JP6303364B2 - Method for forming through hole in core substrate - Google Patents

Method for forming through hole in core substrate Download PDF

Info

Publication number
JP6303364B2
JP6303364B2 JP2013201593A JP2013201593A JP6303364B2 JP 6303364 B2 JP6303364 B2 JP 6303364B2 JP 2013201593 A JP2013201593 A JP 2013201593A JP 2013201593 A JP2013201593 A JP 2013201593A JP 6303364 B2 JP6303364 B2 JP 6303364B2
Authority
JP
Japan
Prior art keywords
hole
metal layer
opening
forming
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013201593A
Other languages
Japanese (ja)
Other versions
JP2015070041A (en
Inventor
脩治 木内
脩治 木内
中村 聡
中村  聡
石岡 卓
卓 石岡
上原 利久
利久 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2013201593A priority Critical patent/JP6303364B2/en
Publication of JP2015070041A publication Critical patent/JP2015070041A/en
Application granted granted Critical
Publication of JP6303364B2 publication Critical patent/JP6303364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

本発明は、プリント配線板などに使用される多層配線板のコア基板に層間接続を行うための貫通孔を形成する方法に関する。   The present invention relates to a method of forming a through hole for performing interlayer connection on a core substrate of a multilayer wiring board used for a printed wiring board or the like.

導体層と絶縁樹脂層とを交互に積層した多層配線板においては、微細な回路の実現のため、多層の導体層間の層間接続構造を随所に配置している。層間接続構造は、ドリル等による貫通孔の形成および貫通孔の内部へのめっき充填により形成するのが一般的である。貫通孔は、導体層間を接続するために、絶縁樹脂層にあける孔をいう。   In a multilayer wiring board in which conductor layers and insulating resin layers are alternately laminated, interlayer connection structures between multilayer conductor layers are arranged everywhere in order to realize a fine circuit. The interlayer connection structure is generally formed by forming a through hole with a drill or the like and filling the inside of the through hole with plating. The through hole is a hole formed in the insulating resin layer in order to connect the conductor layers.

プリント配線板の配線パターン微細化に伴い、貫通孔の孔径はより小さくなっていくが、貫通孔形成にドリルを用いる場合、ドリルの径は0.15〜0.20mm程度が下限であるため、層間接続構造の周囲に形成するビアランド径を小さくできない。したがって、ドリルを用いた貫通孔形成では、高密度なパターン形成が困難になる。   With the miniaturization of the wiring pattern of the printed wiring board, the hole diameter of the through hole becomes smaller, but when using a drill for forming the through hole, the drill diameter is about 0.15 to 0.20 mm, The via land diameter formed around the interlayer connection structure cannot be reduced. Therefore, it is difficult to form a high-density pattern by forming a through hole using a drill.

そのため、微細な層間接続構造の形成には貫通孔をレーザにより形成し、フィルドめっきによってビアを充填することが行われている。特許文献1では、両面銅付き樹脂板の両面からレーザを照射して、テーパー形状の頂部同士を付き合わせた形状となる穴を形成することにより、絶縁層の厚さが比較的大きい層間接続構造を形成する際のビアの充填を容易にし、高密度なパターン形成が実現できる積層配線板を実現している。   For this reason, in order to form a fine interlayer connection structure, a through hole is formed by a laser and a via is filled by filled plating. In Patent Document 1, an interlayer connection structure having a relatively large thickness of an insulating layer is formed by irradiating a laser from both sides of a double-sided copper-coated resin plate to form a hole having a shape in which tapered tops are attached to each other. A laminated wiring board that facilitates filling of vias when forming the substrate and realizes high-density pattern formation is realized.

特開2003−46248号公報Japanese Patent Laid-Open No. 2003-46248

しかしながら、特許文献1の貫通孔形成方法では、貫通孔を形成する際に絶縁層の両面側からレーザ加工を行うため、絶縁層のそれぞれの面に対して行うレーザ照射の位置精度のばらつきによって、穴の中間部に形成されるくびれ部分の位置及び孔径が変化する。レーザの照射位置精度のばらつきが大きい場合には、貫通孔が形成されない可能性があり、層間接続の信頼性が損なわれる。   However, in the through-hole forming method of Patent Document 1, since laser processing is performed from both sides of the insulating layer when forming the through-hole, due to variations in position accuracy of laser irradiation performed on each surface of the insulating layer, The position and hole diameter of the constricted part formed in the middle part of the hole change. When the variation in laser irradiation position accuracy is large, there is a possibility that a through hole may not be formed, and the reliability of interlayer connection is impaired.

本発明が解決しようとする課題は、コア基板に貫通孔を精度良く形成できる貫通孔の形成方法を提供することである。   The problem to be solved by the present invention is to provide a method of forming a through hole that can form a through hole in a core substrate with high accuracy.

本発明は、絶縁層の両面に第1の金属層及び第2の金属層が設けられた基板に貫通孔を形成するための貫通孔の形成方法に関するものである。絶縁層と、第1の金属層及び第2の金属層とが接着剤を介して接着されており、第1の金属層及び第2の金属層の算術平均粗さRaが0.1μm以下であり、本発明に係る貫通孔の形成方法は、貫通孔の形成位置にある第1の金属層の一部をエッチングによって選択的に除去することにより第1の開口部を形成する工程と、第1の開口部から露出する絶縁層にレーザを照射することにより、第2の金属層にまで達するビアを形成する工程と、ビアの底部にある第2の金属層の一部をエッチングにより除去して貫通孔を形成する工程と、貫通孔の内壁部のうち、第2の金属層側の一部をデスミアにより除去して、基板の厚み方向の略中心にくびれ部を形成する工程とを備える。 The present invention relates to a method for forming a through hole for forming a through hole in a substrate provided with a first metal layer and a second metal layer on both surfaces of an insulating layer. The insulating layer is bonded to the first metal layer and the second metal layer via an adhesive, and the arithmetic average roughness Ra of the first metal layer and the second metal layer is 0.1 μm or less. And forming the first opening by selectively removing a part of the first metal layer at the position where the through hole is formed, by etching, A step of forming a via reaching the second metal layer by irradiating the insulating layer exposed from the opening of 1 with a laser, and removing a part of the second metal layer at the bottom of the via by etching; Forming a through hole, and removing a part of the inner wall portion of the through hole on the second metal layer side by desmear to form a constricted portion at substantially the center in the thickness direction of the substrate. .

あるいは、絶縁層と、第1の金属層及び第2の金属層とが接着剤を介して接着されており、第1の金属層及び第2の金属層の算術平均粗さRaが0.1μm以下であり、本発明に係る貫通孔の形成方法は、貫通孔の形成位置にある第1の金属層の一部及び第2の金属層の一部をエッチングによって選択的に除去することにより、第1の金属層及び第2の金属層に基板の平面方向の位置が対応するように、第1の開口部及び第2の開口部をそれぞれ形成する工程と、第1の開口部から露出する絶縁層にレーザを照射することにより、貫通孔を形成する工程と、貫通孔の内壁部のうち、第2の金属層側の一部をデスミアにより除去して、基板の厚み方向の略中心にくびれ部を形成する工程とを備えても良い。 Alternatively, the insulating layer, the first metal layer, and the second metal layer are bonded via an adhesive, and the arithmetic average roughness Ra of the first metal layer and the second metal layer is 0.1 μm. The method for forming a through-hole according to the present invention is to selectively remove a part of the first metal layer and a part of the second metal layer at the through-hole formation position by etching, A step of forming the first opening and the second opening so that the position of the substrate in the planar direction corresponds to the first metal layer and the second metal layer, and the first opening is exposed from the first opening. By irradiating the insulating layer with laser, a step of forming a through hole and a part of the inner wall portion of the through hole on the second metal layer side are removed by desmear so as to be approximately at the center in the thickness direction of the substrate. And a step of forming a constricted portion.

本発明によれば、コア基板に貫通孔を精度良く形成することができる。   According to the present invention, the through hole can be formed in the core substrate with high accuracy.

第1の実施形態に係る貫通孔形成方法で用いる両面銅張積層板の一例を示す概略断面図Schematic sectional view showing an example of a double-sided copper-clad laminate used in the through hole forming method according to the first embodiment 第1の実施形態に係る貫通孔形成方法の工程を示す概略断面図Schematic sectional drawing which shows the process of the through-hole formation method which concerns on 1st Embodiment 貫通孔の開口とくびれ部分の位置関係を説明する図The figure explaining the positional relationship of the opening of a through-hole and a constriction part 第2の実施形態に係る貫通孔形成方法の工程を示す概略断面図Schematic sectional drawing which shows the process of the through-hole formation method which concerns on 2nd Embodiment

(第1の実施形態)
図1は、第1の実施形態に係る貫通孔形成方法で用いる両面銅張積層板の一例を示す概略断面図であり、図2は、第1の実施形態に係る貫通孔形成方法の工程を示す概略断面図である。
(First embodiment)
FIG. 1 is a schematic cross-sectional view showing an example of a double-sided copper-clad laminate used in the through hole forming method according to the first embodiment, and FIG. 2 shows the steps of the through hole forming method according to the first embodiment. It is a schematic sectional drawing shown.

まず、図1に示すような、絶縁樹脂層11の両面に極薄銅箔12a及び12bが熱圧着された両面銅張積層板10を用意する。絶縁樹脂層11はプリプレグなどからなる。絶縁樹脂層11の厚さは、例えば、100μm以上、200μm以下である。極薄銅箔12a及び12bの厚さは、例えば、5μm〜18μmである。   First, as shown in FIG. 1, a double-sided copper-clad laminate 10 in which ultrathin copper foils 12a and 12b are thermocompression bonded to both sides of an insulating resin layer 11 is prepared. The insulating resin layer 11 is made of prepreg or the like. The thickness of the insulating resin layer 11 is, for example, 100 μm or more and 200 μm or less. The thickness of the ultrathin copper foils 12a and 12b is, for example, 5 μm to 18 μm.

なお、極薄銅箔12a及び12bと絶縁樹脂層11との密着性は、一般的には極薄銅箔12の算術平均粗さ(Ra)を0.1〜0.5μm程度に規定することにより得られるアンカー効果によって確保できる。ただし、Raが小さくなる程、銅箔除去工程でのエッチング量を減少させることができ、サイドエッチングなどの不要なエッチングが少なくなるという利点がある。したがって、Raが0.1μm以下の平滑な極薄銅箔12a及び12bであって、絶縁樹脂層11との接着面に接着層が形成されている極薄銅箔12a及び12bを用いることで、絶縁樹脂層11との十分な密着性とエッチングのばらつき抑制とが可能となる。   In addition, the adhesiveness between the ultrathin copper foils 12a and 12b and the insulating resin layer 11 generally defines the arithmetic average roughness (Ra) of the ultrathin copper foil 12 to about 0.1 to 0.5 μm. Can be secured by the anchor effect obtained by the above. However, as Ra becomes smaller, the amount of etching in the copper foil removing process can be reduced, and there is an advantage that unnecessary etching such as side etching is reduced. Therefore, by using the ultra-thin copper foils 12a and 12b, which are smooth ultra-thin copper foils 12a and 12b with Ra of 0.1 μm or less, and an adhesive layer is formed on the adhesive surface with the insulating resin layer 11, It becomes possible to sufficiently adhere to the insulating resin layer 11 and suppress variations in etching.

次に、図2(a)に示すように、両面銅張積層板10の両面にレジスト15a及び15bを形成する。このとき、貫通孔の形成位置における極薄銅箔12aの上に開口部14が設けられるように、レジスト15aをフォトリソグラフィによって形成する。   Next, as shown in FIG. 2A, resists 15 a and 15 b are formed on both surfaces of the double-sided copper-clad laminate 10. At this time, the resist 15a is formed by photolithography so that the opening 14 is provided on the ultrathin copper foil 12a at the position where the through hole is formed.

次に、図2(b)に示すように、開口部14から露出した極薄銅箔12aの一部をウェットエッチングにより除去する。これにより、両面銅張積層板10の片面の貫通孔形成位置には、極薄銅箔12に開口部16が設けられて、開口部16から絶縁樹脂層11が露出した状態となる。   Next, as shown in FIG. 2B, a part of the ultrathin copper foil 12a exposed from the opening 14 is removed by wet etching. As a result, the opening 16 is provided in the ultrathin copper foil 12 at the position where the through hole is formed on one side of the double-sided copper-clad laminate 10, and the insulating resin layer 11 is exposed from the opening 16.

このように、絶縁樹脂層11にレーザ加工で貫通孔を形成する前に、貫通孔の形成箇所にある極薄銅箔12aにレーザ加工以外の方法(ウェットエッチングなど)によって開口部16を予め形成しておく。   As described above, before the through hole is formed in the insulating resin layer 11 by laser processing, the opening 16 is formed in advance in the ultrathin copper foil 12a at the position where the through hole is formed by a method other than laser processing (wet etching or the like). Keep it.

次に、図2(c)に示すように、レジスト15a及び15bを除去する。   Next, as shown in FIG. 2C, the resists 15a and 15b are removed.

次に、極薄銅箔12aをマスクとして、開口部16を通して絶縁樹脂層11の一部にレーザを照射し絶縁樹脂層11の一部を除去する。レーザとしては、COレーザ又はUV−YAGレーザなどを使用することができる。これにより、図2(d)に示すように、絶縁樹脂層11に対して極薄銅箔12bに到達する有底ビア20が形成される。このときレーザ加工によって昇華した絶縁樹脂層11の樹脂が、有底ビア20の底面に再付着して樹脂残渣17となる。また、レーザ照射によって昇華した極薄銅箔12bの一部が銅残渣18として有底ビア20の底面に付着する場合がある。 Next, a part of the insulating resin layer 11 is removed by irradiating a part of the insulating resin layer 11 with a laser through the opening 16 using the ultrathin copper foil 12a as a mask. As the laser, a CO 2 laser, a UV-YAG laser, or the like can be used. As a result, as shown in FIG. 2D, the bottomed via 20 that reaches the ultrathin copper foil 12 b is formed in the insulating resin layer 11. At this time, the resin of the insulating resin layer 11 sublimated by laser processing is reattached to the bottom surface of the bottomed via 20 and becomes a resin residue 17. In addition, a part of the ultrathin copper foil 12 b sublimated by laser irradiation may adhere to the bottom surface of the bottomed via 20 as the copper residue 18.

本実施形態では、絶縁樹脂層11をレーザで加工する前に、極薄銅箔12aにウェットエッチングなどによって開口部16を予め形成しておき、その後に開口部16からレーザを絶縁樹脂層11に照射して有底ビア20を形成している。これにより、極薄銅箔12aをレーザ加工する必要がなくなり、貫通孔上部の周辺部分に銅バリが生じるのを抑えることができる。また、エッチングによる銅箔開口部がビア径となるため、レーザの口径を絞る必要がなく、有底ビア20の加工速度を速くできるという利点もある。   In this embodiment, before processing the insulating resin layer 11 with a laser, an opening 16 is formed in advance in the ultrathin copper foil 12a by wet etching or the like, and then a laser is transmitted from the opening 16 to the insulating resin layer 11. Irradiated to form a bottomed via 20. Thereby, it is not necessary to laser process the ultrathin copper foil 12a, and it is possible to suppress the occurrence of copper burrs in the peripheral portion at the top of the through hole. Further, since the opening of the copper foil formed by etching becomes the via diameter, there is an advantage that the processing speed of the bottomed via 20 can be increased without reducing the diameter of the laser.

次に、図2(e)に示すように、ウェットエッチングなどにより、有底ビア20の底部となっていた極薄銅箔12bの一部と銅残渣18とを除去して、貫通孔21を形成する。このとき、有底ビア20の底部以外の銅箔部分もエッチングされるが、有底ビア20の底部は表裏からエッチングを受けるため、除去が早く進む。したがって、図2(e)に示すように、絶縁樹脂層11上に極薄銅箔12a及び12bを残したまま、貫通孔21を形成することができる。   Next, as shown in FIG. 2E, a part of the ultrathin copper foil 12b and the copper residue 18 which are the bottom of the bottomed via 20 are removed by wet etching or the like, and the through hole 21 is formed. Form. At this time, the copper foil portion other than the bottom portion of the bottomed via 20 is also etched, but the bottom portion of the bottomed via 20 is etched from the front and back, so that the removal proceeds quickly. Therefore, as shown in FIG. 2E, the through hole 21 can be formed while leaving the ultrathin copper foils 12 a and 12 b on the insulating resin layer 11.

次に、図2(f)に示すように、デスミアにより貫通孔21内部の樹脂を除去する。このとき、通常の樹脂残渣17を除去する場合よりも強くデスミア処理を施す。これにより、貫通孔21の側面はデスミアによって除去されていくが、デスミアの液流やプリプレグの中心部にガラスがあることによって、貫通孔21の樹脂は厚さ方向の略中心部を残して選択的に除去される。この結果、貫通孔21は、絶縁樹脂層11の厚さ方向の略中心部にくびれ部22(すなわち、基板表面の開口に対してテーパー状に狭まった部分)を持つくびれ付貫通孔30となる。以上の工程を経て、くびれ付貫通孔30を有するコア基板40が得られる。   Next, as shown in FIG. 2F, the resin inside the through hole 21 is removed by desmear. At this time, the desmear treatment is performed more strongly than the case of removing the normal resin residue 17. As a result, the side surface of the through-hole 21 is removed by desmear, but the resin in the through-hole 21 is selected leaving a substantially central portion in the thickness direction due to the liquid flow of desmear and the glass at the center of the prepreg. Removed. As a result, the through-hole 21 becomes a constricted through-hole 30 having a constricted portion 22 (that is, a portion narrowed in a taper shape with respect to the opening on the substrate surface) at a substantially central portion in the thickness direction of the insulating resin layer 11. . Through the above steps, the core substrate 40 having the constricted through hole 30 is obtained.

本実施形態では、極薄銅箔12a及び12bを接続する際に、有底ビア20の状態で接続を行わず、くびれ付貫通孔30の状態で接続するため、有底ビア20の底部となる極薄銅箔の破れに起因する接続不良が発生しない。また、くびれ付貫通孔30の形成を片面からのレーザ照射とデスミアによって行うため、両面側からレーザ照射を行う貫通孔の形成方法のように、レーザの位置精度のばらつきによって貫通孔の径が小さくなり、接続不良が発生することがない。   In the present embodiment, when connecting the ultrathin copper foils 12a and 12b, the connection is not performed in the state of the bottomed via 20, but the connection is made in the state of the through hole 30 with a constriction. Connection failure due to the tearing of ultrathin copper foil does not occur. In addition, since the constricted through hole 30 is formed by laser irradiation and desmearing from one side, the diameter of the through hole is reduced due to variations in laser position accuracy as in the method of forming a through hole in which laser irradiation is performed from both sides. Therefore, connection failure does not occur.

図3は、貫通孔の開口とくびれ部分の位置関係を説明する図である。図3においては、コア基板40の一方面上及び他方面上に形成される開口の位置と、くびれ部22の位置とを両矢印で特定している。   FIG. 3 is a diagram for explaining the positional relationship between the opening of the through hole and the constricted portion. In FIG. 3, the position of the opening formed on one surface and the other surface of the core substrate 40 and the position of the constricted portion 22 are specified by double arrows.

絶縁樹脂層11の両面から2回に分けてレーザ照射を行う方法では、レーザ照射時の位置決め誤差に起因して、貫通孔の開口に対するくびれ部の位置ずれが問題となる。これに対して、本実施形態では、両面銅張積層板10の一方面側から絶縁樹脂層11に対して1回のレーザ照射を行うことによって貫通孔21を形成した後、デスミア処理によってくびれ部22を形成するため、コア基板40の平面方向におけるくびれ付貫通孔30の開口とくびれ部22との位置ずれを抑制することができる。具体的には、図3に示す、コア基板40の極薄銅箔12a上に形成される開口の中心C1と、コア基板40の極薄銅箔12b上に形成される開口の中心C2と、くびれ部22の中心C3とを、コア基板40のいずれか一方の面上から見たときに、半径5μmの円内に収めることができる。コア基板40の一方の面と平行な面上への中心C1、C2及びC3の射影が半径5μmの円に含まれるとも言える。したがって、本実施形態に係る貫通孔の形成方法によれば、コア基板40の両面に形成されるくびれ付き貫通孔30の2つの開口とくびれ部22との位置精度を向上させることができる。   In the method of performing laser irradiation twice from both surfaces of the insulating resin layer 11, the position shift of the constricted portion with respect to the opening of the through hole becomes a problem due to the positioning error at the time of laser irradiation. On the other hand, in this embodiment, after forming the through-hole 21 by performing laser irradiation once with respect to the insulating resin layer 11 from the one surface side of the double-sided copper-clad laminate 10, the constricted portion is formed by desmear treatment. Therefore, the positional deviation between the opening of the through hole 30 with the constriction and the constricted portion 22 in the planar direction of the core substrate 40 can be suppressed. Specifically, as shown in FIG. 3, the center C1 of the opening formed on the ultrathin copper foil 12a of the core substrate 40, the center C2 of the opening formed on the ultrathin copper foil 12b of the core substrate 40, The center C3 of the constricted portion 22 can be accommodated in a circle having a radius of 5 μm when viewed from any one side of the core substrate 40. It can be said that projections of the centers C1, C2, and C3 onto a plane parallel to one surface of the core substrate 40 are included in a circle having a radius of 5 μm. Therefore, according to the through hole forming method according to the present embodiment, it is possible to improve the positional accuracy between the two openings of the constricted through hole 30 formed on both surfaces of the core substrate 40 and the constricted portion 22.

(第2の実施形態)
図4は、第2の実施形態に係る貫通孔形成方法の工程を示す概略断面図である。
(Second Embodiment)
FIG. 4 is a schematic cross-sectional view showing the steps of the through hole forming method according to the second embodiment.

上記の第1の実施形態では、両面銅張積層板10に設けられた一方の極薄銅箔12aにエッチングにより開口部14を形成し、その後にレーザ加工を行う例を説明したが、本実施形態のように、レーザ照射時の裏面側となる極薄銅箔12bにもエッチングによって開口部を形成してからレーザ加工を行っても良い。   In the first embodiment, the example in which the opening 14 is formed in one ultrathin copper foil 12a provided on the double-sided copper-clad laminate 10 by etching and then laser processing is performed has been described. As in the embodiment, laser processing may be performed after an opening is formed in the ultrathin copper foil 12b on the back side at the time of laser irradiation by etching.

まず、図4(a)に示すように、両面銅張積層板10の両面にレジスト15a及び15bを形成する。このとき、貫通孔の形成位置における極薄銅箔12a及び12bの上に開口部14a及び14bが設けられるように、レジスト15a及び15bをフォトリソグラフィによって形成する。このとき、開口部14a及び14bを、両面銅張積層板10の平面方向における位置が対応するように(つまり、ほぼ重なるように)形成する。   First, as shown in FIG. 4A, resists 15 a and 15 b are formed on both surfaces of the double-sided copper-clad laminate 10. At this time, the resists 15a and 15b are formed by photolithography so that the openings 14a and 14b are provided on the ultrathin copper foils 12a and 12b at the formation positions of the through holes. At this time, the openings 14a and 14b are formed so that the positions in the plane direction of the double-sided copper-clad laminate 10 correspond (that is, substantially overlap).

次に、図4(b)に示すように、開口部14a及び14bから露出した極薄銅箔12aの一部及び極薄銅箔12bの一部をウェットエッチングにより除去し、開口部16a及び16bを形成する。   Next, as shown in FIG. 4B, a part of the ultrathin copper foil 12a and a part of the ultrathin copper foil 12b exposed from the openings 14a and 14b are removed by wet etching, and the openings 16a and 16b are removed. Form.

次に、図4(c)に示すように、レジスト15a及び15bを除去する。   Next, as shown in FIG. 4C, the resists 15a and 15b are removed.

次に、図4(d)に示すように、極薄銅箔12aをマスクとして、開口部16aから露出する絶縁樹脂層11の一部にレーザを照射し、絶縁樹脂層11の一部を除去する。これにより、図4(d)に示すように、貫通孔21が形成される。貫通孔21の内部には、樹脂残渣17が残存する。   Next, as shown in FIG. 4D, using the ultrathin copper foil 12a as a mask, a part of the insulating resin layer 11 exposed from the opening 16a is irradiated with a laser to remove a part of the insulating resin layer 11. To do. Thereby, as shown in FIG.4 (d), the through-hole 21 is formed. Resin residue 17 remains in the through hole 21.

次に、図4(e)に示すように、デスミアにより貫通孔21内部の樹脂を除去する。このとき、通常の樹脂残渣17を除去する場合よりも強くデスミア処理を施す。第1の実施形態と同様の理由により、貫通孔21の内壁部の樹脂は厚さ方向の略中心部を残して選択的に除去される。この結果、貫通孔21は、絶縁樹脂層11の厚さ方向の略中心部にくびれ部22を持つくびれ付貫通孔30となる。以上の工程を経て、くびれ付貫通孔30を有するコア基板40が得られる。   Next, as shown in FIG. 4E, the resin inside the through hole 21 is removed by desmear. At this time, the desmear treatment is performed more strongly than the case of removing the normal resin residue 17. For the same reason as in the first embodiment, the resin on the inner wall portion of the through hole 21 is selectively removed leaving a substantially central portion in the thickness direction. As a result, the through hole 21 becomes a constricted through hole 30 having a constricted portion 22 at a substantially central portion in the thickness direction of the insulating resin layer 11. Through the above steps, the core substrate 40 having the constricted through hole 30 is obtained.

本実施形態では、予めレーザ照射時の裏面側となる極薄銅箔12bの一部を除去しているため、有底ビアを形成せずに貫通孔21を形成することができる。この方法では、有底ビアの形成後にエッチングによって底部の極薄銅箔を除去する必要がないため、製造工程の全体を通して、極薄銅箔12a及び12bの厚さを略一定に保つことができる。   In the present embodiment, since a part of the ultrathin copper foil 12b that becomes the back side at the time of laser irradiation is previously removed, the through hole 21 can be formed without forming a bottomed via. In this method, since it is not necessary to remove the ultrathin copper foil at the bottom by etching after forming the bottomed via, the thickness of the ultrathin copper foils 12a and 12b can be kept substantially constant throughout the manufacturing process. .

尚、上記の各実施形態に係る製造方法で得られたくびれ付貫通孔30を持つコア基板40を用いて、多層配線板を製造することができる。例えば、このコア基板40にビアフィリングによって層間接続構造を形成した後、層間接続構造形成後のコア基板40の両面にビルドアップ工法を用いて、1層または複数層の配線層を形成し、多層配線板を製造することができる。   In addition, a multilayer wiring board can be manufactured using the core board | substrate 40 with the through-hole 30 with a constriction obtained with the manufacturing method which concerns on each said embodiment. For example, after an interlayer connection structure is formed on the core substrate 40 by via filling, one or more wiring layers are formed on both surfaces of the core substrate 40 after the interlayer connection structure is formed by using a build-up method. A wiring board can be manufactured.

また、形成する配線のサイズに適した工法を適宜選択することができる。例えば、微細な配線層の形成にはビルドアップ工法を使用し、配線のサイズが微細でない配線層には従来のプリプレグと銅箔を積層する工法を使用して、多層配線板を製造することも可能である。   In addition, a method suitable for the size of the wiring to be formed can be selected as appropriate. For example, a multilayer wiring board may be manufactured by using a build-up method for forming a fine wiring layer and using a conventional method of laminating a prepreg and a copper foil for a wiring layer whose wiring size is not fine. Is possible.

また、上記の各実施形態では、絶縁樹脂層11の両面に極薄銅箔12a及び12bを設けた両面銅張積層板10に貫通孔を形成する例を説明したが、絶縁樹脂層11の両面に設ける金属層は、金や銀等の銅以外の金属層であっても良い。   Moreover, although each said embodiment demonstrated the example which forms a through-hole in the double-sided copper clad laminated board 10 which provided the ultrathin copper foil 12a and 12b on both surfaces of the insulating resin layer 11, both surfaces of the insulating resin layer 11 were demonstrated. The metal layer provided on may be a metal layer other than copper, such as gold or silver.

以下、本発明を具体的に実施した実施例を説明する。本実施例は、上記の第1の実施形態に係る製造方法(図1及び2)に対応する。   Examples in which the present invention is specifically implemented will be described below. This example corresponds to the manufacturing method (FIGS. 1 and 2) according to the first embodiment.

まず、日立化成株式会社製の高Tgガラスエポキシ多層材料 679FG(厚さ100μm)の両面に、日本電解株式会社製の銅箔 PF−E(厚さ12μm)を貼り合わせた後に、硫酸過水溶液(JCU社製 HE500)でウェットエッチングを行って、銅箔の厚さを7μmとした、両面銅張積層板を得た(図1参照)。   First, a copper foil PF-E (thickness 12 μm) made by Nihon Electrolytic Co., Ltd. was bonded to both surfaces of a high Tg glass epoxy multilayer material 679FG (thickness 100 μm) manufactured by Hitachi Chemical Co., Ltd. Wet etching was performed with HE500 manufactured by JCU to obtain a double-sided copper-clad laminate with a copper foil thickness of 7 μm (see FIG. 1).

次に、得られた両面銅張積層板の両面に、日立化成株式会社製ドライフィルムレジスト SL−9025(厚さ25μm)をラミネートした後、フォトリソグラフィによって、一方面のレジストに開口部を形成した(図2(a)参照)。次に、硫酸過水溶液(HE−500)で開口部から露出した銅箔をエッチングにより除去した(図2(b)参照)。銅箔に形成される開口部の直径は80μmとした。   Next, after laminating a dry film resist SL-9025 (thickness 25 μm) manufactured by Hitachi Chemical Co., Ltd. on both sides of the obtained double-sided copper-clad laminate, an opening was formed in the resist on one side by photolithography. (See FIG. 2 (a)). Next, the copper foil exposed from the opening was removed with an aqueous sulfuric acid solution (HE-500) by etching (see FIG. 2B). The diameter of the opening formed in the copper foil was 80 μm.

次に、形成した銅箔の開口部を通じてCOレーザを照射することにより、開口部の直径が80μmの有底ビアを形成した(図2(c)参照)。 Next, a bottomed via having a diameter of 80 μm was formed by irradiating a CO 2 laser through the opening of the formed copper foil (see FIG. 2C).

次に、レジストを除去した後(図2(d)参照)、硫酸過水溶液(HE500)を用いたウェットエッチングにより、銅箔の表面を厚み4μm分だけ除去することよって、有底ビアの底部となっていた銅箔を除去し、貫通孔21を形成した(図2(e)参照)。   Next, after removing the resist (see FIG. 2D), the bottom surface of the bottomed via is removed by removing the surface of the copper foil by a thickness of 4 μm by wet etching using a sulfuric acid-peroxide solution (HE500). The formed copper foil was removed to form a through hole 21 (see FIG. 2 (e)).

続いて、貫通孔21を形成した両面銅張積層板を過マンガン酸カリウム60g/Lとマンガン酸カリウム15g/Lの混合溶液に、液温70℃で30分浸漬させ、貫通孔内部の樹脂残渣を除去すると共に、レーザ照射時に裏面側となった貫通孔の内壁の一部を除去し、最大内径100μm、くびれ部分の内径50μmであるくびれ付貫通孔を有するコア基板を得た(図2(f)参照)。   Subsequently, the double-sided copper-clad laminate having through-holes 21 is immersed in a mixed solution of potassium permanganate 60 g / L and potassium manganate 15 g / L at a liquid temperature of 70 ° C. for 30 minutes, and the resin residue inside the through-holes And a part of the inner wall of the through hole that became the back side during laser irradiation was removed to obtain a core substrate having a constricted through hole having a maximum inner diameter of 100 μm and an inner diameter of the constricted portion of 50 μm (FIG. 2 ( f)).

本発明に係る貫通孔形成方法は、貫通孔を通して層間接続構造が設けられる多層配線板の製造に利用できる。   The through hole forming method according to the present invention can be used for manufacturing a multilayer wiring board provided with an interlayer connection structure through a through hole.

10 両面銅張積層板
11 絶縁樹脂層
12a 極薄銅箔(第1の金属層)
12b 極薄銅箔(第2の金属層)
14 開口部
14a 開口部(第1の開口部)
14b 開口部(第2の開口部)
15a、15b レジスト
16、16a、16b 開口部
17 樹脂残渣
18 銅残渣
20 有底ビア
21 貫通孔
22 くびれ部
30 くびれ付貫通孔
40 コア基板
10 Double-sided copper-clad laminate 11 Insulating resin layer 12a Ultra-thin copper foil (first metal layer)
12b Ultra-thin copper foil (second metal layer)
14 opening 14a opening (first opening)
14b Opening (second opening)
15a, 15b Resist 16, 16a, 16b Opening 17 Resin residue 18 Copper residue 20 Bottomed via 21 Through hole 22 Constricted part 30 Constricted through hole 40 Core substrate

Claims (3)

絶縁層の両面に第1の金属層及び第2の金属層が設けられた基板に貫通孔を形成するための貫通孔の形成方法であって、
前記絶縁層と、前記第1の金属層及び前記第2の金属層とが接着剤を介して接着されており、前記第1の金属層及び前記第2の金属層の算術平均粗さRaが0.1μm以下であり、
前記貫通孔の形成位置にある前記第1の金属層の一部をエッチングによって選択的に除去することにより第1の開口部を形成する工程と、
前記第1の開口部から露出する前記絶縁層にレーザを照射することにより、前記第2の金属層にまで達するビアを形成する工程と、
前記ビアの底部にある前記第2の金属層の一部をエッチングにより除去して貫通孔を形成する工程と、
前記貫通孔の内壁部のうち、前記第2の金属層側の一部をデスミアにより除去して、前記基板の厚み方向の略中心にくびれ部を形成する工程とを備える、貫通孔の形成方法。
A through hole forming method for forming a through hole in a substrate provided with a first metal layer and a second metal layer on both sides of an insulating layer,
The insulating layer, the first metal layer, and the second metal layer are bonded via an adhesive, and the arithmetic average roughness Ra of the first metal layer and the second metal layer is 0.1 μm or less,
Forming a first opening by selectively removing a part of the first metal layer at the formation position of the through hole by etching;
Irradiating the insulating layer exposed from the first opening with a laser to form a via reaching the second metal layer;
Removing a portion of the second metal layer at the bottom of the via by etching to form a through hole;
A step of removing a part of the inner wall portion of the through hole on the second metal layer side by desmear to form a constricted portion at a substantial center in the thickness direction of the substrate. .
絶縁層の両面に第1の金属層及び第2の金属層が設けられた基板に貫通孔を形成するための貫通孔の形成方法であって、
前記絶縁層と、前記第1の金属層及び前記第2の金属層とが接着剤を介して接着されており、前記第1の金属層及び前記第2の金属層の算術平均粗さRaが0.1μm以下であり、
前記貫通孔の形成位置にある前記第1の金属層の一部及び前記第2の金属層の一部をエッチングによって選択的に除去することにより、前記第1の金属層及び前記第2の金属層に前記基板の平面方向の位置が対応するように、第1の開口部及び第2の開口部をそれぞれ形成する工程と、
前記第1の開口部から露出する前記絶縁層にレーザを照射することにより、貫通孔を形成する工程と、
前記貫通孔の内壁部のうち、前記第2の金属層側の一部をデスミアにより除去して、前記基板の厚み方向の略中心にくびれ部を形成する工程とを備える、貫通孔の形成方法。
A through hole forming method for forming a through hole in a substrate provided with a first metal layer and a second metal layer on both sides of an insulating layer,
The insulating layer, the first metal layer, and the second metal layer are bonded via an adhesive, and the arithmetic average roughness Ra of the first metal layer and the second metal layer is 0.1 μm or less,
By selectively removing a part of the first metal layer and a part of the second metal layer at positions where the through holes are formed by etching, the first metal layer and the second metal are removed. Forming each of the first opening and the second opening so that the position of the substrate in the planar direction corresponds to the layer;
Irradiating the insulating layer exposed from the first opening with a laser to form a through hole;
A step of removing a part of the inner wall portion of the through hole on the second metal layer side by desmear to form a constricted portion at a substantial center in the thickness direction of the substrate. .
前記基板の一方面上にある前記貫通孔の開口の中心と、前記基板の他方面上にある前記貫通孔の開口の中心と、前記貫通孔のくびれ部の中心とが、前記基板の一方面上から見たときに、半径5μmの円内に収まることを特徴とする、請求項1または2に記載の貫通孔の形成方法。 The center of the opening of the through hole on one surface of the substrate, the center of the opening of the through hole on the other surface of the substrate, and the center of the constricted portion of the through hole are one surface of the substrate. The method of forming a through hole according to claim 1 or 2 , wherein the through hole is contained within a circle having a radius of 5 µm when viewed from above.
JP2013201593A 2013-09-27 2013-09-27 Method for forming through hole in core substrate Active JP6303364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013201593A JP6303364B2 (en) 2013-09-27 2013-09-27 Method for forming through hole in core substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013201593A JP6303364B2 (en) 2013-09-27 2013-09-27 Method for forming through hole in core substrate

Publications (2)

Publication Number Publication Date
JP2015070041A JP2015070041A (en) 2015-04-13
JP6303364B2 true JP6303364B2 (en) 2018-04-04

Family

ID=52836468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013201593A Active JP6303364B2 (en) 2013-09-27 2013-09-27 Method for forming through hole in core substrate

Country Status (1)

Country Link
JP (1) JP6303364B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102002968B1 (en) * 2017-10-31 2019-07-23 인하대학교 산학협력단 Wet etching and laser-assisted metal foil hole machining method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4267807B2 (en) * 2000-09-22 2009-05-27 日本メクトロン株式会社 Method for forming fine through hole on circuit board
JP4370074B2 (en) * 2002-02-04 2009-11-25 日本電解株式会社 Copper foil for printed wiring board and manufacturing method thereof
JP5021216B2 (en) * 2006-02-22 2012-09-05 イビデン株式会社 Printed wiring board and manufacturing method thereof
JP2007227648A (en) * 2006-02-23 2007-09-06 Sharp Corp Printed wiring board, and method for manufacturing printed wiring board
KR20130053289A (en) * 2011-11-15 2013-05-23 삼성전기주식회사 Manufacturing method of printed circuit board
KR101605449B1 (en) * 2012-01-11 2016-03-22 미쓰이금속광업주식회사 Copper foil with adhesive layer, copper-clad laminate and printed wiring board

Also Published As

Publication number Publication date
JP2015070041A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
JP4405993B2 (en) Method for manufacturing high-density printed circuit board
JP5360494B2 (en) Multilayer wiring substrate, method for manufacturing multilayer wiring substrate, and via fill method
JP6208449B2 (en) Manufacturing method of multilayer wiring board
KR102518566B1 (en) Printed wiring board and method for manufacturing same
KR20140057861A (en) Method of manufacturing printed circuit board
US20100147559A1 (en) Carrier used in the manufacture of substrate and method of manufacturing substrate using the carrier
JP2012094662A (en) Method of manufacturing multilayer wiring board
US20200337156A1 (en) Multilayer printed wiring board and method of manufacturing the same
JP5066427B2 (en) Method for manufacturing printed wiring board
JP4460013B2 (en) Wiring board manufacturing method
JP4857433B2 (en) Metal laminate, metal laminate manufacturing method and printed circuit board manufacturing method
JP2008311612A (en) Multilayer printed circuit board, and method of manufacturing the same
WO2011096293A1 (en) Method of manufacturing multi-layered printed circuit board
KR101304359B1 (en) Method of manufacturing a cavity printed circuit board
JP6303364B2 (en) Method for forming through hole in core substrate
TWI391063B (en) Multilayer circuit board and manufacturing method thereof
JP4972753B2 (en) Method for manufacturing printed circuit board
JPH03285398A (en) Interlayer conduction structure of multilayer circuit board and method of forming the same
JP2655447B2 (en) Multilayer printed wiring board for surface mounting and method of manufacturing the same
JP2005236194A (en) Manufacturing method for printed-wiring board
JP6076431B2 (en) Manufacturing method of semiconductor package substrate
JP2009188154A (en) Printed circuit board and its production process
KR100313612B1 (en) Method of making blind-via hole in PCB
JP2017022227A (en) Wiring board and manufacturing method of wiring board
JPH11251746A (en) Manufacture of thin-type multilayer printed wiring board

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R150 Certificate of patent or registration of utility model

Ref document number: 6303364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250