JP6076431B2 - Manufacturing method of semiconductor package substrate - Google Patents

Manufacturing method of semiconductor package substrate Download PDF

Info

Publication number
JP6076431B2
JP6076431B2 JP2015188782A JP2015188782A JP6076431B2 JP 6076431 B2 JP6076431 B2 JP 6076431B2 JP 2015188782 A JP2015188782 A JP 2015188782A JP 2015188782 A JP2015188782 A JP 2015188782A JP 6076431 B2 JP6076431 B2 JP 6076431B2
Authority
JP
Japan
Prior art keywords
substrate
copper foil
conductor pattern
layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015188782A
Other languages
Japanese (ja)
Other versions
JP2016066799A (en
Inventor
主 松澤
主 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastern KK
Original Assignee
Eastern KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastern KK filed Critical Eastern KK
Publication of JP2016066799A publication Critical patent/JP2016066799A/en
Application granted granted Critical
Publication of JP6076431B2 publication Critical patent/JP6076431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば半導体素子搭載用のキャビティが形成された半導体パッケージ基板の製造方法に関する。 The present invention relates to a method of manufacturing a semiconductor package board having a cavity for mounting a semiconductor element is formed.

半導体パッケージ基板に半導体素子搭載用のキャビティを形成する方法として以下の技術が知られている。
第1の方法は、樹脂基板の両面に配線パターンが形成された基板両面に、プリプレグを介して銅パンプ付銅箔を位置合わせして貼り合わせる。このとき、樹脂基板の配線パターンと銅バンプとが、電気的に接続するように位置合わせして積層される。次いで、エッチングにより基板外面の銅箔層に銅バンプと接続する配線パターンが形成される。そして、銅バンプと接続する配線パターンとは反対面からザグリ加工を行ってプリプレグ、樹脂基板などをルーターにより切削して底部に銅バンプを露出させてキャビティを形成する。このキャビティに半導体素子をフリップチップ接続した後、アンダーフィルモールドを行って半導体素子が樹脂封止される(特許文献1参照)。
The following techniques are known as a method for forming a cavity for mounting a semiconductor element on a semiconductor package substrate.
In the first method, a copper foil with a copper bump is positioned and bonded to both sides of a substrate having wiring patterns formed on both sides of a resin substrate via a prepreg. At this time, the wiring pattern of the resin substrate and the copper bump are aligned and laminated so as to be electrically connected. Next, a wiring pattern connected to the copper bump is formed on the copper foil layer on the outer surface of the substrate by etching. Then, counterboring is performed from the opposite side of the wiring pattern connected to the copper bump, and the prepreg, the resin substrate, etc. are cut by a router to expose the copper bump at the bottom to form a cavity. After the semiconductor element is flip-chip connected to the cavity, underfill molding is performed to seal the semiconductor element with resin (see Patent Document 1).

第2の方法は、銅箔を積層した基板に半導体素子を搭載する箇所にキャビティを形成する開口部を形成し、キャビティ底部に半導体素子と接続する内部接続端子を備えた基板を積層して接着することでキャビティを形成した半導体パッケージ基板を製造する方法である(特許文献2参照)。   In the second method, an opening for forming a cavity is formed at a position where a semiconductor element is mounted on a substrate on which a copper foil is laminated, and a substrate having an internal connection terminal connected to the semiconductor element is laminated and bonded to the bottom of the cavity. This is a method for manufacturing a semiconductor package substrate in which a cavity is formed (see Patent Document 2).

特開2004−319848号公報JP 2004-31848 A 特開2002−43454号公報JP 2002-43454 A

上述した特許文献1に示すルーターによるザグリ加工でキャビティを形成する場合、加工時間がかかるうえに、コーナー部のRを小さくすることができない。また、加工深さの精度が悪い、キャビティの位置精度が悪いなどの問題がある。
また、特許文献2に示すように銅箔を積層した基板に開口部を形成する場合、金型でくり抜くには、高価な金型が必要になる。開口部を形成した基板と開口部がない基板とを貼り合わせる際に精度が求められる。
更には、キャビティを形成したキャビティ底部は他の基板部分より板厚が薄く剛性が低いことから、反り、歪み、うねりなどの変形が生じ易いという課題もあった。
When the cavity is formed by counterboring by the router shown in Patent Document 1 described above, processing time is required and the corner portion R cannot be reduced. In addition, there are problems such as poor machining depth accuracy and poor cavity position accuracy.
In addition, as shown in Patent Document 2, when an opening is formed in a substrate on which copper foils are stacked, an expensive mold is required to cut out with a mold. Accuracy is required when a substrate having an opening is bonded to a substrate having no opening.
Furthermore, since the bottom of the cavity in which the cavity is formed is thinner and less rigid than the other substrate portions, there is a problem that deformation such as warpage, distortion, and undulation easily occurs.

本発明の目的は、上記従来技術の課題を解決し、多層基板に対してキャビティを形成する加工時間が短く、キャビティの寸法精度が高くしかも加工深さの精度も高い半導体パッケージ基板の製造方法を提供することにある。 An object of the present invention, the solve the problems of the prior art, short processing time of forming a cavity with respect to multi-layer substrate, a manufacturing method also high semiconductor package board accuracy of dimensional accuracy of the cavity is high yet machining depth Is to provide.

上記目的を達成するため、本発明に係る半導体パッケージ基板の製造方法は以下の構成を備える。即ち、絶縁樹脂基材の少なくとも一方の面に、第一の銅箔層に第二の銅箔層が剥離可能に積層された銅箔を用いて内層にキャビティ底部導体パターンが形成され、樹脂基材を介して導体層が両面に積層された多層基板を用意する工程と、前記多層基板の両面にエッチングを行って、前記キャビティ底部導体パターンに前記絶縁樹脂基材及び前記樹脂基材を介して積層する前記導体層に前記キャビティ底部導体パターンの外縁部の上方に開口を有する導体パターンを形成する工程と、前記多層基板の開口より露出する前記樹脂基材の上方から前記キャビティ底部導体パターンの外縁部に沿ってレーザー光を照射することで前記樹脂基材及び前記絶縁樹脂基材を除去して底部に前記キャビティ底部導体パターンが露出したスリットを周回して形成する工程と、前記スリット内に露出した前記キャビティ底部導体パターンをエッチングにより除去する工程と、前記スリットに囲まれた前記樹脂基材及び前記絶縁樹脂基材を前記第一の銅箔層とともに前記第二の銅箔層より剥離させて除去し、底部に前記第二の銅箔層が露出したキャビティを形成する工程と、を含むことを特徴とする。 In order to achieve the above object, a semiconductor package substrate manufacturing method according to the present invention comprises the following arrangement. That is, a cavity bottom conductor pattern is formed on the inner layer using a copper foil in which a second copper foil layer is detachably laminated on a first copper foil layer on at least one surface of an insulating resin base material. A step of preparing a multilayer substrate in which a conductor layer is laminated on both sides via a material, etching on both sides of the multilayer substrate, and the cavity bottom conductor pattern via the insulating resin substrate and the resin substrate. Forming a conductor pattern having an opening above the outer edge of the cavity bottom conductor pattern in the conductor layer to be laminated; and an outer edge of the cavity bottom conductor pattern from above the resin base exposed from the opening of the multilayer substrate The resin base material and the insulating resin base material are removed by irradiating a laser beam along the portion, and a slit in which the cavity bottom conductor pattern is exposed at the bottom is formed around the slit. Removing the cavity bottom conductor pattern exposed in the slit by etching, and the resin base material and the insulating resin base material surrounded by the slit together with the first copper foil layer. And removing the second copper foil layer from the second copper foil layer to form a cavity in which the second copper foil layer is exposed at the bottom.

上述した半導体パッケージ基板の製造方法を用いれば、多層基板の開口より露出する樹脂基材の上方からキャビティ底部導体パターンの外縁部に沿ってレーザー光を照射してスリットを周回して形成することで、レーザー加工に要する加工時間を短くすることができる。さらにレーザー光はキャビティ底部導体パターンにより加工が止まるため、キャビティの加工深さ精度も高くなる。
キャビティ底部導体パターンが露出したスリットに囲まれた樹脂基材及び絶縁樹脂基材は、粘着性があるテープあるいはローラーに転写するなどすることにより第一の銅箔層と共に第二の銅箔層から容易に剥離させて除去することができ、キャビティの形成が容易に行える。
If the semiconductor package substrate manufacturing method described above is used, the slit is formed by irradiating laser light along the outer edge of the cavity bottom conductor pattern from above the resin base exposed from the opening of the multilayer substrate. The processing time required for laser processing can be shortened. Furthermore, since the processing of the laser beam is stopped by the cavity bottom conductor pattern, the processing depth accuracy of the cavity is increased.
The resin base material and the insulating resin base material surrounded by the slit where the cavity bottom conductor pattern is exposed are transferred from the second copper foil layer together with the first copper foil layer by transferring it to an adhesive tape or roller. It can be easily peeled off and removed, and the cavity can be easily formed.

また、前記絶縁樹脂基材の少なくとも一方の面に前記第一の銅箔層に前記第二の銅箔層が剥離可能に積層する前記銅箔が積層されたベース基板を用意する工程と、前記ベース基板にエッチングを行って前記キャビティ底部導体パターンが少なくとも一方の面に形成されたコア基板を形成する工程と、前記コア基板の両面に半硬化樹脂基材を介して銅箔を各々重ねて加熱加圧して前記多層基板を用意する工程と、硬化した前記樹脂基材を貫通する孔を形成し、無電解銅めっきおよび電解銅めっきを連続して行って基板両面に銅層を積層するとともに前記貫通孔に銅めっきをして電気的に接続をとる工程と、を有していてもよい。
これによれば、多層基板を用意する際に、予め内層となるベース基板の少なくとも一方の面にキャビティ底部導体パターンを容易に形成することができる。
A step of preparing a base substrate on which the copper foil is laminated on the first copper foil layer so that the second copper foil layer is peelable on at least one surface of the insulating resin base; Etching the base substrate to form a core substrate having the cavity bottom conductor pattern formed on at least one surface, and heating the copper foil on both surfaces of the core substrate via a semi-cured resin base material. a step of preparing the multilayer substrate by pressurizing, cured to form a hole penetrating the resin base material, as well as the product layer copper layers on both surfaces of the substrate continuously performed electroless copper plating and electrolytic copper plating And a step of copper-plating the through hole to make an electrical connection.
According to this, when preparing a multilayer substrate, the cavity bottom conductor pattern can be easily formed in advance on at least one surface of the base substrate serving as the inner layer.

他の半導体パッケージ基板の製造方法においては、絶縁樹脂基材の少なくとも一方の面に、第一の銅箔層に第二の銅箔層が剥離可能に積層された銅箔を用いてキャビティ底部導体パターンが形成され該キャビティ底部導体パターンに導体層が積層された導体部を有し、他方の面に前記キャビティ底部導体パターンの外縁部の上方に第一の開口を有する第一導体パターンを内層に各々有し、樹脂基材を介して導体層が両面に積層された多層基板を用意する工程と、前記多層基板の両面にエッチングを行って、前記第一の開口の上方に第二の開口を有する第二導体パターンを各々形成する工程と、前記多層基板の第二の開口より露出する前記樹脂基材の上方から前記キャビティ底部導体パターンの外縁部に沿ってレーザー光を照射することで前記樹脂基材及び前記絶縁樹脂基材を除去して底部に前記キャビティ底部導体パターン及びこれに積層する前記導体の一部が露出したスリットを周回して形成する工程と、前記スリット内に露出した前記キャビティ底部導体パターンの表層の前記第一の銅箔層をエッチングにより除去する工程と、前記スリットに囲まれた前記樹脂基材及び前記絶縁樹脂基材を前記第一の銅箔層とともに前記第二の銅箔層より剥離させて除去し、底部に前記第二の銅箔層が露出したキャビティを形成する工程と、を含むことを特徴とする。 In another method of manufacturing a semiconductor package substrate, a cavity bottom conductor is formed using a copper foil in which a second copper foil layer is detachably laminated on a first copper foil layer on at least one surface of an insulating resin base material. pattern has a guide body on which the conductor layer is laminated on the cavity bottom conductor pattern is formed, a first conductor pattern having a first opening above the outer edge of the cavity bottom conductor pattern on the other surface inner layer And a step of preparing a multilayer substrate in which a conductor layer is laminated on both sides via a resin base material, etching on both sides of the multilayer substrate, and a second opening above the first opening. Irradiating a laser beam along the outer edge of the cavity bottom conductor pattern from above the resin base exposed from the second opening of the multilayer substrate, A step portion of Aburamoto material and the insulating said the bottom of the resin base material is removed cavity bottom conductor pattern and the conductor layer to be laminated thereto to form orbiting the slit exposure, exposed in the slit The step of removing the first copper foil layer on the surface layer of the cavity bottom conductor pattern by etching; the resin base material surrounded by the slit; and the insulating resin base material together with the first copper foil layer And removing the second copper foil layer from the second copper foil layer to form a cavity in which the second copper foil layer is exposed at the bottom.

上述した半導体パッケージ基板の製造方法を用いれば、多層基板の第二の開口より露出する樹脂基材の上方からキャビティ底部銅パターンの外縁部に沿ってレーザー光を照射することで樹脂基材及び絶縁樹脂基材を除去して底部にキャビティ底部導体パターンを含む第一導体パターンが露出したスリットを周回して形成することで、導体パターンが複数層形成された多層基板であっても、キャビティを短時間で精度よく加工することができる。さらにレーザー光はキャビティ底部導体パターンを含む第一導体パターンにより加工が止まるため、キャビティの加工深さ精度も高くなる。
更には、キャビティ底部には、第二の銅箔層が露出した厚肉導体部が形成されているので、キャビティ底部の剛性を高めることができる。
If the semiconductor package substrate manufacturing method described above is used, the resin substrate and the insulation can be obtained by irradiating the laser beam along the outer edge of the cavity bottom copper pattern from above the resin substrate exposed from the second opening of the multilayer substrate. Even if it is a multilayer board with multiple layers of conductor patterns, the cavity is shortened by removing the resin base material and forming it around the slit with the first conductor pattern including the cavity bottom conductor pattern exposed at the bottom. It can be processed accurately in time. Furthermore, since the laser beam is stopped by the first conductor pattern including the cavity bottom conductor pattern, the processing depth accuracy of the cavity is also increased.
Furthermore, since the thick conductor part which the 2nd copper foil layer exposed is formed in the cavity bottom part, the rigidity of a cavity bottom part can be improved.

また、前記絶縁樹脂基材の両面に前記第一の銅箔層に前記第二の銅箔層が剥離可能に積層する前記銅箔が積層されたベース基板を用意する工程と、前記ベース基板にエッチングを行って前記銅箔に前記キャビティ底部導体パターンが一方の面に形成され、前記キャビティ底部導体パターンを除いて前記第二の銅箔層を剥離したコア基板を形成する工程と、前記絶縁樹脂基材を貫通する孔を形成し、無電解銅めっき及び電解銅めっきを連続して行って、基板両面に銅層を積層すると共に前記貫通孔に銅めっきをして電気的接続をとる工程と、前記コア基板にエッチングを行って、キャビティが形成される側の面に前記キャビティ底部導体パターンの外縁部の上方に前記第一の開口を有する前記第一導体パターンを形成する工程と、前記コア基板の両面に半硬化樹脂基材を介して銅箔を重ねて加熱加圧して多層形成する工程と、前記コア基板の両面に積層された前記樹脂基材に前記第一導体パターンを底部とするビア孔を形成する工程と、前記コア基板の両面に積層された前記銅箔に無電解銅めっき及び電解銅めっきを連続して行って、前記銅箔に銅層を積層する工程と、を経て前記多層基板を用意するようにしてもよい。
これにより、多層基板を形成する工程で、内層であるキャビティ底部導体パターンに導体層が厚肉に積層する厚肉導体部を容易に形成することができる。
A step of preparing a base substrate on which the copper foil is laminated on both sides of the insulating resin base material so that the second copper foil layer is peelable on the first copper foil layer; Etching to form a core substrate on which the cavity bottom conductor pattern is formed on one surface of the copper foil, and excluding the cavity bottom conductor pattern, and peeling off the second copper foil layer; and the insulating resin forming a hole penetrating the base, performed continuously electroless copper plating and electrolytic copper plating, the step of the copper layer on both surfaces of the substrate and the copper plating in the through-hole as well as a product layer to electrically connect Etching the core substrate to form the first conductor pattern having the first opening above the outer edge of the cavity bottom conductor pattern on the surface where the cavity is to be formed; and Core substrate A process of forming a multilayer by heating and pressurizing copper foil on both sides via a semi-cured resin base material, and a via hole having the first conductor pattern as a bottom in the resin base material laminated on both surfaces of the core substrate forming a continuously performed electroless copper plating and electrolytic copper plating in the copper foil laminated on both sides of the core substrate, the through the steps of the product layer the copper layer on the copper foil A multilayer substrate may be prepared.
Thereby, in the step of forming the multilayer substrate, a thick conductor portion in which the conductor layer is thickly laminated on the cavity bottom conductor pattern which is the inner layer can be easily formed.

前記多層基板の両面に形成された前記第二導体パターン上に半硬化樹脂基材を介して銅箔を更に重ねて加熱加圧して多層形成する工程と、前記多層基板の両面に積層された前記樹脂基材に前記第二導体パターンを底部とするビア孔を形成する工程と、前記多層基板の両面に無電解銅めっき及び電解銅めっきを連続して行って、前記銅箔に銅層を積層する工程と、前記多層基板の両面にエッチングを行って前記第二の開口の上方に第三の開口を有する第三導体パターンを形成する工程と、を更に有していてもよい。
この場合には、6層以上の多層基板であっても、キャビティを形成する加工時間が短く、キャビティの寸法精度が高くしかも加工深さの精度も高い半導体パッケージ基板の製造方法を提供することができる。
A step of forming a multilayer by heating and pressurizing a copper foil on the second conductor pattern formed on both surfaces of the multilayer substrate via a semi-cured resin base material, and laminating on both surfaces of the multilayer substrate A step of forming a via hole having the second conductor pattern as a bottom in a resin base material, and electroless copper plating and electrolytic copper plating are continuously performed on both surfaces of the multilayer substrate, and a copper layer is stacked on the copper foil. And a step of etching on both surfaces of the multilayer substrate to form a third conductor pattern having a third opening above the second opening.
In this case, it is possible to provide a method for manufacturing a semiconductor package substrate that has a short processing time for forming a cavity, a high dimensional accuracy of the cavity, and a high processing depth accuracy even for a multilayer substrate having six or more layers. it can.

上述した半導体パッケージ基板の製造方法によれば、多層基板に対してレーザー加工に要する加工時間が短く、キャビティの外形精度が高くしかも加工深さ精度も高い半導体パッケージ基板の製造方法を提供することができる According to the method for manufacturing a semiconductor package substrate described above, it is possible to provide a method for manufacturing a semiconductor package substrate with a short processing time required for laser processing on a multilayer substrate, a high cavity outer shape accuracy, and a high processing depth accuracy. I can .

第1実施例に係る半導体パッケージ基板の製造方法の加工工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the manufacturing method of the semiconductor package board | substrate which concerns on 1st Example. 図1に続く半導体パッケージ基板の製造方法の加工工程を示す断面図である。FIG. 2 is a cross-sectional view showing a processing step of the semiconductor package substrate manufacturing method following FIG. 第2実施例に係る半導体パッケージ基板の製造方法の加工工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the manufacturing method of the semiconductor package board | substrate which concerns on 2nd Example. 図3に続く半導体パッケージ基板の製造方法の加工工程を示す断面図である。FIG. 4 is a cross-sectional view showing a processing step of the semiconductor package substrate manufacturing method following FIG. 図2の変形例を示す半導体パッケージ基板の断面図である。It is sectional drawing of the semiconductor package board | substrate which shows the modification of FIG. 図4の変形例を示す半導体パッケージ基板の断面図である。It is sectional drawing of the semiconductor package board | substrate which shows the modification of FIG.

以下、本発明の実施形態について図面を参照しながら具体的に説明する。
図1(A)〜(I)及び図2(J)(K)を参照して半導体パッケージ基板の製造方法について半導体パッケージ基板の構成と共に説明する。尚、以下の説明では、剥離可能な二層の銅箔の一例としてキャリヤ付銅箔を使用するものとする。キャリヤ付銅箔は、例えば極薄銅箔(銅箔;厚さ2〜5μm)に剥離可能な弱い接着力の接着層を介してキャリヤ銅箔(厚さ18μm;キャリヤ箔)が積層されたもの(例えばF-HP;Heat-Resistant Peelable Copper Foil)が用いられるものとする。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
With reference to FIGS. 1A to 1I and FIGS. 2J and 2K, a method for manufacturing a semiconductor package substrate will be described together with the configuration of the semiconductor package substrate. In the following description, a copper foil with a carrier is used as an example of a two-layer copper foil that can be peeled. The copper foil with a carrier is obtained by, for example, laminating a carrier copper foil (thickness: 18 μm; carrier foil) through an adhesive layer having a weak adhesive force that can be peeled off to an ultrathin copper foil (copper foil; thickness: 2 to 5 μm). (For example, F-HP; Heat-Resistant Peelable Copper Foil) is used.

[第1実施例]
先ず、図1(A)において、絶縁樹脂基材1(例えば、ガラスエポキシ基板;FR‐4)の両面(片面でもよい)にキャリヤ付銅箔2が積層されたベース基板3を用意する。キャリヤ付銅箔2は、銅箔層2a(第一の銅箔層)とキャリヤ箔といわれるキャリヤ銅箔層2b(第二の銅箔層)が例えば剥離可能な弱い接着力で貼り合わせたものが用いられる。ベース基板3において、キャリヤ付銅箔2は絶縁樹脂基材1に接着している銅箔層2a(第一の銅箔層)にキャリヤ銅箔層2b(第二の銅箔層)が貼り合わせてある。キャリヤ銅箔層2bは銅箔層2aから容易に剥離させることができる。
[First embodiment]
First, in FIG. 1A, a base substrate 3 is prepared in which a carrier-added copper foil 2 is laminated on both surfaces (or one surface) of an insulating resin substrate 1 (for example, a glass epoxy substrate; FR-4). The copper foil 2 with a carrier is obtained by laminating a copper foil layer 2a (first copper foil layer) and a carrier copper foil layer 2b (second copper foil layer) called a carrier foil, for example, with a weak adhesive force capable of being peeled off. Is used. In the base substrate 3, the carrier-attached copper foil 2 is bonded to the copper foil layer 2a (first copper foil layer) bonded to the insulating resin base material 1 with the carrier copper foil layer 2b (second copper foil layer). It is. The carrier copper foil layer 2b can be easily separated from the copper foil layer 2a.

図1(B)に示すように、ベース基板3にエッチングを行って、キャリヤ付銅箔2にキャビティ底部導体パターン4が一方の面(図1(B)では下面)に形成されたコア基板5を形成する。エッチングは、ベース基板3のキャリヤ付銅箔2にパターンが形成されたエッチングレジストを積層して行われる。   As shown in FIG. 1B, the base substrate 3 is etched, and the core substrate 5 in which the cavity bottom conductor pattern 4 is formed on one surface (the lower surface in FIG. 1B) on the copper foil 2 with a carrier. Form. Etching is performed by laminating an etching resist having a pattern formed on the copper foil with carrier 2 of the base substrate 3.

図1(C)において、コア基板5の両面に半硬化樹脂基材6(例えばプリプレグ)を介して銅箔7(導体層;厚さ2〜5μm)を各々重ねて加熱加圧して多層基板8を形成する(積層プレス)。このとき、半硬化樹脂基材6は、加熱加圧されて硬化し硬化樹脂基材6(例えば厚さ60μm)となる。   In FIG. 1C, a copper foil 7 (conductor layer; thickness: 2 to 5 μm) is superposed on both surfaces of the core substrate 5 via a semi-cured resin base material 6 (for example, prepreg), and heated and pressed to form a multilayer substrate 8. (Laminate press). At this time, the semi-cured resin substrate 6 is cured by being heated and pressurized to become a cured resin substrate 6 (for example, a thickness of 60 μm).

図1(D)において、多層基板8にエッチングを行って、絶縁樹脂基材1を中心としてキャビティ底部導体パターン4が形成された一方側(図1(D)では下面)の基板面に導体パターン10bを形成し、キャビティ底部導体パターン4とは反対側の基板面(図1(D)では上面)に積層する銅箔7に、キャビティ底部導体パターン4の外縁部の上方に開口9を有する導体パターン10aを各々形成する。この開口9は、後にレーザー加工を行う位置に形成されていればよいため、開口9内に導体パターン10aが残っていてもよい。   In FIG. 1D, the multilayer substrate 8 is etched, and the conductor pattern is formed on the substrate surface on one side (the lower surface in FIG. 1D) on which the cavity bottom conductor pattern 4 is formed with the insulating resin base material 1 as the center. A conductor having an opening 9 above the outer edge portion of the cavity bottom conductor pattern 4 in the copper foil 7 formed on the substrate surface opposite to the cavity bottom conductor pattern 4 (upper surface in FIG. 1D). Each pattern 10a is formed. Since the opening 9 only needs to be formed at a position where laser processing is performed later, the conductor pattern 10 a may remain in the opening 9.

次に図1(E)に示すように、多層基板8の開口9より露出する硬化樹脂基材6の上方からキャビティ底部導体パターン4の外縁部に沿ってレーザー光11を照射する。具体的には、コア基板5のキャビティ底部導体パターン4と同じ面の適当な位置にアライメントマークを形成し、積層プレスで多層基板8を形成した後X線穴あけ機でコア基板5のアライメントマークを認識して穴あけをする。レーザー加工装置がこの穴をアライメントマークとして認識して硬化樹脂基材6の上方からキャビティ底部導体パターン4の外縁部に沿ってレーザー光11を照射する。レーザー光11は、エネルギーレベルが高い炭酸ガスレーザーが好適に用いられる。   Next, as shown in FIG. 1E, the laser beam 11 is irradiated along the outer edge portion of the cavity bottom conductor pattern 4 from above the cured resin substrate 6 exposed from the opening 9 of the multilayer substrate 8. Specifically, an alignment mark is formed at an appropriate position on the same surface as the cavity bottom conductor pattern 4 of the core substrate 5, the multilayer substrate 8 is formed by a lamination press, and then the alignment mark of the core substrate 5 is formed by an X-ray drilling machine. Recognize and drill holes. The laser processing apparatus recognizes this hole as an alignment mark and irradiates the laser beam 11 along the outer edge of the cavity bottom conductor pattern 4 from above the cured resin substrate 6. As the laser beam 11, a carbon dioxide laser having a high energy level is preferably used.

これにより、図1(F)に示すように、レーザー光照射位置の硬化樹脂基材6及び絶縁樹脂基材1を除去して底部にキャビティ底部導体パターン4の外縁部が露出したスリット12を周回して形成することができる。
このとき、多層基板8に対してスリット12を周回して形成するレーザー加工に要する加工時間は短く、またコーナー部のRを小さく加工することができる。また、多層基板8に対してレーザー光11を照射しても、キャビティ底部導体パターン4を含む第一導体パターンによりレーザー加工が止まるため、最終的に形成されるキャビティ13(図1(I)参照)の加工深さ精度は高くなる。
Thereby, as shown in FIG. 1 (F), the cured resin base material 6 and the insulating resin base material 1 at the laser light irradiation position are removed, and the slit 12 where the outer edge portion of the cavity bottom conductor pattern 4 is exposed at the bottom is circulated. Can be formed.
At this time, the processing time required for the laser processing for forming the slit 12 around the multilayer substrate 8 is short, and the corner portion R can be processed small. Further, even if the multilayer substrate 8 is irradiated with the laser beam 11, the laser processing is stopped by the first conductor pattern including the cavity bottom conductor pattern 4, so that the finally formed cavity 13 (see FIG. 1 (I)). ) Processing depth accuracy is high.

ここで、図1(G)において、多層基板8のスリット12に囲まれた硬化樹脂基材6及び絶縁樹脂基材1を除去するため、スリット12の底部に露出するキャビティ底部導体パターン4(銅箔層2a及びキャリヤ銅箔層2b)をエッチングにより除去して硬化樹脂基材6を露出させる。   Here, in FIG. 1G, in order to remove the cured resin base material 6 and the insulating resin base material 1 surrounded by the slits 12 of the multilayer substrate 8, the cavity bottom conductor pattern 4 (copper copper) exposed at the bottom of the slits 12 is removed. The foil layer 2a and the carrier copper foil layer 2b) are removed by etching to expose the cured resin substrate 6.

図1(H)において、多層基板8からスリット12に囲まれた硬化樹脂基材6及び絶縁樹脂基材1を剥離させて除去する。具体的には、粘着性のあるテープを基板に貼りつけて剥がすことによりキャビティ底部導体パターン4を形成する銅箔層2aをキャリヤ銅箔層2bより剥離させて硬化樹脂基材6及び絶縁樹脂基材1を粘着テープに転写させる。
これにより、多層基板8にキャビティ底部導体パターン4のうちキャリヤ銅箔層2bが残存したキャビティ13が形成される。
In FIG. 1H, the cured resin base material 6 and the insulating resin base material 1 surrounded by the slits 12 are peeled off from the multilayer substrate 8 and removed. Specifically, the adhesive tape is attached to the substrate and peeled off to peel off the copper foil layer 2a forming the cavity bottom conductor pattern 4 from the carrier copper foil layer 2b, and the cured resin base 6 and insulating resin base Material 1 is transferred to an adhesive tape.
As a result, a cavity 13 in which the carrier copper foil layer 2b remains in the cavity bottom conductor pattern 4 is formed in the multilayer substrate 8.

次に図2(J)に示すように、キャビティ13を除く、多層基板8の両面にソルダーレジストをコーティング(例えばドライフィルムレジストを積層しフォトリソグラフィによりパターン形成)する。具体的には、一方の基板面に形成された導体パターン10aをソルダーレジスト14aでコーティングし、他方の基板面に形成された導体パターン10bをソルダーレジスト14bでコーティングする。   Next, as shown in FIG. 2J, a solder resist is coated on both surfaces of the multilayer substrate 8 excluding the cavity 13 (for example, a dry film resist is laminated and a pattern is formed by photolithography). Specifically, the conductor pattern 10a formed on one substrate surface is coated with the solder resist 14a, and the conductor pattern 10b formed on the other substrate surface is coated with the solder resist 14b.

最後に図2(K)に示すように、基板両面に表面処理を行う。具体的には、ソルダーレジスト14a,14bから露出している導体パターン10a,10b上及びキャビティ底部の導体パターン2bに、ニッケルめっき、金めっきを行ってめっき層17が形成された半導体パッケージ基板15が製造される(表面処理)。この半導体パッケージ基板15に形成されたキャビティ13には、半導体素子や各種センサ等の電子部品などが配置される。   Finally, as shown in FIG. 2K, surface treatment is performed on both sides of the substrate. Specifically, the semiconductor package substrate 15 in which the plating layer 17 is formed by performing nickel plating and gold plating on the conductor patterns 10a and 10b exposed from the solder resists 14a and 14b and the conductor pattern 2b at the bottom of the cavity is formed. Manufactured (surface treatment). In the cavity 13 formed in the semiconductor package substrate 15, electronic components such as semiconductor elements and various sensors are arranged.

上述した半導体パッケージ基板15の製造方法を用いれば、多層基板8に対して硬化樹脂基材6の上方からキャビティ底部導体パターン4の外縁部に沿ってレーザー光11を照射してスリット12を周回して形成することで、レーザー加工に要する加工時間を短くすることができる。また、レーザー光11のビーム径を小さくすることによりコーナー部のRを小さくすることができ更にレーザー光11はキャビティ底部導体パターン4によりレーザー加工が止まるため、キャビティ13の加工深さ精度も高くなる。
また、キャビティ底部導体パターン4が露出したスリット12に囲まれた硬化樹脂基材6及び絶縁樹脂基材1は、粘着テープに転写するなどすることにより銅箔層2aと共にキャリヤ銅箔層2bから容易に剥離させて除去することができ、キャビティ13の形成が容易に行える。
If the method for manufacturing the semiconductor package substrate 15 described above is used, the multilayer substrate 8 is irradiated with the laser light 11 along the outer edge portion of the cavity bottom conductor pattern 4 from above the cured resin base material 6 to circulate around the slit 12. By forming them, the processing time required for laser processing can be shortened. Further, by reducing the beam diameter of the laser beam 11, the corner portion R can be reduced. Further, the laser beam 11 is stopped by the cavity bottom conductor pattern 4, so that the processing depth accuracy of the cavity 13 is also increased. .
Further, the cured resin base material 6 and the insulating resin base material 1 surrounded by the slit 12 where the cavity bottom conductor pattern 4 is exposed can be easily transferred from the carrier copper foil layer 2b together with the copper foil layer 2a by transferring it to an adhesive tape. The cavity 13 can be easily formed.

[第2実施例]
次に半導体パッケージ基板の製造方法の他例について図3(A)〜(N)及び図4(O)〜(Q)を参照して説明する。尚、第1実施例と同一部材には同一番号を付して説明を援用するものとする。
先ず、図3(A)において、絶縁樹脂基材1(例えばFR‐4)の両面に、銅箔層2aにキャリヤ銅箔層2bを剥離可能な接着力で接着させたキャリヤ付銅箔2が各々積層されたベース基板3を用意する。ベース基板3において、キャリヤ付銅箔2は、絶縁樹脂基材1に接着している銅箔層2a(第一の銅箔層)にキャリヤ箔といわれるキャリヤ銅箔層2b(第二の銅箔層)が貼り合わせてある。キャリヤ銅箔層2bは、銅箔層2aより容易に剥離させることができる。
[Second Embodiment]
Next, another example of the method for manufacturing the semiconductor package substrate will be described with reference to FIGS. 3 (A) to (N) and FIGS. 4 (O) to (Q). In addition, the same number is attached | subjected to the same member as 1st Example, and description shall be used.
First, in FIG. 3A, the carrier-attached copper foil 2 in which the carrier copper foil layer 2b is bonded to the copper foil layer 2a with an adhesive force capable of being peeled on both surfaces of the insulating resin substrate 1 (for example, FR-4). A base substrate 3 that is laminated is prepared. In the base substrate 3, the carrier-attached copper foil 2 is a carrier copper foil layer 2 b (second copper foil) called a carrier foil on a copper foil layer 2 a (first copper foil layer) bonded to the insulating resin substrate 1. Layer). The carrier copper foil layer 2b can be peeled off more easily than the copper foil layer 2a.

次いで、図3(B)に示すように、ベース基板3にエッチングを行って、キャリヤ付銅箔2にキャビティ底部導体パターン4が一方の基板面(図3(B)では下面)にスリット2cに囲まれたアイランド状に形成される。この状態で、ベース基板3の両面において、キャリヤ銅箔層2bを銅箔層2aから剥離させると、図3(C)に示すように、キャビティ底部導体パターン4のみにキャリヤ銅箔2bが残り、スリット2cを除く他の部分には銅箔層2aのみとなったコア基板5が形成される。即ち、コア基板5は、一方の基板面(図3(C)では下面)にキャビティ底部導体パターン4がキャリヤ銅箔層2bの厚さ分だけ厚く形成される。   Next, as shown in FIG. 3 (B), the base substrate 3 is etched so that the bottom conductor pattern 4 of the cavity is formed on the copper foil 2 with a carrier in the slit 2c on one substrate surface (the lower surface in FIG. 3 (B)). It is formed in an enclosed island shape. In this state, when the carrier copper foil layer 2b is peeled from the copper foil layer 2a on both sides of the base substrate 3, the carrier copper foil 2b remains only in the cavity bottom conductor pattern 4, as shown in FIG. The core substrate 5 having only the copper foil layer 2a is formed in the other portions except the slit 2c. That is, in the core substrate 5, the cavity bottom conductor pattern 4 is formed on one substrate surface (the lower surface in FIG. 3C) by the thickness of the carrier copper foil layer 2b.

次に図3(D)に示すように、コア基板5の絶縁樹脂基材1に貫通孔2dを形成する。貫通孔2dは、炭酸ガスレーザー等によって孔開け加工される。尚、コア基板5を製造する際に、絶縁樹脂基材1に予め貫通孔2dを形成しておいてもよい。次いで図3(E)に示すように、コア基板5の両面に無電解銅めっき及び電解銅めっきを行って、銅箔層2a、スリット2c及びキャビティ底部導体パターン4上に銅層2eを形成し、貫通孔2dに銅層を充填する(めっき工程)。これにより、コア基板5の両面に形成された銅箔層2aと銅層2eからなる導体層どうしの電気的導通を取ることができるうえに、コア基板5の一方の基板面(図3(E)では下面)に形成されたキャビティ底部導体パターン4の部分が、周囲の銅箔層2aの部分よりキャリヤ銅箔層2bの厚さ分だけ銅層の厚みが増した状態となる。   Next, as illustrated in FIG. 3D, a through hole 2 d is formed in the insulating resin base material 1 of the core substrate 5. The through hole 2d is drilled by a carbon dioxide laser or the like. Note that when the core substrate 5 is manufactured, the through-holes 2 d may be formed in the insulating resin base material 1 in advance. Next, as shown in FIG. 3E, electroless copper plating and electrolytic copper plating are performed on both surfaces of the core substrate 5 to form a copper layer 2e on the copper foil layer 2a, the slit 2c and the cavity bottom conductor pattern 4. The through hole 2d is filled with a copper layer (plating process). Thereby, electrical conduction can be established between the conductor layers made of the copper foil layer 2a and the copper layer 2e formed on both surfaces of the core substrate 5, and one of the substrate surfaces of the core substrate 5 (FIG. 3E ), The portion of the cavity bottom conductor pattern 4 formed on the lower surface is in a state in which the thickness of the copper layer is increased by the thickness of the carrier copper foil layer 2b as compared with the surrounding copper foil layer 2a.

図3(F)において、コア基板5の両面にエッチングを行って、キャビティ底部導体パターン4が形成された一方の基板面に(図3(F)では下面)に、第一導体パターン10d(内層導体パターン)を形成し、他方の基板面(図3(F)では上面)に第一の開口9aを有する第一導体パターン10c(内層導体パターン)を各々形成する。尚、このとき、キャビティ底部導体パターン4上には、銅層2e(導体層)が厚付けされている。   In FIG. 3 (F), etching is performed on both surfaces of the core substrate 5, and the first conductor pattern 10d (inner layer) is formed on one substrate surface (the lower surface in FIG. 3 (F)) on which the cavity bottom conductor pattern 4 is formed. The first conductor pattern 10c (inner layer conductor pattern) having the first opening 9a on the other substrate surface (upper surface in FIG. 3F) is formed. At this time, the copper layer 2e (conductor layer) is thickened on the conductor pattern 4 at the bottom of the cavity.

次いで、図3(G)に示すように、コア基板5の両面に半硬化樹脂基材6(例えばプリプレグ)を介して銅箔7(導体層)を各々重ねて加熱加圧して多層基板8を形成する(積層プレス)。このとき、半硬化樹脂基材6は、積層プレスにより硬化樹脂基材6となる。   Next, as shown in FIG. 3 (G), copper foils 7 (conductor layers) are respectively stacked on both sides of the core substrate 5 via a semi-cured resin base material 6 (for example, prepreg), and heated and pressed to form the multilayer substrate 8. Form (lamination press). At this time, the semi-cured resin substrate 6 becomes the cured resin substrate 6 by the lamination press.

次に、図3(H)に示すように、多層基板8の両側に積層された硬化樹脂基材6に第一導体パターン10cを底部とするビア孔10e若しくは第一導体パターン10dを底部とするビア孔10fを各々形成する。ビア孔10e,10fは、炭酸ガスレーザー等によって孔開け加工される。レーザー光11は第一導体パターン10c若しくは第一導体パターン10dによりレーザー加工が止まる。次いで、図3(I)に示すように、多層基板8の両面に無電解銅めっき及び電解銅めっきを連続して行って、銅箔7に銅層2e(導体層)を厚付けする。   Next, as shown in FIG. 3H, the via hole 10e having the first conductor pattern 10c as the bottom or the first conductor pattern 10d as the bottom in the cured resin base material 6 laminated on both sides of the multilayer substrate 8 is used. Each via hole 10f is formed. The via holes 10e and 10f are drilled by a carbon dioxide laser or the like. Laser processing of the laser beam 11 is stopped by the first conductor pattern 10c or the first conductor pattern 10d. Next, as shown in FIG. 3 (I), electroless copper plating and electrolytic copper plating are continuously performed on both surfaces of the multilayer substrate 8 to thicken the copper layer 2 e (conductor layer) on the copper foil 7.

次に、図3(J)において、多層基板8にエッチングを行って、一方の基板面(図3(J)では下面)に第二導体パターン10h(外層導体パターン)を形成し、他方の基板面(図3(J)では上面)に第一の開口9aの直上に第二の開口9cを有する第二導体パターン10g(外層導体パターン)を各々形成する。尚、第二の開口9c内には、第二導体パターン10g(外層導体パターン)が形成されていてもよい。   Next, in FIG. 3J, the multilayer substrate 8 is etched to form a second conductor pattern 10h (outer layer conductor pattern) on one substrate surface (the lower surface in FIG. 3J), and the other substrate. Second conductor patterns 10g (outer layer conductor patterns) each having a second opening 9c immediately above the first opening 9a are formed on the surface (the upper surface in FIG. 3J). A second conductor pattern 10g (outer layer conductor pattern) may be formed in the second opening 9c.

次に、図3(K)において、多層基板8の第二の開口9cより露出する硬化樹脂基材6の上方からキャビティ底部導体パターン4の外縁部に沿ってレーザー光11を照射する。具体的には、コア基板3のキャビティ底部導体パターン4と同じ面の適当な位置にアライメントマークを形成し、積層プレスで多層基板8を形成した後X線穴あけ機でコア基板3のアライメントマークを認識して穴あけをする。レーザー加工装置がこの穴をアライメントマークとして認識して硬化樹脂基材6の上方からキャビティ底部導体パターン4の外縁部に沿ってレーザー光11を照射する。レーザー光11は、エネルギーレベルが高い炭酸ガスレーザーが好適に用いられる。   Next, in FIG. 3K, the laser beam 11 is irradiated along the outer edge portion of the cavity bottom conductor pattern 4 from above the cured resin base 6 exposed from the second opening 9 c of the multilayer substrate 8. Specifically, an alignment mark is formed at an appropriate position on the same surface as the cavity bottom conductor pattern 4 of the core substrate 3, the multilayer substrate 8 is formed by a lamination press, and then the alignment mark of the core substrate 3 is formed by an X-ray drilling machine. Recognize and drill holes. The laser processing apparatus recognizes this hole as an alignment mark and irradiates the laser beam 11 along the outer edge of the cavity bottom conductor pattern 4 from above the cured resin substrate 6. As the laser beam 11, a carbon dioxide laser having a high energy level is preferably used.

これにより、図3(L)に示すように、レーザー光照射位置における硬化樹脂基材6及び絶縁樹脂基材1を除去して底部にキャビティ底部導体パターン4を含む第一導体パターン10d(内層導体パターン)が露出したスリット12を周回して形成することができる。
このとき、多層基板8に対してスリット12を周回して形成するレーザー加工に要する加工時間は短く、またコーナー部のRを小さく加工することができる。また、多層基板8に対してレーザー光11を照射しても、キャビティ底部導体パターン4を含む第一導体パターン10d(内層導体パターン)によりレーザー加工が止まるため、最終的に形成されるキャビティ13(図4(O)参照)の加工深さ精度は高くなる。
Thereby, as shown in FIG. 3 (L), the first resin pattern 10d (inner layer conductor) including the cavity bottom conductor pattern 4 at the bottom by removing the cured resin substrate 6 and the insulating resin substrate 1 at the laser light irradiation position. It can be formed by circling the slit 12 where the pattern) is exposed.
At this time, the processing time required for the laser processing for forming the slit 12 around the multilayer substrate 8 is short, and the corner portion R can be processed small. Even when the multilayer substrate 8 is irradiated with the laser beam 11, the laser processing is stopped by the first conductor pattern 10 d (inner layer conductor pattern) including the cavity bottom conductor pattern 4, so that the finally formed cavity 13 ( The processing depth accuracy shown in FIG.

次いで、図3(M)に示すように、スリット12内に露出した第一導体パターン10d(内層導体パターン)のうち少なくとも銅箔層2aをソフトエッチング(例えば硫酸−過酸化水素系のエッチング液)により除去する。   Next, as shown in FIG. 3 (M), at least the copper foil layer 2a of the first conductor pattern 10d (inner layer conductor pattern) exposed in the slit 12 is soft-etched (for example, sulfuric acid-hydrogen peroxide etchant). Remove with.

次に、図3(N)において、多層基板8からスリット12に囲まれた硬化樹脂基材6及び絶縁樹脂基材1を剥離させて除去する。具体的には、粘着性のあるテープを基板に貼りつけて剥がすことによりキャビティ底部導体パターン4を形成する銅箔層2aをキャリヤ銅箔層2bより剥離させて硬化樹脂基材6及び絶縁樹脂基材1を粘着テープに転写させる。
これにより、図4(O)に示すように、多層基板8にキャビティ底部導体パターン4としてキャリヤ銅箔層2b及びこれを囲む第一導体パターン10d(銅層2e)が露出したキャビティ13が形成される。
Next, in FIG. 3N, the cured resin base material 6 and the insulating resin base material 1 surrounded by the slits 12 are peeled off from the multilayer substrate 8 and removed. Specifically, the adhesive tape is attached to the substrate and peeled off to peel off the copper foil layer 2a forming the cavity bottom conductor pattern 4 from the carrier copper foil layer 2b, and the cured resin base 6 and insulating resin base Material 1 is transferred to an adhesive tape.
As a result, as shown in FIG. 4 (O), the cavity 13 is formed in the multilayer substrate 8 as the cavity bottom conductor pattern 4 where the carrier copper foil layer 2b and the first conductor pattern 10d (copper layer 2e) surrounding it are exposed. The

次に図4(P)に示すように、キャビティ13を除く、多層基板8の両面にソルダーレジストをコーティング(例えばドライフィルムレジストを積層しフォトリソグラフィによりパターン形成)する。具体的には、一方の基板面(図4(P)下面)に形成された第二導体パターン10hをソルダーレジスト14bでコーティングし、他方の基板面(図4(P)上面)に形成された第二導体パターン10gをソルダーレジスト14aでコーティングする。   Next, as shown in FIG. 4P, a solder resist is coated on both surfaces of the multilayer substrate 8 excluding the cavity 13 (for example, a dry film resist is laminated and a pattern is formed by photolithography). Specifically, the second conductor pattern 10h formed on one substrate surface (the lower surface in FIG. 4 (P)) was coated with a solder resist 14b, and formed on the other substrate surface (the upper surface in FIG. 4 (P)). The second conductor pattern 10g is coated with a solder resist 14a.

最後に図4(Q)に示すように、基板両面に表面処理を行う。具体的には、ソルダーレジスト14a,14bから各々露出している第二導体パターン10g,10h及びキャビティ底部の導体パターン10d上に、ニッケルめっき、金めっきを行ってめっき層17が形成された半導体パッケージ基板18が製造される。
この半導体パッケージ基板18に形成されたキャビティ13には、半導体素子や各種センサ等の電子部品などが配置される。
Finally, as shown in FIG. 4Q, surface treatment is performed on both sides of the substrate. Specifically, the semiconductor package in which the plated layer 17 is formed by performing nickel plating and gold plating on the second conductor patterns 10g and 10h exposed from the solder resists 14a and 14b and the conductor pattern 10d at the bottom of the cavity, respectively. A substrate 18 is manufactured.
In the cavity 13 formed in the semiconductor package substrate 18, electronic components such as semiconductor elements and various sensors are arranged.

上記半導体パッケージ基板18は、キャビティ13の底部を形成する硬化樹脂基材6の最表層にキャリヤ銅箔層2b及び銅層2eが厚付けされた導体層が形成されているので、キャビティ底部の板厚が薄くても剛性が高まることから、反り、歪み、うねりなどの変形が生じ難くなる。   Since the semiconductor package substrate 18 is formed with a conductor layer in which the carrier copper foil layer 2b and the copper layer 2e are thickened on the outermost layer of the cured resin base material 6 forming the bottom of the cavity 13, the plate at the bottom of the cavity Even if the thickness is small, the rigidity is increased, so that deformation such as warpage, distortion, and undulation hardly occurs.

尚、上記半導体パッケージ基板18は4層板について例示したが、更に多層に形成されていれもよい。
具体的には、図3(J)の後に図3(G)に戻って、第二導体パターン10g,10h上に多層基板8の両面に半硬化樹脂基材6を介して銅箔7を重ねて加熱加圧して積層プレスし、図3(H)に示す多層基板8の両面に積層された硬化樹脂基材6に第二導体パターン10g,10hを底部とするビア孔を形成し、図3(I)に示す多層基板8の両面に無電解銅めっき及び電解銅めっきを連続して行って、銅箔7に銅層2e(導体層)を厚付けした後、図3(J)に示すように基板両面にエッチングを行って、第二の開口9cの直上の基板面に第三の開口を有する第三導体パターンを形成する工程を更に有することで6層板を形成してもよいし、図3(G)〜図3(J)の工程を更に繰り返すことで更に多層(8層以上)に積層することも可能となる。
In addition, although the said semiconductor package board | substrate 18 illustrated about the 4 layer board, it may be formed in the multilayer further.
Specifically, returning to FIG. 3 (G) after FIG. 3 (J), the copper foil 7 is overlapped on both surfaces of the multilayer substrate 8 via the semi-cured resin base material 6 on the second conductor patterns 10g and 10h. And pressurizing and laminating and forming via holes having the second conductor patterns 10g and 10h as bottom portions in the cured resin base material 6 laminated on both surfaces of the multilayer substrate 8 shown in FIG. Electroless copper plating and electrolytic copper plating are continuously performed on both surfaces of the multilayer substrate 8 shown in (I) to thicken the copper layer 2e (conductor layer) on the copper foil 7, and then shown in FIG. In this way, a six-layer plate may be formed by further etching the both surfaces of the substrate to form a third conductor pattern having a third opening on the substrate surface immediately above the second opening 9c. Further, it is also possible to stack in multiple layers (8 layers or more) by repeating the steps of FIGS. 3 (G) to 3 (J). To become.

尚、上記半導パッケージ基板は、ベース基板3を2層板とした場合について例示したが、更に多層の基板にすることもできる。ベース基板3を4層板とした場合の構造を図5及び図6に示す。
図5は、図2(K)のベース基板3を4層構造とし、6層構造の半導体パッケージ基板15´を例示する。この半導体パッケージ基板15´には、深さの深いキャビティ19が形成されている。半導体パッケージ基板15´の層間接続は貫通孔の内壁にスルーホールめっき20を形成して行われ、貫通孔内には穴埋め樹脂21、例えばフィラーが高密度充填されたエポキシ系樹脂を充填することによって行われる。最外層の導体パターン10a´,10b´は、ソルダーレジスト14a,14bによって被覆され、ソルダーレジスト14a,14bから露出している導体パターン10a´,10b´上及びキャビティ底部の導体パターン2bに、ニッケルめっき、金めっきを行ってめっき層17が形成されている。
In addition, although the said semiconductor package board | substrate was illustrated about the case where the base board | substrate 3 is made into a 2 layer board, it can also be made into a multilayer board | substrate. The structure in the case where the base substrate 3 is a four-layer plate is shown in FIGS.
FIG. 5 illustrates a semiconductor package substrate 15 ′ having a six-layer structure with the base substrate 3 of FIG. A deep cavity 19 is formed in the semiconductor package substrate 15 '. The interlayer connection of the semiconductor package substrate 15 ′ is performed by forming a through-hole plating 20 on the inner wall of the through-hole, and the through-hole is filled with a hole-filling resin 21, for example, an epoxy resin filled with a high-density filler. Done. The outermost conductor patterns 10a 'and 10b' are covered with solder resists 14a and 14b, and nickel plating is applied to the conductor patterns 10a 'and 10b' exposed from the solder resists 14a and 14b and the conductor pattern 2b at the bottom of the cavity. The plating layer 17 is formed by performing gold plating.

図6は、図4(Q)のベース基板3を4層構造とし、6層構造の半導体パッケージ基板18´を例示する。この半導体パッケージ基板18´には、深さの深いキャビティ22が形成されている。半導体パッケージ基板18´の層間接続はビア孔に銅めっきを充填することにより行われる。最外層の導体パターン10g´,10h´は、ソルダーレジスト14a,14bによって被覆され、ソルダーレジスト14a,14bから露出している導体パターン10g´,10h´上及びキャビティ底部の導体パターン2bに、ニッケルめっき、金めっきを行ってめっき層17が形成されている。   FIG. 6 illustrates a semiconductor package substrate 18 ′ having a six-layer structure with the base substrate 3 of FIG. 4Q having a four-layer structure. A deep cavity 22 is formed in the semiconductor package substrate 18 '. Interlayer connection of the semiconductor package substrate 18 'is performed by filling the via hole with copper plating. The outermost conductor patterns 10g 'and 10h' are coated with solder resists 14a and 14b, and nickel plating is applied to the conductor patterns 10g 'and 10h' exposed from the solder resists 14a and 14b and the conductor pattern 2b at the bottom of the cavity. The plating layer 17 is formed by performing gold plating.

以上のように、キャビティ底部パターンが形成されるベース基板3を二層以上の多層板とすることにより、任意の層をキャビティの底部とすることができ、半導体パッケージ基板に所望の深さのキャビティを形成することができる。   As described above, by forming the base substrate 3 on which the cavity bottom pattern is formed as a multilayer board having two or more layers, an arbitrary layer can be used as the bottom of the cavity, and a cavity having a desired depth can be formed in the semiconductor package substrate. Can be formed.

尚、本実施形態では樹脂基材層の孔開け加工は炭酸ガスレーザーで行っているが、UV−YAGレーザー等の他のレーザーを使用しても同じ加工ができる。
また、めっき工程は銅めっきを行う場合について説明したが、銅に限らず銅合金などの他の導電性金属めっきであってもよい。
また、キャビティ13の底部に形成された導体パターンは、半導体チップが搭載され電気的に接続される端子として用いてもよいし、放熱用のヒートシンクとして用いてもよい。
また、絶縁樹脂基材1に積層される2層の銅箔(キャリヤ付銅箔2)は、銅箔層2aを接着してキャリヤ銅箔層2bが貼り合わされたものを用いたが、接着する層を反転させて絶縁樹脂基材1にキャリヤ銅箔層2b(第一の銅箔層)を接着して銅箔層2a(第二の銅箔層)が貼り合せたものを用いてもよい。
In this embodiment, the hole forming process of the resin base material layer is performed with a carbon dioxide gas laser, but the same process can be performed using another laser such as a UV-YAG laser.
Moreover, although the case where the plating process performed copper plating was demonstrated, not only copper but other electroconductive metal plating, such as a copper alloy, may be sufficient.
The conductor pattern formed on the bottom of the cavity 13 may be used as a terminal on which a semiconductor chip is mounted and electrically connected, or may be used as a heat sink for heat dissipation.
In addition, as the two layers of copper foil (copper foil 2 with carrier) laminated on the insulating resin base material 1, a copper foil layer 2 a bonded to the carrier copper foil layer 2 b was used. The layer may be inverted and the carrier copper foil layer 2b (first copper foil layer) may be adhered to the insulating resin substrate 1 and the copper foil layer 2a (second copper foil layer) may be bonded. .

1 絶縁樹脂基材 2 キャリヤ付銅箔 2a 銅箔層 2b キャリヤ銅箔層 2c,12 スリット 2d 貫通孔 2e 銅層 3 ベース基板 4 キャビティ底部導体パターン 5 コア基板 6 半硬化樹脂基材(硬化樹脂基材) 7 銅箔 8 多層基板 9 開口 9a 第一の開口 9c 第二の開口 10a,10b,10a´,10b´,10g´,10h´ 導体パターン 10c,10d 第一導体パターン(内層導体パターン) 10e,10f ビア孔 10g,10h 第二導体パターン(外層導体パターン) 11 レーザー光 13,19,22 キャビティ 14a,14b ソルダーレジスト 17 めっき層 15,15´,18,18´ 半導体パッケージ基板 20 スルーホールめっき 21 穴埋め樹脂   DESCRIPTION OF SYMBOLS 1 Insulation resin base material 2 Copper foil with a carrier 2a Copper foil layer 2b Carrier copper foil layer 2c, 12 Slit 2d Through-hole 2e Copper layer 3 Base substrate 4 Cavity bottom conductor pattern 5 Core substrate 6 Semi-cured resin substrate (cured resin base Material) 7 copper foil 8 multilayer substrate 9 opening 9a first opening 9c second opening 10a, 10b, 10a ′, 10b ′, 10g ′, 10h ′ conductor pattern 10c, 10d first conductor pattern (inner layer conductor pattern) 10e , 10f Via hole 10g, 10h Second conductor pattern (outer layer conductor pattern) 11 Laser light 13, 19, 22 Cavity 14a, 14b Solder resist 17 Plating layer 15, 15 ', 18, 18' Semiconductor package substrate 20 Through-hole plating 21 Hole filling resin

Claims (5)

絶縁樹脂基材の少なくとも一方の面に、第一の銅箔層に第二の銅箔層が剥離可能に積層された銅箔を用いて内層にキャビティ底部導体パターンが形成され、樹脂基材を介して導体層が両面に積層された多層基板を用意する工程と、
前記多層基板の両面にエッチングを行って、前記キャビティ底部導体パターンに前記絶縁樹脂基材及び前記樹脂基材を介して積層する前記導体層に前記キャビティ底部導体パターンの外縁部の上方に開口を有する導体パターンを形成する工程と、
前記多層基板の開口より露出する前記樹脂基材の上方から前記キャビティ底部導体パターンの外縁部に沿ってレーザー光を照射することで前記樹脂基材及び前記絶縁樹脂基材を除去して底部に前記キャビティ底部導体パターンが露出したスリットを周回して形成する工程と、
前記スリット内に露出した前記キャビティ底部導体パターンをエッチングにより除去する工程と、
前記スリットに囲まれた前記樹脂基材及び前記絶縁樹脂基材を前記第一の銅箔層とともに前記第二の銅箔層より剥離させて除去し、底部に前記第二の銅箔層が露出したキャビティを形成する工程と、
を含むことを特徴とする半導体パッケージ基板の製造方法。
A cavity bottom conductor pattern is formed on the inner layer using a copper foil in which the second copper foil layer is peelably laminated on the first copper foil layer on at least one surface of the insulating resin base material. the conductor layer via the higher engineering prepare a multilayer substrate which is laminated on both sides,
Etching is performed on both surfaces of the multilayer substrate, and an opening is provided above the outer edge of the cavity bottom conductor pattern in the conductor layer laminated on the cavity bottom conductor pattern via the insulating resin substrate and the resin substrate. Forming a conductor pattern;
The resin base material and the insulating resin base material are removed by irradiating laser light along the outer edge portion of the cavity bottom conductor pattern from above the resin base material exposed from the opening of the multilayer substrate, and the bottom portion Forming the cavity bottom conductor pattern around the exposed slit,
Removing the cavity bottom conductor pattern exposed in the slit by etching;
The resin base material and the insulating resin base material surrounded by the slit are peeled off from the second copper foil layer together with the first copper foil layer, and the second copper foil layer is exposed at the bottom. Forming a cavity,
A method for manufacturing a semiconductor package substrate, comprising:
前記絶縁樹脂基材の少なくとも一方の面に前記第一の銅箔層に前記第二の銅箔層が剥離可能に積層する前記銅箔が積層されたベース基板を用意する工程と、
前記ベース基板にエッチングを行って前記キャビティ底部導体パターンが少なくとも一方の面に形成されたコア基板を形成する工程と、
前記コア基板の両面に半硬化樹脂基材を介して銅箔を各々重ねて加熱加圧して前記多層基板を用意する工程と、
硬化した前記樹脂基材を貫通する孔を形成し、無電解銅めっきおよび電解銅めっきを連続して行って基板両面に銅層を積層するとともに前記貫通孔に銅めっきをして電気的に接続をとる工程と、
を含む請求項1記載の半導体パッケージ基板の製造方法。
Preparing a base substrate in which the copper foil is laminated on the first copper foil layer so that the second copper foil layer can be peeled off on at least one surface of the insulating resin base;
Etching the base substrate to form a core substrate having the cavity bottom conductor pattern formed on at least one surface;
A step of preparing the multilayer substrate by heating and pressurizing copper foils on both sides of the core substrate via a semi-cured resin base material, respectively;
The holes through the cured the resin base material to form a copper layer on both surfaces of the substrate continuously performed electroless copper plating and electrolytic copper plating to electrically and copper plating the through-holes as well as the product layer A process of establishing a connection;
The manufacturing method of the semiconductor package substrate of Claim 1 containing this.
絶縁樹脂基材の少なくとも一方の面に、第一の銅箔層に第二の銅箔層が剥離可能に積層された銅箔を用いてキャビティ底部導体パターンが形成され該キャビティ底部導体パターンに導体層が積層された導体部を有し、他方の面に前記キャビティ底部導体パターンの外縁部の上方に第一の開口を有する第一導体パターンを内層に各々有し、樹脂基材を介して導体層が両面に積層された多層基板を用意する工程と、
前記多層基板の両面にエッチングを行って、前記第一の開口の上方に第二の開口を有する第二導体パターンを各々形成する工程と、
前記多層基板の第二の開口より露出する前記樹脂基材の上方から前記キャビティ底部導体パターンの外縁部に沿ってレーザー光を照射することで前記樹脂基材及び前記絶縁樹脂基材を除去して底部に前記キャビティ底部導体パターン及びこれに積層する前記導体の一部が露出したスリットを周回して形成する工程と、
前記スリット内に露出した前記キャビティ底部導体パターンの表層の前記第一の銅箔層をエッチングにより除去する工程と、
前記スリットに囲まれた前記樹脂基材及び前記絶縁樹脂基材を前記第一の銅箔層とともに前記第二の銅箔層より剥離させて除去し、底部に前記第二の銅箔層が露出したキャビティを形成する工程と、
を含むことを特徴とする半導体パッケージ基板の製造方法。
A cavity bottom conductor pattern is formed on at least one surface of the insulating resin base material using a copper foil in which a second copper foil layer is peelably laminated on a first copper foil layer, and a conductor is formed on the cavity bottom conductor pattern. It has an electrical body which layers are laminated, above the outer edge of the cavity bottom conductor pattern on the other surface each have a first conductor pattern having a first opening in the inner layer through the resin substrate Preparing a multi-layer substrate having conductor layers laminated on both sides;
Etching both surfaces of the multilayer substrate to form second conductor patterns each having a second opening above the first opening; and
The resin base material and the insulating resin base material are removed by irradiating laser light along the outer edge of the cavity bottom conductor pattern from above the resin base material exposed from the second opening of the multilayer substrate. a step portion of the conductor layer to be laminated said cavity bottom conductor pattern and to the bottom portion is formed by orbiting the slit exposure,
Removing the first copper foil layer of the surface layer of the cavity bottom conductor pattern exposed in the slit by etching;
The resin base material and the insulating resin base material surrounded by the slit are peeled off from the second copper foil layer together with the first copper foil layer, and the second copper foil layer is exposed at the bottom. Forming a cavity,
A method for manufacturing a semiconductor package substrate, comprising:
前記絶縁樹脂基材の両面に前記第一の銅箔層に前記第二の銅箔層が剥離可能に積層する前記銅箔が積層されたベース基板を用意する工程と、
前記ベース基板にエッチングを行って前記銅箔に前記キャビティ底部導体パターンが一方の面に形成され、前記キャビティ底部導体パターンを除いて前記第二の銅箔層を剥離したコア基板を形成する工程と、
前記絶縁樹脂基材を貫通する孔を形成し、無電解銅めっき及び電解銅めっきを連続して行って、基板両面に銅層を積層すると共に前記貫通孔に銅めっきをして電気的接続をとる工程と、
前記コア基板にエッチングを行って、キャビティが形成される側の面に前記キャビティ底部導体パターンの外縁部の上方に前記第一の開口を有する前記第一導体パターンを形成する工程と、
前記コア基板の両面に半硬化樹脂基材を介して銅箔を重ねて加熱加圧して多層形成する工程と、
前記コア基板の両面に積層された前記樹脂基材に前記第一導体パターンを底部とするビア孔を形成する工程と、
前記コア基板の両面に積層された前記銅箔に無電解銅めっき及び電解銅めっきを連続して行って、前記銅箔に銅層を積層する工程と、を経て前記多層基板を用意する請求項3記載の半導体パッケージ基板の製造方法。
Preparing a base substrate on which the copper foil is laminated on the first copper foil layer so that the second copper foil layer is peelable on both surfaces of the insulating resin base;
Etching the base substrate to form a core substrate on which the cavity bottom conductor pattern is formed on one surface of the copper foil, and excluding the cavity bottom conductor pattern, and peeling off the second copper foil layer; ,
Said insulating resin base material hole is formed to penetrate, the electroless copper plating and electrolytic copper plating is performed continuously, electrically connecting the copper layers on both surfaces of the substrate and the copper plating in the through-hole as well as a product layer A process of taking
Etching the core substrate to form the first conductor pattern having the first opening above the outer edge of the cavity bottom conductor pattern on the surface where the cavity is formed;
A process of forming a multilayer by heating and pressing a copper foil on both sides of the core substrate through a semi-cured resin base material,
Forming a via hole having the first conductor pattern as a bottom in the resin base material laminated on both surfaces of the core substrate;
Performed continuously electroless copper plating and electrolytic copper plating in the copper foil laminated on both sides of the core substrate, wherein providing the multi-layer substrate through the steps of the product layer the copper layer on the copper foil Item 4. A method for manufacturing a semiconductor package substrate according to Item 3.
前記多層基板の両面に形成された前記第二導体パターン上に半硬化樹脂基材を介して銅箔を更に重ねて加熱加圧して多層形成する工程と、
前記多層基板の両面に積層された前記樹脂基材に前記第二導体パターンを底部とするビア孔を形成する工程と、
前記多層基板の両面に無電解銅めっき及び電解銅めっきを連続して行って、前記銅箔に銅層を積層する工程と、
前記多層基板の両面にエッチングを行って前記第二の開口の上方に第三の開口を有する第三導体パターンを形成する工程と、を更に有する請求項3又は請求項4記載の半導体パッケージ基板の製造方法。
A step of forming a multilayer by heating and pressurizing a copper foil over a semi-cured resin base material on the second conductor pattern formed on both surfaces of the multilayer substrate; and
Forming a via hole having the second conductor pattern as a bottom in the resin base material laminated on both surfaces of the multilayer substrate;
Performed continuously electroless copper plating and electrolytic copper plating on both surfaces of the multilayer substrate, a step of a product layer of copper layer on the copper foil,
5. The semiconductor package substrate according to claim 3, further comprising a step of etching the both surfaces of the multilayer substrate to form a third conductor pattern having a third opening above the second opening. Production method.
JP2015188782A 2014-09-25 2015-09-25 Manufacturing method of semiconductor package substrate Active JP6076431B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014195765 2014-09-25
JP2014195765 2014-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016109778A Division JP6072332B2 (en) 2014-09-25 2016-06-01 Semiconductor package substrate

Publications (2)

Publication Number Publication Date
JP2016066799A JP2016066799A (en) 2016-04-28
JP6076431B2 true JP6076431B2 (en) 2017-02-08

Family

ID=55805759

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015188782A Active JP6076431B2 (en) 2014-09-25 2015-09-25 Manufacturing method of semiconductor package substrate
JP2016109778A Active JP6072332B2 (en) 2014-09-25 2016-06-01 Semiconductor package substrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016109778A Active JP6072332B2 (en) 2014-09-25 2016-06-01 Semiconductor package substrate

Country Status (1)

Country Link
JP (2) JP6076431B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109168251A (en) * 2018-11-23 2019-01-08 开平依利安达电子第三有限公司 A kind of pcb board with probe aperture

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493093A (en) * 1990-08-08 1992-03-25 Risho Kogyo Co Ltd Forming method for electronic component containing recess of circuit board
JPH10308564A (en) * 1997-05-07 1998-11-17 Nippon Avionics Co Ltd Printed wiring board and its production
JP3963328B2 (en) * 2005-04-19 2007-08-22 Tdk株式会社 Multilayer ceramic substrate and manufacturing method thereof
JP5254274B2 (en) * 2010-05-18 2013-08-07 欣興電子股▲ふん▼有限公司 Circuit board
US8519270B2 (en) * 2010-05-19 2013-08-27 Unimicron Technology Corp. Circuit board and manufacturing method thereof
WO2012053728A1 (en) * 2010-10-20 2012-04-26 Lg Innotek Co., Ltd. Printed circuit board and method for manufacturing the same
US8745860B2 (en) * 2011-03-11 2014-06-10 Ibiden Co., Ltd. Method for manufacturing printed wiring board
KR20130032529A (en) * 2011-09-23 2013-04-02 삼성전기주식회사 Printed circuit board and method for manufacturing the same
JP6208449B2 (en) * 2013-03-29 2017-10-04 京セラ株式会社 Manufacturing method of multilayer wiring board

Also Published As

Publication number Publication date
JP6072332B2 (en) 2017-02-01
JP2016066799A (en) 2016-04-28
JP2016184752A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
JP4533449B2 (en) Wiring board manufacturing method
JP5826532B2 (en) Semiconductor device and manufacturing method thereof
JP5855905B2 (en) Multilayer wiring board and manufacturing method thereof
JP4434315B2 (en) Manufacturing method of multilayer wiring board
JP5360494B2 (en) Multilayer wiring substrate, method for manufacturing multilayer wiring substrate, and via fill method
JP4405993B2 (en) Method for manufacturing high-density printed circuit board
JP4546581B2 (en) Wiring board manufacturing method
US9756735B2 (en) Method for manufacturing printed wiring board
JP6208449B2 (en) Manufacturing method of multilayer wiring board
JP5555368B1 (en) Wiring board manufacturing method
JP4460013B2 (en) Wiring board manufacturing method
TWI500366B (en) Multilayer printed wiring board and manufacturing method thereof
JP2017216414A (en) Wiring board manufacturing method
TW201347639A (en) Method of manufacturing multilayer wiring substrate
KR102268388B1 (en) Printed circuit board and manufacturing method thereof
WO2011096293A1 (en) Method of manufacturing multi-layered printed circuit board
JP6076431B2 (en) Manufacturing method of semiconductor package substrate
TW201401960A (en) Method for manufacturing multilayer printed circuit board
JP2012204749A (en) Rigid flexible printed wiring board and method of manufacturing the same
JP2019121766A (en) Printed wiring board and manufacturing method thereof
JP2007335631A (en) Manufacturing method of laminated wiring board
JP6303364B2 (en) Method for forming through hole in core substrate
JP4503698B2 (en) Wiring board manufacturing method
KR20090121163A (en) Metal core package substrate and method manufacturing the same
JP2014072325A (en) Multilayer wiring board and method for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170110

R150 Certificate of patent or registration of utility model

Ref document number: 6076431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250