JP6044313B2 - 伝送装置および伝送方法 - Google Patents

伝送装置および伝送方法 Download PDF

Info

Publication number
JP6044313B2
JP6044313B2 JP2012270738A JP2012270738A JP6044313B2 JP 6044313 B2 JP6044313 B2 JP 6044313B2 JP 2012270738 A JP2012270738 A JP 2012270738A JP 2012270738 A JP2012270738 A JP 2012270738A JP 6044313 B2 JP6044313 B2 JP 6044313B2
Authority
JP
Japan
Prior art keywords
path
working
transmission
backup
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012270738A
Other languages
English (en)
Other versions
JP2014116860A (ja
Inventor
宮部 正剛
正剛 宮部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012270738A priority Critical patent/JP6044313B2/ja
Priority to US14/030,128 priority patent/US9100117B2/en
Publication of JP2014116860A publication Critical patent/JP2014116860A/ja
Application granted granted Critical
Publication of JP6044313B2 publication Critical patent/JP6044313B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

本発明は、伝送装置および伝送方法に関する。
近年、通信事業者向けの伝送装置(以下、ノードともいう)として、光伝送ネットワーク(OTN:Optical Transport Network)等に対応する伝送装置が提供されている。通信事業者は、サービスの可用性を保証するために、複数の冗長なパス(以下、経路ともいう)を用意して、一つのパスが障害によって通信不能になっても、他のパスを用いてサービスを継続して提供することができるネットワークを構築することが要請される。また、サービス提供価格を抑えるために、より少ない設備によってネットワークを構築することが要請される。
このような要請に対応したネットワーク構築の方式として、例えば、シェアードメッシュレストレーション(Shared mesh restoration)方式がある。シェアードメッシュレストレーション方式は、予備パスが帯域を共有する方式であって、障害からの回復のためのリソースを減らすことができ、少ないコストで高いサービスの可用性が実現できる。
例えば、図8に示すように、シェアードメッシュレストレーションで構築されたネットワーク100は、ノード102A〜102Kまでの11個のノードが、リンク104A〜104Lまでの12個のリンクによって接続される。
ネットワーク100は、第1現用パスとして、ノード102A,102B,102C,102Dを経由するパスを設定し、第2現用パスとして、ノード102H,102I,102J,102Kを経由するパスを設定する。また、ネットワーク100は、第1予備パスとして、ノード102A,102E,102F,102G,102Dを経由するパスを設定し、第2予備パスとして、ノード102H,102E,102F,102G,102Kを経由するパスを設定する。なお、ノード102E,102F,102Gを経由するパスは、第1予備パスと第2予備パスで共有されるパスである。
図8の例では、第1現用パス、第1予備パス、第2現用パス、第2予備パスのそれぞれに対して、シグナリングメッセージ106,108,110,112によって通信制御が行われている。各ノードは、それぞれのパスに対して帯域の確保等の情報を指示するメッセージを相互に伝達する。
第1現用パスおよび第2現用パスの各ノードは、シグナリングメッセージ106,110それぞれによって要求された帯域を確保する。それぞれのパス上の各ノードは、データプレーン部の設定、およびパスのアクティベーションを行う。なお、データプレーン部の設定は、入出力インタフェースであるラインインタフェース部の設定、および、各ラインインタフェース部間を接続するクロスコネクト部の設定を含む。これにより、第1現用パスおよび第2現用パスに、ユーザトラフィックを流通させることができる。
ネットワーク100では、第1現用パスと第2現用パスとは、それぞれ異なるノードとリンクを経由するため、第1現用パスと第2現用パスが、同一の単一リンク障害または単一ノード障害の影響を同時に受けることはない。このとき、第1予備パスおよび第2予備パス上にある各ノードは、それぞれ、シグナリングメッセージ108,112により、要求された帯域が予約される。
一方、ノード102E,102F,102Gを経由するパスは、第1予備パスと第2予備パスで共有されるため、帯域は予約される。しかし、ノード102E,102F,102Gでは、データプレーン部の設定は行われない。つまり、共有されるノードおよびリンクが、第1予備パスによって利用されるのか、第2予備パスによって利用されるのかが、障害発生前の時点では決定されていないためである。
ここで、ネットワーク100上で、例えば、ノード102Jとノード102Kとの間のリンク104Lで障害が発生したとする。ノード102Jは、例えばリンク104Lに接続している入出力インタフェース上でエラーを検出した場合、リンク104Lで障害が発生したと判断して、障害情報114をノード102Hに通知する。ノード102Hは、障害情報114を受信すると、第2現用パスの通信を第2予備パスへ切り替える。なお、第2予備パスでは、帯域は予約済みであるが、データプレーン部の設定は行われていない。
ノード102Hは、第2予備パスに対応するデータプレーン部の設定を行うために、第2予備パスをアクティベーションするシグナリングメッセージ112を送信する。第2予備パス上のノード102E,102F,102G,102Kでは、シグナリングメッセージ112を受信すると、予約済みの帯域が第2予備パスとして利用可能となるように、データプレーン部を設定して有効化する。また、ノード102H自体も同様にデータプレーン部を設定して有効化する。第2予備パスの、各ノードのデータプレーン部の設定が有効化され、第2予備パスがアクティベーションされると、ユーザトラフィックが第2予備パスに流れ、サービスが復旧することになる。
特開2010−147932号公報
IETF RFC4872、2007年5月 IETF RFC3209、2001年12月
しかしながら、シェアードメッシュレストレーションでは、障害が発生した後に、予備パスをアクティベーションするためのシグナリングが行われ、予備パス上の各ノードで、データプレーン部の設定を行ってから、アクティベーションを行う。その結果、各ノードでのデータプレーン部の設定が完了しないと、予備パスのアクティベーションが完了せず、シグナリングが行われてから予備パスに切り替わるまでに時間を要する。
一つの側面は、シェアードメッシュレストレーションにおいて、現用パスの障害発生から予備パスへの切り替え完了までの時間を短縮化できる伝送装置および伝送方法を提供することにある。
開示の伝送装置は、一つの態様において、ネットワーク上の現用経路と、前記現用経路を迂回する予備経路とを有し、前記予備経路が割当てられる伝送装置を、複数の前記現用経路に対応する複数の前記予備経路で共有する伝送方法に用いられる伝送装置である。当該伝送装置は、他の伝送装置との間でデータを送受信するインタフェースであるデータプレーン部を有する。また、当該伝送装置は、複数の前記予備経路に対応する各現用経路の伝送品質データに基づいて、前記現用経路のうち、最も障害が発生する可能性が高い現用経路を予測する障害予測部を有する。また、当該伝送装置は、予測された現用経路に対応する前記予備経路用の設定値を、前記データプレーン部に対して予め設定するノード設定部を有する。また、当該伝送装置は、前記予測された現用経路から前記現用経路に対応する予備経路に切替える。この際に、当該伝送装置は、前記現用経路に対応する予備経路をアクティベーションするための、アクティベーション処理の要求に基づいて、前記データプレーン部に設定した前記設定値を有効化する処理部とを有する。
予備経路が割当てられる伝送装置を共有するシェアードメッシュレストレーションにおいて、現用経路での障害発生から、予備経路への切り替え完了までの時間を短縮できる。
図1は、実施例のネットワークの一例を示す説明図である。 図2は、実施例のノードの構成の一例を示すブロック図である。 図3は、ネットワーク内の故障予測の一例を示す説明図である。 図4は、実施例の予備パスへの切り替えに関わるシステム全体の流れの一例を示すフローチャートである。 図5は、現用パスのシグナリングメッセージの一例を示す説明図である。 図6は、予備パスのシグナリングメッセージの一例を示す説明図である。 図7は、伝送プログラムを実行する伝送機器の一例を示す説明図である。 図8は、障害発生時のネットワークの一例を示す説明図である。
以下、図面に基づいて、本願の開示する伝送装置および伝送方法の実施例を詳細に説明する。尚、本実施例により、開示技術が限定されるものではない。尚、以下に示す実施例では、光伝送ネットワークにより各ノードが接続されたネットワークについて説明する。
図1に示すネットワーク1は、複数のノード10を有し、ノード10のうち、ノード10A〜ノード10Kが、光ファイバによるリンク50A〜50Lによって接続されている。ネットワーク1は、第1現用パスとして、ノード10A,10B,10C,10Dを経由するパスを設定し、第2現用パスとして、ノード10H,10I,10J,10Kを経由するパスを設定する。また、ネットワーク1は、第1予備パスとして、ノード10A,10E,10F,10G,10Dを経由するパスを設定し、第2予備パスとして、ノード10H,10E,10F,10G,10Kを経由するパスを設定する。なお、それぞれのパスは、例えば双方向でデータ伝送するものである。
第1現用パス、第2現用パス、第1予備パス、および第2予備パスの各ノードに対するパスの設定は、シグナリングメッセージを用いて行う。例えば、ノード10Aを第1現用パスの始点ノードとすると、ノード10Aは、シグナリングメッセージ52を第1現用パスの各ノードに送信する。第1現用パスの各ノードは、シグナリングメッセージ52を受信して現用パスの設定を行う。また、第1予備パス、第2現用パス、および第2予備パスについても同様に、各ノードが、シグナリングメッセージ54,56,58を受信してパスの設定を行う。
図2は、実施例の各ノードの構成の一例を示すブロック図である。図2に示すノード10は、データプレーン部11と、CPU(Central Processing Unit)カード16とを有する。
データプレーン部11は、2台のラインインタフェース部12と、クロスコネクト部14とを有する。ラインインタフェース部12は、他のノードと光ファイバによるリンクで接続され、ユーザトラフィックを伝送するものである。なお、各ノードでは、説明の便宜上ラインインタフェース部12が2台の場合を説明したが、例えば、分岐または合流するパスの数に応じて、ラインインタフェース部12の数は適宜変更可能であるため、3台以上のラインインタフェース部12を有してもよい。
ラインインタフェース部12は、OTU(Optical Transport Unit)デカプセル化部34と、ODU(Optical Data Unit)デマルチプレクサ部36と、誤り訂正率計測部38と、ODUマルチプレクサ部40と、OTUカプセル化部42とを有する。また、ラインインタフェース部12は、ラインインタフェース設定に従って設定される。なお、ラインインタフェース設定は、ラインインタフェース部12の、パスの経路情報、帯域情報、および割当てられたタイムスロットの情報等の設定を表したものである。
OTUデカプセル化部34は、他のノードからリンクを通じて受信したOTUフレームをデカプセル化して、ODUフレームを抽出する。また、OTUデカプセル化部34は、OTUフレームの誤り訂正結果に基づいて、誤り訂正データを出力する。
ODUデマルチプレクサ部36は、OTUデカプセル化部34で抽出されたODUフレームからOPUフレームを抽出する。
誤り訂正率計測部38は、OTUデカプセル化部34から出力された誤り訂正データに基づいて、伝送路の誤り訂正率を計測する。また、誤り訂正率計測部38は、誤り訂正率を伝送品質として、伝送品質データをシグナリング部30に通知する。なお、誤り訂正率計測部38は、現用パスのノードにあればよく、予備パスのノードでは省略してもよい。
ODUマルチプレクサ部40は、クロスコネクト部14から出力されたOPUフレームから、ODUフレームを生成する。
OTUカプセル化部42は、ODUマルチプレクサ部40で生成されたODUフレームをカプセル化して、OTUフレームを生成してリンクに出力する。
クロスコネクト部14は、各ラインインタフェース部12で抽出されたOPUフレームを、クロスコネクション設定に従い、目的のノードへのパスが設定されたラインインタフェース部12へと出力する。なお、クロスコネクション設定は、OPUフレームを、どのラインインタフェース部12へ出力すべきかを定めたものである。
CPUカード16は、障害予測部18と、ノード設定部20と、シグナリング処理部22と、伝送品質データベース24とを有する。なお、CPUカード16の具体的なハードウエア構成としては、CPUと、RAM(Random Access Memory)およびROM(Read Only Memory)等のメモリと、SSD(Solid State Drive)およびHDD(Hard Disk Drive)等のストレージとを有する。
障害予測部18は、対応する現用パスの伝送品質データベース26(以下、単にデータベース26と称する)を有する。データベース26は、ノード10に予備パスが設定された場合、対応する現用パスの伝送品質データを格納する。なお、データベース26は、ノード10に複数の予備パスが設定された場合には、それぞれの対応する現用パスの伝送品質データを格納する。また、データベース26に格納する、対応する現用パスの伝送品質データは、後述するシグナリング処理部22を通じて、予備パスのシグナリングメッセージによって入力される。なお、データベース26に、予め他の手段によって、対応する現用パスの伝送品質データを格納しておいてもよい。
障害予測部18は、後述するノード設定部20内のパスデータベース28を参照して、同じタイムスロット(リソース)を共有する複数の予備パスを特定する。続いて、障害予測部18は、特定された複数の予備パスに対応する、複数の現用パスの伝送品質データをデータベース26から取り出す。また、障害予測部18は、取り出した複数の現用パスの伝送品質を比較する。つまり、リンクおよびノードは、経年劣化により伝送品質が徐々に悪くなるため、伝送品質を比較することで障害を予測することができる。
障害予測部18は、伝送品質の比較の結果に基づいて、最も障害が発生する可能性が高い現用パスを予測して、予測情報を出力する。ここで、伝送品質は、例えば、ビット誤り率、誤り訂正符号でのビット訂正率、パケット廃棄率、および光信号対雑音比を用いることができる。
なお、障害予測部18は、複数の予備パスで共有するノードにあればよく、その他のノードでは省略してもよい。
ノード設定部20は、パスデータベース28を有し、障害予測部18から出力された予測情報に基づき、パスデータベース28を参照して、データプレーン部11の設定を予め行う。なお、データプレーン部11の設定とは、ラインインタフェース部12およびクロスコネクト部14に対するラインインタフェース設定およびクロスコネクション設定、つまり、パスの経路情報、帯域情報、および割当てられたタイムスロットの情報等である。
また、ノード設定部20は、後述する処理部32から予備パスのアクティベーション処理が要求された場合には、データプレーン部11に対して、予備パスのアクティベーション処理を行う。データプレーン部11は、予備パスのアクティベーション処理が完了すると、現用パスから予備パスへと切り替わる。なお、ノード設定部20が、データプレーン部11の設定を行っても、予備パスのアクティベーション処理が完了するまでは、ユーザトラフィックを流すことができる状態とはならない。
パスデータベース28は、現用パスおよび予備パスの、ラインインタフェース設定およびクロスコネクション設定、つまり、パスの経路情報、帯域情報、および割当てられたタイムスロットの情報等を格納する。
シグナリング処理部22は、シグナリング部30と処理部32とを有する。シグナリング部30は、リンクとは別回線である図示しないコントロールプレーンを用いて、他のノードとの間でシグナリングメッセージを交換する。シグナリングメッセージには、例えば、RSVP−TE(Resource ReSerVation Protocol − Traffic Engineering)を用いることができる。なお、シグナリング部30は、現用パスから予備パスへの切り替えトリガに、他の要素(例えば、一定時間ユーザトラフィックが流れてこない等)を用いることができれば省略してもよい。
処理部32は、シグナリング部30が受信したシグナリングメッセージ内に、予備パスをアクティベーションするための、アクティベーション処理の要求情報がある場合には、予備パスが予測情報の予備パスと同一か否か判定を行う。判定の結果、アクティベーション処理が要求された予備パスと、予測情報の予備パスとが同一の場合、処理部32は、データプレーン部11に設定済みの設定値を有効化するように、ノード設定部20に指示する。その結果、予備パスは、設定値の有効化に応じて、アクティベーションされたことになる。なお、アクティベーション処理が要求された予備パスが、予測情報の予備パスと異なるときは、処理部32は、データプレーン部11に、新たな設定値を設定して有効化する。
伝送品質データベース24は、現用パスの始点ノードに設け、現用パスの各ノードから、シグナリングメッセージによって送られてきた伝送品質データ、および、始点ノードで計測された伝送品質データを格納する。なお、伝送品質データベース24は、現用パスの始点ノード以外のノードでは、省略してもよい。
次に、実施例のノードの動作について説明する。図3は、実施例におけるネットワーク内の故障予測の一例を示す説明図であり、図4は、実施例における予備パスへの切り替えに関わるシステム全体の流れの一例を示すフローチャートである。
まず始めに、第1現用パス、第2現用パス、第1予備パス、および第2予備パスの各ノードは、始点ノードからのシグナリングメッセージから、パスの経路情報、帯域情報、および割当てられたタイムスロットの情報を取り出す。各ノードは、取り出した各情報をパスデータベース28に格納する。すなわち、各ノードは、データプレーン部11の設定値を、それぞれパスデータベース28に格納する。
第1現用パスおよび第2現用パスの各ノードは、さらに、それぞれのノード設定部20が、パスデータベース28を参照して、データプレーン部11の設定を行い、設定値を有効化する。その結果、第1現用パスおよび第2現用パスは、アクティベーションされ、ユーザトラフィックを流せる状態とする(ステップS10)。
第1予備パスおよび第2予備パスの各ノードは、ノード10E,10F,10Gの区間において、帯域を共有、つまりノードを共有しているので、データプレーン部11の設定は行わず、帯域の予約のみ行う(ステップS12)。
続いて、第1現用パスの各ノードが伝送品質を測定する。ここで、例えば、始点ノードをノード10Aと、中継ノードをノード10B,10Cと、終端ノードをノード10Dと設定する。ノード10Dを例に挙げると、ノード10Dの誤り訂正率計測部38が、伝送品質として伝送路の誤り訂正率を計測し、伝送品質データをシグナリング部30に通知する。ノード10Dのシグナリング部30は、伝送品質データを図5に示すシグナリングメッセージ60内に格納する。ノード10Dは、シグナリングメッセージ60を始点ノード10Aに向けて送信する。このとき、シグナリングメッセージ60は、終端ノードから順に、中継ノードを経由して始点ノードに向けて中継(フォワーディング)される。つまり、中継ノード10B,10Cは、伝送品質データをシグナリングメッセージ60に追加し、上流のノードに向けて送信する(ステップS14)。
始点ノード10Aは、シグナリングメッセージ60を受信すると、シグナリング部30で、シグナリングメッセージ60から、ノード10B,10C,10Dの伝送品質データを取り出す。また、始点ノード10Aにおいても第1現用パスの他のノードと同様に、誤り訂正率を計測して伝送品質データを取得する。始点ノード10Aは、第1現用パス全てのノードの伝送品質データの収集が完了すると、当該伝送品質データを伝送品質データベース24に格納する。
第2現用パスにおいても、第1現用パスと同様に、各ノードが伝送品質データを取得し、シグナリングメッセージ62内に格納する。例えば、始点ノードをノード10Hと、中継ノードをノード10I,10Jと、終端ノードをノード10Kと設定する。このとき、第2現用パスのシグナリングメッセージ62は、終端ノードから順に、中継ノードを経由して始点ノードに向けて中継(フォワーディング)される。つまり、中継ノード10I,10Jは、伝送品質データをシグナリングメッセージ62に追加し、上流のノードに向けて送信する。
始点ノード10Hは、シグナリングメッセージ62を受信すると、シグナリング部30で、シグナリングメッセージ62から、ノード10I,10J,10Kの伝送品質データを取り出す。また、始点ノード10Hにおいても第2現用パスの他のノードと同様に、誤り訂正率を計測して伝送品質データを取得する。始点ノード10Hは、第2現用パス全てのノードの伝送品質データの収集が完了すると、当該伝送品質データを伝送品質データベース24に格納する。なお、これらのシグナリングメッセージ60,62は、例えば、RSVP−TE Resvメッセージである。
次に、第1予備パスの始点ノードが、第1現用パスの伝送品質データを、第1予備パスの各ノードに通知する。ここで、例えば、第1予備パスの始点ノードをノード10Aと、中継ノードをノード10E,10F,10Gと、終端ノードをノード10Dと設定する。第1予備パスの始点ノード10Aは、第1現用パスの各ノードの伝送品質データを、第1予備パスの中継ノード10E,10F,10G、および終端ノード10Dに対して、図6に示すシグナリングメッセージ64内に格納して通知する(ステップS16)。
中継ノード10E,10F,10G、および終端ノード10Dでは、シグナリングメッセージ64を受信すると、シグナリングメッセージ64から、第1現用パスの各ノードの伝送品質データを取り出し、それぞれのデータベース26に格納する。このとき、シグナリングメッセージ64は、始点ノードから順に、中継ノードを経由して終端ノードに向けて中継(フォワーディング)される。つまり、中継ノード10E,10F,10Gは、伝送品質データをシグナリングメッセージ64から取り出し、下流のノードに向けて送信する。
第2予備パスにおいても、第1予備パスと同様に、第2予備パスの始点ノードが第2予備パスの各ノードに通知する。例えば、第2予備パスの始点ノードをノード10Hと、中継ノードをノード10E,10F,10Gと、終端ノードをノード10Kと設定する。第2予備パスの始点ノード10Hは、第2現用パスの各ノードの伝送品質データを、第2予備パスの中継ノード10E,10F,10G、および終端ノード10Kに対して、図6に示すシグナリングメッセージ66内に格納して通知する。
中継ノード10E,10F,10G、および終端ノード10Kでは、シグナリングメッセージ66を受信すると、シグナリングメッセージ66から、第2現用パスの各ノードの伝送品質データを取り出し、それぞれのデータベース26に格納する。このとき、シグナリングメッセージ66は、始点ノードから順に、中継ノードを経由して終端ノードに向けて中継(フォワーディング)される。つまり、中継ノード10E,10F,10Gは、伝送品質データをシグナリングメッセージ66から取り出し、下流のノードに向けて送信する。なお、このシグナリングメッセージ64,66は、例えば、RSVP−TE Pathメッセージである。
ここで、中継ノード10E,10F,10Gのデータベース26は、第1現用パスと第2現用パスの双方の、各ノードの伝送品質データを格納する。言い換えると、中継ノード10E,10F,10Gは、第1予備パスおよび第2予備パスで共有する状態である。
続いて、中継ノード10E,10F,10Gは、同じタイムスロット(リソース)を共有する予備パスを特定する。ここでは、第1予備パスと第2予備パスは、同じタイムスロットを共有しているとする。
中継ノード10E,10F,10Gでは、障害予測部18が、パスデータベース28を参照して、第1予備パスと第2予備パスが同じタイムスロットを共有していることを特定する。中継ノード10E,10F,10Gの障害予測部18は、第1予備パスと第2予備パスにそれぞれ対応する、第1現用パスと第2現用パスの伝送品質データを、データベース26から取り出す。また、第1現用パスと第2現用パスの伝送品質データから、障害が発生する確率が高い現用パスを予測する(ステップS18)。
障害が発生する確率が高い現用パスは、例えば、最も伝送品質の悪い現用パスが、最も障害が発生する確率が高いというような判断基準によって予測する。つまり、障害予測部18では、第1現用パスと第2現用パスの伝送品質データを比較し、例えば、OTUフレームのビット訂正率が高い方の現用パスが、障害が発生する確率が高いと予測する。ここでは、障害が発生する確率が高い現用パスが、第2現用パスであると予測したと仮定する。
中継ノード10E,10F,10Gの障害予測部18は、それぞれのノード設定部20に対して、予測された第2現用パスに対応する第2予備パスの設定を、データプレーン部11に対して行うように指示を出す。
中継ノード10E,10F,10Gのノード設定部20は、障害予測部18からの指示に基づき、パスデータベース28からラインインタフェース設定およびクロスコネクション設定を読み出す。続いて、データプレーン部11に対して、事前設定を投入する(ステップS20)。なお、この状態では、第2予備パスのアクティベーションが行われていないため、第2予備パスにユーザトラフィックを流すことはできない。
次に、第2現用パスで障害が発生した場合を想定して、第2現用パスから第2予備パスへの切り替えを説明する。例えば、第2現用パスのリンク50Lで障害が発生し、ノード10Jが障害を検知したとする。ノード10Jは、第2現用パスの始点ノードであるノード10Hに対して障害通知を送信する。ノード10Hが障害通知を受信すると、第2予備パスの始点ノードでもあるノード10Hは、第2予備パスをアクティベーションするためのシグナリングメッセージ、すなわち、RSVP−TE Pathメッセージを、第2予備パスの各ノードに対し送信する。
中継ノード10E,10F,10Gが、シグナリングメッセージを受信すると、シグナリング部30が処理部32に対して、第2予備パスのアクティベーション処理を要求する(ステップS21)。処理部32は、アクティベーション処理の要求対象である第2予備パスが、予測情報の内容である第2予備パスと同じであると判定する(ステップS22肯定)。
処理部32は、アクティベーション処理の要求対象が、予測情報の内容と同じであるため、データプレーン部11に対する設定を行うことなく、事前設定値を有効化する。また、中継ノード10E,10F,10Gは、下流のノードに対してシグナリングメッセージをフォワーディングする(ステップS24)。
終端ノードであるノード10Kは、シグナリングメッセージを受信すると、シグナリング部30から処理部32に対して、アクティベーション処理を要求する。処理部32は、ノード設定部20に対して第2予備パスの設定を、データプレーン部11に対して行うように指示を出し、データプレーン部11に新たな設定値を設定する。なお、第2予備パスの始点ノードであるノード10Hでも同様に、データプレーン部11に新たな設定値を設定する。以上により、第2予備パスの、各ノードのデータプレーン部11の設定が有効化され、第2予備パスがアクティベーションされると、ユーザトラフィックが流れるパスは、第2現用パスから第2予備パスへと切り替えられる。
ここで、予測情報と異なる第1現用パスで障害が発生した場合の、中継ノード10E,10F,10Gの動作を説明する。中継ノード10E,10F,10Gが、シグナリングメッセージを受信すると、シグナリング部30が処理部32に対して、第1予備パスのアクティベーション処理を要求する。処理部32は、アクティベーション処理の要求対象である第1予備パスが、予測情報の内容である第2予備パスと異なると判定する(ステップS22否定)。すると、処理部32は、ノード設定部20に対して、第1予備パス用の設定をデータプレーン部11に対して行うように指示を出し、新たな設定値を設定する(ステップS26)。また、中継ノード10E,10F,10Gは、下流のノードに対してシグナリングメッセージをフォワーディングする(ステップS28)。
以上により、第1予備パスの、各ノードのデータプレーン部11に新たな設定値が設定されて有効化され、第1予備パスがアクティベーションされると、ユーザトラフィックが流れるパスは、第1現用パスから第1予備パスへと切り替えられる。
なお、第1予備パスの始点ノード10Aおよび終端ノード10Dは、第2現用パスで障害が発生した場合の第2予備パスの始点ノード10Hおよび終端ノード10Kと同様の動作を行う。
本実施例のノード10は、複数の予備パスで共有するノードに対し、障害の発生を予測した現用パスに対応する予備パスの設定値を、データプレーン部11に対して事前設定する。その結果、予測通りの現用パスで障害が発生した場合に、現用パスでの障害発生から、予備パスへの切り替え完了までの時間を短縮できる。
また、伝送品質として、ビット誤り率、誤り訂正符号でのビット誤り率、パケット廃棄率、および光信号対雑音比のうち1以上を計測することで、伝送路の特性に合わせた伝送品質データを得られ、障害予測の精度を高めることができる。
さらに、予備パスの各ノードにシグナリング部を有することで、対応する現用パスの伝送品質データを随時更新でき、最適な障害予測を行うことができる。
なお、上記実施例では、現用パスと予備パスの始点ノードが同一であったが、現用パスの途中から予備パスが分岐する場合もある。その場合には、分岐するノードまで現用パスのシグナリングメッセージにて、対応する現用パスの伝送品質データを通知し、予備パスが分岐するノード、つまり予備パスの始点ノードからは、予備パスのシグナリングメッセージによって通知するようにすればよい。この結果、予備パスが現用パスの始点ノード以外から分岐していても、予備パスの各ノードにシグナリングメッセージを通じて、対応する現用パスの伝送品質データを随時更新でき、最適な障害予測を行うことができる。
また、上記実施例では、複数の予備パスで共有するノードにおいて、予備パスを2つとしたが、これに限定されず、より多数の予備パスでノードを共有してもよい。さらに、ネットワーク構成も実施例に限定されず、迂回するパスが確保できれば、どのようなネットワーク構成でも適用可能である。また、予備パスを複数の現用パスで共有するネットワークであれば、シェアードメッシュレストレーションに限らず、いずれのネットワークにも適用可能である。
また、図示した各部の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
更に、各装置で行われる各種処理機能は、CPU(又はMPU(Micro Processing Unit)、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部又は任意の一部を実行するようにしても良い。また、各種処理機能は、CPU(又はMPU、MCU等のマイクロ・コンピュータ)で解析実行されるプログラム上、又はワイヤードロジックによるハードウエア上で、その全部又は任意の一部を実行するようにしても良いことは言うまでもない。
ところで、本実施例で説明した各種の処理は、予め用意されたプログラムを伝送機器で実行することで実現できる。そこで、以下では、上記実施例と同様の機能を有するプログラムを実行する伝送機器の一例を説明する。図7は、伝送プログラムを実行する伝送機器の一例を示す説明図である。
図7に示す伝送プログラムを実行する伝送機器200は、データプレーン部210と、RAM212と、ROM214と、プロセッサ216とを有する。データプレーン部210は、他の伝送機器と通信する。プロセッサ216は、伝送機器200全体を制御する。
そして、ROM214には、上記実施例と同様の機能を発揮する伝送プログラムが予め記憶されている。なお、ROM214ではなく、図示せぬドライブで読取可能な記録媒体に伝送プログラムが記録されていてもよい。また、記録媒体としては、例えば、CD−ROM、DVDディスク、USBメモリ等の可搬型記録媒体、フラッシュメモリ等の半導体メモリ等でもよい。伝送プログラムとしては、図7に示すように、障害予測プログラム214A、ノード設定プログラム214B及び処理プログラム214Cである。なお、プログラム214A〜214Cについては、適宜統合又は分散してもよい。また、RAM212には、伝送品質データ、ノード設定に関わるパス情報、対応する現用パスの伝送品質データが記憶してある。
そして、プロセッサ216が、これらのプログラム214A〜214CをROM214から読み出し、これらの読み出された各プログラムを実行する。そして、プロセッサ216は、図7に示すように、各プログラム214A〜214Cを、障害予測プロセス216A、ノード設定プロセス216B及び処理プロセス216Cとして機能することになる。
プロセッサ216は、複数の予備パスに対応する、それぞれの現用パスの伝送品質データに基づいて、それぞれの現用パスのうち、最も障害が発生する可能性が高い現用パスを予測する。プロセッサ216は、予測された現用パスに対応する予備パス用の設定値を、データプレーン部210に対して予め設定する。さらに、予測された現用パスから対応する予備パスに切替えるための、対応する予備パスをアクティベーションするアクティベーション処理の要求に基づいて、データプレーン部210に設定した設定値を有効化する。その結果、予測通りの現用パスで障害が発生した場合に、現用パスでの障害発生から、予備パスへの切り替え完了までの時間短縮を実現できる。
以上、本実施例を含む実施の形態に関し、更に以下の付記を開示する。
(付記1)ネットワーク上の現用経路と、前記現用経路を迂回する予備経路とを有し、前記予備経路が割当てられる伝送装置を、複数の前記現用経路に対応する複数の前記予備経路で共有する伝送方法に用いられる伝送装置であって、
他の伝送装置との間でデータを送受信するインタフェースであるデータプレーン部と、
複数の前記予備経路に対応する各現用経路の伝送品質データに基づいて、前記現用経路のうち、最も障害が発生する可能性が高い現用経路を予測する障害予測部と、
予測された現用経路に対応する前記予備経路用の設定値を、前記データプレーン部に対して予め設定するノード設定部と、
前記予測された現用経路から前記現用経路に対応する予備経路に切替える際に、前記現用経路に対応する予備経路をアクティベーションするための、アクティベーション処理の要求に基づいて、前記データプレーン部に設定した前記設定値を有効化する処理部と、
を有することを特徴とする伝送装置。
(付記2)前記データプレーン部は、ビット誤り率、誤り訂正符号でのビット訂正率、パケット廃棄率、および光信号対雑音比のうち1以上を計測して伝送品質を求め、前記伝送品質データを出力することを特徴とする付記1に記載の伝送装置。
(付記3)さらに、前記予備経路に沿った各伝送装置に対して、前記予備経路に対応する現用経路の前記伝送品質データを通知するシグナリング部を有することを特徴とする付記1または2に記載の伝送装置。
(付記4)前記現用経路と接続する前記予備経路の始点に位置する前記伝送装置は、前記現用経路のシグナリングメッセージによって通知された前記伝送品質データを、前記予備経路のシグナリングメッセージによって、前記予備経路の他の伝送装置に通知することを特徴とする付記3に記載の伝送装置。
(付記5)ネットワーク上の現用経路と、前記現用経路を迂回する予備経路とを有し、前記予備経路が割当てられる伝送装置を、複数の前記現用経路に対応する複数の前記予備経路で共有する伝送方法であって、
前記伝送装置は、
複数の前記予備経路に対応する各現用経路の伝送品質データに基づいて、前記現用経路のうち、最も障害が発生する可能性が高い現用経路を予測し、
予測された現用経路に対応する前記予備経路用の設定値を、前記伝送装置のインタフェースであるデータプレーン部に対して予め設定し、
前記予測された現用経路から前記現用経路に対応する予備経路に切替える際に、前記現用経路に対応する予備経路をアクティベーションするための、アクティベーション処理の要求に基づいて、前記データプレーン部に設定した前記設定値を有効化する、
ことを特徴とする伝送方法。
(付記6)ネットワーク上の現用経路と、前記現用経路を迂回する予備経路とを有し、前記予備経路が割当てられる伝送機器を、複数の前記現用経路に対応する複数の前記予備経路で共有する伝送機器として用いるために、インタフェースを設定するデータプレーン部と、プロセッサとを有する伝送機器の伝送プログラムであって、
前記プロセッサに、
複数の前記予備経路に対応する各現用経路の伝送品質データに基づいて、前記現用経路のうち、最も障害が発生する可能性が高い現用経路を予測し、
予測された現用経路に対応する前記予備経路用の設定値を、前記伝送機器のデータプレーン部に対して予め設定し、
前記予測された現用経路から前記現用経路に対応する予備経路に切替える際に、前記現用経路に対応する予備経路をアクティベーションするための、アクティベーション処理の要求に基づいて、前記データプレーン部に設定した前記設定値を有効化する、
各処理を実行させることを特徴とする伝送プログラム。
1,100 ネットワーク
10,10A,10B,10C,10D,10E,10F,10G,10H,10I,10J,10K,102A,102B,102C,102D,102E,102F,102G,102H,102I,102J,102K ノード(伝送装置)
11 データプレーン部
12 ラインインタフェース部
14 クロスコネクト部
16 CPUカード
18 障害予測部
20 ノード設定部
22 シグナリング処理部
24 伝送品質データベース
26 対応する現用パスの伝送品質データベース
28 パスデータベース
30 シグナリング部
32 処理部
34 OTUデカプセル化部
36 ODUデマルチプレクサ部
38 誤り訂正率計測部
40 ODUマルチプレクサ部
42 OTUカプセル化部
50A,50B,50C,50D,50E,50F,50G,50H,50I,50J,50K,50L,104A,104B,104C,104D,104E,104F,104G,104H,104I,104J,104K,104L リンク
52,54,56,58,60,62,64,66,106,108,110,112 シグナリングメッセージ
114 障害情報
200 伝送機器
210 データプレーン部
212 RAM
214 ROM
214A 障害予測プログラム
214B ノード設定プログラム
214C 処理プログラム
216 プロセッサ
216A 障害予測プロセス
216B ノード設定プロセス
216C 処理プロセス

Claims (5)

  1. ネットワーク上の現用経路と、前記現用経路を迂回する予備経路とを有し、前記予備経路が割当てられる伝送装置を、複数の前記現用経路に対応する複数の前記予備経路で共有する伝送方法に用いられる伝送装置であって、
    他の伝送装置との間でデータを送受信するインタフェースであるデータプレーン部と、
    複数の前記予備経路に対応する各現用経路の各伝送装置から伝送品質データを受信して、受信した複数の前記伝送品質データを比較することで、複数の前記現用経路のうち、最も障害が発生する可能性が高い現用経路を予測する障害予測部と、
    予測された現用経路に対応する前記予備経路用の設定値を、前記データプレーン部に対して予め設定するノード設定部と、
    前記予測された現用経路から前記現用経路に対応する予備経路に切替える際に、前記現用経路に対応する予備経路をアクティベーションするための、アクティベーション処理の要求に基づいて、前記データプレーン部に設定した前記設定値を有効化する処理部と、
    を有することを特徴とする伝送装置。
  2. 前記データプレーン部は、ビット誤り率、誤り訂正符号でのビット訂正率、パケット廃棄率、および光信号対雑音比のうち1以上を計測して伝送品質を求め、前記伝送品質データを出力することを特徴とする請求項1に記載の伝送装置。
  3. さらに、前記予備経路に沿った各伝送装置に対して、前記予備経路に対応する現用経路の前記伝送品質データを通知するシグナリング部を有することを特徴とする請求項1または2に記載の伝送装置。
  4. 前記現用経路と接続する前記予備経路の始点に位置する前記伝送装置は、前記現用経路のシグナリングメッセージによって通知された前記伝送品質データを、前記予備経路のシグナリングメッセージによって、前記予備経路の他の伝送装置に通知することを特徴とする請求項3に記載の伝送装置。
  5. ネットワーク上の現用経路と、前記現用経路を迂回する予備経路とを有し、前記予備経路が割当てられる伝送装置を、複数の前記現用経路に対応する複数の前記予備経路で共有する伝送方法であって、
    前記伝送装置は、
    複数の前記予備経路に対応する各現用経路の各伝送装置から伝送品質データを受信して、受信した複数の前記伝送品質データを比較することで、複数の前記現用経路のうち、最も障害が発生する可能性が高い現用経路を予測し、
    予測された現用経路に対応する前記予備経路用の設定値を、前記伝送装置のインタフェースであるデータプレーン部に対して予め設定し、
    前記予測された現用経路から前記現用経路に対応する予備経路に切替える際に、前記現用経路に対応する予備経路をアクティベーションするための、アクティベーション処理の要求に基づいて、前記データプレーン部に設定した前記設定値を有効化する、
    ことを特徴とする伝送方法。
JP2012270738A 2012-12-11 2012-12-11 伝送装置および伝送方法 Expired - Fee Related JP6044313B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012270738A JP6044313B2 (ja) 2012-12-11 2012-12-11 伝送装置および伝送方法
US14/030,128 US9100117B2 (en) 2012-12-11 2013-09-18 Apparatus and method for switching a communication path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012270738A JP6044313B2 (ja) 2012-12-11 2012-12-11 伝送装置および伝送方法

Publications (2)

Publication Number Publication Date
JP2014116860A JP2014116860A (ja) 2014-06-26
JP6044313B2 true JP6044313B2 (ja) 2016-12-14

Family

ID=50881065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012270738A Expired - Fee Related JP6044313B2 (ja) 2012-12-11 2012-12-11 伝送装置および伝送方法

Country Status (2)

Country Link
US (1) US9100117B2 (ja)
JP (1) JP6044313B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9705786B2 (en) * 2013-02-12 2017-07-11 Infinera Corporation Demand advertisement method for shared mesh protection path computation
JP6229318B2 (ja) * 2013-06-05 2017-11-15 富士通株式会社 通信システム、通信制御方法、及び、伝送装置
JP6357953B2 (ja) * 2014-08-04 2018-07-18 富士通株式会社 伝送装置およびアクティベーション方法
US9935900B2 (en) * 2014-10-16 2018-04-03 Electronics And Telecommunications Research Institute Method for providing protection switching service in virtual tenant network and controller therefor
US9871723B2 (en) * 2015-02-09 2018-01-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for handling multi path connections
WO2018053716A1 (zh) * 2016-09-21 2018-03-29 华为技术有限公司 保护倒换方法和节点
US10997007B2 (en) * 2019-08-28 2021-05-04 Mellanox Technologies, Ltd. Failure prediction system and method
CN116232986A (zh) * 2019-11-01 2023-06-06 华为技术有限公司 一种路径保护方法和网络节点
CN111865406B (zh) * 2020-06-11 2021-12-14 烽火通信科技股份有限公司 一种链路检测方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6915463B2 (en) * 2001-12-26 2005-07-05 Richard Charles Vieregge System and method for performing pre-emptive protection switching
US8290362B2 (en) * 2008-03-04 2012-10-16 At&T Intellectual Property Ii, L.P. Predictive end-to-end management for SONET networks
JP5163479B2 (ja) 2008-12-19 2013-03-13 富士通株式会社 パス切替え方法
JP5166373B2 (ja) * 2009-08-14 2013-03-21 株式会社日立製作所 トランスポート制御サーバ、トランスポート制御システム及び予備パス設定方法
US8670302B2 (en) * 2010-06-10 2014-03-11 Infinera Corporation Activation signaling in transport networks

Also Published As

Publication number Publication date
US9100117B2 (en) 2015-08-04
US20140161437A1 (en) 2014-06-12
JP2014116860A (ja) 2014-06-26

Similar Documents

Publication Publication Date Title
JP6044313B2 (ja) 伝送装置および伝送方法
JP4209758B2 (ja) 迂回通信経路設計方法
JP4149680B2 (ja) 通信ネットワークの迂回経路設計方法
US10356011B2 (en) Partial software defined network switch replacement in IP networks
JP6357953B2 (ja) 伝送装置およびアクティベーション方法
JP2008199311A (ja) スイッチ装置およびパス監視設定方法
JP5267191B2 (ja) 光リングネットワークシステム及び光伝送装置
WO2009119571A1 (ja) 通信ネットワークシステム、通信装置、経路設計装置及び障害回復方法
EP2837132B1 (en) Recovery in connection-oriented network
JP4920308B2 (ja) パス設定方法、ノード装置および監視制御装置
US10193791B2 (en) Method of allocating wavelength and wavelength allocation device
JP4547314B2 (ja) 故障復旧方法および管理ノードならびに通信ノード
JP2010011039A (ja) ノード装置及び経路設定方法
WO2010109802A1 (ja) 自律分散制御によるパス設定方法およびシステム並びに通信装置
JP2008177806A (ja) パケット交換ネットワークおよび障害完成装置
CN106464524B (zh) Ason的路由计算方法和装置
Guo et al. A new shared-path protection algorithm under shared risk link group constraints for survivable WDM mesh networks
Sambo et al. A contention detection scheme for lightpath restoration in GMPLS networks
KR20150066063A (ko) 전송망의 자원 관리 방법 및 장치
JP2014175756A (ja) 自律分散制御対応ネットワークにおける通信装置およびパス切替制御方法
WO2019220613A1 (ja) 管理装置、通信システム、制御方法、及び制御プログラム
US11490178B2 (en) Method for establishing service path, network device, and system
JP4817143B2 (ja) パス設定方法及び通信装置
JP2012054730A (ja) 通信装置、ネットワーク及びそれらに用いる自律分散経路制御方法並びにそのプログラム
Alsukhni et al. A framework for distributed provisioning availability-guaranteed least-cost lightpaths in WDM mesh networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R150 Certificate of patent or registration of utility model

Ref document number: 6044313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees