JP5997006B2 - 太陽光発電装置 - Google Patents

太陽光発電装置 Download PDF

Info

Publication number
JP5997006B2
JP5997006B2 JP2012239434A JP2012239434A JP5997006B2 JP 5997006 B2 JP5997006 B2 JP 5997006B2 JP 2012239434 A JP2012239434 A JP 2012239434A JP 2012239434 A JP2012239434 A JP 2012239434A JP 5997006 B2 JP5997006 B2 JP 5997006B2
Authority
JP
Japan
Prior art keywords
current
power
lightning
control unit
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012239434A
Other languages
English (en)
Other versions
JP2014090588A (ja
Inventor
真一郎 渡利
真一郎 渡利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012239434A priority Critical patent/JP5997006B2/ja
Publication of JP2014090588A publication Critical patent/JP2014090588A/ja
Application granted granted Critical
Publication of JP5997006B2 publication Critical patent/JP5997006B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Protection Of Static Devices (AREA)

Description

本発明は太陽光発電装置に関する。
従来、太陽電池を電源として負荷を運転する太陽光発電システムにおいては、配電用遮断器、サーキットプロテクタ等に過電流保護機能が備わっており、この過電流保護機能が、短絡電流を検出して、遮断器によって回路を遮断して負荷を保護していた。また、遮断器の過電流保護機能による電流値検出で太陽電池出力短絡検出および回路の遮断を良好に行なうことができない場合には、遮断器の外部に比較器や論理回路を設けていた(例えば、特許文献1参照)。
特開平5−343722号公報
しかしながら、昨今、雷光によって太陽電池が発電する場合があることがわかってきた。そして、この発電によって、太陽電池の通常の発電時よりも大きな電流が発生する。そのため、このときの発電電力は、負荷の定格電力値を超える場合がある。このような場合、過電流保護機能が作動して回路が遮断されて、負荷の駆動が停止する。これは、過電流保護機能が、雷光によって得られた電流を過電流として認識したからである。これにより、太陽光発電システムの発電された電力(電流)を負荷に効率良く送電できなくなる虞があった。
本発明の1つの目的は、機器の特性に影響を与えにくい雷光等の閃光による太陽電池の発電の様子を監視し、発電された電流の負荷等への送電を制御する太陽光発電装置を提供することにある。
本発明の一実施形態に係る太陽光発電装置は、太陽電池と、該太陽電池から出力された電流の電流波形を検出する検出部と、前記電流の送電を制御する制御部とを備え、前記制御部は、前記電流波形のうち、閃光の入力に起因して前記検出部で検出された10msec以下のパルス幅を有するショットパルスの回数に応じて、過電流保護機能が動作しないように制御する。
本発明の一実施形態に係る太陽光発電装置によれば、雷光等の閃光によって太陽電池の電流波形におけるショットパルスとして検出される一時的な過電流が発生しても、例えば、電流が送電される機器等の負荷に対する影響が小さい場合、送電を停止せずに、送電を維持する制御を行なうことができる。これにより、太陽光発電装置で発電された電力(電流)を効率良く負荷に送電することができる。
本発明に係る太陽光発電装置の実施形態の一例を説明するブロック構成図である。 本発明の一実施形態に係る太陽光発電装置の発電電流の波形の一例を示すグラフである。 本発明に係る第1実施形態を説明する制御フローチャートである。 本発明に係る第2実施形態を説明する制御フローチャートである。 本発明に係る第4実施形態を説明する制御フローチャートである。 本発明に係る第5実施形態を説明する雷対策システムのブロック図である。
以下、本発明に係る太陽光発電装置の実施形態の各例について図面を参照しながら説明する。
<実施形態1>
太陽光発電装置X1は、図1に示すように、太陽電池10、パワーコンディショナ20、出力部30、交流負荷40等を備えている。また、太陽光発電装置X1には、商用電力系統50が接続されている。
太陽電池10は、太陽光発電装置X1の直流発電部として機能する。太陽電池10は、例えば、複数の太陽電池モジュールが直列および/または並列に接続されてなる太陽電池アレイで構成されている。太陽電池モジュールは、例えば、多結晶シリコンまたは単結晶シリコンからなる太陽電池セルを直列接続して構成されている。太陽電池モジュールは、CIS、CIGS、CZTSまたはCdTe等の化合物半導体を用いたものであってもよい。
パワーコンディショナ20は、主として、太陽電池10で発電された直流電力を交流電力に変換する電力変換部として機能する。パワーコンディショナ20は、DC/DC変換部21、スイッチング22、制御部23および記憶部24等を有している。
DC/DC変換部21は、太陽電池10で発電された直流電流を昇圧する機能を有している。DC/DC変換部21は、例えば、太陽電池10で発電した電圧を200〜300V程度になるように調整する。DC/DC変換部21は、例えば、スイッチング素子、コンデンサ、リアクトルおよびダイオード(不図示)等で構成されている。
DC/DC変換部21の内部もしくは入力側には、太陽電池10で発電された電流を検出する検出部としての電流センサ21aが設けられている。電流センサ21aは、太陽電池10で発電された電流の波形(電流波形)を検出する。このような電流センサ21aとしては、例えば、ホール素子等の磁気センサおよび鉄芯から成る電線クランプ型のものが用いればよい。また、DC/DC変換部21には、MPPT制御部21bが設けられている。MPPT制御部21bは、太陽電池10が最大電力点で発電可能となるように太陽電池10の動作電圧を制御する機能を有する。MPPT制御部21bは、電流センサ21aで検出された電流情報および電圧値に基づいて最大電力点を合わせる制御を行なう。このような電流情報および電圧値は、例えば、表示装置で表示させてもよい。なお、DC/DC変換部21は、入力電圧の変化に対応して出力電圧を調節すべく、変換電圧に応じてパルスのデューティをコントロールするPWM方式でスイッチング素子を制御してもよい。そして、最大電力点となるように制御された電力は、スイッチング部22に送電される。
スイッチング部22は、入力された直流電力を交流電力に変換する。スイッチング部22は、トランジスタ、FETまたはトライアックを用いたブリッジ回路で直流電力をスイッチングして交流電力に変換するスイッチ回路部と、該スイッチ回路部におけるスイッチング周波数やデューティをコントロールする周波数制御部と、スイッチングにより交流化された電力波形を商用電力系統の交流波形に近い曲線に鈍らせるフィルター回路部等で構成される。
一方、電流センサ21aで検出された電流情報は、制御部23にも送られる。制御部23は、DC/DC変換部21およびスイッチング部22の動作状態の監視、ならびに商用電力系統50の異常(停電等)およびパワーコンディショナ20の異常を判定し、保護動作を指令する機能を有する。また、記憶部24には、機器を異常と判定するための情報がデータとして保存されている。これにより、制御部23は、内部に設けられたCPU等の集積回路によって記憶部24に保存されたデータと、外部から得られる電圧・電流・電力・周波数の情報と照らし合わせて、上記異常がパワーコンディショナ20、交流負荷40または商用電力系統50に悪影響を及ぼすと判定した場合に、パワーコンディショナ20の一部または全部を停止させる。また、制御部24は、上述のような異常が発生した場合に、出力部30から警報等を出力する指令を出すこともできる。
出力部30は、上述のような異常の発生を表示部等で示すことによって、太陽光発電装置X1の異常を容易に確認することができる。この出力部30は、例えば、パワーコンディショナ20の一部に設けた表示部であってもよい。また、出力部30は、外部に設けたモニタ等であってもよい。
次に、異常判定の一例について説明する。例えば、太陽電池10の誤配線でパワーコンディショナ20に定格入力電流を超える大電流が流れた場合、まず、電流センサ21aで電流情報を検出する。次に、制御部23で検出された電流情報および予め記憶部24に記憶させていた最大許容電流値を比較する。次いで、検出された電流が許容値を超えていると判定された場合、DC/DC変換部21またはスイッチング部22を停止させる。これにより、パワーコンディショナ20への送電が制御(停止)されるため、パワーコンディショナ20の破損等が低減される。上述のような機能は、過電流保護機能と呼ばれる。
交流負荷40は、パワーコンディショナ20で交流に変換された電力で駆動する機器等である。このような機器としては、例えば、冷蔵庫等の家電製品等が挙げられる。また、パワーコンディショナ20で交流に変換された電力のうち、交流負荷40で使用されない余剰電力は、逆潮流(売電)するために商用電力系統50に送電される。なお、太陽光発電装置X1は、パワーコンディショナ20の出力側には家電製品などの交流負荷40を接続しつつ、商用電力系統50と連系して交流負荷40に双方から電力を供給する系統連系型である。
ところで、上述の例のように電流センサ21aで太陽電池10からの大電流の流れ込みを検出する場合には、過電流保護機能の反応時間が早いほど過電流が与えるパワーコンディショナ20への負担は小さくなる、最近では、上述したような太陽電池10の誤配線にではなく、雷光等の閃光によって瞬間的に太陽電池10の発電電流が最大許容電流を超える場合があることが見出されている。それゆえ、雷光が発生すれば、過電流保護機能が作動する場合があった。これにより、雷光が発せれるたびにパワーコンディショナ20が停止する現象が起きていた。ここで、パワーコンディショナ20を再度駆動させるためには、手動復帰または再起動等の作業が必要となる。それゆえ、パワーコンディショナ20が再度駆動するまで、電力変換動作が行なわれないため、その間、発電電力を活用できなくなる。
また、雷光によって発生した大電流と、太陽電池10の誤配線によって発生した大電流とは区別しにくい。この区別の方法としては、例えば、過電流と判定された電流状態が一定時間継続(例えば300msec)したか、または、一旦パワーコンディショナを停止させた後に一定時間後(例えば10sec)に再度電流計測して電流値に問題がなければ自動で再起動させるなどの方法が用いられる。しかしながら、前者の場合は、一定時間内であっても過電流が流入するため、パワーコンディショナ20の内部の半導体素子等が破
損する可能性があった。また、後者の場合は、パワーコンディショナを停止させてしまった分、得られる発電電力が少なくなる。また、パワーコンディショナ20は、起動時および停止時に遮断器25を動作させるが、この動作には接点動作音がするため、騒音が増加する。
そこで、本実施形態では、雷光等の閃光によって発電した太陽電池10の電流波形を検出し、得られた電流波形に基づいて太陽電池10で発電された電流の送電を制御することによって、効率良くパワーコンディショナ20を駆動させている。以下に本実施形態におけるパワーコンディショナ20の制御について説明する。
まず、電流センサ21aを用いて太陽電池10で発電された電流の情報を電流波形として検出する。これにより、電流の増加の様子を監視する。このとき、10msec以下のパルス幅を有するショットパルスが検出されたら、雷光等の閃光による発電と判定する。ショットパルスは、定常状態の発電電流に対して発生した急激な電流増加によって電流波形に示される。このとき、所定時間内で検出されたショットパルスの回数が所定回数以下であれば、過電流保護機能を作動させない。すなわち、制御部23は、送電を維持してパワーコンディショナ20を停止させない。一方、所定時間内で検出されたショットパルスの回数が所定回数よりも多い場合、過電流保護機能を作動させてパワーコンディショナ20を停止させる。なお、パワーコンディショナ20を停止させる、もしくは過電流保護機能を動作させないための制御信号は、制御部23の内部で処理されるようにするために、出力部30を制御部23と一体としても良い。
また、ショットパルスには、最大許容電流のような上限値を設定してショットパルスの電流値が当該上限値を超すかどうかの判定基準を設けてもよい。また、太陽電池の発電電流は光の強さに比例するため電流値の絶対値をもって雷光の強さを判定すればよい。次に、雷光発生時に太陽電池10が発電して得られる電流波形について図2を用いて説明する。
図2は、図1でパワーコンディショナ20に接続された太陽電池10の発電電流の変化を表したグラフである。このグラフは、電流センサ21aが検出した電流情報を電流波形で表示したものである。太陽電池10は、パワーコンディショナ20のMPPT制御によって電流波形が波状に増減しているが、MPPT制御が行われない場合はほぼ直線状の波形となる。図2において、電流値Imidは太陽電池10の定格出力電流であり、通常の日射条件で発電され、パワーコンディショナ20に入力される電流値である。また、電流値Imaxは、パワーコンディショナ20の最大入力電流であり、この電流値を超えない範囲で太陽電池10の出力電流が決定される。
また、図2おいて、電流値Imidおよび電流値Iを超えて検出され、且つパルス幅が10msec以下の波形がショットパルスBである。また、図2において、電流値Imaxを超えて検出され、且つパルス幅が10msec以下の波形がショットパルスCである。なお、以下の説明おいて、ショットパルスの電流値とは、該ショットパルスの電流値の最大値を指す。このように、雷光による発電では、雷光の光の強さによって電流値Imaxよりも小さい過電流が検出される場合がある。このようなショットパルスBで示された過電流は、長時間検出されなければ、パワーコンディショナ20の特性に影響を与えにくいため、パワーコンディショナ20の破損等は生じにくい。それゆえ、本実施形態では、所定時間内で所定回数以下のショットパルスBが検出されても、パワーコンディショナ20への送電を維持することによって、パワーコンディショナ20を停止させてないようにしている。すなわち、このような場合であれば、制御部23が過電流保護機能を作動させない判定を行なっていることとなる。
次に、図2において、電流値Imaxよりも大きい電流値を有するショットパルスCを検出した場合の制御フローについて図3を参照しつつ説明する。
まず、電流センサ21aで測定された電流情報は制御部23に送られる(STEP1)。次に、電流値および時間から電流波形を算出する(STEP2)。次いで、制御部23でSTEP2において検出された電流値がパワーコンディショナ20の最大入力電流(本実施形態では電流値Imax)よりも大きいか否かを判定する(STEP3)。ここで、電流値が通常発電の範囲内であればSTEP7に進む。このSTEP7において、ショットパルスが所定回数以上に発生していることが確認されれば、何らかの異常が生じている可能性がある。そのため、エラーコード等の警告情報を表示装置等に表示させてもよい(STEP10)。このSTEP10により、問題点に対して早期に対応が可能となる。なお、ショットパルスが所定回数以下であればSTEP1に戻る。
他方、STEP3で検出された電流値が電流値Imaxよりも大きければ、検出されたショットパルスCの立ち上がりから立下りまでの時間を測定、ショットパルスCのパルス幅tcが10msec以下であるか否か判定する(STEP5)。STEP5において、ショットパルスCのパルス幅tcが10msec以下であれば雷光による発電と判定し、STEP6に進む。そして、制御部23は、パワーコンディショナ20の過電流保護機能が動作しないように制御回路に信号を送る(STEP6)。次いで、STEP7において、このSTEP7において、ショットパルスが所定回数以上に発生していることが確認されれば、STEP10を経て上述したように異常の発生を表示させるような制御を行なう。また、STEP10で出力された表示を確認し、必要に応じて、パワーコンディショナ20を手動で停止するような対応を行なってもよい(図示なし)。
また、STEP5において、ショットパルスCのパルス幅が10msecよりも大きい場合には、入力電流の異常としてSTEP12に進んで過電流保護機能を作動させてパワーコンディショナを停止させる。このとき、STEP12の前にSTEP11のような条件分岐を設けて過電流保護機能の動作に制限を持たせてもよい。同図中の事例では、STEP5の後、STEP11では、電流値が上限(例えば、電流値Imax)を超える状態が300msec以上継続したことを確認した後、STEP12に進むとしている。このように、ショットパルスCのパルス幅が10msecを超えても、パワーコンディショナ20への影響が小さければ、所定の時間までは過電流保護機能を作動させないような制御を行なってもよい。
なお、上述の例では、DC/DC変換部21またはスイッチング部22を停止させることによって、パワーコンディショナ20への送電を制御(停止)していたが、この方法に限定されるものではない。例えば、パワーコンディショナ20の主電源をOFFにする制御を行なうことで、パワーコンディショナ20の動作を完全に停止させるようにしてもよい。この方法であれば、系統連係用のリレーからパワーコンディショナ20を解列しやすくなる。この場合、万一停電が生じたとしてもパワーコンディショナからの逆潮流(売電)によって系統側に電圧が発生しにくくなるため、安全性が向上する。
<実施形態2>
本実施形態では、実施形態1で述べた波形の検出工程において、波形のピーク電流値が電流値Imax以下であっても、パルス幅tcが10msec以下のショットパルスを抽出するようにしている。これにより、雷光の強弱にかかわらず雷の発生を情報として提供することができるため、雷サージによるパワーコンディショナ20の破損を低減するための保護動作を行なうことができるようになる。電流値Imaxよりも電流値が小さいショットパルスBを検出して所定の制御を行なう本実施形態について、図4を参照しつつ説明する。
まず、本実施形態では、上述したように、ショットパルスBの電流値が電流値Imaxよりも小さいため、STEP3における電流値は常に上限値以下となる。それゆえ、本実施形態では、自動的にSTEP4に進む点で実施形態1のステップと相違する。次に、ショットパルスBの電流値が所定値以上であるか否か判定される(STEP4)。そして、ショットパルスBの電流値が所定値よりも小さければSTEP7に進む。一方、ショットパルスBの電流値が所定値以上であれば、ショットパルスBのパルス幅が10msec以下であるか否か判定する(STEP5)。なお、上述の所定値とは、例えば、太陽電池10が雷光によって発電したと推定される電流値を用いればよい。本実施形態では、例えば、電流の絶対値として電流値Iを所定値として設定し、電流値がIを超えるか否かで判定すればよい。本実施形態において、上記所定値は、太陽電池10の定格出力電流以上としているが、これに限定されるものではない。
次いで、パルス幅が10msec以下のショットパルスBが所定回数以下か否かを判定する(STEP7)。ここで、ショットパルスBが所定回数を超えて発生している場合は、雷光の強さは小さくても落雷頻度が高いことを示している。そのため、落雷による雷サージ、停電または瞬時電圧低下等の影響でパワーコンディショナ20が故障または誤動作等の不具合を起こす可能性がある。そこで、ショットパルスBが所定回数を超えて発生している場合は、パワーコンディショナ20を停止させる制御を行なう(STEP13)。
一方、STEP7において、ショットパルスBの回数が所定回数以下であれば、異常なしとしてSTEP1に戻してもよい。このとき、電流波形の電流値の大きさを時系列で解析するステップ(STEP8)および電流の増減の傾向を掴んで将来の制御予測を行なうステップ(STEP9)に進んでもよい。これにより、STEP8およびSTEP9で得られた情報を必要に応じて演算し、STEP10における警告情報と同時に出力すれば、使用者がパワーコンディショナ20の停止を判断する際の判断材料とすることができる。一方、STEP8およびSTEP9で得られた情報に基づいて、STEP13に進んで自動制御でもってパワーコンディショナ20を停止させてもよい。
本実施形態では、電流波形のショットパルスの発生の様子を監視することにより、将来の雷の発生状況を予測できるため、雷サージ、停電または瞬時電圧低下等への対応が可能となる。
<実施形態3>
本実施形態では、ショットパルスが検出されにくい状態における制御方法について説明する。具体的に、本実施形態では、図2に示すように、電流値Iよりも低い電流値のショットパルスEを雷光として検出する方法について説明する。ショットパルスEのような電流波形は、電流値の増減における変化が小さいため、電流波形のノイズであるか、雷光による瞬間的な発電増加なのかを区別しにくい。そこで、本実施形態では、電流の所定値Iに加えて電流の変化幅Δiを検出することで雷光の検知感度を向上させている。
具体的に、本実施形態では、所定時間における発電電流の変化を監視し、電流値の瞬間的な増加(10msec以下)が生じた際に、電流の変化量を算出する。そして、この変化量から電流値に所定以上の変化幅Δiが生じていたならば雷光によるショットパルスと判断する。このようにすれば、図中の電流波形を破線で示したように周囲の日射強度が低下して発電電流が低下し、雷光が検出し易い環境となった場合には、それまで発電電流と識別し辛かった雷光による発電電流のショットパルスが捉えられるようになる。これにより、電流の所定値I以下の発電電流しか出力できない雷光についても雷発生の情報として入手可能となる。
電流値の所定以上の変化幅Δiの具体的な値は正数であれば特に限定されないが、例えば発電電流が10[A]であれば電流値が瞬間的に12[A]以上に増加した場合には雷光による発電であると判定すればよい。また、発電電流値に対する変化幅をΔiとしているため、日射強度が低下するほど暗い雷光も検出可能となる。これにより、雷雲によって周囲が暗くなっていても、雷光検知の精度が高まり、雷による影響を回避しやすくなる。また、例えば、図2中の太陽電池10の電流波形のImidが10[A]の場合、日射強度が低下して図中破線のように太陽電池の発電電流波形が6[A]になったとすると、ショットパルスEの変化幅Δiは、4[A]増えて6[A]のショットパルスとして認識できる。また、本実施形態であれば、夜間の雷光検知も可能なので、太陽電池10を雷光センサとして家電機器などの故障回避のための雷光情報の提供装置としても利用することが可能である。
<実施形態4>
本実施形態では、パルス幅が10msec以下のショットパルスの回数に応じて送電を制御する方法について図6を参照しつつ説明する。なお、本実施形態は、STEP5でパルス幅が10msec以下のショットパルスか否かを判定するステップまでは実施形態1および実施形態2と同じである。
本実施形態では、パルス幅が10msec以下のショットパルスを所定回数以上検出された場合に、過電流保護機能を作動させている。例えば、本実施形態では、STEP14で一定時間内(例えば、500msec)に10個のショットパルスが検出されるような周期を有する電流波形が得られた場合、パルス状の過電流が入力されていると判定してSTEP12で過電流保護機能を作動させ、パワーコンディショナ20を停止させてもよい。また、STEP14において、数回のショットパルスが検出された後に、所定時間の間、ショットパルスが検出されなくなった場合には、雷光が連続的に発生していないと判定してSTEP15に進むようにしておけば、複数の雷光がほぼ同時に発生した場合などに連続してほぼ重なるように発生するショットパルスでパワーコンディショナ20を停止させてしまう誤判定を低減できる。
本実施形態では、STEP14でショットパルスが所定時間以上の頻度で周期的に発生するか否かを判定することにより、誤動作を極力少なくできる。
また、STEP14までに検出された上限値および所定値以上のショットパルスに加え、STEP16で電流の変化幅Δiが所定以上である電流波形を検出した後、STEP17で電流波形の電流値の大きさを時系列で解析すれば、STEP18で電流波形の発生回数と大きさから雷サージによる影響の度合いを推測できる。具体的には、ショットパルスの電流値が増加傾向である場合またはショットパルスの発生時間の間隔が小さくなっている等の場合には影響の度合いが高まっていると推測する。また、STEP18で得られた情報を出力部30に表示させることによって、使用者への注意喚起を行なってもよい。また、STEP18で得られた情報に基づいて制御信号を送信して、パワーコンディショナ20を停止させて危険を回避するようにしてもよい。
<実施形態5>
本実施形態では、太陽電池10の発電で得られた電流波形より検出された雷光の情報をパワーコンディショナ以外の機器の保護にも利用している点で上述した実施形態と相違する。
太陽光発電装置X2は、図6に示すように、太陽電池10(図示なし)、パワーコンディショナ20、出力部30、交流負荷40、商用電力系統50(図示なし)、EMS装置60およびネットワークルーター70を備えている。
太陽光発電装置X2は、電流センサ21a(図示なし)で検出されたショットパルスから雷光による発電であると判定すると、雷光検出の情報を出力部30を通して外部の表示装置31に送って表示させることができる。これにより、使用者に対して雷の発生の注意喚起を行なうことができる。加えて、使用者は、状況に応じて他の機器(交流負荷)を停止させることができる。例えば、使用者は、テレビ、ビデオ、電子レンジ等のパワーコンディショナ以外の機器を雷サージから保護しやすくなる。また、出力部30がネットワークルーター70に接続されていれば、LAN接続された交流負荷40に停止信号を送って機器を停止させてもよい。
本実施形態では、出力部30からの信号がEMS(エネルギーマネジメントシステム)装置60にも送られる。EMS装置60には、交流負荷40である家電機器の駆動制御を行なう制御装置が導入されている。そのため、EMS装置60に雷光検出の情報を送ることにより、EMS装置60が交流負荷40を停止させ、雷サージからの保護を行なうことができる。EMS装置60で交流負荷40をコントロールする方法としては、例えば、送電線もしくはLANケーブルのような有線方式、または送信器61を用いて交流負荷40bの受信部(不図示)に信号を送る無線方式であってもよい。これにより、複数の交流負荷40を制御することができる。また、EMS装置60のように複雑な演算を可能とする装置であれば、内部で雷光検出の信号の詳細な解析も可能となる。それゆえ、より確度の高い制御を行なうことも可能である。よって、出力部30から電流波形の情報(信号)をEMS装置50に送信することによって、EMS装置60で雷の危険の程度を算出し、交流負荷40の動作を停止させるか否かを判定させるようにしてもよい。
出力部30からの信号は、インターネット等のネットワークルーター70に接続されていれば、メンテナンス会社等の外部サーバー80に雷光検出の情報を送ることができる。この外部サーバー80は、使用者の携帯端末90(強制制御部)等に情報を送ることができる。そして、電流波形の検出結果に基づく雷の情報を携帯端末90に内蔵された受信手段で受信した使用者は、当該携帯端末90の表示手段に表示された上記検出結果に基づく雷の情報を確認した後、例えば、携帯端末90に内蔵された送信手段から電流の送電の制御を強制的に行なう送電制御信号を、EMS装置60または交流負荷40に直接信号を送ってもよい。これにより、使用者が機器の停止を操作することができる。また、外部サーバー80に提供された雷光検出の情報を公開可能にするとともに、近隣の地域の使用者がその情報を閲覧できるようにすれば、太陽光発電装置X2と接続されてない交流負荷を雷サージから保護することができる。
X1、X2:太陽光発電装置
10:太陽電池
20:パワーコンディショナ
21:DC/DC変換部
21a:電流センサ(検出部)
21b:MPPT制御部
22:スイッチング部
23:制御部
24:記憶部
25:遮断器
30:出力部
31:表示装置
40:交流負荷
50:商用電力系統
60:EMS装置
61:送信器
70:ネットワークルーター
80:外部サーバー
90:携帯端末

Claims (4)

  1. 太陽電池と、
    該太陽電池から出力された電流の電流波形を検出する検出部と、
    前記電流の送電を制御する制御部とを備え
    前記制御部は、前記電流波形のうち、閃光の入力に起因して前記検出部で検出された10msec以下のパルス幅を有するショットパルスの回数に応じて、過電流保護機能が動作しないように制御する、太陽光発電装置。
  2. 前記制御部は、前記電流の送電中に所定回数以下の前記ショットパルスが検出された場合には前記電流の送電を維持する、請求項1に記載の太陽光発電装置。
  3. 前記制御部は、前記電流の送電中に所定回数よりも多いショットパルスが検出された場合には前記電流の送電を停止する、請求項1に記載の太陽光発電装置。
  4. EMS装置または交流負荷に送電制御信号を送信する強制制御部をさらに備え、
    前記強制制御部は、前記電流波形の検出結果を受信する受信手段と、前記検出結果を表示する表示手段と、電流の送電の制御を強制的に行なう送電制御信号を送信する送信手段とを有する、請求項1乃至請求項3のいずれかに記載の太陽光発電装置。
JP2012239434A 2012-10-30 2012-10-30 太陽光発電装置 Expired - Fee Related JP5997006B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012239434A JP5997006B2 (ja) 2012-10-30 2012-10-30 太陽光発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239434A JP5997006B2 (ja) 2012-10-30 2012-10-30 太陽光発電装置

Publications (2)

Publication Number Publication Date
JP2014090588A JP2014090588A (ja) 2014-05-15
JP5997006B2 true JP5997006B2 (ja) 2016-09-21

Family

ID=50792035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239434A Expired - Fee Related JP5997006B2 (ja) 2012-10-30 2012-10-30 太陽光発電装置

Country Status (1)

Country Link
JP (1) JP5997006B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109769405A (zh) * 2016-08-16 2019-05-17 东芝三菱电机产业系统株式会社 电力转换装置及太阳能发电系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136933A (ja) * 1986-11-28 1988-06-09 京セラ株式会社 太陽電池電源装置
JP2678852B2 (ja) * 1992-02-06 1997-11-19 北陸電力株式会社 落雷位置標定装置
JPH07118486A (ja) * 1993-10-27 1995-05-09 Chisso Corp 結晶性プロピレン重合体組成物
JP3233521B2 (ja) * 1993-11-25 2001-11-26 シャープ株式会社 系統連系型逆変換装置
JP2006020390A (ja) * 2004-06-30 2006-01-19 Sharp Corp パワーコンディショナ
JP2006174675A (ja) * 2004-12-20 2006-06-29 Nec Access Technica Ltd 雷防止通信端末機とその雷防止方法および雷防止処理プログラム
JP4528207B2 (ja) * 2005-06-10 2010-08-18 パナソニック電工株式会社 集合住宅用遠隔監視制御システム
JP2007116857A (ja) * 2005-10-21 2007-05-10 Sharp Corp 太陽光発電装置用制御装置、及び太陽光発電装置の雷サージ保護システム、並びに太陽光発電装置の雷サージ保護方法
JP5213457B2 (ja) * 2008-01-07 2013-06-19 三菱電機株式会社 系統連系パワーコンディショナ
JP2011018865A (ja) * 2009-07-10 2011-01-27 Kawaguchi Denki Seisakusho:Kk 太陽電池システム用保安装置
JP5300693B2 (ja) * 2009-11-09 2013-09-25 中国電力株式会社 パワーコンディショナ保護装置及びパワーコンディショナ保護方法
JP5787781B2 (ja) * 2011-01-31 2015-09-30 京セラ株式会社 太陽光発電システム

Also Published As

Publication number Publication date
JP2014090588A (ja) 2014-05-15

Similar Documents

Publication Publication Date Title
KR100999978B1 (ko) 태양광 발전 시스템의 감시 제어 장치
KR101677930B1 (ko) 누설전류 및 아크의 감시 기능을 구비한 태양광 접속반
KR101181403B1 (ko) 태양광 및 풍력 하이브리드 발전을 이용한 계통 연계 시스템 및 이를 이용한 태양광 및 풍력 하이브리드 계통 연계 발전 장치
EP2608341B1 (en) Grounding device
WO2012026449A1 (ja) 地絡検出装置、その地絡検出装置を用いた集電箱及びその集電箱を用いた太陽光発電装置
JP5787781B2 (ja) 太陽光発電システム
JP2013534125A (ja) 危険状態において光起電力設備の発電機電圧を制限するための方法及び光起電力設備
KR101761269B1 (ko) 마이크로컨버터를 이용한 태양광 발전시스템
CN102005777A (zh) 一种光伏并网逆变器的控制方法及其控制系统
US9509134B2 (en) Centralized DC curtailment for overvoltage protection
US20160248246A1 (en) Detecting faults in electricity grids
KR101667914B1 (ko) 지능형 고장 예지형 태양광 발전 시스템
KR101881411B1 (ko) 태양광 발전 및 태양광발전 에너지 저장 시스템, 그리고 태양광 발전 및 태양광발전 에너지 저장 시스템에서의 아크 검출 및 차단방법
JP2015006074A (ja) 電力変換装置
KR20120086558A (ko) 감시 및 중성선 대체기능이 구비된 태양광 발전시스템
CN108899926B (zh) 光伏离并网储能逆变器
KR20170118393A (ko) Mppt를 활용한 태양광 발전 모니터링 시스템
JP5997006B2 (ja) 太陽光発電装置
CN102611075B (zh) 一种带液位控制的电动水泵智能监控保护装置
KR101337927B1 (ko) 전기안전보호기능 및 우회보정선로를 갖는 태양광발전 채널별 감시장치
KR101030925B1 (ko) 감시 및 중성선 대체기능이 구비된 태양광 발전시스템
JP5683400B2 (ja) 電力制御装置及び電力システム
CN206060225U (zh) 基于小型光伏发电系统的集控装置
JP7108860B2 (ja) 電源システム及び電源システムの制御方法
CN110808427B (zh) 塔式定日镜光伏供电及电池管理系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160825

R150 Certificate of patent or registration of utility model

Ref document number: 5997006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees