JP6080965B2 - 加湿装置、及び加湿装置を備えた空気調和機 - Google Patents

加湿装置、及び加湿装置を備えた空気調和機 Download PDF

Info

Publication number
JP6080965B2
JP6080965B2 JP2015537581A JP2015537581A JP6080965B2 JP 6080965 B2 JP6080965 B2 JP 6080965B2 JP 2015537581 A JP2015537581 A JP 2015537581A JP 2015537581 A JP2015537581 A JP 2015537581A JP 6080965 B2 JP6080965 B2 JP 6080965B2
Authority
JP
Japan
Prior art keywords
water
humidifier
electrode
absorbing
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015537581A
Other languages
English (en)
Other versions
JPWO2015040910A1 (ja
Inventor
隆弘 酒井
隆弘 酒井
彰 守川
彰 守川
稲永 康隆
康隆 稲永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6080965B2 publication Critical patent/JP6080965B2/ja
Publication of JPWO2015040910A1 publication Critical patent/JPWO2015040910A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/025Air-humidification, e.g. cooling by humidification by evaporation of water in the air using electrical heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/04Air-humidification, e.g. cooling by humidification by evaporation of water in the air using stationary unheated wet elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Humidification (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、イオン風を利用した加湿装置、及びその加湿装置を備えた空気調和機に関するものである。
3000m以上の商業施設・事務所などの特定建築物は、ビル衛生管理法により空気環境の管理基準値として温度17〜28℃、相対湿度40〜70%に保つことが定められている。また、ASHRAE(米国暖房冷凍空調学会)では、相対湿度30〜60%の湿度基準が明示されている。温度に関してはエアーコンディショナーの普及に伴い、比較的容易に管理されている。しかし、相対湿度は十分に管理されているとは言い難く、特に冬場の加湿量不足が問題となっている。
従来の室内加湿方法として気化式、蒸気式、水噴霧式などがある。気化式は吸水性能を有するフィルタに通風することにより、含有する水分を気流と熱交換により気化蒸発し、室内の加湿を行う方法である。蒸気式は貯水槽内に設置した加熱コイルに通電することにより水分を蒸発気化して室内の加湿を行う方法である。水噴霧式は、水分を加圧することにより微細化し、微細化した水分が気流との熱交換により室内の加湿を行う方法である。
特許文献1には、加湿エレメントと、加湿エレメントに給水する給水装置と、電極と、電極との間に加湿エレメントが入るように配置され電極と直接接触しない対極と、電極と対極との間に電場を形成し、加湿エレメントに電場を付与して水の蒸発を促進する高電圧発生装置と、を備えた加湿装置が開示されている。
また、特許文献2には、加湿エレメントと、加湿エレメントに給水する給水装置と、被加湿空気の空気流の入口側に配置された複数の電極と、電極と接触せずに空気流を遮断しない形状の対極と、空気流と同方向のイオン風を発生させる高電圧発生装置と、を備えた加湿装置が開示されている。
特開平7−103522号公報 特開平7−305883号公報
特許文献1は、電極と、前記電極と直接接触しない対極とを備え、電極と対極との間で電場を形成して、加湿エレメントに含まれる水を加湿する加湿装置が開示されており、電場の蒸発促進作用により水を蒸発させている。しかし、電場は加湿材の面に沿って加湿材と平行に形成されるため、加湿材の面に対して垂直方向には蒸発促進作用が機能しない。このため、加湿材面近傍の水分濃度が高い飽和空気の層(以下、飽和空気層と称する)を攪拌できないため、加湿材面近傍の水蒸気飽和層が厚く、入口空気の水分濃度と加湿材に含まれる水分濃度との勾配差が小さく、加湿性能の向上が期待できないという課題があった。
また、特許文献2は加湿エレメントの上流部に電極と、電極と直接接触しない対極が備えてあり、空気流と同方向にイオン風を発生させる構成であるが、特許文献1と同様にイオン風が加湿材に対して平行に加湿材側面を流れるため、加湿材の面に対して法線方向には風が乱れることなく、加湿材近傍の飽和空気層を攪拌できないため加湿性能向上が期待できないという課題があった。
本発明は、以上のような課題を解決するためになされたもので、イオン風により吸水性加湿材近傍の飽和空気層を乱し、送風機により通風された空気との置換を促進させることにより、吸水性加湿材との水分濃度の勾配差を大きくして加湿性能を向上させた加湿装置、及びその加湿装置を備えた空気調和機を提供することを目的としている。
本発明に係る加湿装置は、導電性の電極と、前記電極に対向する吸水性加湿材と、前記電極と前記吸水性加湿材との間に電圧を印加する電源と、前記吸水性加湿材に加湿水を供給する給水手段と、前記電源が前記電圧を印加した前記電極と前記給水手段が前記加湿水を供給した前記吸水性加湿材との間の空間に空気を流す送風機と、を備えるものである。
本発明に係る加湿装置によれば、電極に電圧を印加して電極と吸水性加湿材との間にイオン風を発生させ、そのイオン風を電極と対向する吸水性加湿材の面に対して法線方向から当てることにより、吸水性加湿材の表面近傍の水蒸気の飽和空気層を撹拌することができる。このため、吸水性加湿材近傍の飽和空気層よりも水分濃度が低い空気層に置換することができ、吸水性加湿材との水分濃度の勾配差を大きくすることができるため、加湿性能を向上させることができる。
本発明の実施の形態1に係る加湿装置の構成図である。 本発明の実施の形態1に係る加湿装置を上方から見た構成図である。 図2の部分拡大図である。 図2の吸水性加湿材の部分拡大断面図である。 吸水性加湿材の形状の例を示す概略図である。 電極の突起部の形状の例を示す概略図である。 内部にワイヤ線が配置された電極の概略図である。 電極へ印加する極性によるイオン風の風速と放電電力との関係を示す図である。 電極へ印加する極性による排出オゾン濃度と放電電力との関係を示す図である。 本実施の形態1に係る加湿装置が搭載された空調調和機の一例を示す構成図である。 加湿のメカニズムを示す原理図である。 イオン風による加湿のメカニズムを示す原理図である。 イオン風による加湿性能評価結果を示す図である。 本発明の実施の形態2に係る加湿装置の構成図である。 本発明の実施の形態3に係る加湿装置の構成図である。 本発明の実施の形態4に係る加湿装置の運転図である。 本発明の実施の形態5に係る加湿装置の構成図である。 本発明の実施の形態6に係る加湿装置の構成図である。 本発明の実施の形態7に係る加湿装置の構成図である。
以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
(加湿装置の構成)
図1は、本発明の実施の形態1に係る加湿装置12の構成図である。
図1に示すように、本実施の形態1に係る加湿装置12は、加湿空間へ加湿する加湿水1を貯留する供給部2と、この供給部2から加湿水1を吸水性加湿材4に供給する給水手段であるノズル3と、少なくとも1つ以上立設し、接地電位と同電位である吸水性加湿材4と、吸水性加湿材4の面と所定の距離を有して対向する電極5と、電極5に電圧を印加する電源6と、吸水性加湿材4と電極5との間の空間に空気7を流す送風機8と、吸水性加湿材4からの余剰水を受けるドレンパン9と、で構成したものである。
なお、実際の使用形態においては、これらの供給部2、ノズル3、吸水性加湿材4、電極5、電源6、送風機8、及びドレンパン9は、所定の支持体等によって固定されるものとすればよい。この支持体の構成は、特に限定されるものではなく、加湿装置12の用途に合わせて適宜選択すればよい。また、本実施の形態1に係る電極5は、吸水性加湿材4の面全体と対向している。
図2は、本発明の実施の形態1に係る加湿装置12を上方から見た構成図、図3は、図2の部分拡大図、図4は、図2の吸水性加湿材4の部分拡大断面図である。
図2に示すように、電極5の両面にはそれぞれ導電性の突起部5aが、電極5と対向する吸水性加湿材4の面に対して垂直に形成されている。また、図3に示すように電極5に電圧を印加すると、突起部5aから吸水性加湿材4の面に対して法線方向へ向かってイオン風18が発生する。そして、そのイオン風18が吸水性加湿材4に衝突することにより加湿性能を大幅に向上させることができる。なお、この原理については後述する。
加湿水1は、加湿空間の加湿を目的とする場合、純水、水道水、軟水、及び硬水のいずれを使用しても構わない。しかし、炭酸カルシウムに代表されるスケールによって、図4に示す吸水性加湿材4の空隙部10の閉塞を低減するために、カルシウムイオン又はマグネシウムイオンを含むミネラル成分が少ないものがより好ましい。ミネラル成分が多い加湿水を使用すると、溶液中のイオン成分と二酸化炭素とが反応して固形物が生成され、吸水性加湿材4の空隙部10を閉塞させる可能性があるためである。なお、陽イオン用又は陰イオン用のイオン交換膜等を使用してイオン成分を取り除いた加湿水を使用してもよい。また、吸水性加湿材4の空隙部10については後述する。
供給部2は、加湿水1を貯留し、吸水性加湿材4に加湿水1を供給するものであり、ポンプなどの駆動部を用いて、ノズル3により吸水性加湿材4の上部から加湿水1を滴下して供給するものである。また、駆動部は加湿水1を搬送できるものであればよく、例えば、非容積式ポンプ又は容積式ポンプ等であり、特に限定されるものではない。
ノズル3は、吸水性加湿材4の直上に設置されており、供給部2から搬送された加湿水1を吸水性加湿材4の上部に滴下して供給するものである。また、ノズル3は、中空形状であり、その外径及び内径は吸水性加湿材4の大きさに応じて選択すればよい。また、ノズル3の先端形状は、三角錐形状、四角錐形状、円管形状、及び四角管形状等のいずれの形状でもよいが、ここでは好ましい形状として先端が三角錐形状とし、出口の孔径を0.5mmとした。先端が鋭角とした方が、水滴の切れがよいためである。より鋭角の方が好ましいが、あまり鋭角にすると取り扱いが難しくなり強度面でも脆くなることから、鋭角の角度としては10〜45度の範囲が好ましい。
また、ノズル3の出口の孔径があまり大きすぎると加湿水1が過剰に供給されてしまい、無駄な水が増加する。一方、小さすぎると加湿水1に混入した粒子やスケールが詰まりやすくなる。そのため、孔径としては0.1〜0.6mmの範囲が好ましい。また、ノズル3の材質は、ステンレス、タングステン、チタン、銀、銅等の金属、又は、PTFE、ポリエチレン、ポリプロピレン等の樹脂でもよく、これらに限定されるものではない。
ただし、ノズル3と接続する配水管として安価な銅配管が使用された場合、ノズル3の材質がポリプロピレンだと、銅の触媒作用によりポリプロピレンが劣化してしまうため、樹脂を選択するならば、PTFE又はポリエチレンが好ましい。
また、吸水性加湿材4の通風方向の長さ(風上側から風下側までの長さ)が長い場合は、ノズル3が1個のみでは長さが足りないため、複数個用いるとよい。そのため、通風方向の長さが例えば60mm以下であればノズル3は1個でよいが、60mmを超える場合は複数個とした方が好ましい。
加湿水1の量については、実際に加湿で使用される水量よりも多くする必要があるが、あまり多くしても無駄な水が多くなるため、適正な量に制御することが望ましい。例えば、吸水性加湿材4の加湿性能を2000mL/h/m2とし、吸水性加湿材4の大きさを200×50mmとし、表裏とも加湿できるように構成するとする。その場合は、吸水性加湿材4の1枚あたりの加湿量は40mL/hとなるので、その1.5〜5倍の60〜200mL/hの範囲で供給するのが望ましい。
また、ノズル3と吸水性加湿材4との間に、吸水性加湿材4に接するように繊維、樹脂、又は金属製の吸水体を設けてもよい。吸水性加湿材4が複数枚の場合、ノズル3の数量が多くなり適切に滴下できない可能性があるため、吸水性加湿材4に接するように吸水体を設けることにより、吸水性加湿材4が複数枚となっても確実に加湿水1を供給することができる。
吸水性加湿材4は、例えば三次元網目構造を有する形状であり、ここで、三次元網目構造とは、スポンジ等の吸水性が高い樹脂発泡体と同様の構造である。図4に示すように、吸水性加湿材4は、胴部11、及び胴部11内に形成された空隙部10によって構成されている。本実施の形態1に係る吸水性加湿材4の材質は、例えば、多孔質の金属、セラミック、樹脂、不織布、繊維で発泡体、又は網目体で構成されることが考えられるが、吸水性加湿材4は電極5の対向電極として機能を有する必要があるため、導電性である必要がある。
吸水性加湿材4が金属の場合、金属種としては特に限定されるものではなく、その金属種として、例えば、チタン、銅、ニッケル等の金属、金、銀、白金等の貴金属、ニッケル合金、コバルト合金等の合金が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。また、これら金属に亜鉛、ニッケル、スズ、クロム、銅、銀、金等のめっきをしてもよい。これらの中でも、チタンは、その触媒効果によってオゾン等の放電生成物の生成を抑制すると共に、電気腐食及び電気磨耗に対する耐性が良好であり、さらに、長期に渡って吸水性加湿材4の形状を保持して安定して加湿を行なうことができるため、最も好ましい金属種である。
吸水性加湿材4がセラミックの場合、その材質として、アルミナ、ジルコニア、ムライト、コージェライト、炭化珪素等が挙げられるが、これらに限定されるものではない。
吸水性加湿材4が樹脂の場合、その材質は特に限定されるものではなく、ポリエチレン、ポリプロピレン、エチレン・酢酸ビニル共重合体等が挙げられるが、これらに限定されるものではない。
吸水性加湿材4が繊維の場合、その材質として、アセテート、ポリエステル、ナイロン等が挙げられるが、これらに限定されるものではない。また、樹脂を材質として多孔質体を形成したものに、金属の粉末をコーティングしたものを用いてもよい。
吸水性加湿材4の表面層には、加湿水1の保持量の増大、及び、吸水性能劣化防止の観点から、親水化処理を施してもよい。その親水化処理の方法の種類についても限定されることはなく、例えば、親水化樹脂でコーティングすることによる親水化処理、又は、コロナ放電による親水化処理を実施するものとしてもよい。
図5は、吸水性加湿材4の形状の例を示す概略図である。
吸水性加湿材4の形状についても特に限定されるものではなく、例えば、図5に示すように、平板形状(A)、四角柱形状(B)、又は円柱形状(C)としてもよく、また、内部に空洞を有する円型筒状形状(D)、四角型筒形状(E)、又は三角型筒形状(F)でもよく、製造する加湿装置12の大きさに合わせて適宜調整すればよい。
また、吸水性加湿材4の厚みは製造する加湿装置12の大きさに合わせて適宜調整すればよいが、0.5mm以上2mm以下のシート状の吸水性加湿材4を作製した後、所望の形状に切断して所望の形状に加工すればよい。その加工方法については特に限定されるものではなく、例えば、ワイヤーカット、レーザーカット、プレス打ち抜き、削りだし、手切断、又は折り曲げ等の各種方法によって行なえばよい。
電極5は、吸水性加湿材4との空間においてコロナ放電を形成するため、導電性を有する必要があり、材質として例えば、金属、金属合金、導電性樹脂等が好ましい。また、吸水性を有する多孔質状の金属、導電性樹脂、金属を含むセラミックでもよい。電極5は、電気抵抗が低いものであればよく、汎用性及び加工性の観点から、アルミニウム、銅、ステンレス等が好ましいが、これらに限定されるものではない。また、電極5の大きさについても特に限定されるものではなく、製造する加湿装置の大きさに合わせて適宜調整すればよい。
図6は、電極5の突起部5aの形状の例を示す概略図、図7は、内部にワイヤ線5bが配置された電極5の概略図である。図6において、上面図の太線は電極5を、側面図の外側の四角形は吸水性加湿材4を、それぞれ表している。
電極5は、吸水性加湿材4との間でコロナ放電が起こりやすい形状であることが望ましく、図6に示すように電極5が突起部5aを有し、その突起部5aが三角形形状(A)、針形状(B)、鋸刃形状(C)等の形状、又は、図7に示すように電極5の内部に導電性のワイヤ線5bが配置されたワイヤ形状が好ましい。図6の上面図は、図1の上側から電極5を見た図であり、図6の側面図は、図1の右側から電極5を見た図である。
なお、三角形形状(A)は、三角形形状となる突起部5aが行方向、又は/かつ列方向に複数個並んだ形状、若しくは突起部5aを千鳥に配置する形状となる電極5である。針形状(B)も同様に行方向、又は/かつ列方向に複数個並んだ形状、若しくは突起部5aを千鳥に配置する形状となる電極5である。鋸刃形状(C)は複数の先端が1枚で形成された金属板を行方向、又は列方向に並べた電極5である。
また、ワイヤ形状の電極5は図7に示すように、電極5の内部に等間隔で直径0.1〜1mmのワイヤ線5bが配置されたものであり、電極5に電圧を印加し、吸水性加湿材4を接地させることでワイヤ線5bの周囲の電界強度が高まり、コロナ放電を発生することができる。そのため、吸水性加湿材4の面に対して法線方向に向かってイオン風18を発生することができる。なお、電極5の突起部5aは、電極5と対向する吸水性加湿材4の面に対して垂直方向に形成されていることが望ましいが、送風機8からの通風方向と同じ方向に角度90°未満の一定角度で形成されていてもよい。これにより送風機8の通風方向と、イオン風18の通風方向を合わせることができ、イオン風18による圧力損失を低減することができる。
電源6は、電極5に接続されており、この電極5に(高)電圧を印加し、吸水性加湿材4との空間でコロナ放電させるものである。ここで、電極5から吸水性加湿材4へコロナ放電を行うためには、吸水性加湿材4を接地し、対向部に設けられる電極5に電圧を印加することが望ましい。これは、加湿水1を含んだ吸水性加湿材4に電圧を印加すると電気腐食により吸水性加湿材4を劣化させる可能性があるため、吸水性加湿材4を接地し、対向部に設けられる電極5に電圧を印加することが望ましい。
図8は、電極5へ印加する極性によるイオン風18の風速と放電電力との関係を示す図である。なお、放電電力とは、電極5へ印加する電圧値と、電極5から吸水性加湿材4へ放電する電流との積で示される値であり、図8は電極5の片面に突起部5aを縦3列、横5列の、計15本を配置したときの結果である。
図8には、電極5に、正極性直流電圧101、負極性直流電圧102、及び周波数60Hzの交流電圧103をそれぞれ印加した場合の、吸水性加湿材4の面に対して法線方向に流れるイオン風18の風速を測定した結果が示されている。
吸水性加湿材4の面近傍での風速は、電極5に正極性直流電圧101を印加した場合が最も大きく、負極性直流電圧102、交流電圧103の順で小さくなる傾向であった。これは、極性によりイオン風18の駆動源となるイオンの移動度が異なることが原因であり、移動度が大きい正極性イオンはイオン風18の風速が大きくなり、正極性イオンよりも移動度が小さい負極性イオンの場合は、イオン風18の風速が小さくなる。また、交流電圧103は非放電時間を有するため、正極性直流電圧101、及び負極性直流電圧102よりもイオン風18の風速は小さくなる。このため、吸水性加湿材4の表面近傍の空気7を乱す効果として最も影響を大きくするために、電源6の極性は正極性直流電圧101が好ましい。
図9は、電極5へ印加する極性による排出オゾン濃度と放電電力との関係を示す図である。
図9には、電極5に、正極性直流電圧101及び負極性直流電圧102をそれぞれ印加した場合の、加湿装置12の出口から排出されるオゾン濃度を比較した結果が示されている。
なお、吸水性加湿材4と、電極5の突起部5aの先端との距離を5mmとし、送風機8から吸水性加湿材4と電極5との間の空間に風速2.5m/sで通風した結果である。
加湿装置12から排出されるオゾン濃度は、負極性直流電圧102と比較して正極性直流電圧101の方が低い。正極性直流電圧101は、負極性直流電圧102と比較して電極5から放出される電子が少ないため、酸素分子との電子衝突確率が低く、オゾン濃度が低い。このため、加湿装置12から排出されるオゾンの量を少なくするという点に関して、電源6の極性は正極性直流電圧101が好ましい。
また、直流電圧にパルス状電圧を重畳させた重畳パルス状電圧を電極5に印加してもよい。この場合、放電開始時の電圧以下の直流電圧を電極5に印加することにより静電界を形成し、前記直流電圧にパルス状電圧を重畳することによりパルス状電圧で放出されたイオンが静電界により加速されてイオン風18が発生する。
以上のように、放電開始時の電圧以下の直流電圧を電極5に印加し、一定周波数のパルス状電圧を重畳することにより、低消費電力、低オゾン生成量でイオン風18を発生させることができ、加湿を促進することができる。
なお、直流電圧入力値、及びパルス状電圧入力値は、吸水性加湿材4と電極5の突起部5aの先端との距離に応じて決定すればよい。また、パルス状電圧の周波数、及びパルス幅と周波数で定義されるデュティー比は、仕様に応じて決定すればよい。
吸水性加湿材4と電極5の突起部5aの先端との距離は、3mm以上であることが望ましい。もし3mm未満である場合、電極5に正極性直流電圧101を印加するとグローコロナから直接火花放電になるため、イオン風18が発生せず、吸水性加湿材4の面近傍の水分濃度が高い飽和空気の層(以下、飽和空気層と称する)を攪拌できない。
送風機8は、接地電位と同電位である吸水性加湿材4と電極5との間の空間に形成される空気7の風路に、吸水性加湿材4の面に沿って平行に空気7を流すものであり、シロッコファン、プロペラファン、ラインフローファンなど適宜選択すればよい。
図10は、本実施の形態1に係る加湿装置12が搭載された空気調和機15の一例を示す構成図である。
本実施の形態1に係る加湿装置12を備えた空気調和機15は、図10に示すように、送風機8を含む加湿装置12と、フィルタ13と、熱交換器14と、で構成されるものであり、加湿装置12は熱交換器14の風下側に配置されて、熱交換器14で熱交換された空気7を通気して空間の加湿を行うものである。
(加湿装置の動作)
次に、図1を参照しながら、本実施の形態1に係る加湿装置12、及び加湿装置12を備えた空気調和機15について説明する。
供給部2に貯留されている加湿水1はノズル3へ搬送され、加湿水1が搬送されたノズル3は、吸水性加湿材4の上方から吸水性加湿材4の上部へ向けて加湿水1を滴下することによって、吸水性加湿材4に加湿水1が供給される。吸水性加湿材4は、毛細管力を有すると共に、加湿水1の重力を利用することができる。そのため、加湿水1は、吸水性加湿材4の空隙部10を通じて、吸水性加湿材4の全体に均一に拡散される。また、吸水性加湿材4は、加湿水1を一定量保持することになる。
空気7は送風機8により、図1に示すように吸水性加湿材4の風上側から流れ、吸水性加湿材4の面と平行に吸水性加湿材4と電極5との間の空間を通風される。これにより、空気7は吸水性加湿材4の面との気液接触により蒸発し、空間の加湿が行われる。このとき、電源6から電極5に電圧を印加すると、電極5から接地電位と同電位の吸水性加湿材4へコロナ放電が起こる。そして、コロナ放電により電極5から放出された電荷が、空気中の電気親和力が高い物質に付着することによって、イオンが生成される。生成したイオン種は、吸水性加湿材4と電極5とで形成される電界により加速され、対極の吸水性加湿材4の面に対して法線方向へ向かうが、その移動経路中で中性分子との衝突が起こり、イオンや中性分子が吸水性加湿材4の面方向へ移動することにより、イオン風18と呼ばれる風が発生する。
図11は、加湿のメカニズムを示す原理図である。
ここで、吸水性加湿材4からの加湿メカニズムについて図11を用いて述べる。
加湿水1を含む吸水性加湿材4から空気中への水蒸気の拡散現象は、拡散速度Nに支配されており、拡散係数をD、空気7中の水分濃度をC、吸水性加湿材4中の水分濃度をC、飽和空気層厚さをδとすると、拡散速度Nは式(1)で与えられる。
[数1]
=D×(C−C)/δ (1)
また、吸水性加湿材奥行長さ17をL、プラントル定数をP、空気密度をρ、動粘度をVとすると、飽和空気層厚さδ16は式(2)で与えられる。
[数2]
δ=L/(0.644×P 1/3×(ρ×U×L/V)1/2) (2)
電圧を印加しない加湿原理は、式(2)に示す境界層方程式から、空気7の風速Uの変化により飽和空気層厚さδ16が小さくなるため、式(1)から拡散速度Nが大きくなり加湿性能が向上する。
図12は、イオン風18による加湿のメカニズムを示す原理図である。
図12に示すように、電極5から吸水性加湿材4へコロナ放電させた場合、上記現象に加えてイオン風18が吸水性加湿材4の面に対して法線方向に通風され、吸水性加湿材4の面に当たることにより、吸水性加湿材4近傍の飽和空気層16aに、飽和空気層16aよりも水分濃度が低い空気7を混合させることができる。そのため、吸水性加湿材4中の水分濃度Cと空気7の水分濃度Cとの差を大きくできることから、加湿性能を大幅に向上させることができる。
ここで一例として、図1に示す加湿装置12において、多孔質の金属で構成される吸水性加湿材4と電極5の突起部5aの先端との距離を5mm、電極5の突起部5aの高さを2mmとし、送風機8により吸水性加湿材4と電極5との間の空間に、平均風速2.5m/s通風した場合の、吸水性加湿材4と電極5との放電電力による加湿性能比を調べた結果を図13に示す。
図13は、イオン風18による加湿性能評価結果を示す図である。
図13の横軸は電極5へ印加した電圧値と吸水性加湿材4への放電電流との積で示される放電電力、縦軸に示す加湿性能比は、電極5に電圧を印加しない場合の加湿性能を基準とし、放電のジュール熱による蒸発性能を除いたイオン風18の作用による加湿性能比率を示したものである。なお、本試験では電極5に正極性直流電圧101を印加し、吸水性加湿材4を接地した。
電極5に電圧を印加するとコロナ放電に伴うイオン風18が発生し、電圧を印加しない場合と比較して加湿性能が大幅に向上する。特に負極性直流電圧102よりも正極性直流電圧101の方が高い性能を出すことができる。このため、湿度が低いときは電極5への印加電圧を大きくすることにより加湿性能を向上させることができる。また、イオン風18による加湿により空気7の飽和度が上昇して結露する条件では、電極5への印加電圧を小さくして、装置壁面等の結露を防ぐことができる。なお、電源6の電極5への印加電圧制御により正極性直流電圧101は、加湿性能の制御幅を大きく持たせることができる。なお、電圧の印加及び放電電流の制御は、図示省略の制御装置に搭載されているCPUなどによって行われる。
また、コロナ放電を作用させることにより吸水性加湿材4にはジュール熱が作用するため、正極性直流電圧101にジュール熱の効果を加味した交流電圧103は、正極性直流電圧101よりも加湿が促進される。
また、加湿装置12を備えた空気調和機15は、図10に示すように送風機8により空気調和機15内に空気7を引き込む。空気7には微粒子が含まれるため、微粒子はフィルタ13で捕集され、空気7は熱交換器14により空気7は加熱、又は冷却されて、加湿装置12内へ通風され、加湿される。
(実施の形態1の効果)
以上の構成のように、本実施の形態1に係る加湿装置12、及び加湿装置12を備えた空気調和機15において、電極5から接地電位と同電位である吸水性加湿材4へコロナ放電させることにより、電極5から吸水性加湿材4の面に対して法線方向へ向かってイオン風18を発生させることができる。イオン風18を吸水性加湿材4の面に当てながら風路に空気7を流すことにより、吸水性加湿材4表面近傍の飽和空気層16aを拡散することができ、飽和空気層厚さδ16を薄くできる。そのため、式(1)より、吸水性加湿材4からの加湿水1の蒸発を大幅に促進させることができる。
また、図8に示すように、放電電力を制御することにより、吸水性加湿材4の面に対して法線方向へ向かうイオン風18の強弱を制御することができ、加湿性能を変えることができるため、幅広い加湿性能を制御することができる。また、吸水性加湿材4に有機物などの汚染物が付着すると、吸水性加湿材4に親水性が低下して吸水能力が低下する。しかし、本実施の形態1では、イオン風18発生に伴い吸水性加湿材4と電極5との間の空間で高活性種が生成し、イオン風18により吸水性加湿材4の面方向へ高活性種が移動するため、吸水性加湿材4に付着した汚染物質を分解、除去して親水性を維持することができる。
実施の形態2.
本実施の形態2に係る加湿装置12、及び加湿装置12を備えた空気調和機15について、実施の形態1と相違する点を中心に説明する。
図14は、本発明の実施の形態2に係る加湿装置12の構成図である。
図14は、空気7の風路下流側である吸水性加湿材4の下流部の面のみと対向する電極22を備えた構成であり、その他の構成は図1と同じである。
接地電位と同電位の吸水性加湿材4に加湿水1を供給して加湿運転を行う際、吸水性加湿材4の風上側の空気7から加湿されることから、式(2)から吸水性加湿材4の吸水性加湿材奥行長17Lが長くなると、飽和空気層厚さδ16は大きくなる。また、吸水性加湿材4の面に沿って吸水性加湿材4と平行に流れる空気7が通風される距離に従い、空気7の水分濃度Cは高くなる。そのため、吸水性加湿材4中の水分濃度Cと空気7の水分濃度Cとの差である水分濃度差が小さくなり、式(1)から拡散速度Nが小さくなることから、吸水性加湿材4の加湿性能が低下する。
このため、吸水性加湿材4の下流部で加湿が促進されるように、吸水性加湿材4の下流部の面のみと対向する電極22を備える構成とする。なお、実際の使用形態においては、供給部2、吸水性加湿材4、電極22、電源6、送風機8は所定の支持体によって固定することができる。支持体として特に限定されず、用途にあわせて適宜選択すればよい。
なお、動作については実施の形態1と同様であるため省略する。
(実施の形態2の効果)
吸水性加湿材4の下流部の面と対向する電極22を備える構成とすることで、本実施の形態1のように吸水性加湿材4の面全体と対向する電極5と比較して、突起部5aの配置間隔を同じとすると、電極22の突起部5aの数が少なくなる。そのため、各突起部5aの放電電力が増加し、突起部5aから吸水性加湿材4の面に対して法線方向へ向かって、より風速が大きいイオン風18を発生させることができる。
そして、そのイオン風18を、電極22と対向する吸水性加湿材4の面に対して法線方向から当てることにより、吸水性加湿材4表面近傍の飽和空気層16aを攪拌することができ、風速が大きい分だけ飽和空気層厚さδ16を薄くすることができる。
このため、加湿効果が低くなる吸水性加湿材4の下流部で加湿を促進することができ、加湿性能を向上させることができる。また、図8に示すように放電電力を制御することにより、吸水性加湿材4の面に対して法線方向へ向かうイオン風18の強弱を制御することができる。
実施の形態3.
本実施の形態3に係る加湿装置12、及び加湿装置12を備えた空気調和機15について、実施の形態1と相違する点を中心に説明する。
図15は、本発明の実施の形態3に係る加湿装置12の構成図である。
図15は、吸水性加湿材4及び電極5の風路下流側にオゾンを分解するオゾン分解機構19を設けた構成であり、その他の構成は図1と同じである。
吸水性加湿材4と電極5との間でコロナ放電し、イオン風18を発生させて加湿性能を制御する場合、放電副生成物としてオゾンが発生する。オゾンは非常に活性が高く、有害物質、菌、ウイルス等の分解・不活化に寄与する反面、腐食性が強く、人体への負荷も懸念され排出濃度も室内環境基準や労働環境における許容濃度が0.1ppmと規定されている。このため、本実施の形態3では、イオン風18を発生する吸水性加湿材4及び電極5の風路下流側にオゾン分解機構19を設ける構成とした。
オゾン分解機構19は、吸水性加湿材4と電極5の間のコロナ放電で生成されるオゾンを分解する機構であればよく、波長254nmの紫外線でオゾンを分解する紫外線法、高温ガスでオゾンを熱分解する熱分解法、活性炭にオゾンを吸着させて分解する活性炭法、二酸化マンガンなどの触媒で接触分解させる触媒法などがあり、除去性能、用途、圧力損失、適用環境により適宜決定すればよいが、本発明の加湿装置12へ適用する場合には、設置が容易で圧力損失を小さくできるハニカム状の触媒を用いた触媒法が好ましい。
(加湿装置の動作)
次に、図15を参照しながら、本実施の形態3に係る加湿装置12、及び加湿装置12を備えた空気調和機15について説明する。
吸水性加湿材4と電極5の間でコロナ放電させ、吸水性加湿材4の面に対して法線方向にイオン風18を当て加湿させる場合、電源6の電極5への印加電圧制御により加湿性能の制御を行う。このとき、電源6の制御により、規定値以上のオゾンが発生する可能性があるため、吸水性加湿材4及び電極5の風路下流側にオゾン分解機構19を設け、加湿装置12から排出されるオゾン濃度を規定値以下まで下げて加湿制御を行う。なお、実際の使用形態においては、供給部2、吸水性加湿材4、電極5、電源6、送風機8、オゾン分解機構19は所定の支持体によって固定することができる。支持体として特に限定されず、用途にあわせて適宜選択すればよい。
(実施の形態3の効果)
オゾン分解機構19により、イオン風18生成に伴うオゾンを分解除去することができ、加湿装置12から排出されるオゾンを抑えることによる機器の腐食を抑えることができ、かつ加湿性能を制御できる加湿装置12、及び加湿装置12を備えた空気調和機15を提供することができる。
実施の形態4.
本実施の形態4に係る加湿装置12、及び加湿装置12を備えた空気調和機15について、実施の形態1と相違する点を中心に説明する。
通常の吸水性加湿材4を用いた加湿装置12の場合、ユーザによる加湿運転後、吸水性加湿材4へのカビ発生抑制のため、吸水性加湿材4には一定時間、加湿水1の供給を停止した送風運転が実施されており、吸水性加湿材4の乾燥によりカビの生成を抑制している。しかし、加湿装置12、及び加湿装置12を備えた空気調和機15は、例えば計算機室用に用いられる可能性があり、連続的に加湿運転をする必要がある。この場合、吸水性加湿材4は連続的に加湿水1が供給され、かつカビが生育しやすい環境となることから、衛生的な問題が発生する。
(加湿装置の動作)
図16は、本発明の実施の形態4に係る加湿装置12の運転図である。図16において縦軸は電極5へ印加する電圧を、横軸は時間をそれぞれ示す。
次に、図16を参照しながら、本実施の形態4に係る加湿装置12、及び加湿装置12を備えた空気調和機15の動作について説明する。
吸水性加湿材4と電極5とで生成したイオン風18を吸水性加湿材4の面に対して法線方向に当てて加湿を行うが、経年的な使用により吸水性加湿材4にカビが生成する。
そこで、時間Tまで通風による加湿操作後、電極5へ電圧Vを印加することにより、イオン風18による加湿運転を行う。時間Tが経過した後、吸水性加湿材4及び電極5にかかる電圧を電圧Vまで上げ、オゾンなどの高活性種を生成する除菌モードにより高活性種を吸水性加湿材4に暴露する。そして、時間Tまで経過した後、再び電圧値をVまで低下させて、再びイオン風18による加湿運転する。これらを一定サイクルで繰り返す。なお、時間T、T、Tは使用環境により適宜決めればよい。また、電圧V、Vは必要加湿性能、必要オゾン濃度により決めればよい。
(実施の形態4の効果)
電源6の制御により、吸水性加湿材4及び電極5にかかる電圧を制御して、イオン風18による加湿運転と、オゾンなどの高活性種を生成する除菌モードを一定サイクルで繰り返すことにより、加湿水1を吸水性加湿材4に連続的に供給する加湿装置12、及び加湿装置12を構成する空気調和機15に対して、カビ生成の源なる真菌の成長を抑えることができる。そのため、高い衛生性を保つことができる加湿装置12、及び加湿装置12を構成する空気調和機15を提供することができる。
実施の形態5.
本実施の形態5に係る加湿装置12、及び加湿装置12を備えた空気調和機15について、実施の形態1と相違する点を中心に説明する。
図17は、本発明の実施の形態5に係る加湿装置12の構成図である。
図17において、温湿度センサ20、絶対湿度制御ユニット21を設けたこと以外は実施の形態1と同様である。
本発明の加湿装置12、及び加湿装置12を備えた空気調和機15は、吸水性加湿材4と電極5とで生成したイオン風18を、吸水性加湿材4の面に当てることにより加湿するものである。しかし、過剰に加湿すると気化熱により室内温度が低下するため、冬季の暖房の負荷が増大する。このため、本実施の形態5では吸水性加湿材4及び電極5の風路下流側に、温湿度センサ20と、温湿度センサ20の信号を解析する絶対湿度制御ユニット21とを設ける。
温湿度センサ20は、室内の温度、湿度を両方検知可能であることが望ましいが、温度センサ、湿度センサをそれぞれ用いて絶対湿度制御ユニット21に接続してもよい。絶対湿度制御ユニット21は温湿度センサ20からの信号より絶対湿度を演算し、絶対湿度の値により電源6の印加電圧を制御するものである。
(加湿装置の動作)
次に、図17を参照しながら、本実施の形態5に係る加湿装置12、及び加湿装置12を備えた空気調和機15の動作について説明する。
吸水性加湿材4と電極5とで生成したイオン風18を吸水性加湿材4に当てて加湿を行う。このとき、吸水性加湿材4及び電極5の風路下流側に設けた温湿度センサ20により空気7の温度湿度を測定する。この測定結果から室内環境の絶対湿度を検知し、その検知値に応じて絶対湿度制御ユニット21の信号により電源6を制御する。電極5は電源6により投入電圧を制御されることによりイオン風18の風速が決定された吸水性加湿材4の面に通風される。なお、実際の使用形態においては、供給部2、吸水性加湿材4、電極5、電源6、送風機8、温湿度センサ20、絶対湿度制御ユニット21は所定の支持体によって固定することができる。支持体として特に限定されず、用途にあわせて適宜選択すればよい。
(実施の形態5の効果)
上記の構成によれば、吸水性加湿材4と電極5との間のイオン風18を発生させて加湿する加湿装置12において、温湿度センサ20による加湿性能の制御により暖房負荷を増大させることなく加湿することができる。
実施の形態6.
本実施の形態6に係る加湿装置12、及び加湿装置12を備えた空気調和機15について、実施の形態1と相違する点を中心に説明する。
図18は、本発明の実施の形態6に係る加湿装置12の構成図である。
図18は、空気7の風路上流側である吸水性加湿材4の上流部の面のみと対向する電極23を備えた構成であり、その他の構成は図1と同じである。
低湿度空気が流入する吸水性加湿材4の風上側では、吸水性加湿材4中の水分濃度Cと空気7の水分濃度Cとの差である水分濃度差が大きくなり、式(1)から拡散速度Nが高まり加湿が促進される。さらに、接地電位と同電位の吸水性加湿材4に加湿水1を供給して加湿運転を行う際、電極5の突起部5aの先端から吸水性加湿材4の面に対して法線方向へ向かうイオン風18が作用することにより、飽和空気層厚さδ16は小さくなり、加湿が促進される。
このため、吸水性加湿材4の上流部で加湿が促進されるように、吸水性加湿材4の上流部の面のみと対向する電極23を備える構成とする。
なお、実際の使用形態においては、供給部2、吸水性加湿材4、電極23、電源6、送風機8は所定の支持体によって固定することができる。支持体として特に限定されず、用途にあわせて適宜選択すればよい。
また、動作については実施の形態1と同様であるため省略する。
(実施の形態6の効果)
吸水性加湿材4の上流部の面と対向する電極23を備える構成とすることで、実施の形態1のように吸水性加湿材4の面全体と対向する電極5と比較して、突起部5aの配置間隔を同じとすると、電極23の突起部5aの数が少なくなる。そのため、各突起部5aの放電電力が増加し、突起部5aから吸水性加湿材4の面に対して法線方向へ向かってより風速が大きいイオン風18を発生させることができる。
そして、そのイオン風18を、電極23と対向する吸水性加湿材4の面に対して法線方向から当てることにより、吸水性加湿材4の表面近傍の飽和空気層16aを攪拌することができ、風速が大きい分だけ飽和空気層厚さδ16を薄くすることができる。
このため、低湿度空気が流入する吸水性加湿材4の上流部で加湿をより促進することができ、加湿性能を向上させることができる。また、図8に示すように放電電力を制御することにより、吸水性加湿材4の面に対して法線方向へ向かうイオン風18の強弱を制御することができる。
実施の形態7.
本実施の形態7に係る加湿装置12、及び加湿装置12を備えた空気調和機15について、実施の形態1と相違する点を中心に説明する。
実施の形態1の構成では吸水性加湿材4が導電性のため、電極5の突起部5aの先端から吸水性加湿材4の面に対して法線方向へ向かうイオン風18が作用する。しかし、吸水性加湿材4が非導電性の場合はイオン風18が生成されないため、イオン風18による加湿効果はない。
本実施の形態7では、図19に示すように非導電性の吸水性加湿材24間に金属板、金属メッシュ等の導体25を挟み込んだ構成とする。
そうすることにより、非導電性の吸水性加湿材24を使用してもイオン風18による加湿効果を得ることができる。なお、前記導体25は電極5の突起部5aの先端と吸水性加湿材24との間に設けてあれば良く、吸水性加湿材24に接触していてもよいし接触していなくてもよい。
また、電極5の突起部5aの先端に対して、導体25の対向側に吸水性加湿材24を設けてもよい。電極5の突起部5aの先端と導体25との間でイオン風18を生成し、導体25が金属メッシュやパンチングメタル等の開口を有する金属の場合、イオン風18は導体25の開口部を通過し、その対向面にある吸水性加湿材24に当たる構成となることから、加湿を促進することができる。
(実施の形態7の効果)
吸水性加湿材24の間に導体25、又は電極5の突起部5aの先端に対して、導体25の対向側に吸水性加湿材24を設けることにより吸水性加湿材24が非導電性でもイオン風18による加湿効果を得ることができる。このため、電極5への入力制御により加湿性能を制御することができる。
1 加湿水、2 供給部、3 ノズル、4 吸水性加湿材、5 電極、5a 突起部、5b ワイヤ線、6 電源、7 空気、8 送風機、9 ドレンパン、10 空隙部、11 胴部、12 加湿装置、13 フィルタ、14 熱交換器、15 空気調和機、16 飽和空気層厚さδ、16a 飽和空気層、17 奥行き長さL、18 イオン風、19 オゾン分解機構、20 温湿度センサ、21 絶対湿度制御ユニット、22 電極、23 電極、24 吸水性加湿材、25 導体、101 正極性直流電圧、102 負極性直流電圧、103 交流電圧。

Claims (17)

  1. 導電性の電極と、
    前記電極に対向する吸水性加湿材と、
    前記電極と前記吸水性加湿材との間に電圧を印加する電源と、
    前記吸水性加湿材に加湿水を供給する給水手段と、
    前記電源が前記電圧を印加した前記電極と前記給水手段が前記加湿水を供給した前記吸水性加湿材との間の空間に空気を流す送風機と、を備える
    ことを特徴とする加湿装置。
  2. 前記吸水性加湿材は、導電性があり、
    前記電源が前記電圧を印加した前記電極は、前記電極から前記吸水性加湿材の面に対して法線方向へ向かうイオン風を発生させながら前記吸水性加湿材に当てて、前記空間に通される前記空気を加湿する
    ことを特徴とする請求項1に記載の加湿装置。
  3. 前記電極と前記吸水性加湿材との間に配置した導体をさらに備える
    ことを特徴とする請求項1に記載の加湿装置。
  4. 前記吸水性加湿材は、電気的に接地されている
    ことを特徴とする請求項1〜3のいずれか一項に記載の加湿装置。
  5. 前記吸水性加湿材は、多孔質である
    ことを特徴とする請求項1〜4のいずれか一項に記載の加湿装置。
  6. 前記電極は導電性の突起部を有し、
    前記突起部は、
    前記電極と対向する前記吸水性加湿材の面に対して垂直方向に形成されている、又は、前記送風機からの通風方向と同じ方向に角度90°未満の一定角度で形成されている
    ことを特徴とする請求項1〜5のいずれか一項に記載の加湿装置。
  7. 前記電極は、
    導電性のワイヤ線を有している
    ことを特徴とする請求項1〜5のいずれか一項に記載の加湿装置。
  8. 前記電極へ印加する電圧値と、前記電極から前記吸水性加湿材へ放電する電流との積で示される値である放電電力を制御することにより加湿性能を制御する
    ことを特徴とする請求項1〜7のいずれか一項に記載の加湿装置。
  9. 前記電源が電気電極に印加する前記電圧の量を増減する制御部をさらに備える
    ことを特徴とする請求項1〜7のいずれか一項に記載の加湿装置。
  10. 前記電源は、前記電極に正極性直流電圧を印加する
    ことを特徴とする請求項1〜9のいずれか一項に記載の加湿装置。
  11. 前記電源が前記電極に印加する前記正極性直流電圧にパルス電圧を重畳する重畳手段をさらに備える
    ことを特徴とする請求項10に記載の加湿装置。
  12. 前記電極は、
    前記空間の下流側である前記吸水性加湿材の下流部の面のみと対向する
    ことを特徴とする請求項1〜11のいずれか一項に記載の加湿装置。
  13. 前記電極は、
    前記空間の上流側である前記吸水性加湿材の上流部の面のみと対向する
    ことを特徴とする請求項1〜11のいずれか一項に記載の加湿装置。
  14. 前記吸水性加湿材及び前記電極の前記空間の下流側に、オゾンを分解するオゾン分解機構を設けた
    ことを特徴とする請求項1〜13のいずれか一項に記載の加湿装置。
  15. 前記電極に印加する電圧の値を制御し、前記イオン風による加湿運転と、少なくともオゾンの高活性種を生成する除菌モードとを一定サイクルで繰り返す
    ことを特徴とする請求項2、または請求項2に従属する請求項4〜14のいずれか一項に記載の加湿装置。
  16. 前記吸水性加湿材及び前記電極の前記空間の下流側に、温湿度センサ及び絶対湿度制御ユニットを設け、
    前記温湿度センサにより空気の温度湿度を測定した結果から、室内環境の絶対湿度を検知し、その検知値に応じて前記絶対湿度制御ユニットの信号により前記電源を制御する
    ことを特徴とする請求項1〜15のいずれか一項に記載の加湿装置。
  17. 請求項1〜16のいずれか一項に記載の加湿装置を備えた空気調和機。
JP2015537581A 2013-09-18 2014-06-19 加湿装置、及び加湿装置を備えた空気調和機 Active JP6080965B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013192865 2013-09-18
JP2013192865 2013-09-18
PCT/JP2014/066357 WO2015040910A1 (ja) 2013-09-18 2014-06-19 加湿装置、及び加湿装置を備えた空気調和機

Publications (2)

Publication Number Publication Date
JP6080965B2 true JP6080965B2 (ja) 2017-02-15
JPWO2015040910A1 JPWO2015040910A1 (ja) 2017-03-02

Family

ID=52688573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015537581A Active JP6080965B2 (ja) 2013-09-18 2014-06-19 加湿装置、及び加湿装置を備えた空気調和機

Country Status (4)

Country Link
US (1) US10871296B2 (ja)
JP (1) JP6080965B2 (ja)
CN (1) CN105556216B (ja)
WO (1) WO2015040910A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190075686A (ko) * 2017-12-21 2019-07-01 울산과학기술원 수증기 발생 장치, 및 이를 포함하는 정수 장치

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045609A1 (ja) * 2012-09-18 2014-03-27 三菱電機株式会社 加湿装置及び加湿装置を備えた空気調和機
JP5925326B2 (ja) * 2012-09-20 2016-05-25 三菱電機株式会社 加湿器、加湿器の制御方法、加湿材の親水化処理方法
WO2016051868A1 (ja) * 2014-10-03 2016-04-07 三菱電機株式会社 調湿装置
JP6076553B1 (ja) * 2016-02-09 2017-02-08 三菱電機株式会社 加湿装置及び空気調和機
EP3436181B1 (en) * 2016-03-31 2023-08-09 Oceaneering International, Inc. Membrane microgravity air conditioner
EP3551884B1 (en) * 2017-01-09 2020-07-15 Huawei Technologies Co., Ltd. Electro hydro dynamic apparatus and system comprising an electro hydro dynamic apparatus
CN106949599A (zh) * 2017-03-17 2017-07-14 珠海格力电器股份有限公司 控制湿度的方法、装置、系统及空调
JP6425836B1 (ja) * 2017-06-29 2018-11-21 三菱電機株式会社 集塵デバイスおよび空気調和機
CN108260679A (zh) * 2018-02-01 2018-07-10 揭阳市天通机电设备有限公司 一种拟自然气候的自动摊晒机
WO2019195791A1 (en) * 2018-04-05 2019-10-10 Xu Han Improved ultra-fast cooling system and methods of use
CN110081535A (zh) * 2019-06-10 2019-08-02 唯顶(中国)高新技术有限公司 一种模仿雨过天晴水过滤净化负离子新风生态盒
KR102122218B1 (ko) * 2019-10-10 2020-06-12 김병삼 욕실용 제습 건조 장치
US10955156B1 (en) * 2019-12-11 2021-03-23 Sten Kreuger Air conditioning and humidity control system and methods of making and using the same
EP4118385A4 (en) 2020-03-13 2024-04-24 Julian Henley ELECTRO-IONIC DEVICES FOR IMPROVED PROTECTION AGAINST AIR-SUSPENDED BIOPATHOGENS
NL2029921B1 (en) * 2021-11-26 2023-06-16 Duux Holding B V Combined electrical heater and humidifier
WO2023096483A1 (en) 2021-11-26 2023-06-01 Duux Holding B.V. Combined electrical heater and humidifier
KR20230084779A (ko) * 2021-12-06 2023-06-13 삼성전자주식회사 공기조화기 및 그 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168518A (ja) * 1983-03-15 1984-09-22 Toshiba Corp 加湿器
JPH07305883A (ja) * 1994-05-11 1995-11-21 Matsushita Refrig Co Ltd 加湿装置
JP2010276296A (ja) * 2009-05-29 2010-12-09 Sharp Corp 加湿装置
JP2012042139A (ja) * 2010-08-19 2012-03-01 Fujitsu General Ltd 空気清浄機およびその制御方法
JP2013078481A (ja) * 2011-10-04 2013-05-02 Sharp Corp 美顔方法及び美顔器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2904328B2 (ja) * 1992-11-24 1999-06-14 三菱電機株式会社 微生物繁殖防止装置
JPH07103522A (ja) 1993-10-12 1995-04-18 Matsushita Refrig Co Ltd 加湿装置
EP2033664B1 (en) * 2000-05-18 2014-11-19 Sharp Kabushiki Kaisha Sterilization method
JP3797259B2 (ja) 2002-03-29 2006-07-12 株式会社トヨトミ マイナスイオン発生装置
EP1694101A4 (en) * 2003-12-12 2010-08-11 Panasonic Elec Works Co Ltd DEVICE FOR OPERATING A HIGH PRESSURE DISCHARGE LAMP AND LIGHTING INSTRUMENT WITH THE EQUIPMENT
US8003058B2 (en) * 2006-08-09 2011-08-23 Airinspace B.V. Air purification devices
JP2009243703A (ja) 2008-03-28 2009-10-22 Fuji Koki Corp フィルター及びその製造方法
JP4818399B2 (ja) * 2009-06-15 2011-11-16 三菱電機株式会社 静電霧化装置及び空気調和機
EP2472545A4 (en) * 2009-08-26 2013-01-02 Panasonic Corp DISCHARGE DEVICE AND ELECTROSTATIC ATOMIZATION DEVICE COMPRISING SAME
CN102917734B (zh) * 2010-06-02 2014-12-17 三菱电机株式会社 微生物/病毒的捕捉/灭活装置及其方法
CN103348190B (zh) * 2011-08-29 2016-01-27 三菱电机株式会社 加湿装置
KR102076660B1 (ko) * 2012-06-21 2020-02-12 엘지전자 주식회사 공기 조화기 및 그 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168518A (ja) * 1983-03-15 1984-09-22 Toshiba Corp 加湿器
JPH07305883A (ja) * 1994-05-11 1995-11-21 Matsushita Refrig Co Ltd 加湿装置
JP2010276296A (ja) * 2009-05-29 2010-12-09 Sharp Corp 加湿装置
JP2012042139A (ja) * 2010-08-19 2012-03-01 Fujitsu General Ltd 空気清浄機およびその制御方法
JP2013078481A (ja) * 2011-10-04 2013-05-02 Sharp Corp 美顔方法及び美顔器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190075686A (ko) * 2017-12-21 2019-07-01 울산과학기술원 수증기 발생 장치, 및 이를 포함하는 정수 장치
KR102011974B1 (ko) * 2017-12-21 2019-10-21 울산과학기술원 수증기 발생 장치, 및 이를 포함하는 정수 장치

Also Published As

Publication number Publication date
US20160146483A1 (en) 2016-05-26
JPWO2015040910A1 (ja) 2017-03-02
WO2015040910A1 (ja) 2015-03-26
US10871296B2 (en) 2020-12-22
CN105556216B (zh) 2019-02-15
CN105556216A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
JP6080965B2 (ja) 加湿装置、及び加湿装置を備えた空気調和機
US9816715B2 (en) Humidifier and air-conditioning apparatus with humidifier
JP3680121B2 (ja) 殺菌方法、イオン発生装置及び空気調節装置
JP4967971B2 (ja) 空気調和機
JP6076544B2 (ja) 加湿装置、及び加湿装置を備えた空気調和機
JP5646068B2 (ja) 加湿装置
JP6076553B1 (ja) 加湿装置及び空気調和機
US20110000368A1 (en) Dynamic electrostatic apparatus for purifying air using electronically charged droplets
JP5989236B2 (ja) 加湿装置及び加湿装置を備えた空気調和機
JP5686504B2 (ja) 静電霧化装置及び空気調和機
JP2013185765A (ja) イオンミスト加湿装置及びイオンミスト加湿システム
US20110000369A1 (en) Dynamic electrostatic apparatus for purifying air using electronically charged nanodroplets
JP5867534B2 (ja) 加湿装置
JP6641182B2 (ja) イオン風式液体気化装置および空気調和装置
JP2012115798A (ja) 空気清浄装置
JP5885653B2 (ja) 加湿装置
JP2015085213A (ja) 電気集塵装置、空気清浄装置、空気調和装置
JP6052350B2 (ja) 加湿装置
JP2011169580A (ja) 空気調和機
JP2015190758A5 (ja)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170117

R150 Certificate of patent or registration of utility model

Ref document number: 6080965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250