JP6075089B2 - スイッチング電源回路、スイッチング電源装置 - Google Patents

スイッチング電源回路、スイッチング電源装置 Download PDF

Info

Publication number
JP6075089B2
JP6075089B2 JP2013016742A JP2013016742A JP6075089B2 JP 6075089 B2 JP6075089 B2 JP 6075089B2 JP 2013016742 A JP2013016742 A JP 2013016742A JP 2013016742 A JP2013016742 A JP 2013016742A JP 6075089 B2 JP6075089 B2 JP 6075089B2
Authority
JP
Japan
Prior art keywords
voltage
switching
power supply
coil
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013016742A
Other languages
English (en)
Other versions
JP2014150612A (ja
Inventor
利緒 平形
利緒 平形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2013016742A priority Critical patent/JP6075089B2/ja
Publication of JP2014150612A publication Critical patent/JP2014150612A/ja
Application granted granted Critical
Publication of JP6075089B2 publication Critical patent/JP6075089B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

本発明は、電源回路に関し、特に、スイッチングレギュレータを有する電源回路に有効な技術に関する。
ノート型パーソナルコンピュータ、携帯電話やデジタルカメラなどの電子機器には、リチウムイオン電池などの二次電池、および該二次電池に最適な充放電が行われるように制御する半導体集積回路装置を有するバッテリパックが広く用いられている。
また、電子機器には、バッテリパックに充電用電源を供給する電源回路が設けられている。電源回路としては、例えばスイッチングレギュレータなどのスイッチング電源回路が広く用いられている。
スイッチング電源回路は、トランジスタのスイッチング動作により入力信号をパルス信号に変換して出力し、充電用電源としてバッテリパックに供給する。また、スイッチング電源回路は、過電流保護機能を有している。過電流保護機能は、スイッチング電源回路、あるいはバッテリパックなどに異常が生じた際に、スイッチング電源回路からの電源出力を停止させ、過電流が流れることを防止する。
上記した過電流保護機能は、スイッチング電源回路の電源ラインに、例えば数十mΩ程度の電流検出用抵抗を設け、この抵抗の電圧降下から電流値を検出するものが広く用いられている。このような場合、電源ラインに電流検出用抵抗が接続される構成となるので、充電用電源の損失につながり、その結果、充電効率が悪くなってしまうという問題がある。
本発明の目的は、充電効率の低下を伴うことなく、スイッチング電源回路に流れる過電流を防止することのできる技術を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴については、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
代表的なスイッチング電源回路は、スイッチング部と、パルス発生部と、コイルと、過電流検出部とを有する。スイッチング部は、駆動信号に基づいて、第1の電源電圧をスイッチングしてスイッチング電圧を生成する。
パルス発生部は、駆動信号を生成する。コイルは、スイッチング部が生成したスイッチング電圧を平滑化し、第2の電源電圧として出力する。過電流検出部は、コイルに過電流が流れた際にパルス発生部から出力される駆動信号を停止させる過電流保護信号を出力する。
また、過電流検出部は、コイルに印加されるコイル電圧から、コイルに流れる電流が過電流であるかを判断し、コイルに流れる電流が過電流であると判定した際に、過電流検出信号をパルス発生部に出力する。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
充電効率を低下させることなく、過電流の検出を行うことができる。
本発明の実施の形態によるスイッチング電源回路の構成例を示すブロック図である。 図1のスイッチング電源回路に設けられたパルス発生部、およびスイッチング回路の構成の一例を示す説明図である。 図2のパルス発生部に設けられたコンパレータに入力される三角波とアナログ電圧の一例を示す説明図である。 図1のスイッチング電源回路に設けられた過電流検出部の構成の一例を示す説明図である。 図2のスイッチング回路に設けられたトランジスタの接続部から出力されるスイッチング電圧とコイルに流れるコイル電流との関係を示す説明図である。 過電流検出部のコンデンサに印加される電圧、コンパレータに入力される基準電圧、およびスイッチング電圧における信号タイミングを示すタイミングチャートである。 式1、および式2が表す関係例を示す説明図である。
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
〈発明の概要〉
本発明によるスイッチング電源回路は、スイッチング部(トランジスタ14,15)、パルス発生部(パルス発生部2)、コイル(コイル16)、および過電流検出部(過電流検出部4)を有する。
スイッチング部は、外部から第1の電源電圧が供給される電源電圧供給端子(VDD2)とスイッチング電源回路装置の基準電位配線路または中性点配線路(VSS)との間に直列接続され、駆動信号に基づいて、第1の電源電圧をスイッチングしてスイッチング電圧VPを生成する。
パルス発生部2は、トランジスタ14,15を駆動する駆動信号を生成する。コイル16は、スイッチング部が生成したスイッチング電圧を平滑化し、第2の電源電圧VBATとして出力端子VOUTから出力する。過電流検出部4は、コイル16に流れる電流を監視し所定値を超える電流(過電流)の流れを検出したとき過電流検出信号を出力段制御論理部8に出力し、パルス発生部から出力される駆動信号を停止させる。
過電流検出部4は、コイル16の出力端子VOUT側の電流路における前記電源回路装置の基準電位に対する電圧(コイル電圧)の変化を監視し、コイル16に流れる電流が過電流であるかを判断する。そして、コイルに流れる電流が過電流であると判定した際に、過電流検出信号(過電流検出信号OIS)をパルス発生部2の出力段制御論理部8に出力する。
以下、実施の形態をさらに詳細に説明する。
〈スイッチング電源回路の構成例〉
図1は、本発明の実施の形態によるスイッチング電源回路の構成の一例を示すブロック図である。
本実施の形態において、スイッチング電源回路1は、電源電圧VBATを生成する。スイッチング電源回路1が生成した電源電圧VBATは、出力端子VOUT、およびグランド端子GNDを介してバッテリパックBPに第2の電源電圧となる充電用電源として供給される。バッテリパックBPは、たとえば、ノート型パーソナルコンピュータや携帯電話などの電子機器の電源として用いられる。
バッテリパックBPは、図示しないバッテリ、およびバッテリ監視モジュールなどから構成されている。バッテリは、たとえば、4個のリチウムイオン二次電池セル(1つのセルの最高電圧は、たとえば、4.2V程度)が直列接続された電池組から構成されている。
バッテリ監視モジュールは、バッテリにおける過充電、過放電、および過電流などの各種監視やバッテリ保護などを行う電池電圧制御用IC(Integral Circuit)、およびスイッチなどを有する。スイッチは、スイッチング電源回路1から電源電圧VBATが出力される出力端子VOUTとバッテリの正(+)側電極と間に接続されている。電池電圧制御用ICは、スイッチに制御信号を出力して動作制御を行い、バッテリを所定の電圧範囲内に制御する。
スイッチング電源回路1は、図1に示すように、パルス発生部2、スイッチング回路3、および過電流検出部4を有する。パルス発生部2、および後述する図2のコンデンサ27を除く過電流検出部4は、例えばICなどの半導体集積回路装置に設けられている。
本実施の形態では、前述したコンデンサ27、およびスイッチング回路3に含まれるトランジスタ14,15、コイル16、コンデンサ17を含む構成部品は、半導体集積回路装置を実装するプリント配線基板上にディスクリート部品などによって実装された構成となっている。
なお、ここでは、スイッチング回路3をプリント配線基板上にディスクリート部品などによって実装する構成としたが、パルス発生部2、スイッチング回路3、および過電流検出部4を半導体集積回路装置に設ける構成としてもよい。また、コンデンサ27においても、半導体集積回路装置に形成することが可能であれば、該半導体集積回路装置内に設ける構成としてもよい。
パルス発生部2、および過電流検出部4には、半導体集積回路装置の動作電源電圧である電源電圧VDD1が供給されている。また、スイッチング回路3には、第1の電源電圧である電源電圧VDD2が供給されている。電源電圧VDD1は、例えば3.0V程度であり、電源電圧VDD2は、例えば3.0V程度〜30V程度である。
パルス発生部2は、スイッチング回路3に出力するパルス信号を生成する。スイッチング回路3は、パルス発生部2が発生したパルス信号に基づいて、スイッチング動作を行い、入力電圧である電源電圧VDD2から、充電用電源である電源電圧VBATを生成してバッテリパックBPに供給する。
過電流検出部4は、図2に示すコイル16に過電流が流れたことを検出して電流制限を行う。これにより、過電流が流れることによるコイル16などの損傷を防止することができる。
〈パルス発生部、およびスイッチング回路の構成例〉
図2は、図1のスイッチング電源回路に設けられたパルス発生部、およびスイッチング回路の構成の一例を示す説明図である。
パルス発生部2は、オペアンプ5、コンパレータ6、オシレータ7、出力段制御論理部8、コンデンサ9、抵抗10、コンデンサ11、およびドライバ12,13を有する。また、スイッチング回路3は、トランジスタ14,15、コイル16、コンデンサ17,18、および抵抗19〜21を有する。
オペアンプ5の正(+)側入力部には、基準電圧VREFが入力されており、該オペアンプ5の負(−)側入力部には、フィードバック電圧VFBが入力されるように接続されている。オペアンプ5は、基準電圧VREFとフィードバック電圧VFBとを比較し、その比較差をアナログ電圧としてコンパレータ6に出力する。
オペアンプ5の出力部には、コンパレータ6の一方の入力部、およびコンデンサ9の一方の接続部がそれぞれ接続されている。コンデンサ9の他方の接続部には、抵抗10の一方の接続部が接続されており、該抵抗10の他方の接続部には、フィードバック電圧VFBが供給されている。
コンパレータ6の他方の入力部には、オシレータ7から出力される信号が入力されるように接続されており、該コンパレータ6の出力部には、出力段制御論理部8の入力部が接続されている。
オシレータ7は、信号発生器であり、例えば三角波の信号を生成して出力する。コンパレータ6は、オペアンプ5から出力されるアナログ電圧とオシレータ7から出力される三角波の信号とを比較し、その比較結果を出力する。
出力段制御論理部8の制御端子には、過電流検出部4から出力される過電流検出信号OISが入力されるように接続されている。この出力段制御論理部8の一方の出力部には、ドライバ12の入力部が接続されており、該出力段制御論理部8の他方の出力部には、ドライバ13の入力部が接続されている。
出力段制御論理部8は、コンパレータ6の出力信号に基づいて、スイッチング部を構成するトランジスタ14、およびトランジスタ15を駆動する駆動信号Sdv1,Sdv2をそれぞれ生成する。ドライバ12,13は、出力段制御論理部8から出力される駆動信号Sdv1,Sdv2を増幅して出力する。
ドライバ12の出力部には、トランジスタ14のゲートが接続されており、ドライバ13の出力部には、トランジスタ15のゲートが接続されている。トランジスタ14は、第1導電型のパワー絶縁ゲートFET(Field Effct Transistor)、図2の例では、PチャネルMOS(Metal Oxide Semiconductor)FETからなる。トランジスタ15は、第2導電型のパワー絶縁ゲートFET、図2の例では、NチャネルMOSFETからなる。トランジスタ14,15は、高耐圧で大電流を扱うことが可能に構成され、ドライバ12,13から出力されるパルス信号に基づいてオン/オフ動作を行う。
トランジスタ14のソース/ドレインの一端には、電源電圧VDD2が供給されるように接続されており、該トランジスタ14のソース/ドレインの他端には、トランジスタ15のソース/ドレインの一端が接続されている。トランジスタ15のソース/ドレインの他端には、基準電位VSSが接続されている。
また、トランジスタ14のソース/ドレインの他端とトランジスタ15のソース/ドレインの一端との接続部には、インダクタであるコイル16の一方の接続部が接続されている。
コイル16の他方の接続部には、コンデンサ17の一方の接続部、コンデンサ18の一方の接続部、および抵抗20の一方の接続部がそれぞれ接続されている。このコイル16の他方の接続部は、スイッチング電源回路1の出力部となり、出力端子VOUTを介して電源電圧VBATが出力される。
コンデンサ17の他方の接続部には、基準電位VSSが接続されており、コンデンサ18の他方の接続部には、抵抗19の他方の接続部が接続されている。抵抗20の他方の接続部には、抵抗21の一方の接続部が接続されており、抵抗21の他方の接続部には、基準電位VSSが接続されている。これら抵抗20,21によって分圧された電圧は、前述したフィードバック電圧VFBとなる。このフィードバック電圧VFBは、先に述べたようにオペアンプ5の負(−)側入力部に入力される。
〈パルス発生部、およびスイッチング回路の動作例〉
ここで、パルス発生部2、およびスイッチング回路3における動作について説明する。
オペアンプ5は、基準電圧VREFと電源電圧VBATを抵抗20,21によって分圧したフィードバック電圧VFBとを比較し、その比較差をアナログ電圧としてコンパレータ6に出力する。
コンパレータ6は、オペアンプ5から出力されたアナログ電圧とオシレータ7から出力される三角波とを比較し、PWM(Pulse Width Modulation)信号を生成する。コンパレータ6から出力されたPWM信号は、出力段制御論理部8に入力される。
出力段制御論理部8では、入力されたPWM信号に基づいて、トランジスタ14,15を駆動する駆動信号Sdv1,Sdv2をそれぞれ生成する。出力段制御論理部8から出力される駆動信号Sdv1,Sdv2は、同じ電圧レベルの信号が略同期して出力されるが、トランジスタ14,15が同時オンとならないように、タイミングをずらして出力される。
出力段制御論理部8から出力された駆動信号Sdv1,Sdv2は、ドライバ12,13によってそれぞれ増幅され、トランジスタ14,15のゲートに入力される。トランジスタ14,15は、ゲートに入力されたパルス信号に基づいて、オン/オフ動作が制御され、スイッチング動作を行う。これによって、矩形状のスイッチング電圧VPが出力される。
駆動信号Sdv1,Sdv2がローレベルとなってトランジスタ14がオンし、トランジスタ15がオフすると、コイル16、コンデンサ17、および負荷に電流が流れる。このとき、コイル16とコンデンサ17には電気エネルギが蓄えられる。
続いて、駆動信号Sdv1,Sdv2がハイレベルとなってトランジスタ14がオフし、トランジスタ15がオンすると、コイル16、およびコンデンサ17に蓄えられた電気エネルギによって負荷に電流が流れる。
これにより、トランジスタ14とトランジスタ15との接続部から出力されるスイッチング電圧VPは、コイル16、およびコンデンサ17によって平滑され、電源電圧VBATとして出力される。
スイッチング電源回路1において、電源電圧VBATの電圧を調整するのは、PWM信号のデュティ比、すなわちトランジスタ14のオン時間である。例えば、負荷が重く電流を多く必要とする場合には、PWM信号のディティ比を大きくしてトランジスタ14のオン時間を増加させることによって、供給能力を上げる。
逆に、負荷が軽い場合は、PWM信号のディティ比を小さくしてトランジスタ14のオン時間を減少させることによってスイッチング電圧VPの出力期間を少なくすることによって供給能力を下げる。
〈コンパレータの信号入力例〉
図3は、図2のパルス発生部に設けられたコンパレータに入力される三角波とアナログ電圧の一例を示す説明図である。
図3において、アナログ電圧Vang1,Vang2は、オペアンプ5から出力されるアナログ電圧の波形をそれぞれ示している。アナログ電圧Vang1は、負荷が重くなり、フィードバック電圧VFBが低下した際におけるオペアンプ5からの出力信号であり、アナログ電圧Vang2は、負荷が軽くなり、フィードバック電圧VFBが上昇した際におけるオペアンプ5からの出力信号である。
負荷が重くなり、電流を多く必要とする場合、図示するように、アナログ電圧Vang1は、オシレータ7から出力される三角波Vtよりも小さい電圧レベルとなる期間が長くなる。コンパレータ6は、三角波Vtの電圧レベルがアナログ電圧Vang1よりも高い期間の間にハイレベルを出力し、三角波Vtの電圧レベルがアナログ電圧Vang1よりも低い期間の間にローレベルを出力する。これにより、コンパレータ6が生成するPWM信号のディティ比が大きくなる。その結果、スイッチング電源回路1の電源電圧VBATの供給能力を向上させることができる。
一方、負荷が軽くなり、多くの電流が必要でない場合、図示するように、アナログ電圧Vang2は、逆に三角波Vtよりも大きい電圧レベルとなる期間が長くなる。コンパレータ6は、三角波Vtの電圧レベルがアナログ電圧Vang2よりも高い期間の間にハイレベルを出力し、三角波Vtの電圧レベルがアナログ電圧Vang2よりも低い期間の間にローレベルを出力するので、コンパレータ6が生成するPWM信号のディティ比が小さくなる。その結果、スイッチング電源回路1の電源電圧VBATの供給能力を低下させることができる。
〈過電流検出部の構成例〉
図4は、図1のスイッチング電源回路1に設けられた過電流検出部4の構成の一例を示す説明図である。
過電流検出部4は、図4に示すように、定電流回路22、オペアンプ23、スイッチ24、ドライバ25、コンパレータ26、および電圧検出用コンデンサであるコンデンサ27を有する。定電流回路22には電源電圧VDD1が供給されており、該定電流回路22の制御端子には、コイル電圧検出部であるオペアンプ23の出力部が接続されている。
定電流回路22は、略一定の電流を供給する回路であり、その電流供給量は、該定電流回路22の制御端子に入力される電圧レベルに応じて可変する。
定電流回路22から供給される定電流は、オペアンプ23から出力される電圧レベルに応じて調整可能となっており、コイル16に流れるコイル電流Liの変化に追従した電流値の電流を供給するように調整されている。ここで、定電流回路22が流す電流は、損失となってしまうため、コイル16に流れるコイル電流Liよりも小さい方がよく、コイル電流Liに流れる電流レベルと定電流回路22が供給する電流の比率は、例えば1:100程度、またはそれ以下であてもよい。
オペアンプ23の正(+)側入力部には、電源電圧VDD2が入力されるように接続されており、該オペアンプ23の負(−)側入力部には、電源電圧VBATが入力されるように接続されている。オペアンプ23は、入力される電源電圧VDD2と電源電圧VBATとの差分の電圧を出力する。
定電流回路22の出力部には、スイッチ24の一方の接続部、コンデンサ27の一方の接続部、およびコンパレータ26の正(+)側入力部がそれぞれ接続されている。スイッチ24は、例えばNチャネルMOSトランジスタを含む回路にて構成することができる。
コンパレータ26の負(−)側入力部には、電流制限基準電圧である基準電圧VREF1が入力されるように接続されている。また、スイッチ24の他方の接続部、およびコンデンサ27の他方の接続部には、基準電位VSSが接続されている。
コンパレータ26の出力部には、出力段制御論理部8の制御端子が接続されている。このコンパレータ26の出力部から出力される信号が過電流検出信号OISとなる。出力段制御論理部8は、過電流検出信号OISがアクティブとなると、ドライバ12,13に出力する駆動信号Sdv1,Sdv2の出力を停止する。このとき、駆動信号Sdv1,Sdv2は、例えばハイ信号を出力して停止し、トランジスタ14をオフ、トランジスタ15をオンとする。
ドライバ25は、出力段制御論理部8からドライバ12に出力される駆動信号Sdv1が入力されるように接続されている。このドライバ25は、入力された駆動信号Sdv1を増幅して、スイッチ24の制御端子に出力する。スイッチ24は、制御端子に入力されるドライバ25によって増幅された駆動信号Sdv1を制御信号とし、該制御信号に基づいてスイッチを導通状態であるオン、または非導通状態であるオフにする。
図5は、図2のスイッチング回路に設けられたトランジスタ14,15の接続部から出力されるスイッチング電圧VPとコイル16に流れるコイル電流Liとの関係を示す説明図である。
図示するように、コイル16に流れるコイル電流Liは、トランジスタ14がオンしてスイッチング電圧VPが出力されると増加していき、トランジスタ14がオフしてスイッチング電圧VPの出力が停止すると減少する関係となる。過電流検出部4は、コイル16に流れるコイル電流Liの制限を行うことによって、過電流によるコイル16などの損傷を防止する。
〈過電流検出部の動作例〉
次に、本実施の形態による過電流検出部4の動作について説明する。
過電流検出部4は、前述したようにコイル16に流れるコイル電流Liが過電流であるかを検出し、該コイル電流Liに過電流が流れた際に電流制限を行うことによって、過電流によるコイル16などの損傷を防止する。そこで、過電流検出部4は、コイル16に流れるコイル電流Liを、コンデンサ27に印加される電圧Vcdに基づいて検出する。
図6は、コンデンサ27に印加される電圧Vcd、コンパレータ26に入力される基準電圧VREF1、およびスイッチング電圧VPにおける信号タイミングを示すタイミングチャートである。この図6では、4回目のスイッチング電圧VPが出力された際にコイル16に過電流が流れたことを検出した場合について示している。
オペアンプ23は、電源電圧VBATと電源電圧VDD2との差分、すなわちコイル16にかかっている電圧を検出して出力する。定電流回路22は、オペアンプ23の出力結果に応じて、コイル16に流れるコイル電流Liの電流レベルの変化に追従した電流値の電流が流れるように調整して出力する。
出力段制御論理部8からローレベルの駆動信号Sdv1,Sdv2がそれぞれ出力されると、トランジスタ14がオンとなり、トランジスタ15がオフとなってスイッチング電圧VPがハイレベルとなる。
このとき、ドライバ25を介して駆動信号Sdv1が制御信号として入力されるスイッチ24は、オフとなる。これによって、定電流回路22から出力された電流がコンデンサ27に流れ込み、それに伴って、電圧Vcdが上昇する。
コンパレータ26は、電圧Vcdと基準電圧VREF1とを比較しているが、電圧Vcdが基準電圧VREF1よりも低い電圧レベルであるので、該コンパレータ26から出力される過電流検出信号OISはインアクティブとなっている。
そして、出力段制御論理部8から出力される駆動信号Sdv1,Sdv2が反転してハイレベルとなると、トランジスタ14がオフし、トランジスタ15がオンとなる。これによって、スイッチング電圧VPはローレベルとなる。
このとき、スイッチ24は、駆動信号Sdv1によってオンとなり、コンデンサ27に蓄積された電荷が該スイッチ24を介して基準電位VSSに放電される。これよって、コンデンサ27に印加される電圧である電圧Vcdがローレベルとなり、過電流の検出動作がリセット状態となる。過電流検出部4は、これらの動作を繰り返し行う。
ここで、何らかの原因でコイル16に流れるコイル電流Liが増加していき、例えば4回目のスイッチング電圧VPが出力された際にコイル16に過電流が流れた場合について説明する。
負荷が重くなる場合、あるいは過電流が流れる場合には、電源電圧VBATの電圧レベルが低下するので、電源電圧VBATと電源電圧VDD2との差分も大きくなる。よって、オペアンプ23から出力される電圧レベルも大きくなる。よって、定電流回路22は、オペアンプ23から出力される電圧レベルに応じて、コイル16に流れるコイル電流Liの電流レベルの変化に追従して調整される電流値の電流を出力する。
また、出力段制御論理部8からローレベルの駆動信号Sdv1,Sdv2がそれぞれ出力されて、トランジスタ14がオンとなり、トランジスタ15がオフとなると、スイッチング電圧VPがハイレベルとなる。
これによって、定電流回路22から出力された電流がコンデンサ27に流れ込み、それに伴って、電圧Vcdが上昇する。このとき、定電流回路22から出力される電流量は、オペアンプ23から出力される電圧レベルに応じて増加されているので、コンデンサ27に印加される電圧Vcdの電圧レベルの上昇も速くなり、コイル16に過電流が流れていない場合よりも短時間で該電圧Vcdが基準電圧VREF1に達し、さらに増加して基準電圧VREF1よりも高い電圧レベルとなる。
電圧Vcdが基準電圧VREF1よりも高い電圧レベルとなると、コンパレータ26は、コイル16に過電流が流れたことを判定し、アクティブの過電流検出信号OISを出力する。出力段制御論理部8は、過電流検出信号OISが入力されると、ドライバ12,13に出力する駆動信号Sdv1,Sdv2のそれぞれハイレベルとして出力する。
これによって、トランジスタ14,15の動作が停止し、スイッチング電圧VPがローレベルとなり、コイル16に流れるコイル電流Liを制限することができる。このとき、スイッチ24がオンとなり、コンデンサ27に蓄積された電荷が放出されて、電圧Vcdがローレベルとなる。
これによって、コイル16に過電流が流れたことをコンデンサ27に印加される電圧Vcdによって検出することが可能となる。よって、電源電圧VBATを供給する電源ラインに過電流検出用の抵抗などを付加することを不要とすることができ、スイッチング電源回路1における電源電圧VBATの損失を大幅に小さくすることができる。
〈コイル電流とコンデンサの印加電圧の関係〉
次に、コイル16に流れるコイル電流Li、およびコンデンサ27に印加される電圧Vcdの関係について説明する。
スイッチング電源回路1において、コイル16に流れるコイル電流Liは、次式によって表される。
Figure 0006075089
Hは、コイル16のインダクタンス[H]である。
式1によるコイル16に流れるコイル電流Liの電流量は、コイル16のインダクタンスをコンデンサ27の静電容量値に対応させることにより、コイル16に流れる電流をコンデンサ27に印加される電圧にて相対的に表すことができる。よって、コンデンサ27に印加される電圧Vcdは、次式によって表される。
Figure 0006075089
ここで、Cdは、コンデンサ27の静電容量値、Ciは、コンデンサ27に流れる電流である。
図7は、式1、および式2が表す関係例を示す説明図である。図7(a)は、式1が表すコイル16における電流と時間との関係例を示しており、図7(b)は、式2が表すコンデンサ27の電圧と時間との関係例を示している。
図7(a)において、式1では、(電源電圧VDD2−電源電圧VBAT)の電圧レベルが大きい場合、すなわちコイル16にかかる電圧レベルが大きいと、コイル16に流れるコイル電流Liは多くなり、ある時間当たりに流れる電流量が多くなることを示している。
また、コイル16にかかる電圧レベルが略一定の場合、コイル16のインダクタンスが小さくなればコイル電流Liが多くなり、該コイル16のインダクタンスが大きくなればコイル電流Liが少なくなる。
なお、(電源電圧VDD2−電源電圧VBAT)の電圧レベルが大きい場合とは、負荷が重くなり、電源電圧VBATの電圧レベルが低下して負荷に多くの電流を供給する場合である。
また、(電源電圧VDD2−電源電圧VBAT)の電圧レベルが小さい場合、すなわちコイル16にかかる電圧レベルが小さい場合には、コイル16に流れるコイル電流Liは少なくなり、ある時間当たりにコイル16に流れる電流量が少なくなることを示している。
コンデンサ27に流れる電流Ciが略一定の場合、コンデンサ27の静電容量値を小さくすることによって電流Ciが増加し、逆にコンデンサ27の静電容量値を大きくすることによって電流Ciは減少する。
なお、(電源電圧VDD2−電源電圧VBAT)の電圧レベルが小さい場合とは、負荷が軽くなり、電源電圧VBATの電圧レベルが上昇して負荷に供給する電流が少ないときである。
このように、コイル16に流れるコイル電流Liと略同じ比率の電流をコンデンサ27に流し込むことによって、該コイル16のコイル電流Liが過電流であるか否かを相対的に検出することが可能となる。
また、図7(a)に示すコイル16に流れる過電流の検出値は、図7(b)に示すように、電圧、すなわち基準電圧VREF1の電圧レベルにて相対的に検出できるので、コイル16に流れる過電流の検出レベル、コンデンサ27の静電容量値を増減させることにより、容易に変更が可能である。
これによって、スイッチング電源回路1における設計の自由度を向上させることができる。また、コンデンサ27を半導体集積回路装置の外部に接続する構成とすることによって、コンデンサの交換も容易となる。
以上により、スイッチング電源回路1における電源電圧VBATの損失を大幅に小さくすることが可能となり、バッテリパックBPの充電効率を向上させることができる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。
1 スイッチング電源回路
2 パルス発生部
3 スイッチング回路
4 過電流検出部
5 オペアンプ
6 コンパレータ
7 オシレータ
8 出力段制御論理部
9 コンデンサ
10 抵抗
11 コンデンサ
12 ドライバ
13 ドライバ
14 トランジスタ
15 トランジスタ
16 コイル
17 コンデンサ
18 コンデンサ
19 抵抗
20 抵抗
21 抵抗
22 定電流回路
23 オペアンプ
24 スイッチ
25 ドライバ
26 コンパレータ
27 コンデンサ
BP バッテリパック

Claims (5)

  1. 第1の電源電圧をスイッチングしてスイッチング電圧を生成するスイッチング部と、
    一端が前記スイッチング部の出力ノードに接続され、他端が第2の電源電圧を出力する出力端子に接続されたコイルを含み、前記スイッチング部が生成した前記スイッチング電圧を平滑化する平滑部と、
    前記スイッチング部にパルス駆動信号を供給して前記スイッチング電圧の生成を制御する制御部と、
    過電流検出部と、
    を含み、
    前記過電流検出部は、
    前記コイルの前記他端における電圧を検出するコイル電圧検出部と、
    前記コイル電圧検出部が検出したコイル電圧に基づいて設定される電流量の定電流を供給する定電流回路と、
    前記定電流回路に接続された電圧検出用コンデンサと、
    前記定電流回路と前記電圧検出用コンデンサの接続ノードに接続されたスイッチ部と、
    過電流判定部と、
    を含み、
    前記スイッチ部は、前記スイッチング部が導通し、前記第1の電源電圧が前記スイッチング部の出力ノードに接続されている期間に前記定電流回路から供給される電気エネルギを前記電圧検出用コンデンサに蓄積し、前記スイッチング部が非導通の期間に前記電圧検出用コンデンサを放電させるスイッチ動作を行い、
    前記過電流判定部は、前記電圧検出用コンデンサに印加される電圧と電流制限基準電圧とを比較し、前記電圧検出用コンデンサに印加される電圧が前記電流制限基準電圧よりも大きくなると前記コイルに過電流が流れていると判定して前記制御部に過電流検出信号を出力し、
    前記制御部は、前記過電流判定部からの前記過電流検出信号に基づき、前記スイッチング部への前記パルス駆動信号の供給を停止し、これにより前記第1の電源電圧の前記出力ノードへの供給を遮断する、スイッチング電源回路。
  2. 請求項1記載のスイッチング電源回路において、
    前記過電流検出部の前記スイッチ部は、前記パルス駆動信号に基づいて制御され、
    前記スイッチング部から出力される前記スイッチング電圧をハイレベルとする前記パルス駆動信号の期間に前記スイッチ部は非導通とされ、前記電圧検出用コンデンサに前記定電流回路から供給される電流で電気エネルギを蓄積し、
    前記スイッチング部から出力される前記スイッチング電圧をローレベルとする前記パルス駆動信号の期間に前記スイッチ部は導通され、前記電圧検出用コンデンサに蓄積された電気エネルギを放出する、スイッチング電源回路。
  3. 請求項1記載のスイッチング電源回路において、
    前記コイル電圧検出部は、オペアンプからなり、前記第1の電源電圧と前記第2の電源電圧との差分から前記コイルに印加される電圧を検出する、スイッチング電源回路。
  4. 請求項2記載のスイッチング電源回路において、
    前記定電流回路は、前記コイル電圧検出部が検出した前記コイル電圧に基づいて、前記コイルに流れる電流の電流レベルの変化に略追従した電流値の電流を出力する、スイッチング電源回路。
  5. 第1の電源電圧をスイッチングしてスイッチング電圧を生成するスイッチング部と、
    一端が前記スイッチング部の出力ノードに接続され他端が第2の電源電圧を出力する出力端子に接続されたコイルを含み、前記スイッチング部が生成した前記スイッチング電圧を平滑化する平滑部と、
    前記スイッチング部にパルス駆動信号を供給して前記スイッチング電圧の生成を制御する制御部と、
    過電流検出部と、
    を含み、
    前記過電流検出部は、
    前記コイルの前記他端における電圧を検出するコイル電圧検出部と、
    前記コイル電圧検出部が検出したコイル電圧に基づいた電流量の定電流を供給する定電流回路と、
    前記定電流回路に接続された電圧検出用コンデンサと、
    前記定電流回路と前記電圧検出用コンデンサの接続ノードに接続されたスイッチ部と、
    過電流判定部と、
    を含み、
    前記スイッチ部は、前記スイッチング部が導通し前記第1の電源電圧が前記スイッチング部の出力ノードに接続されている期間に前記定電流回路から供給される電気エネルギを前記電圧検出用コンデンサに蓄積し、前記スイッチング部が非導通の期間に前記電圧検出用コンデンサを放電させるスイッチ動作を行い、
    前記過電流判定部は、前記電圧検出用コンデンサに印加される電圧と電流制限基準電圧とを比較し、前記電圧検出用コンデンサに印加される電圧が前記電流制限基準電圧よりも大きくなると前記コイルに過電流が流れていると判定して前記制御部に過電流検出信号を出力し、
    前記制御部は、前記過電流判定部からの前記過電流検出信号に基づき前記スイッチング部へのパルス駆動信号の供給を停止し、これにより前記第1の電源電圧の前記出力ノードへの供給を遮断する、スイッチング電源装置。
JP2013016742A 2013-01-31 2013-01-31 スイッチング電源回路、スイッチング電源装置 Active JP6075089B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013016742A JP6075089B2 (ja) 2013-01-31 2013-01-31 スイッチング電源回路、スイッチング電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013016742A JP6075089B2 (ja) 2013-01-31 2013-01-31 スイッチング電源回路、スイッチング電源装置

Publications (2)

Publication Number Publication Date
JP2014150612A JP2014150612A (ja) 2014-08-21
JP6075089B2 true JP6075089B2 (ja) 2017-02-08

Family

ID=51573182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013016742A Active JP6075089B2 (ja) 2013-01-31 2013-01-31 スイッチング電源回路、スイッチング電源装置

Country Status (1)

Country Link
JP (1) JP6075089B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068955A1 (ja) 2015-10-19 2017-04-27 富士フイルム株式会社 指示受付装置、情報処理装置、信号処理方法、及びプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131759A (ja) * 1985-11-30 1987-06-15 Nec Corp スイツチング電源用制御回路
KR20120069349A (ko) * 2010-12-20 2012-06-28 삼성전자주식회사 스위칭 손실을 줄이는 직류-직류 전압 변환기, 상기 직류-직류 전압 변환기를 포함하는 무선전력 수신 장치

Also Published As

Publication number Publication date
JP2014150612A (ja) 2014-08-21

Similar Documents

Publication Publication Date Title
US10041982B2 (en) Switch mode power converter current sensing apparatus and method
JP3905005B2 (ja) 携帯型機器及び半導体集積回路装置
US8143863B2 (en) Circuits and methods for controlling a current flowing through a battery
JP5226753B2 (ja) 充電システムおよび充電方法
KR101916970B1 (ko) 배터리 관리 시스템 및 그를 포함하는 배터리 팩
CN101383523A (zh) 电源管理系统、控制电源的方法及电子系统
TW201728066A (zh) 可調適性電壓調節器
JP2011223829A (ja) 負電圧チャージポンプ回路の制御回路および負電圧チャージポンプ回路、ならびにそれらを用いた電子機器およびオーディオシステム
JP2007274748A (ja) 電源装置の制御回路および電源装置の制御方法
JP5839863B2 (ja) 降圧スイッチングレギュレータおよびその制御回路ならびにそれを用いた電子機器
US20060119329A1 (en) High efficiency switching power supply
US10644595B2 (en) Power converter controller
US8552692B2 (en) Charger and discharger for secondary battery
US20130119957A1 (en) Bi-directional Switching Regulator and Control Circuit Thereof
JP6075089B2 (ja) スイッチング電源回路、スイッチング電源装置
US10931198B2 (en) Buck-boost power converter controller
JP5839899B2 (ja) 逆流防止回路ならびにそれを用いた降圧型dc/dcコンバータ、その制御回路、充電回路、電子機器
JP6069700B2 (ja) スイッチング電源回路、電子装置、および半導体集積回路装置
JP2007282347A (ja) 電源システム
JP6973169B2 (ja) Dc−dcコンバータ
JP5172365B2 (ja) 電源回路およびこれを備えた電子機器
JP5103157B2 (ja) スイッチングレギュレータおよびその制御回路、制御方法
US20130106384A1 (en) Voltage converting circuit
CA2575831A1 (en) High efficiency switching power supply
CN221151211U (zh) Buck变换器和电子设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6075089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150