本発明を実施するのに最良と思われる形態を述べて、本発明の好ましい実施形態を詳細に説明する。本発明が添付の図面で例示される。本発明は好ましい実施形態に関連して説明されるが、本発明がこれらの実施形態に限定されるものではないということが理解されるであろう。一方、本発明は、添付の特許請求の範囲で定義される本発明の精神と範囲とに含まれるであろう代替、変更、及び同等物を含むものである。更に、以下の本発明の詳細な説明において、本発明を十分に理解できるように多数の具体例が詳細に述べられている。しかし、これらの詳細な具体例がなくとも本発明が実行できるであろうことは当業者には明らかであろう。他の例では、本発明の局面を不必要に不明瞭としないよう、周知の方法、手順、部材、及び回路は詳細に述べられていない。
本発明の種々の構成の実施形態を実行する装置、システム、及び方法を、図面を参照して以下に説明する。図面及びその関連の説明は本発明のいくつかの実施形態を例示するために提供されるのであって、本発明の範囲を限定するものではない。図面全体において、参照番号は、参照要素間での一致を示すために、繰り返し用いられる。更に、各参照番号の最初の数字は、その要素が初めて現れる図面を示す。
図1は、本発明の第1の実施形態による、2つの対象物の位置を測定するレーダセンサ100の正面図を示す。レーダセンサ100は、レーダシステムの一部とすることができる。レーダセンサ100は、無線周波数(FR)変調信号162を送信するアンテナ150を有する。送信RF変調信号162は、搬送周波数と符号変調メッセージとを有する。符号変調メッセージは、パルス圧縮レーダ(PCR)信号とすることができる。PCR信号は、1つ以上のデジタル変調方式を用いて変調できる。このデジタル変調方式は、位相偏移変調(PSK)、二相位相変調(BPSK)、周波数偏移変調(FSK)、及び/又は振幅偏移変調(ASK)等であるが、これらに限定されない。その符号化されたメッセージによって、送信RF変調信号162を送信PCR信号162と呼んでもよい。
送信PCR信号162は、距離Rを進んで第1位置101の第1対象物に到着する。そして、第1対象物は、送信PCR信号162を反射する。送信PCR信号162は、反射されて反射PCR信号164となる。反射PCR信号164は、距離Rを進んでアンテナ150に戻る。この時点でアンテナ150は、反射PCR信号164を受信する。
反射PCR信号164を受信すると、レーダセンサ100は、反射PCR信号164からPCR信号を抽出できる。抽出されたPCR信号をテンプレート信号と相関させることで、レーダセンサ100は、送信PCR信号162及び反射PCR信号164の飛行時間(TOF)106を測定できる。TOF106は、送信PCR信号162がアンテナ150から第1対象物までの距離Rを進む第1時間と、反射PCR信号164が第1対象物からアンテナ150に戻るまで距離を進む第2時間とを含む。
TOF106は、Cを光の速度としドップラー効果を無視すると、以下の式によって距離Rの値を測定、抽出及び/又は計算するのに用いられうる。
R=TOF*(C/2)
レーダセンサ100は、最小の検出可能位置範囲である距離分解能ΔRを有する。つまり、レーダセンサ100は、第2対象物が第1対象物から少なくとも距離ΔRを維持するとして、第2位置102の第2対象物を検出して第2対象物と第1対象物とを識別することができる時、距離分解能ΔRを有する。一般に、距離分解能ΔRは、単位サブパルス幅TSを持つ、PCR信号パルスのサブパルスの帯域幅(BW)と関連がある。本明細書では、サブパルスの帯域幅(BW)は単位サブパルス幅TSの逆数によって決めることができるが、これに限定されない。このような関連についての詳細は後述する。しかしながら、簡潔にするため、距離分解能ΔRは以下の式によって表すことができる。
ΔR=C/(2*BW)
ある実施形態では、例えば、レーダセンサ100の距離分解能ΔRは、サブパルスの帯域幅(BW)が約200MHzから約500MHzである場合、約75cmから約30cmの範囲であってよい。他の実施形態においては、例えば、レーダセンサ100の距離分解能ΔRは、サブパルスの帯域幅(BW)が約500MHzから約1GHzである場合、約30cmから約15cmの範囲であってよい。更に他の実施形態では、例えば、レーダセンサ100の距離分解能ΔRは、サブパルスの帯域幅(BW)が約1GHzから約2GHzである場合、約15cmから約7.5cmの範囲であってよい。
本明細書において、受信レーダ信号のダイナミックレンジは、最強の受信信号と最弱の受信信号との比によって決まる。このため、ダイナミックレンジが高いレーダセンサは、ダイナミックンレンジが低いレーダセンサと比べると、広範囲の検出面積を有する。広範囲のレーダ断面で対象物を検出するように、レーダセンサ100は、高いダイナミックンレンジを持つ。距離分解能ΔRを比較的低くすることで、レーダセンサ100は、比較的高いダイナミックンレンジを持つことができる。従来のレーダセンサは、アナログ−デジタル変換器(ADC)等の種々の回路部品の線形性を高める設計上の制約のため、ダイナミックンレンジの高い状態で操作されると、消費電力が大きくなってしまう。レーダセンサ100は、アナログ相関器110を用いることでこのようなジレンマに対する解決策を与えて、ADCの消費電力を低減しかつ検出速度を全体的に向上している。従来のレーダセンサとは異なり、レーダセンサ100はダイナミックレンジを高くするが、速度を妨げることなく又は動作の消費電力を増やすことなく、1つ以上の位置検出方式を実行できる。これらの方式の実施形態の詳細は後述する。
図2は、本発明の第1の実施形態によるレーダセンサ100のブロック図を示す。レーダセンサ100は、アナログ相関器110と、タイミングモジュール120と、検出制御器130と、無線周波数(RF)フロントエンド140と、アンテナ150とを備える。検出制御器130は、レーダセンサ100の種々の構成要素の動作を制御し統制する役割を担う。ある実施形態では、例えば、検出制御器130は、1つ以上の検出周期において1つ以上のパルス圧縮レーダ(PCR)信号の生成を起動してもよい。他の実施形態では、例えば、検出制御器130は、アナログ相関器110が反射PCR信号164をテンプレート信号113と相関させている時にアナログ相関器110の1つ以上のタイミング部材を制御してもよい。更に他の実施形態では、検出制御器130は、アナログ相関器110からの出力を処理して、対象物の位置を判定及び/又は計算してもよい。
検出制御器130は、各検出周期の初期に検出周期信号135を生成する。レーダセンサ100は、検出制御器130に接続可能で、検出周期信号135を受信するよう構成されたPCR信号生成器132を備える。検出周期信号135に対して、PCR信号生成器132は、各パルス反復期間(PRI)内にPCRパルスを含む、起動PCR信号133を生成する。PCRパルスは、相補的コード及び/又はバーカーコード等のコード化方法で圧縮されたデジタル符号を含む。これにより、PCRパルスは一連のサブパルスを含み、各サブパルスは1ビット以上の圧縮された情報を表すことができる。
起動PCR信号133の波形図を部分的に示す図5を参照すると、起動PCR信号133は、第1検出周期500の初期に第1PCRパルス562を含む。第1PCRパルス562は、パルス幅TPを有する。パルス反復期間PRIは、PCRパルス幅TPの倍数として表されてもよい。このため、Mが1つの検出周期に当てはまりうるPCRパルスの数とすると、パルス反復期間PRIはM*TPとして表すことができる。一般に、起動PCR信号133は、1つの検出周期に1つのPCRパルスを含み、パルス反復期間PRIの長さはPCRパルスのPCRパルス幅TPの数倍の長さを持つことができる。更に詳細には、パルス反復期間PRIは、送信PCR信号162の最大飛行時間を表すため、最大検出可能距離Rを定める。ある実施形態では、例えば、パルス反復期間PRIは220nsより長くてよく、PCRパルス幅TPは20nsより短くてもよい。
図2を再び参照すると、起動PCR信号133は対象物検出処理を起動する。起動PCR信号133は送信に向けて処理され、同じ時間又はほぼ同じ時間に複製されうる。図1を参照して既に述べたように、送信PCR信号162は対象物に反射される。そのため、レーダセンサ100によって反射PCR信号164として受信される。反射PCR信号164は、対象物の位置を検出するのに、(テンプレート信号とも呼ばれる)複製された信号と比較及び/又は相関される。
起動PCR信号133を送信に向けて処理するために、RFフロントエンド140は、RF変調器142を備えて、アウトバウンドRF変調信号143を生成する。アウトバウンドRF変調信号143は、搬送周波数と、起動PCR信号133に基づいたメッセージとを含む。メッセージを埋め込むために、アウトバウンドRF変調信号143には1つ以上のデジタル変調方式を採用してもよく、このデジタル変調方式は位相偏移変調(PSK)、周波数偏移変調(FSK)、及び/又は振幅偏移変調(ASK)等でありうるが、これらに限定されない。
アウトバウンドRF変調信号143が生成されて、送信のために十分な出力レベルまで増幅させた後、送信アンテナ152を用いて出力変調信号143を電磁波に変換し、この変換された出力変調信号143を送信PCR信号162として送信する。送信PCR信号162は、1つ以上の対象物に反射される。これにより、受信アンテナ154が1つ以上の反射PCR信号164を受信し、続いて反射PCR信号164を1つ以上のインバウンドRF変調信号155に変換する。
RFフロントエンド140は、インバウンドRF変調信号155を復調するためのRF復調器144を備える。RF復調器144は、起動PCR信号133を変調する際にRF変調器142によって適用された変調方式に対応する復調方式を採用する。復調の結果、RF復調器144は、数個のインバウンドRF変調信号155に埋め込まれた時間領域のメッセージを含む、受信PCR信号145を生成する。従って、受信PCR信号145は1つ以上の受信PCRパルスを含んでいてもよい。図5に示すように、例えば、受信PCR信号145は、第1位置の第1対象物を表す第1受信PCRパルス542と、第2位置の第2対象物を表す第2受信PCRパルス544と、第3位置の第3対象物を表す第3受信PCRパルス546と、第4位置の第4対象物を表す第4受信PCRパルス548とを含む。
各受信PCRパルス(例えば、第1受信PCRパルス542、第2受信PCRパルス544、第3受信PCRパルス546、及び/又は第4受信PCRパルス548)は、第1起動PCRパルス562と同様のものである。これは、各受信PCRパルスは、起動PCRパルス562に由来するからである。これにより、各受信PCRパルスは、起動PCRパルス562と実質的に同じパルス幅TPを有する。更に、各受信PCRパルスは、起動PCRパルス562と実質的に同じ圧縮符号列を含む。
受信PCRパルスの圧縮符号列を示す目的で、図3は受信PCR信号145の波形図を部分的に示す。受信PCR信号145は、第1受信PCRパルス542、第2受信PCRパルス544、第3受信PCRパルス546、及び第4受信PCRパルス548等として例示される、受信PCRパルス310を含む。受信PCRパルス310は、起動PCRパルス(例えば、第1PCRパルス562)が遅延及び反射されたものである。受信PCRパルス310は、1つ以上のゼロパルスによって分離された、一連のサブパルスを含んでいてもよい。サブパルスとゼロパルスとは、それぞれ1ビット以上の圧縮された情報を表す。本明細書においては、圧縮された情報の各ビットは単位サブパルス幅TSを有する。図5は受信PCRパルスが時間において重ならないことを示すが、アナログ相関器110によって与えられる位置検出方式では、時間において重なる1つ以上の受信PCRパルスを検出して識別することができる。
従って、受信PCRパルス310のPCRパルス幅TPは、起動PCR信号133の起動PCRパルスと同様に、単位サブパルス幅TSの倍数で表すことができる。例えば、受信PCRパルス310がNビットの符号列で圧縮されている場合、受信PCRパルス310のPCRパルス幅TPはN*TSとして表すことができる。他の例において、受信PCRパルス310が19ビットの圧縮符号列を含む場合、受信PCRパルス310のPCRパルス幅TPは19*TSとして表すことができる。
ある実施形態では、例えば、サブパルスは、1つの単位サブパルス幅TSだけ続き、第1バイナリビットを表す第1サブパルス311と、2つの単位サブパルス幅TSだけ続き、第4と第5バイナリビットを表す第2サブパルス312と、1つの単位サブパルス幅TSだけ続き、第7バイナリビットを表す第3サブパルス313と、3つの単位サブパルス幅TSだけ続き、第9、第10、及び第11バイナリビットを表す第4サブパルス314と、2つの単位サブパルス幅TSだけ続き、第13と第14のバイナリビットを表す第5サブパルス315と、1つの単位サブパルス幅TSだけ続き、第17のバイナリビットを表す第6サブパルス316と、1つの単位サブパルス幅TSだけ続き、第19のバイナリビットを表す第7サブパルス317とを含んでいてもよい。
これらの各サブパルスが、2進値「1」を表すならば、受信PCRパルス310は2進数「1001101011101100101」で19ビット符号列を表す。一方、これらの各サブパルスが、2進値「0」で19ビット符号列を表すならば、受信PCRパルス310は2進数「0110010100010011010」を表す。図3は受信PCRパルス310が単極性であることを示すが、受信PCRパルス310は、起動PCR信号133の起動PCRパルスと同様に、両極性であってもよい。他の実施形態によれば、受信PCRパルス310は、起動PCR信号133の起動PCRパルスと同様に、正のサブパルスと負のサブパルスとを含んでいてもよい。起動PCRパルスの極性体系は、アップコンバートで用いられる変調方式の種類によって決まることになる。一方で、例えば、二相位相変調(BPSK)が用いられる場合は、双極方式が好ましいであろう。一方、例えば、オン/オフ変調(OOK)が用いられる場合は、単極方式が好ましいであろう。
特定の対象物とレーダセンサ100との相対距離によっては、受信PCR信号145は、起動PCR信号133の生成から(あるいは、送信PCR信号162の送信から)測定される相対時間遅延(すなわち、飛行時間)ΔΤを有していてもよい。例えば、起動PCR信号133が、時間T0頃に生成、変調、及び送信されると、受信PCR信号145は、時間T0+ΔΤ頃に受信及び復調されてもよい。この時間遅延の概念を利用して、検出制御器130は、特定の対象物とレーダセンサ100との間の相対距離を、起動時間T0と受信PCR信号145がレーダセンサによって受信される時間との時間遅延ΔΤを測定することで検出できる。
この時間遅延ΔΤは、受信PCR信号145を起動PCR信号133のテンプレートバージョンと相関させることで、決定されうる。このような相関は、1つ以上の検出周期中に行われうる。各検出周期において、起動PCR信号133のテンプレートバージョンは、異なった時間遅延成分を有していてもよい。一般には、起動PCR信号133の特定のテンプレートバージョンが受信PCR信号145と相関されると、検出制御器130は、時間遅延ΔΤが起動PCR信号133のテンプレートバージョンの時間遅延成分と実質的に同じであると判定できる。本実施形態の実施においては、起動PCR信号133のテンプレートバージョンは、1つのパルス反復期間PRI内で複数回、起動PCRパルスを複製していてもよい。
起動PCR信号133の複製のための処理をするように、アナログ相関器110は、起動PCR信号133のPCRパルスを複数回複製する複製生成器112を備える。その結果、複製生成器112は、ある複製レートで複製される複製PCRパルスを複数含むテンプレート信号113を生成する。1つの検出周期の間に1つのPCRパルスだけを含む起動PCR信号133とは異なり、テンプレート信号113は1つの検出周期の間に複数のPCRパルスを含む。
例えば、図5を再び参照すると、テンプレート信号113は、連なった複製PCRパルスを含む。この連なった複製PCRパルスは、第1複製PCRパルス530、第2複製PCRパルス531、第3複製PCRパルス532、第4複製PCRパルス533、第5複製PCRパルス534、第6複製PCRパルス535、第7複製PCRパルス536、第8複製PCRパルス537、第9複製PCRパルス538、及び第10複製PCRパルス539を含む。各複製PCRパルスは、第1起動PCRパルス562のPCRパルス幅TPと実質的に同様のパルス幅を有する。
これにより、複製PCRパルスの最大数Mは、パルス反復期間PRIと第1起動PCRパルス562のPCRパルス幅TPとの関係で予め定めることができる。ある実施形態では、例えば、複製PCRパルスの最大数はMである。他の実施形態では、例えば、複製PCRパルスの最大数は、M−1である。更に他の実施形態では、例えば、複製PCRパルスの最大数はM−2である。図5は、第1複製PCRパルス530が第1起動PCRパルス562とおよそ同じ時間に開始することを示しているが、第1複製PCRパルス530は第1起動PCRパルス562の終わりに又は終わり近くで始まってもよい。
図2を再び参照すると、タイミングモジュール120は、サンプリングクロック生成器122と可変時間遅延素子(VTDD)124とを備える。サンプリングクロック生成器122及びVTDD124は、複製レートを制御するために協働する。まず、検出制御器130は、サンプリング制御信号139をサンプリングクロック生成器122に送信する。サンプリング制御信号139は、起動PCRパルスのPCRパルス幅TPに関連づけられていてもよく、更に、起動PCRパルスのPCRパルス幅TPは、起動PCRパルスに埋め込まれた符号ビット数に正比例する。
サンプリング制御信号139は、サンプリングクロック生成器122で受信される。サンプリング制御信号139に基づいて、サンプリングクロック生成器122は、あるサンプリングレートでサンプリング信号123を生成する。サンプリングレートは、複製PCRパルスが複製される周波数を制御するので、サンプリングレートは、起動PCRパルスの帯域幅に対応している。本明細書においては、起動PCRパルスの帯域幅は、単位サブパルス幅TSの倍数であるPCRパルス幅TPの逆数とすることができる。これにより、起動PCRパルスの帯域幅は、起動PCRパルスの単位サブパルスの帯域幅よりずっと小さい。ある実施形態では、例えば、サンプリングレートは、起動PCRパルスの帯域幅と実質的に同じでよい。他の実施形態では、例えば、サンプリングレートは、PCRパルスの帯域幅の何分の1でよい。本明細書中では、PCRパルスの帯域幅は、PCRパルスのPCRパルス幅TPの逆数であるが、これに限定されない。
検出制御器130は、VTDD124によって与えられる選択肢の中から選択するための遅延調整信号137を生成する。遅延調整信号137を受信し復号すると、VTDD124は、調整可能時間遅延TDAを可能にする。その後、VTDD124は、調整可能時間遅延TDAをサンプリング信号123に適用することで、複製レート信号125を生成する。複製レート信号125は、周波数成分と時間遅延成分とを有する。周波数成分はサンプリング制御信号139によって制御され、時間遅延成分は遅延調整信号137によって制御されうる。
複製生成器112は、VTDD124と接続されうる。複製レート信号125を受信すると、複製生成器112は、複製レートに基づいて起動PCRパルス(例えば、第1起動PCRパルス562)の複製を開始する。その結果、テンプレート信号113は、複数の複製PCRパルス(例えば、第1複製PCRパルス530、第2複製PCRパルス531、第3複製PCRパルス532、第4複製PCRパルス533、第5複製PCRパルス534、第6複製PCRパルス535、第7複製PCRパルス536、第8複製PCRパルス537、第9複製PCRパルス538、及び第10複製PCRパルス539)を含む。
複製PCRパルスは、起動PCRパルスに対して種々の遅延時間を有する。nを個々の複製PCRパルスの通し番号とすると、その複製PCRパルスの遅延時間は以下の式で表すことができる。
TDN=TDA+(n−1)*TP
図5を再び参照すると、第1検出周期500における調整可能時間遅延TDAはゼロであろう。ゼロの調整可能時間遅延TDAを上記式に当てはめると、第1複製PCRパルス530は、ゼロの第1遅延時間TD1を有し、第2複製PCRパルス531は、1*TPの第2遅延時間TD2を有する。同様に、第3複製PCRパルス532は、2*TPの第3遅延時間TD3を有し、第4複製PCRパルス533は3*TPの遅延時間TD4を有する。
1つ以上の複製PCRパルスが、受信PCRパルス(例えば、第1受信PCRパルス542、第2受信PCRパルス544、第3受信PCRパルス546、及び/又は第4受信PCRパルス548)の中の1つと比較されてマッチングされる。理論上は、特定の複製PCRパルスが、ある特定の受信PCRパルスと実質的に相関すると、複製PCRパルスの遅延時間は、受信PCRパルスの飛行時間ΔΤに近くなりうる。
アナログ相関器110は、乗算器114と、テンプレート信号113と受信PCR信号145との間の自己相関を行う積分器とを備える。一般に、乗算器114は、受信PCR信号145をテンプレート信号113で乗算するよう構成される。更に詳細には、乗算器114は、各受信PCRパルスを1つ以上の複製PCRパルスで乗算することができる。
乗算器114は、このような乗算の結果に基づいて乗算信号115を生成する。ある実施形態では、例えば、乗算信号115は、受信PCRパルスの符号ビットが複製PCRパルスの符号ビットと一致する場合、予め定められた量の正電荷を伝えてもよい。他の実施形態では、例えば、乗算信号115は、受信PCRパルスの符号ビットが複製PCRパルスの符号ビットと一致しない場合、予め定められた量の負電荷を伝えてもよい。
積分器116は、乗算器114と接続されており、積分器116は乗算信号115によって運ばれた電荷を受信、蓄積、及び累積できる。各検出周期の終わりに近づくと、積分器116は、累積された電荷の総量に基づいてアナログ相関信号117を生成する。乗算器114及び積分器116の動作を更に示すものとして、図3を図4との関連で示して以下の通り説明する。
図3は、受信PCRパルス310と複製パルス320との相関状態300の波形図を示す。受信PCRパルス310と同様に、複製PCRパルス320は、複数のサブパルスを含むことができる。この複数のサブパルスは、第1サブパルス321、第2サブパルス322、第3サブパルス323、第4サブパルス324、第5サブパルス325、第6サブパルス326、及び第7サブパルス327等である。複製PCRパルス320は、受信PCRパルス310と同じ圧縮符号列を含むため、複製PCRパルス320の各サブパルスは、受信PCRパルス310での相当するサブパルスと同様のサブパルス幅を有する。
複製PCRパルス320が受信PCRパルス310と整合すると、乗算信号115は予め定められた量の正電荷を伝える。複製PCRパルス320のサブパルスは、受信PCRパルス310のサブパルスとリアルタイムに相関するため、乗算信号115は、各単位サブパルス幅TSにおいて更なる正電荷を積分器116に伝える。その結果、アナログ相関信号117は、PCRパルス幅TPの間に確実に増大し、PCRパルス幅TPの終わり近くに所定の閾値を超える自己相関量330を持つ。
一方、図4は、不整合状態400を示す。不整合状態400では、複製PCRパルス420のサブパルス(例えば、第1サブパルス421、第2サブパルス422、第3サブパルス423、第4サブパルス424、第5サブパルス425、第6サブパルス426、及び第7サブパルス427)が受信PCRパルス310のサブパルスとリアルタイムに完全に相関しない。複製PCRパルス420が受信PCRパルス310と相関すると、正電荷が積分器116に送られる。しかし、複製PCRパルス420が受信PCRパルス310と整合しなければ、負電荷が積分器116に送られる。この負電荷は、完全にではないにしても実質的に正電荷に相殺される。この結果、アナログ相関信号117は、相関状態300における自己相関量330に比べて、低い自己相関量430を有する。
アナログ相関信号117の自己相関量(例えば、自己相関量330又は430)は、更なる処理のためにサンプリングされてデジタル化されうる。ある実施形態では、例えば、アナログ相関器110は、アナログ−デジタル変換器(ADC)118を有して、アナログ相関信号117のサンプリングに基づいてデジタル信号119を生成してもよい。ADC118のサンプリングレートは、複製PCRパルスの複製と同期させることができる。すなわち、ADC118は、2つの連続した複製PCRパルスの間のつなぎ部分でアナログ相関信号117をサンプリングできる。このような同期を得るために、ADC118は可変時間遅延素子(VTDD)124と接続されて、ADC118は、複製レート信号125の複製レートによって制御されうる。
サンプリング処理が終わると、積分器116に累積された電荷は、解放されるか放出される。その結果、アナログ相関信号117は、次の複製PCRパルスが乗算器114によって乗算されることになる前に、自己相関量430等の起動時の低い自己相関量に戻る。ADC118と同様に、積分器116の帯電と放電は、複製PCRパルスの複製と同期させることができる。このような同期を得るために、積分器116はVTDD124と接続されて、積分器116は、複製レート信号125の複製レートによって制御されうる。
デジタル信号119を受信すると、検出制御器130は、最後の複製PCR信号が受信PCR信号145と相関するか否かを判定できる。デジタル信号119のデジタル値が予め定められたデジタル閾値より小さい場合、検出制御器130は、パルス幅TPを持った最後の複製PCRパルスが受信PCR信号145と相関していないであろうと判定する。一方、デジタル信号119のデジタル値が予め定められたデジタル閾値を超えるならば、検出制御器130は、最後の複製PCRパルスが受信PCR信号145と相関すると判定する。その結果、検出制御器130は、受信PCRパルスの飛行時間を抽出及び/又は計算できる。例えば、検出制御器130は、それまでに生成された複製PCRパルスの数kを割り出す。次に、検出制御器130は、VTDD124によって定められる調整可能時間遅延TDAを割り出す。数kと調整可能時間遅延TDAとを入力パラメータとして、検出制御器130は、これらの入力パラメータを以下の式に当てはめることで飛行時間TOFを抽出及び/又は計算できる。
TOF=k*TP+TDA
上述のように、検出制御器130は、この飛行時間を用いて検出された対象物の相対距離Rを計算する。この検出処理は検出周期内で複製PCRパルス毎に繰り返し行われる。これにより、多数の対象物が1つの検出周期内で検出される。ある実施形態では、この検出処理は、検出周期内で調整可能時間遅延TDAを変更すること無しに行われてもよい。調整可能時間遅延TDAを検出周期内で変更しない場合は、ADC118を、比較的低い周波数で切り替えることができる。これにより、ADC118は、サンプリング動作を最低レートで維持させながら、高いSNRを達成できる。各検出周期内で、レーダセンサ100は、電力をほとんど消費せず比較的敏活な動作を行う。他の実施形態では、複製処理と累積処理が、検出制御器130のSNRを向上するために、1つの検出周期内に繰り返し行われてもよい。このような繰り返しの結果、熱雑音の影響を最小限に抑えることが平均化されるであろう。
検出周期が終わると、検出制御器130は、調整可能時間遅延TDAを変更するために遅延調整信号137を更新する。このような変更によって、対象物検出処理の微調整が容易になる。上述のように、レーダセンサ100の距離分解能ΔRは、起動PCRパルスの単位サブパルス幅TSによって定まる。調整可能時間遅延TDAが、単位サブパルス幅TSと実質的に等しい値だけ増加又は減少すると、レーダセンサ100は、隣接する対象物間の位置の差又は移動している対象物の位置の差を、距離分解能ΔRと実質的に等しい正確さで検出できる。これにより、単位サブパルス幅TSの値を制御することで、レーダセンサ100は検出精度を制御できる。ある実施形態では、例えば、単位サブパルス幅TSは、0.5mより高くなるように距離分解能ΔRを達成するために、3.3ns未満となるよう調整されてもよい。
連続した検出周期の遷移で、検出制御器130は、単位サブパルス幅TSのマージンによって調整可能時間遅延TDAを増加させることができる。このような増加によって、多数の検出周期を経た後で、レーダセンサ100は全体の検出可能範囲Rを距離分解能ΔRでスイープすることができる。従って、レーダセンサ100は、各検出周期の検出処理を微調整できる。この微調整処理は、レーダセンサ100の全体の性能と引き換えにすること無しに、ADC118のサンプリングレートを低減することに貢献する。
信号対雑音比(SNR)を高く維持するために、レーダセンサ100は、比較的長い符号列でPCRパルスを生成することができる。例えば、Nビットの符号は、10*log(N)の処理利得でPCR信号のSNRを向上できる。符号列が長いため、長い符号化パルスが相関されている時、ADC118の切り替わりが多くなるであろう。これにより、ADC118のサンプリングレートを低くすることで、レーダセンサ100の全体の消費電力が大幅に制限されうる。上述の位置検出方式によって、レーダセンサ100は、比較的高いSNRを維持して消費電力を制限しながら比較的高い分解能を達成できる。高いSNRを維持することで、レーダセンサ100は高いダイナミックンレンジを有することができ、そのため、レーダセンサ100は広い検出範囲で動作ができる。有利には、アナログ相関器110と上述の位置検出方式とで、高速化、高分解能、広範囲、及び低電力において、従来のレーダセンサに対する解決策が与えられる。
更に、起動PCRパルスの生成、変調、及び送信が検出周期の間に一回だけなされるため、受信PCRパルスはいずれも起動PCRパルス(あるいは送信PCRパルス)と重複する可能性は低い。すなわち、各検出周期内で、起動PCRパルスが連続的にではなく離散的に生成されるので、送信PCR信号が受信PCR信号と干渉する可能性は低い。送信PCR信号と受信PCR信号との干渉を最小限に抑えることで、レーダセンサ100は、消費電力を増やすことなく、比較的高いSNRを維持できる。
位置検出方式を更に詳しく説明するため、連続するいくつかの検出周期における種々の信号の波形図について、以下に説明する。図5に、第1検出周期500における位置検出方式を示す。第1検出周期500には、起動PCR信号133、受信PCR信号145、テンプレート信号113、アナログ相関信号117、及び複製レート信号125等の5つの主なる信号が含まれる。第1検出周期500の開始にあたって、第1起動PCRパルス562が起動PCR信号133で生成される。第1起動PCRパルス562が生成された後、起動PCR信号133が変調され送信される。
説明の目的のため、送信PCR信号162は離間して位置する4つの対象物によって反射される。これにより、受信PCR信号145は、第1受信PCRパルス542、第2受信PCRパルス544、第3受信PCRパルス546、及び第4受信PCRパルス548を含む。第1受信PCRパルス542は、第2受信PCRパルス544より3単位のサブパルス幅TS足す1PCRパルス幅TPだけ先にある。第2受信PCRパルス544は、第3受信PCRパルス546より、1単位のサブパルス幅TS足す1PCRパルス幅TPだけ先にある。第3受信PCRパルス546は、第4受信PCRパルス548より、3単位のサブパルス幅TS足す1PCRパルス幅TPだけ先にある。この受信順によれば、第1受信PCRパルス542に関連した対象物がレーダセンサ100に最も近く、第4受信PCRパルス548に関連した対象物がレーダセンサ100から最も離れている。
第1検出周期500では、調整可能時間遅延TDAはゼロであって無視できる程小さいため、第1複製PCRパルス530は、第1起動PCRパルス562に実質的に同期している。受信PCRパルス(例えば、第1、第2、第3、及び第4受信PCRパルス542、544、546、及び548)のタイミングと受信順により、第7複製PCRパルス536のみが第4受信PCRパルス548と相関関係501にある。この相関関係501の結果、アナログ相関信号117は、受信PCR信号145が第7複製PCRパルス536で乗算されると、自己相関量517を有する。一方、アナログ相関信号117は、受信PCR信号145が他の複製PCRパルス(例えば、第1複製PCRパルス530、第2複製PCRパルス531、第3複製PCRパルス532、第4複製PCRパルス533、第5複製PCRパルス534、第6複製PCRパルス535、第8複製PCRパルス537、第9複製PCRパルス538、及び第10複製PCRパルス539)で乗算されると、実質的に大きさゼロを有する。
アナログ相関信号117は、複製レート信号125と実質的に同期するレートでサンプリング及び/又はデジタル化される。ある実施形態では、例えば、アナログ相関信号117は、サンプリングパルス(例えば、第1サンプリングパルス520、第2サンプリングパルス521、第3サンプリングパルス522、第4サンプリングパルス523、第5サンプリングパルス524、第6サンプリングパルス525、第7サンプリングパルス526、第8サンプリングパルス527、第9サンプリングパルス528、及び第10サンプリングパルス529)の各々の立ち上がりエッジでサンプリング及び/又はデジタル化されてもよい。他の実施形態では、例えば、アナログ相関信号117は、サンプリングパルスの各々の立ち下りエッジでサンプリング及び/又はデジタル化されてもよい。更に他の実施形態では、例えば、アナログ相関信号117は、各サンプリングパルスでサンプリング及び/又はデジタル化されてもよい。
アナログ相関信号117がサンプリング及び/又はデジタル化された後、この位置検出方式で、第7サンプリングパルス526で又はその後で対象物を検出する。この位置検出方式では更に、検出された対象物が6つのパルス幅TPと実質的に等しい飛行時間を有することを確認する。最後に、この位置検出方式で、検出された対象物の確認された飛行時間に基づいて対象物の位置を抽出及び/又は計算する。
図6は、第2検出周期600における位置検出方式を示す。第2検出周期600には、第1検出周期500と同様の信号が含まれる。第1検出周期500から第2検出周期600へ遷移すると、第2起動PCRパルス662が起動PCR信号133で生成される。第2起動PCRパルス662が生成された後、起動PCR信号133が変調され送信されうる。
先に示された対象物が静止したままであると仮定すると、これらの対象物は第2検出周期600において再び送信PCR信号162を反射する。これにより、受信PCR信号145は、第1受信PCRパルス642と、第2受信PCRパルス644と、第3受信PCRパルス646と、第4受信PCRパルス648とを含む。これらの受信PCRパルスの各々は、4つの反射対象物の相対距離が変化していないので、第1検出周期500と同様の時間的関係を相互に持つ。
これにより、第1受信PCRパルス642と第2受信PCRパルス644との間には、3単位のサブパルス幅TSの第1時間的分離があり、第2受信PCRパルス644と第3受信PCRパルス646との間には1単位のサブパルス幅TSの第2時間的分離があり、第3受信PCRパルス646と第4受信PCRパルス648との間には3単位のサブパルス幅TSの第3時間的分離がある。この時間的関係によれば、第1受信PCRパルス642と関連のある対象物はレーダセンサ100に最も近く、第4受信PCRパルス648と関連のある対象物はレーダセンサ100から最も離れている。
第1検出周期500の後、調整可能時間遅延TDAは、第2検出周期600でゼロから1単位のサブパルス幅TSに増加することになる。これにより、第1複製PCRパルス630は、第2起動PCRパルス662よりも1単位のサブパルス幅TSだけ遅れている。調整可能時間遅延TDAを増加させることで、レーダセンサ100は、第1検出周期500で相関されていない他の対象物の検出を試みる。
1単位のサブパルス幅TS分のわずかな増分により、レーダセンサ100は、わずかなマージンによって検出距離を調整できる。この微調整により、レーダセンサ100は、検出された対象物(例えば、第1検出周期500における第4受信PCRパルス548と関連のある対象物)のすぐ近くに位置する可能性のある1つ以上の未検出の対象物を検索することが可能となる。
受信PCRパルス(例えば、第1、第2、第3、及び第4受信PCRパルス642、644、646、及び648)のタイミングと受信順により、第4複製PCRパルス633のみが第2受信PCRパルス644と相関関係601にある。この相関関係601の結果、アナログ相関信号117は、受信PCR信号145が第4複製PCRパルス633で乗算されると、自己相関量617を有する。
一方、アナログ相関信号117は、受信PCR信号145が他の複製PCRパルス(例えば、第1複製PCRパルス630、第2複製PCRパルス631、第3複製PCRパルス632、第5複製PCRパルス634、第6複製PCRパルス635、第7複製PCRパルス636、第8複製PCRパルス637、第9複製PCRパルス638、及び第10複製PCRパルス639)で乗算されると、実質的にゼロである大きさを有する。
アナログ相関信号117は、複製レート信号125と実質的に同期するレートでサンプリング及び/又はデジタル化される。ある実施形態では、例えば、アナログ相関信号117は、サンプリングパルス(例えば、第1サンプリングパルス620、第2サンプリングパルス621、第3サンプリングパルス622、第4サンプリングパルス623、第5サンプリングパルス624、第6サンプリングパルス625、第7サンプリングパルス626、第8サンプリングパルス627、第9サンプリングパルス628、及び第10サンプリングパルス629)の各々の立ち上がりエッジでサンプリング及び/又はデジタル化されてもよい。他の実施形態では、例えば、アナログ相関信号117は、サンプリングパルスの各々の立ち下りエッジでサンプリング及び/又はデジタル化されてもよい。更に他の実施形態では、例えば、アナログ相関信号117は、各サンプリングパルスでサンプリング及び/又はデジタル化されてもよい。
アナログ相関信号117がサンプリング及び/又はデジタル化された後、この位置検出方式で、第4サンプリングパルス623で又はそのあたりで、対象物を検出する。この位置検出方式では、検出された対象物が1単位のサブパルス幅TSと3つのパルス幅TPとの和に実質的に等しい飛行時間を有することを確認する。最後に、この位置検出方式で、検出された対象物の確認された飛行時間に基づいて対象物の位置を抽出及び/又は計算する。
図7は、第3検出周期700における位置検出方式を示す。第3検出周期700には、第1検出周期500及び第2検出周期600と同様の信号が含まれる。第2検出周期600から第3検出周期700へ遷移すると、第3起動PCRパルス762が起動PCR信号133で生成される。第3起動PCRパルス762が生成された後、起動PCR信号133が変調され送信される。
先に示された対象物が静止したままであると仮定すれば、これらの対象物は第3検出周期700において再び送信PCR信号162を反射する。これにより、受信PCR信号145は、第1受信PCRパルス742と、第2受信PCRパルス744と、第3受信PCRパルス746と、第4受信PCRパルス748とを含む。これらの受信PCRパルスの各々は、4つの反射対象物の相対距離が変化していないので、第2検出周期600と同様の時間的関係を相互に持つ。
これにより、第1受信PCRパルス742と第2受信PCRパルス744との間には、3単位のサブパルス幅TSの第1時間的分離があり、第2受信PCRパルス744と第3受信PCRパルス746との間には、1単位のサブパルス幅TSの第2時間的分離があり、第3受信PCRパルス746と第4受信PCRパルス748との間には3単位のサブパルス幅TSの第3時間的分離がある。この時間的関係によれば、第1受信PCRパルス742に関連のある対象物はレーダセンサ100に最も近く、第4受信PCRパルス748に関連のある対象物はレーダセンサ100から最も離れている。
第2検出周期600の後、調整可能時間遅延TDAは、第3検出周期700で1単位のサブパルス幅TSから2単位のサブパルス幅TSに増加することになる。これにより、第1複製PCRパルス730は、第3起動PCRパルス762よりも2単位のサブパルス幅TSだけ遅れている。調整可能時間遅延TDAを増加させることで、レーダセンサ100は、第1検出周期500及び第2検出周期600で相関されていない他の対象物の検出を試みる。
1単位のサブパルス幅TS分のわずかな増分により、レーダセンサ100はわずかなマージンによって検出距離を調整できる。この微調整により、レーダセンサ100は、検出された対象物(例えば、第1検出周期500における第4受信PCRパルス548と関連のある対象物及び第2検出周期600における第2受信PCRパルス644と関連のある対象物)のすぐ近くに位置する可能性のある1つ以上の未検出の対象物を検索することが可能となる。
受信PCRパルス(例えば、第1、第2、第3、及び第4受信PCRパルス742、744、746、及び748)のタイミングと受信順により、第5複製PCRパルス734のみが第3受信PCRパルス746と相関関係701にある。相関関係701の結果、アナログ相関信号117は、受信PCR信号145が第5複製PCRパルス734で乗算されると、自己相関量717を有する。
一方、アナログ相関信号117は、受信PCR信号145が他の複製PCRパルス(例えば、第1複製PCRパルス730、第2複製PCRパルス731、第3複製PCRパルス732、第4複製PCRパルス733、第6複製PCRパルス735、第7複製PCRパルス736、第8複製PCRパルス737、第9複製PCRパルス738、及び第10複製PCRパルス739)で乗算されると、実質的にゼロである大きさを有する。
アナログ相関信号117は、複製レート信号125と実質的に同期するレートでサンプリング及び/又はデジタル化される。ある実施形態では、例えば、アナログ相関信号117は、サンプリングパルス(例えば、第1サンプリングパルス720、第2サンプリングパルス721、第3サンプリングパルス722、第4サンプリングパルス723、第5サンプリングパルス724、第6サンプリングパルス725、第7サンプリングパルス726、第8サンプリングパルス727、第9サンプリングパルス728、及び第10サンプリングパルス729)の各々の立ち上がりエッジでサンプリング及び/又はデジタル化されてもよい。他の実施形態では、例えば、アナログ相関信号117は、サンプリングパルスの各々の立ち下りエッジでサンプリング及び/又はデジタル化されてもよい。更に他の実施形態では、例えば、アナログ相関信号117は各サンプリングパルスでサンプリング及び/又はデジタル化されてもよい。
アナログ相関信号117がサンプリング及び/又はデジタル化された後、この位置検出方式で、第5サンプリングパルス724で又はそのあたりで対象物を検出する。この位置検出方式では、検出された対象物が2単位のサブパルス幅TSと4つのパルス幅TPとの和に実質的に等しい飛行時間を有することを更に確認する。最後に、この位置検出方式で、検出された対象物の確認された飛行時間に基づいて対象物の位置を抽出及び/又は計算する。
図8は、第4検出周期800における位置検出方式を示す。第4検出周期800には、第1検出周期500、第2検出周期600、及び第3検出周期700と同様の信号が含まれる。第3検出周期700から第4検出周期800へ遷移すると、第4起動PCRパルス862が起動PCR信号133で生成される。第4起動PCRパルス862が生成された後、起動PCR信号133が変調され送信される。
先に示された対象物が静止したままであると仮定すれば、これらの対象物は、第4検出周期800において再び送信PCR信号162を反射する。これにより、受信PCR信号145は、第1受信PCRパルス842と、第2受信PCRパルス844と、第3受信PCRパルス846と、第4受信PCRパルス848とを含む。これらの受信PCRパルスの各々は、4つの反射対象物の相対距離が変化していないので、第3検出周期700と同様の時間的関係を相互に持つ。
これにより、第1受信PCRパルス842と第2受信PCRパルス844との間には、3単位のサブパルス幅T S の第1時間的分離があり、第2受信PCRパルス844と第3受信PCRパルス846との間には、1単位のサブパルス幅T S の第2時間的分離があり、第3受信PCRパルス846と第4受信PCRパルス848との間には、3単位のサブパルス幅T S の第3時間的分離がある。この時間的関係によれば、第1受信PCRパルス842に関連のある対象物はレーダセンサ100に最も近く、第4受信PCRパルス848に関連のある対象物はレーダセンサ100から最も離れている。
第3検出周期700の後、調整可能時間遅延TDAは、第4検出周期800で2単位のサブパルス幅TSから3単位のサブパルス幅TSに増加することになる。これにより、第1複製PCRパルス830は、第4起動PCRパルス862よりも3単位のサブパルス幅TSだけ遅れている。調整可能時間遅延TDAを増加させることで、レーダセンサ100は、第1検出周期500、第2検出周期600、及び第3検出周期700で相関されていない他の対象物の検出を試みる。
1単位のサブパルス幅TS分のわずかな増分により、レーダセンサ100はわずかなマージンによって検出距離を調整できる。この微調整により、レーダセンサ100は、検出された対象物(例えば、第1検出周期500における第4受信PCRパルス548と関連のある対象物、第2検出周期600における第2受信PCRパルス644と関連のある対象物、及び第3検出周期700における第3受信PCRパルス746と関連のある対象物)のすぐ近くに位置する可能性のある1つ以上の未検出の対象物を検索することが可能となる。
受信PCRパルス(例えば、第1、第2、第3、及び第4受信PCRパルス842、844、846、及び848)のタイミングと受信順により、第2複製PCRパルス831のみが第1受信PCRパルス842と相関関係801にある。相関関係801の結果、アナログ相関信号117は、受信PCR信号145が第2複製PCRパルス831で乗算されると、自己相関量817を有する。一方、アナログ相関信号117は、受信PCR信号145が他の複製PCRパルス(例えば、第1複製PCRパルス830、第3複製PCRパルス832、第4複製PCRパルス833、第5複製PCRパルス834、第6複製PCRパルス835、第7複製PCRパルス836、第8複製PCRパルス837、第9複製PCRパルス838、及び第10複製PCRパルス839)で乗算されると、実質的にゼロである大きさを有する。
アナログ相関信号117は、複製レート信号125と実質的に同期するレートでサンプリング及び/又はデジタル化される。ある実施形態では、例えば、アナログ相関信号117は、サンプリングパルス(例えば、第1サンプリングパルス820、第2サンプリングパルス821、第3サンプリングパルス822、第4サンプリングパルス823、第5サンプリングパルス824、第6サンプリングパルス825、第7サンプリングパルス826、第8サンプリングパルス827、第9サンプリングパルス828、及び第10サンプリングパルス829)の各々の立ち上がりエッジでサンプリング及び/又はデジタル化されてもよい。他の実施形態では、例えば、アナログ相関信号117は、サンプリングパルスの各々の立ち下りエッジでサンプリング及び/又はデジタル化されてもよい。更に他の実施形態では、例えば、アナログ相関信号117は、各サンプリングパルスでサンプリング及び/又はデジタル化されてもよい。
アナログ相関信号117がサンプリング及び/又はデジタル化された後、この位置検出方式で、第2サンプリングパルス821で又はそのあたりで対象物を検出する。この位置検出方式では、検出された対象物が3単位のサブパルス幅TSと1つのパルス幅TPとの和に実質的に等しい飛行時間を有することを更に確認する。最後に、この位置検出方式で、検出された対象物の確認された飛行時間に基づいて対象物の位置を抽出及び/又は計算する。
4つの検出周期を図5から図8に示したが、この位置検出方式では、本発明の種々の実施形態によれば、より少ない又はより多い検出周期を有していてもよい。MがPCRパルス幅TPに対するパルス反復期間PRIの比とすると、検出周期で起こりうる相関の総数はM以下となるであろう。更に、Nが単位サブパルス幅TSに対するPCRパルス幅TPの比とすると、検出周期の総数はN以下となるであろう。そのため、相関の総数CTotal(又は、検出可能な位置の最大数)はMとNの積に等しくなるであろう。
すなわち、相関の総数CTotalは、単位サブパルス幅TSに対するパルス反復期間PRIの比によって本質的に定めることができる。パルスの反復が、単位サブパルス幅TSに比べて比較的大きいままであるならば、位置検出方式で、広い検出範囲と高い分解能を同時に達成できる。一方、位置検出方式で、いくつかの検出周期と各検出周期でのいくつかの複製PCRパルスにわたって相関の総数CTotalを分散させる。このように分散させることによって、1つの検出周期に複数の相関を含めることで検出処理の性能を向上することができる。更に、このように分散させることによって、アナログ−デジタル変換器118のサンプリングレートを低くすることで、全体の消費電力を低減することができる。TSに対するPRIの比率を高くして相関を分散することで、レーダセンサ100は、検出処理の消費電力を制限しながら、高い分解能、広い検出範囲、及びロバストな動作という利点を達成する。
次に、レーダセンサ100の機能構成を実現するための種々の回路構成を説明する。本明細書では、以下の回路構成とそれによって実行される位置検出方式によって、図1〜図8に説明したレーダセンサ100と位置検出方式の意図と目的を更に展開する。そのため、以下の回路構成及びそれによって実行される位置検出方式は、図1〜図8で説明したレーダセンサ100及び位置検出方式の範囲を制限するものと解釈されるべきではない。
図9は、本発明の第2の実施形態によるレーダセンサ900の概略図を示す。レーダセンサ900は、レーダシステムに実装される。レーダセンサ900は、PCR信号生成器932と、アナログ相関器モジュール910と、検出制御器930と、RFフロントエンドモジュール940と、アンテナモジュール950とを備える。アナログ相関器モジュール910は、1つ以上の対象物の位置を検出する際に検出制御器930と通信し協働する。高レベルの観点でみると、アナログ相関器モジュール910は、アナログ相関器110と同様に機能し、検出制御器930は検出制御器130と同様に機能する。
検出周期の初期で、検出制御器930は、PCR信号生成器932に起動PCR信号933を生成させる検出周期信号935を生成する。起動PCR信号933は、PCRパルス幅TPを持つPCRパルスと、圧縮符号列とを有する。圧縮符号列は、複数のビットを有し、各ビットは単位サブパルス幅TSを有するサブパルスで表すことができる。一般に、PCRパルス幅TPは、単位サブパルス幅TSの数値による倍数であり、それによってPCRパルス幅TPはN*TSとして表すことができる。ここで、NはPCRパルスによって表されるビット数である。
起動PCR信号933は、伝送路と複製路とに供給される。伝送路に沿って、起動PCR信号933は、位相偏移変調(PSK)、二相位相変調(BPSK)、周波数偏移変調(FSK)、及び/又は振幅偏移変調(ASK)等の1つ以上の周波数変調方式で、RF変調器942によって周波数変調される。RF変調器942は、RF復調器944も含んでいるRFフロントエンドモジュール940の一部に組み込まれてもよい。
ある実施形態では、RF変調器942は、周波数変調(FM)搬送波生成器971と、変調ミキサ(アップコンバータ)973と、送信増幅器975とを備えていてもよい。FM搬送波生成器971は、FM搬送波信号972を生成するために用いられる。変調ミキサ973は、起動PCR信号933と搬送波信号972とを、1つ以上の変調方式によって合成する。この合成の結果、変調ミキサ973は、ベースバンド信号でありうる起動PCR信号933を、アウトバウンドRF変調信号943に変換する。送信増幅器975は、アウトバウンドRF変調信号943の送信の前処理をする。特に、送信増幅器975は、アウトバウンドRF変調信号943が送信アンテナ952によって送信される前に、アウトバウンドRF変調信号943の振幅を増幅する。
送信PCR信号(例えば、送信アンテナ952によって送信されるアウトバウンドRF変調信号943)は、1つ以上の対象物によって反射されることになる。この反射の結果として、1つ以上の反射PCR信号が戻されて、最終的に受信アンテナ954で受信される。RF復調器944は、反射PCR信号を復調して、1つ以上の反射PCRパルスを抽出する。RF復調器944は、受信増幅器977と、復調フィルタ(ダウンコンバータ)979とを備え、RF変調器942とFM搬送波生成器971を共有してもよい。又は、本発明の別の実施形態によれば、RF復調器944は、RF変調器942から独立した個別のFM搬送波生成器を有していてもよい。
受信増幅器977は、反射PCR信号を復調する前に増幅する。復調フィルタ979は、搬送周波数を反射PCR信号から切り離す際にFM搬送波信号972を適用する。元の変調方式とは逆に、復調フィルタ979が反射PCR信号のベースバンドメッセージを復号する。これらのベースバンドメッセージは、複数の受信PCRパルスを含んでいてもよく、各受信PCRパルスは検出可能な対象物と関連づけられる。このフィルタリングと復号の結果として、復調フィルタ979は反射PCR信号を受信PCR信号945に変換する。受信PCR信号945は複数の受信PCRパルスを含む。
複製路に沿って、起動PCR信号933がアナログ相関器モジュール910によって複製され相関される。アナログ相関器モジュール910は、可変利得増幅器(VGA)911と、複製生成器912と、乗算器914と、アナログ−デジタル変換器(ADC)918と、タイミングモジュール920とを備える。タイミングモジュール920は、タイミングモジュール120と同様に機能する。例えば、タイミングモジュール920は、起動PCRパルスの複製レートとADC918のサンプリングレートを制御するために用いられてもよい。
更に詳細には、タイミングモジュール920は、サンプリングクロック生成器922と、第1可変時間遅延素子(VTDC)924と、第2可変時間遅延素子(VTDC)928と、タイミング制御器926とを備える。サンプリングクロック生成器922は、サンプリング制御信号939を受信するために検出制御器930に接続されている。サンプリング制御信号939は、起動PCRパルスが複製されるレートを調整するために用いられる、PCRパルス幅T P に関連する情報に埋め込まれている。これに対して、サンプリングクロック生成器922は、サンプリング制御信号939に埋め込まれた情報に基づいてサンプリング信号923を生成する。
複製生成器912は、サンプリング信号923を受信するためにサンプリングクロック生成器922に接続されている。サンプリング信号923のサンプリングレートに駆動されて、複製生成器912は、テンプレート信号913を生成する。テンプレート信号913は、起動PCR信号933が生成されている時に起動PCR信号933の起動PCRパルスを複製する。これにより、テンプレート信号913の第1複製PCRパルスは、起動PCR信号933の起動PCRパルスと同期される。テンプレート信号913の中の次の複製PCRパルスは、起動PCRパルスよりPCRパルス幅TPの倍数分だけ遅れる。例えば、第2複製PCRパルスは、起動PCRパルスより1PCRパルス幅TPだけ遅れており、第3複製PCRパルスは、起動PCRパルスより2PCRパルス幅TPだけ遅れている。
テンプレート信号913は、第1VTDC924によって時間シフトされる。第1VTDC924は、遅延調整信号927によって選択的に作動される種々の時間遅延素子を備える。タイミング制御器926は、検出周期信号935の数を数えるレジスタを備える。レジスタは、各パルス反復期間PRIの終わりにリセットされることになる。レジスタに記憶された値に基づき、タイミング制御器926は、終了した検出周期の数を計算する。タイミング制御器926は、終了した検出周期の数に基づいて遅延調整信号927を生成する。
ある実施形態では、遅延調整信号927は、1つの検出周期が終了すると、1単位のサブパルス幅TSだけ時間遅延を起こさせるために1つの時間遅延素子を起動してもよい。他の実施形態では、遅延調整信号927は、2つの検出周期が終了すると2単位のサブパルス幅TSだけ時間遅延を起こさせるために2つの時間遅延素子を起動してもよい。更に他の実施形態では、遅延調整信号927は、n個の検出周期が終了すると、n単位のサブパルス幅TSだけ時間遅延を起こさせためにn個の時間遅延素子を起動してもよい。
この時間シフトの結果として、テンプレート信号913の複製PCRパルスは、複製レートを持つ。複製レートは、サンプリングレートと実質的に同じであり、起動PCR信号933より調整可能時間遅延TDAだけ遅れている。調整可能時間遅延TDAのこの実施形態は、テンプレート信号913が生成されたあと、この実施形態の時間シフトが行われるため、図2で述べたものとわずかに異なる。しかし、両実施形態では、受信PCR信号945との相関のために、又はVGA911を配置した場合は増幅PCR信号916との相関のために、起動PCRパルスを遅延及び複製したものを提供するという同じ結果が達成されうる。
第2VTDC928は、サンプリングクロック生成器922と接続されて、サンプリング信号923を時間シフトするために用いられる。第2VTDC928は、遅延調整信号927によって選択的に作動される種々の時間遅延素子を備える。従って、タイミング制御器926は、第1VTDC924の制御と同様の態様で第2VTDC928を制御できる。ある実施形態では、遅延調整信号927は、1つの検出周期が終了すると1単位のサブパルス幅TSだけ時間遅延を起こさせるために1つの時間遅延素子を起動してもよい。他の実施形態では、遅延調整信号927は、2つの検出周期が終了すると、2単位のサブパルス幅TSだけ時間遅延を起こさせるために2つの時間遅延素子を起動してもよい。更に他の実施形態では、遅延調整信号927は、n個の検出周期が終了すると、n単位のサブパルス幅TSだけ時間遅延を起こさせるためにn個の時間遅延素子を起動してもよい。
状況によっては、サンプリング信号923は、テンプレート信号913とは異なる寄生効果を有してもよい。このような違いによって、第1VTDC924の時間遅延素子が第2VTDC928の時間遅延素子と同じ時間遅延特性を有する場合、サンプリング信号923とテンプレート信号913との間で非対称な時間シフトが生じることになるであろう。非対称な時間シフトを排除又は最小限に抑えるために、種々の時間遅延素子は、寄生効果における差異を相殺するために、第1VTDC924の時間遅延特性とは異なる時間遅延特性を有する。時間遅延されたサンプリング信号923によって駆動され、ADC918は、テンプレート信号913の複製レートと実質的に同期したレートで積分器モジュール960の出力をサンプリング及び/又はデジタル化する。
積分器モジュール960は、1つ以上のアナログ相関信号を生成するのに、交互方式(交互構成とも呼ばれる)を採用してもよい。積分器モジュール960は、第1積分器963及び第2積分器964などの、個別の積分器からなる積分器群を有してもよい。第1積分器963と第2積分器964の各々は、キャパシタ等の電荷蓄積素子と、切り替え可能な放電路とを備える。交互方式では、第1積分器963は、第1組の複製PCRパルスの間は第1アナログ相関信号965を生成する役割を担い、第2積分器964は、第2組の複製PCRパルスの間は第2アナログ相関信号966を生成する役割を担う。
第1組の複製PCRパルスが第2組の複製PCRパルスの間に入れられて交互パターンが形成される場合、第1積分器963及び第2積分器964は、交互の順序で充放電されうる。積分器モジュール910は、入力スイッチ961と出力スイッチ962とを備え、交互の順序で作動する。入力スイッチ961は、サンプリング信号923に制御されうる。サンプリング信号923のサンプリングレートに基づいて、入力スイッチ961は、第1積分器963と第2積分器964とを選択的に乗算器914に接続する。サンプリング信号923のサンプリングレートは複製レートと実質的に同期されるので、入力スイッチ961と、第1積分器963及び第2積分器964との接続及び分断もまた、複製レートと同期される。これにより、第1積分器963と第2積分器964は、連続した複製PCRパルスが受信PCR信号945で乗算されている時、又はVGA911が配置されている場合は連続した複製PCRパルスが増幅PCR信号916で乗算されている時、乗算信号915を乗算器914から交互に受信する。
同様に、出力スイッチ962は、サンプリング信号923によって制御されうる。サンプリング信号923のサンプリングレートに基づいて、出力スイッチ962は、第1積分器963と第2積分器964とを選択的にADC918に接続する。サンプリング信号923のサンプリングレートは複製レートと実質的に同期されるので、出力スイッチ962と、第1積分器963及び第2積分器964との接続及び分断もまた、複製レートと同期される。これにより、第1積分器963と第2積分器964は、連続したサンプリングパルスがADC918に送信される時、第1アナログ相関信号965と第2アナログ相関信号966をADC918に交互に供給する。
ADC918は、同じ交互の順序で第1アナログ相関信号965と第2アナログ相関信号966をサンプリング及び/又はデジタル化する。この結果、ADC918は、第1及び第2アナログ相関信号965及び966の両方の自己相関の大きさを含むデジタル信号919を生成する。デジタル信号919は、検出制御器930に送信される。デジタル信号919は、検出制御器930に送信される前に任意に処理利得部931で更に処理されてもよい。
この交互方式は、相互に近接して位置する一群の対象物を検出するのに有用である。主に、近接して位置する一群の対象物は、一連の反射PCRパルスを反射できる。反射PCRパルスの各々は、相互に短く時間的に分離していてもよい。前回の乗算から累積された電荷が時間内に放出されない場合、アナログ相関信号の自己相関量は、今回の乗算で歪を生じる可能性がある。交互方式では、一方の積分器は、他方の積分器がアナログ相関信号を生成している間、全PCRパルス幅T P の間に累積した電荷を放出できる。これにより、第1アナログ相関信号965及び第2アナログ相関信号966は、実質的に歪を生じないことになる。
図10は、重相関状態1000を示す。状態1000では、交互方式を用いて、第1アナログ相関信号965と第2アナログ相関信号966の潜在的な歪を防ぐ。重相関状態1000は、起動PCR信号933の第1起動PCRパルス1062によって起動されうる。第1起動PCRパルス1062が生成された後、起動PCR信号933が変調され送信されることになる。
送信PCR信号は、分離して位置する5つの対象物によって反射されるであろう。例えば、第1対象物は、第1増幅PCRパルス1041に関連づけられ、第2対象物は、第2増幅PCRパルス1042に関連づけられ、第3対象物は、第3増幅PCRパルス1043に関連づけられ、第4対象物は、第4増幅PCRパルス1044に関連づけられ、第5対象物は、第5増幅PCRパルス1045に関連づけられる。これにより、増幅PCR信号916は、第1増幅PCRパルス1041と、第2増幅PCRパルス1042と、第3増幅PCRパルス1043と、第4増幅PCRパルス1044と、第5増幅PCRパルス1045とを含む。
第1増幅PCRパルス1041は、第2増幅PCRパルス1042よりも3単位のサブパルス幅TS足す1PCRパルス幅TP、先にある。第2増幅PCRパルス1042は、第3増幅PCRパルス1043よりも1単位のサブパルス幅TS足す1PCRパルス幅TP、先にある。第3増幅PCRパルス1043は、第4増幅PCRパルス1044よりも1PCRパルス幅TPだけ先にあり、第4増幅PCRパルス1044は、第5増幅PCRパルス1045よりも1PCRパルス幅TPだけ先にある。
この受信順序に基づいて、第1増幅PCRパルス1041に関連づけられた第1対象物は、レーダセンサ100に最も近く、第5増幅PCRパルス1045に関連づけられた第5対象物は、レーダセンサ100から最も遠い。更に、第3、第4、及び第5増幅PCRパルス1043、1044、及び1045が生成される時間的近さに基づくと、第3、第4、及び第5対象物は、相互に近接して配置されている。更に、第3、第4、及び第5増幅PCRパルス1043、1044、及び1045は連続したパルスであるため、これらのパルスの間には時間的な空間はないことを意味し、これらのパルスはすべて、1つの信号検出周期の3つの連続した複製PCRパルスと相関させることができる。
1つの検出周期の間、例えば、テンプレート信号913の調整可能時間遅延TDAは、実質的に約3単位のサブパルス幅TSに等しい。10個の複製パルスの中で、第5複製PCRパルス1034は、第3増幅PCRパルス1043と相関され、第6複製PCRパルス1035は、第4増幅PCRパルス1044と相関され、第7複製PCRパルス1036は、第5増幅PCRパルス1045と相関される。これらの相関の結果、乗算器914は、第5、第6、及び第7複製PCRパルス1034、1035、及び1036にわたる期間にひと続きの正電荷を出す。
交互方式では、第1積分器963と第2積分器964とは、連続した複製PCRパルスの間で交互にオンとされる。第1積分器963と第2積分器964は、入力スイッチ961と時間シフトされたサンプリング信号923とによって、作動及び/又は停止される。本明細書においては、積分器は、作動されている時は乗算信号915によって出された電荷を累積する。積分器は、停止されている時は累積した電荷を放出する。更に詳細には、第1積分器963と第2積分器964の各々の切り替え可能な放電路は、時間シフトされたサンプリング信号923によって開かれる及び/又は閉じられることとなる。これにより、切り替え可能な放電路は、各積分器が作動される時は開かれて導通せず、各積分器が停止される時は閉じられて導通する。
ある実施形態では、例えば、第1積分器963は奇数の複製PCRパルス(例えば、第1、第3、第5、第7、及び第9複製PCRパルス1030、1032、1034、1036、及び1038)の時作動されて、第2積分器694は、偶数の複製PCRパルス(例えば、第2、第4、第6、第8、及び第10複製PCRパルス1031、1033、1035、1037、及び1039)の時作動されてもよい。別の実施形態では、例えば、第1積分器963は、偶数の複製PCRパルス(例えば、第2、第4、第6、第8、及び第10複製PCRパルス1031、1033、1035、1037、及び1039)の時作動されて、第2積分器694は、奇数の複製PCRパルス(例えば、第1、第3、第5、第7、及び第9複製PCRパルス1030、1032、1034、1036、及び1038)の時作動されてもよい。
第1積分器963が奇数の複製PCRパルスの時作動される構成では、第1アナログ相関信号965は第5複製PCRパルス1034で第1自己相関量1014を持つ。ADC918でサンプリングされる前、第1自己相関量1014は、第5複製PCRパルス1034で、第1帯電エッジ1021を持つ。
第6複製PCRパルス1035が第4増幅PCRパルス1044と相関されると、第1積分器963は停止して、第2積分器964が作動される。この作動の結果、第2アナログ相関信号966は、第6複製PCRパルス1035で、第2自己相関量1015を持つ。更に、第6複製PCRパルス1035の間、第2自己相関量1015は、ADC918でサンプリングされる前、第1帯電エッジ1023を持つ。第2積分器964が電荷を累積する間、第1積分器963は、第6複製PCRパルス1035で、累積した電荷を放出するのにPCRパルス幅TP分の時間を有する。その結果、第1自己相関量1014は、第1放電エッジ1022を持つ。
第7複製PCRパルス1036が、第5増幅PCRパルス1045と相関されると、第1積分器963が再び作動されて、第2積分器964が停止する。この作動の結果、第1アナログ相関信号965は、第7複製PCRパルス1036で、第3自己相関量1016と第3帯電エッジ1025を持つ。第1積分器963は、前回累積した電荷を放出するのに十分な時間を持つため、第1アナログ相関信号965は、実質的に、前回の相関によって生じる歪を含まない。有利には、次の第3自己相関量1016は、複製PCRパルスと増幅PCRパルスとの相関を正確に表すことができる。
第1積分器963が電荷を累積している間、第2積分器964は、第7複製PCRパルス1036で、累積した電荷を放出するのにPCRパルス幅TP分の時間を有する。その結果、第2自己相関量1015は、第1放電エッジ1024を有する。この放電の後、第2積分器964は、次の複製PCRパルスの間に再び電荷を累積する準備をする。
図10は、交互方式が、複製PCRパルス列によって統制されていることを示すが、別の実施形態では、交互方式は、検出制御器930によって統制されてもよい。まず、検出制御器930は、第1積分器963と第2積分器964の一方を作動させることができる。検出制御器930が、複製PCRパルスのどれかで対象物を検出すると、検出制御器930は、作動状態を第1積分器963と第2積分器964との間で切り替える。一方、対象物が検出されない場合は、作動された積分器は、相当量の電荷を累積する可能性は低い。これにより、作動された積分器は、放電に時間がかからないであろうため、検出制御器930は第1積分器963と第2積分器964との間の作動状態を続行できる。この方式は、有利なことに、積分器に放電のための時間を十分に残しながら、積分器モジュール960での切り替え動作を減らすことができる。
次に、受信PCR信号945のための補償方式(すなわち補償構成)について説明する。一般に、受信PCR信号945の振幅レベルは、検出周期の終わりに向かって徐々に弱くなる。これは、送信PCR信号と反射PCR信号が長い距離を進むと、喪失するパワーが多くなる(信号の減衰)ことによる。受信PCR信号945の振幅レベルが弱いと、受信PCR信号945の処理に関連した信号対雑音比(SNR)は通常低くなる。これにより、ADC918の出力は、背景雑音によってより歪みやすくなるであろう。
図9に示す実施形態を再び参照すると、可変利得増幅器(VGA)911を用いて、信号の減衰の問題を緩和して、ADC918の出力でのSNRを改善する。VGA911は、受信PCR信号945を選択的に増幅する。この選択的な増幅は、起動PCR信号933の生成から測る待ち時間に基づいてもよい。この待ち時間は、送信PCR信号と反射PCR信号の移動距離に対応する。これにより、待ち時間を利用して、信号の減衰の程度を概算できる。
特に、VGA911の利得は、検出周期が始めから終わりまで進むにつれて、徐々に増す。この選択的な増幅の結果、VGA911は、増幅PCR信号916を生成して受信PCR信号945の減衰した振幅を修正及び/又は補償する。ある実施形態において、VGA911の調整可能な利得は、可変利得制御信号991で検出制御器930によって制御される。他の実施形態では、VGA911の調整可能な利得は、タイミングモジュール920によって直接制御される。
図11は、本発明の第2の実施形態による動的利得制御方式1100における種々の信号の波形図を示す。本明細書においては、動的利得制御方式1100は、多数の選択実行可能な補償方式の1つを表しているに過ぎないため、動的利得制御方式1100は補償方式の一部分である。従って、動的利得制御方式1100では、補償方式の動作の詳細を示しているが、補償方式の持つ一般的な概念と範囲を限定するものではない。
動的利得制御方式1100は、起動PCR信号933の第1起動PCRパルス1062によって起動されうる。第1起動PCRパルス1062が生成された後、起動PCR信号933が変調され送信される。送信PCR信号は、離間して位置する5つの対象物によって反射されるであろう。例えば、第1対象物は第1受信PCRパルス1141に関連づけられ、第2対象物は、第2受信PCRパルス1142に関連づけられ、第3対象物は第3受信PCRパルス1143に関連づけられ、第4対象物は第4受信PCRパルス1144に関連づけられ、第5対象物は第5受信PCRパルス1145に関連づけられる。これにより、受信PCR信号945は、第1受信PCRパルス1141と、第2受信PCRパルス1142と、第3受信PCRパルス1143と、第4受信PCRパルス1144と、第5受信PCRパルス1145とを含む。
第1受信PCRパルス1141は時間T1の後で受信される。第2受信PCRパルス1142は、時間T1よりも約1PCRパルス幅TPだけ遅い時間T2の後で受信される。第3受信PCRパルス1143は、時間T1よりも約3PCRパルス幅TPだけ遅い時間T4で受信される。第4受信PCRパルス1144は、時間T1よりも約4PCRパルス幅TPだけ遅い時間T5で受信される。第5受信PCRパルス1145は、時間T1よりも約5PCRパルス幅TPだけ遅い時間T 6 で受信される。
この受信順に基づくと、第1受信PCRパルス1141の信号強度が最も大きく、第5受信PCRパルス1145の信号強度が最も弱いといえる。振幅レベルで表される各受信PCRパルスの信号強度は、受信時間が検出周期内で進むにつれて、指数関数的に小さくなるものである。この信号強度の指数関数的な減少を補償及び/又は修正するために、可変利得制御信号991は、VGA911に動的利得値1110を与えて、VGA911はそれによって利得を調整できる。
ある実施形態では、動的利得値1110は、時間シフトされたサンプリング信号923のサンプリングレートに基づいて更新されてもよい。他の実施形態では、動的利得値1110は、以下の式で表すことができる、今回の調整可能な時間T
nと前回の調整可能な時間T
n−1との関数でありうる。
この式によれば、動的利得値1110は、第2複製PCRパルス1031で第1調整可能な利得1111を、第3複製PCRパルス1032で第2調整可能な利得1112を、第4複製PCRパルス1033で第3調整可能な利得1113を、第5複製PCRパルス1034で第4調整可能な利得1114を、第6複製PCRパルス1035で第5調整可能な利得1115を、第7複製PCRパルス1036で第6調整可能な利得1116を、第8複製PCRパルス1037で第7調整可能な利得1117を、第9複製PCRパルス1038で第8調整可能な利得1118を、第10複製PCRパルス1031で第9調整可能な利得1119を有することができる。第2起動PCR信号1064が生成されると、それは新しい検出周期の始まりを示し、動的利得値1110はその起動値にリセットされる。
可変利得制御信号991によって与えられる各調整可能な利得に基づいて、VGA911は、第1増幅PCRパルス1041と、第2増幅PCRパルス1042と、第3増幅PCRパルス1043と、第4増幅PCRパルス1044と、第5増幅PCRパルス1045とを生成する。動的利得制御方式1100のために、増幅PCRパルスの各々は、比較的均一で比較的高い増幅レベルに復元される。有利には、このような復元は、ADC918の出力端でのSNRの改善に寄与する。
次に、図9に示すようなレーダセンサ900を改変するための種々の実施形態を説明する。これらの変更形態によって、レーダセンサ900の検出速度を向上でき、レーダセンサ900は、高速で動く対象物の感知が可能となる。これらの変更形態のいくつかの構成要素は既にレーダセンサ900の中で示されている。これらの構成要素は、図9〜図11で説明したものと実質的に同じ機能を果たす。これにより、以下では、新たに示す構成要素にのみに焦点を当てて説明する。
図12は、本発明の第3の実施形態による高速レーダセンサ1200の概略図を示す。レーダセンサ900と比べると、高速レーダセンサ1200は、いくつかの改良点を含む。例えば、アナログ相関器モジュール910は、速い対象物の検出のための並列の構成を含むアナログ相関器モジュール1210に置き換えられる。この並列構成において、積分器モジュール960は、積分器群1250に置き換えられる。積分器群1250は、数期間で多数の相関処理を行い、検出周期数と全体の検出時間を等比級数的に減少させる。積分器群1250は、第1積分器モジュール1260及び第2積分器モジュール1280などの、2つ以上の並列の積分器モジュールを備えることができる。第1積分器モジュール1260及び第2積分器モジュール1280の各々は、積分器モジュール960と同様の構造的及び機能的構成を有することができる。
ある実施形態では、例えば、第1積分器モジュール1260は、第1入力スイッチ1261と、第1出力スイッチ1262と、第1積分器1263と、第2積分器1266とを備える。第1積分器1263及び第2積分器1264は、図9から図11で述べた第1積分器963及び第2積分器964と同様の機能を果たす。例えば、第1積分器1263及び第2積分器1264は、1つ以上の交互方式を実行するために用いられる。これにより、第1積分器1263は第1アナログ相関信号1265を生成し、第2積分器1264は、第2アナログ相関信号1266を生成する。
第1入力スイッチ1261は、入力スイッチ961と同様の機能を果たす。例えば、第1入力スイッチ1261は、第1積分器1263と第2積分器1264とを選択的に第1乗算器1232に接続することで、1つ以上の交互方式を作動させる。第1出力スイッチ1262は、出力スイッチ962と同様の機能を果たす。例えば、第1出力スイッチ1262は、第1積分器1263と第2積分器1264とを第1アナログ−デジタル変換器(ADC)1236に選択的に接続することで、1つ以上の交互方式を作動させる。
他の実施形態では、例えば、第2積分器モジュール1280は、第2入力スイッチ1281と、第2出力スイッチ1282と、第3積分器1283と、第2積分器1286とを備えていてもよい。第3積分器1283及び第4積分器1284は、図9〜図11で述べた第1積分器963及び第2積分器964と同様の機能を果たす。例えば、第3積分器1283及び第4積分器1284は、1つ以上の交互方式を実行するために用いられうる。これにより、第3積分器1283は、第3アナログ相関信号1285を生成でき、第4積分器1284は、第4アナログ相関信号1286を生成できる。
第2入力スイッチ1281は、入力スイッチ961と同様の機能を果たす。例えば、第2入力スイッチ1281は、第3積分器1283と第4積分器1284とを選択的に第2乗算器1234に接続することで、1つ以上の交互方式を作動させる。第2出力スイッチ1282は、出力スイッチ962と同様の機能を果たす。例えば、第2出力スイッチ1282は、第3積分器1283と第4積分器1284とを選択的に第2アナログ−デジタル変換器(ADC)1238に接続することで、1つ以上の交互方式を作動させる。
この並列構成に対応するために、アナログ相関器モジュール1210は、追加的な乗算器、時間遅延素子、及びテンプレート信号を含む。複製路に沿って,例えば、アナログ相関器モジュール1210は、第1可変時間遅延素子(VTDC)1221と第1一定時間遅延素子(CTDC)1223とを備える。第1VTDC1221は、図9で説明した第1VTDC924と同様の機能を果たす。これにより、第1VTDC1221は、第1VTDC924と同様の態様で、タイミング制御器926によって調整されうる。
第1VTDC1221は、第1乗算器1232及び第1CTDC1223に供給される第1テンプレート信号1222を生成する。第1テンプレート信号1222は、増幅PCR信号916で乗算されて、第1乗算信号1233を生成する。これに対応して、この第1乗算信号を用いて、第1アナログ相関信号1265及び第2アナログ相関信号1266を生成する。
第1CTDC1223は、一定の時間遅延TDCを第1テンプレート信号1222に与えて、第2テンプレート信号1224を生成する。これにより、第2テンプレート信号1224は、第1テンプレート信号1222の時間シフトされた信号となる。第2テンプレート信号1224は、第2乗算器1234で、増幅PCR信号916と乗算される。第2乗算器1234では、このような乗算に基づいて第2乗算信号1235を生成する。これに対応して、第2乗算信号1235用いて、第3アナログ相関信号1285及び第4アナログ相関信号1286を生成する。
この並列構成の動作を更に詳しく述べるために、図13は、本発明の第3の実施形態による高速感知方式1300における種々の信号の波形図を示す。本明細書において、高速感知方式1300は、アナログ相関器モジュール1210が実行可能な多数の高速感知方式の中の1つのみを表している。高速感知方式1300は、他の設計の目的にかなうよう更に改良されてもよい。これにより、高速感知方式1300は、アナログ相関器1210の一般的な範囲と概念を示しているが、この範囲と概念を限定するものではない。
簡潔にするため、高速感知方式1300を用いて、受信PCR信号945の一部である、受信PCRパルス1310(又は、VGAが配置されている場合は、増幅PCRパルス)を検出する。第1テンプレート信号1222は、第1複製PCRパルス1320を含む。高速感知方式1300が、数回の検出周期を経るにつれて、第1テンプレート信号1222の調整可能時間遅延TD1は、実質的にn*TSと等しくなる。ここで、nは第1検出周期後の、検出周期の数を示す。
第1CTDC1223によって時間シフトされた後、第2テンプレート信号1224は、第1複製PCRパルス1320に対して一定の時間的分離を保つ、第2複製PCRパルス1330を含む。ある実施形態では、第1CTDC1223は、1/2PCRパルス幅であるTP/2の一定の時間遅延TDCを、第2複製PCRパルス1330に与えてもよい。高速感知方式1300が、数回の検出周期を経るにしたがって、第2テンプレート信号1224の調整可能時間遅延TD2は、実質的にTP/2+n*TSと等しくなる。各検出周期では、受信PCR信号945は、2つの時間シフトされたテンプレート信号(例えば、第1及び第2テンプレート信号1222及び1224)によって乗算されている。
この結果、時間遅延調整の最大数を、約TP/TSから約TP/(2*TS)に減少させることができる。レーダセンサ900と比べると、高速レーダセンサ1200は、検出周期の半分で全体の検出可能範囲をスイープすることができる。図13は、2つの時間シフトされたテンプレート信号が用いられていることを示すが、高速レーダセンサ1200は、3つ以上のテンプレート信号を用いて、検出処理の速度を更に向上してもよい。例えば、3つのテンプレート信号を3つの積分器モジュールとともに用いると、全スイープ時間を、元のスイープ時間の1/3に減らすことができる。
図12を再び参照すると、アナログ相関器モジュール1210は、サンプリング経路に沿って第2VTDC1225と第2CTDC1227とを備える。第2VTDC1225は、図9で述べた第2VTDC928と同様の機能を果たす。これにより、第2VTDC1225は、第2VTDC928と同様の態様で、タイミング制御器926によって調整されうる。
第2VTDC1225は、第1ADC1236及び第2CTDC1227に送信される、第1時間シフトサンプリング信号1226を生成する。この第1時間シフトサンプリング信号1226は、第1ADC1236のサンプリングレートを制御するのに用いられる。第1時間シフトサンプリング信号1226を受信すると、第2CTDC1227は、第2時間シフトサンプリング信号1228を生成することになる。第2時間シフトサンプリング信号1228は、第2ADC1238のサンプリングレートを制御するために用いられる。第1乗算器1232、第1積分器モジュール1260、及び第1ADC1236の動作を統制するために、第1時間シフトサンプリング信号1226のサンプリングレートは、実質的に第1テンプレート信号1222の複製レートと同期される。同様に、第2乗算器1234、第2積分器モジュール1280、及び第2ADC1238の動作を統制するために、第2時間シフトサンプリング信号1228のサンプリングレートは、実質的に第2テンプレート信号1224の複製レートと同期される。
これまで説明したように、積分器群1250の各積分器モジュールは、並列構成の中で同様の物理的性質を持っていてもよい。例えば、各積分器の電荷蓄積素子は、同様の時定数を有してもよく、各積分器の放電路は、同様に構成されてもよい。しかしながら、種々の別の実施形態によれば、積分器群1250は、それぞれ異なった物理的性質を持つ、数個の積分器モジュールを備えていてもよい。このような非対称の配置によって、積分器群1250は、種々の符号長さの符号列を処理できる。一般に、長い符号化パルスは、遠方の対象物を検出するのに用いられ、短い符号化パルスは、近傍の対象物を検出するのに用いられうる。長い符号化パルスと短い符号化パルスの両方に対応するため、アナログ相関器モジュールは、大きな時定数を持つ積分器と、小さい時定数を持つ積分器とを選択的に作動させてもよい。
図14は、本発明の第4の実施形態による動き感知レーダセンサ1400の概略図を示す。高速レーダセンサ1200と比べると、動き感知レーダセンサ1400は、いつくかの改良点を含む。例えば、アナログ相関器モジュール1210内の時間シフト(すなわち時間遅延)素子が改良されて、高速動き感知方式を実施する。
動き感知方式は、第1時間インスタンスで対象物の第1位置を検出し、第2時間インスタンスで同じ対象物の第2位置を検出することを含む。第1位置を検出した後、動き感知方式では、次に受信するPCRパルスを、一対のテンプレート信号と相関させる。この一対のテンプレート信号は、反対方向に(例えば、前方及び後方に)時間シフトすなわち遅延されている。対象物が動き感知レーダセンサ1400に近づいているか、遠ざかっているかによって、テンプレート信号の中の1つが、次の受信PCRパルスと相関される。これにより、動き感知方式では、相関されたテンプレート信号を用いて、第2位置を検出する。
第1検出位置を第2検出位置と比較することで、動き感知方式では、対象物の動きを判定する。動き感知方式では、検出された対象物を、前方と後方の両方に向かうテンプレート信号と比較するようになされているので、動き感知方式では、上述の方式に比べて、より敏活な態様で、速い動きの対象物の動きを感知する。
より詳細には、アナログ相関器モジュール1410は、第1後方可変時間遅延素子VTDC1421と、第1前方VTDC1423と、第2後方VTDC1425と、第2前方VTDC1427とを備える。タイミング制御器926は、第1後方VTDC1421及び第2後方VTDC1425における1つ以上の時間遅延素子を作動させる後方遅延調整信号1451を生成する。タイミング制御器926はまた、第1前方VTDC1423及び第2前方VTDC1427における1つ以上の時間遅延素子を作動させる前方遅延調整信号1453を生成する。
後方遅延調整信号1451に基づいて、第1後方VTDC1421は、第1後方テンプレート信号1422を生成する。第1後方テンプレート信号1422は、増幅PCR信号916で乗算されて、第1乗算信号1233を生成する。これに対応して、第1乗算信号を用いて、第1アナログ相関信号1265及び第2アナログ相関信号1266を生成する。
同様に、前方遅延調整信号1453に基づいて、第1前方VTDC1423は、第1前方テンプレート信号1424を生成する。第1前方テンプレート信号1424は、増幅PCR信号916で乗算されて、第2乗算信号1235を生成する。これに対応して、第1乗算信号を用いて、第3アナログ相関信号1285及び第4アナログ相関信号1286を生成する。
対象物の動きを判定する際に、検出制御器930は、第1アナログ相関信号1265と、第2アナログ相関信号1266と、第3アナログ相関信号1285と、第4アナログ相関信号1286とで、連続する自己相関量を比較する。ある実施形態では、例えば、検出制御器930は、第1アナログ相関信号1265及び/又は第2アナログ相関信号1266の自己相関量が、連続した回数の検出周期において、所定の閾値を超えたら、対象物が後方移動していると判定してもよい。他の実施形態では、例えば、検出制御器930は、第3アナログ相関信号1285及び/又は第4アナログ相関信号1286の自己相関量が、連続した回数の検出周期において、所定の閾値を超えたら、対象物が前方移動していると判定してもよい。
この動き感知方式の動作を更に詳細に述べるために、図15は、本発明の第4の実施形態による動き感知方式1500における種々の信号の波形図を示す。本明細書中において、動き感知方式1500は、アナログ相関器モジュール1410が実行可能な多数の動き検出方式の中の1つのみを表している。動き感知方式1500は、他の設計の目的にかなうよう更に改良されてもよい。これにより、動き感知方式1500は、アナログ相関器1410の一般的な範囲と概念を示しているが、この範囲と概念を限定するものではない。
簡潔にするため、図15は、動き感知方式1500が、前回の検出周期において移動している対象物の第1位置を既に検出したことを示す。検出された第1位置は、増幅PCR信号916の相関PCRパルス1512で表される。今回の検出周期で、移動している対象物は、第1位置にとどまったままであるか、レーダセンサ1400に近づいているか、レーダセンサ1400から遠ざかっているかである。
対象物が静止したままであるならば、次回の増幅PCRパルスは、相関PCRパルス1512と同じ時間位置を持つことになる。対象物がレーダセンサ1400に近づくならば、次回の増幅PCRパルスは、後方移動PCRパルス1514と重複することになる。後方移動PCRパルス1514は、相関PCRパルス1512に対して後方時間変位1501を有する。対象物が、レーダセンサ1400から遠ざかるならば、次回の増幅PCRパルスは、前方移動PCRパルス1516と重複することになる。前方移動PCRパルス1516は、相関PCRパルス1512に対して前方時間変位1502を有する。
増幅PCR信号916に表れているのは後方移動PCRパルス1514であるか前方移動PCRパルス1516であるかを判定するために、動き感知方式1500で、増幅PCR信号916を、後方テンプレート信号1422と前方テンプレート信号1424とに相関させる。後方テンプレート信号1422は、後方PCRパルス1520を含む。nを起動検出周期後の検出周期数とすると、後方PCRパルス1520は、約n*TSの後方時間遅延TD1を有することになるであろう。
一方、前方テンプレート信号1424は、前方PCRパルス1530を含む。nを起動検出周期後の検出周期数とすると、前方PCRパルス1530は、約n*TSの前方時間遅延T D2 を有する。後方時間遅延TD1は、相関PCRパルス1512の開始時間T0の基準となりうる。一方、前方時間遅延TD2は、相関PCRパルス1512の終了時間T0+TPの基準となりうる。後方時間遅延T D1 と同じ基準点を得るために、前方時間遅延TD2は、(N−n)*TSとして表されてもよい。ここで、Nは、単位サブパルス幅TSに対するPCRパルス幅TPの比である。
増幅PCR信号916が、後方PCRパルス1520又は前方PCRパルス1530と相関されると、動き感知方式1500は、対象物が前方に移動しているか、後方に移動しているかを判定する。
図14に再び戻ると、第2後方VTDC1425は、後方サンプリング信号1426を生成し、第2前方VTDC1427は、前方サンプリング信号1428を生成する。後方サンプリング信号1426は、第1ADC1236に送信され、第1ADC1236のサンプリングレートを制御するのに用いられる。同様に、前方サンプリング信号1428は、第2ADC1238に送信され、第2ADC1238のサンプリングレートを制御するのに用いられる。
第1乗算器1232、第1積分器モジュール1260、及び第1ADC1236の動作を統制するために、後方サンプリング信号1426のサンプリングレートは、実質的に後方テンプレート信号1422の複製レートと同期される。同様に、第2乗算器1234、第2積分器モジュール1280、及び第2ADC1238の動作を統制するために、前方サンプリング信号1428のサンプリングレートは、実質的に前方テンプレート信号1424の複製レートと同期される。
図12及び図14は、高速レーダセンサ1200及び動き感知レーダセンサ1400が2つの別個の実施形態であることを示しているが、高速レーダセンサ1200の1つ以上の構造的な構成と、動き感知レーダセンサ1400の1つ以上の構造的な構成とが、組み合わされて1つの実施形態となされもよい。従って、組み合わされた実施形態は、高速レーダセンサ1200と動き感知レーダセンサ1400との両方の機能的利点を有することになる。更に、本開示では、動き感知ーダセンサ1400の枠組みの中でのみ動き感知方式を述べたが、他の動き感知方式が、レーダセンサ100、レーダセンサ900、及び高速レーダセンサ1200の枠組みの中で実施されてもよい。
本発明の例示的実施形態を例示的に開示してきた。従って、全体を通して用いられた専門用語は、限定的に理解されるべきではない。当業者はこの教示に若干の改変を加えることがあるとしても、この明細書中で正当に述べられた特許の範囲内にあると意図される事項は、この明細書中で述べられた技術に対する提案の範囲に正当に当てはまるすべての実施形態であり、この範囲は、添付の請求項とその均等物との観点から以外では、制限されるものではないことが理解されるべきである。
本発明の範囲と精神を逸脱することなく、上述の好ましい実施形態の種々の適用と改変とが可能であることは、当業者なら理解できるであろう。そのため、補正請求項の範囲内で、本明細書中で詳細に述べた以外で本発明が実行されてもよいことが理解されるであろう。