmbh & Co Kg Handle capable of being heated
JP2005349424A (en) * 2004-06-09 2005-12-22 Aisin Seiki Co Ltd Molding die
JP2006289382A (en) * 2005-04-06 2006-10-26 Nissan Motor Co Ltd Metallic die cooling structure and producing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810898A (en) * 1994-06-30 1996-01-16 Unisia Jecs Corp Device for heating metallic mold for casting
JP2000225952A (en) * 1999-02-05 2000-08-15 Trw Automot Safety Syst Gmbh & Co Kg Handle capable of being heated
JP2005349424A (en) * 2004-06-09 2005-12-22 Aisin Seiki Co Ltd Molding die
JP2006289382A (en) * 2005-04-06 2006-10-26 Nissan Motor Co Ltd Metallic die cooling structure and producing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162822A (en) * 2009-01-19 2010-07-29 Japan Steel Works Ltd:The Mold apparatus
JP2012240062A (en) * 2011-05-16 2012-12-10 Toyota Motor Corp Die casting apparatus
JP2014065057A (en) * 2012-09-26 2014-04-17 Ryobi Ltd Flow divider and die cast method using this flow divider
JP2015167994A (en) * 2014-03-10 2015-09-28 リョービ株式会社 Die-casting mold insert and die-casting method

Similar Documents

Publication Publication Date Title
JP2012176424A (en) Low temperature mold and low pressure casting method
JP2008284555A (en) Die for die casting
JP4509045B2 (en) Mold
JP4456014B2 (en) Die casting mold degassing apparatus and die casting mold apparatus
US20110174458A1 (en) Casting method
JP2013018052A (en) Water passing mechanism, method of manufacturing the same, and bush device
JP3237646B2 (en) Brake caliper casting mold
JP2009056490A (en) Casting mold for continuous casting
JP2008080356A (en) Metal mold design method and metal mold casting method
KR101824500B1 (en) Chill Vent for Die Casting
CN107803484B (en) High-resistance Wen Lengtie
JP6351319B2 (en) Mold cooling structure and manufacturing method thereof
JP2011073020A (en) Mold
CN106612603A (en) A die-casting manufacturing technique for a novel aluminum-copper composite pipe cooling cavity
JP2000351054A (en) Sleeve for die casting
JP2019177416A (en) Sleeve for die-casting
CN207547607U (en) A kind of high temperature resistant chill
CN204094114U (en) For the sprue bush of aluminum alloy low-pressure casting process
JP6339910B2 (en) Shunt flow and die-casting method using this flow splitter
US20170087627A1 (en) Die configuration for high temperature diecasting
CN102554155A (en) Tubular crystallizer
JP2009072803A (en) Forming die and its manufacturing method
JP5763567B2 (en) Die casting sleeve
JPH0195858A (en) Plunger tip structure
JP2002059251A (en) Die bush for die casting machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100107

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

A131 Notification of reasons for refusal

Effective date: 20120327

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717