JP5988220B2 - Prepreg, metal-clad laminate, printed wiring board, multilayer printed wiring board - Google Patents

Prepreg, metal-clad laminate, printed wiring board, multilayer printed wiring board Download PDF

Info

Publication number
JP5988220B2
JP5988220B2 JP2013187585A JP2013187585A JP5988220B2 JP 5988220 B2 JP5988220 B2 JP 5988220B2 JP 2013187585 A JP2013187585 A JP 2013187585A JP 2013187585 A JP2013187585 A JP 2013187585A JP 5988220 B2 JP5988220 B2 JP 5988220B2
Authority
JP
Japan
Prior art keywords
prepreg
printed wiring
wiring board
metal
clad laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013187585A
Other languages
Japanese (ja)
Other versions
JP2014080582A (en
Inventor
武士 北村
武士 北村
岸野 光寿
光寿 岸野
博晴 井上
博晴 井上
稔 宇野
稔 宇野
雅也 小山
雅也 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013187585A priority Critical patent/JP5988220B2/en
Publication of JP2014080582A publication Critical patent/JP2014080582A/en
Application granted granted Critical
Publication of JP5988220B2 publication Critical patent/JP5988220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins

Description

本発明は、プリプレグ、前記プリプレグを用いて形成された金属張積層板、前記金属張積層板を用いて形成されたプリント配線板及び多層プリント配線板に関するものである。   The present invention relates to a prepreg, a metal-clad laminate formed using the prepreg, a printed wiring board formed using the metal-clad laminate, and a multilayer printed wiring board.

従来、プリプレグは、熱硬化性樹脂及び無機充填材を含有する樹脂組成物を織布基材に含浸させると共に、半硬化状態となるまで加熱乾燥して形成されている(例えば、特許文献1−3参照)。そして、このようにして形成されたプリプレグに金属箔を積層することによって金属張積層板を製造することができ、さらにこの金属張積層板に導体パターンを設けることによってプリント配線板を製造することができる。またこのプリント配線板にプリプレグを介して金属箔を積層し、この金属箔の不要部分を除去して導体パターンを設けることによって多層プリント配線板を製造することができる。その後、このプリント配線板又は多層プリント配線板に半導体素子を実装して封止することによってパッケージ(PKG)が製造されている。   Conventionally, a prepreg is formed by impregnating a woven fabric base material with a resin composition containing a thermosetting resin and an inorganic filler and heating and drying until a semi-cured state is obtained (for example, Patent Document 1). 3). A metal-clad laminate can be produced by laminating a metal foil on the prepreg thus formed, and a printed wiring board can be produced by providing a conductor pattern on the metal-clad laminate. it can. Moreover, a multilayer printed wiring board can be manufactured by laminating a metal foil on the printed wiring board via a prepreg, removing an unnecessary portion of the metal foil, and providing a conductor pattern. Thereafter, a package (PKG) is manufactured by mounting and sealing a semiconductor element on the printed wiring board or the multilayer printed wiring board.

特開平8−288416号公報JP-A-8-288416 特開2003−268136号公報JP 2003-268136 A 特開2007−246668号公報JP 2007-246668 A

しかし、従来のプリプレグでは、樹脂の粉落ちが発生しやすいという問題がある。またこのようなプリプレグを用いて金属張積層板を製造する場合には、熱硬化性樹脂と無機充填材とが分離して金属張積層板に外観不良が発生しやすいという問題もある。さらにこのような金属張積層板を用いて製造したプリント配線板の絶縁信頼性、導通信頼性が低下するおそれもある。   However, the conventional prepreg has a problem in that resin powder is likely to fall off. Further, when producing a metal-clad laminate using such a prepreg, there is also a problem that the thermosetting resin and the inorganic filler are separated, and appearance defects are likely to occur in the metal-clad laminate. Further, the insulation reliability and conduction reliability of a printed wiring board manufactured using such a metal-clad laminate may be lowered.

本発明は上記の点に鑑みてなされたものであり、粉落ちを低減することができると共に、外観が良好な積層板を製造することができるプリプレグ、外観が良好な金属張積層板、プリント配線板及び多層プリント配線板を提供することを目的とするものである。   The present invention has been made in view of the above points. A prepreg capable of reducing a powder fall and producing a laminate having a good appearance, a metal-clad laminate having a good appearance, and a printed wiring. An object of the present invention is to provide a board and a multilayer printed wiring board.

本発明に係るプリプレグは、熱硬化性樹脂及び無機充填材を含有する樹脂組成物を織布基材に含浸させると共に、半硬化状態となるまで加熱乾燥して形成されたプリプレグであって、前記プリプレグの動的粘弾性測定によるガラス転移温度が120〜170℃であり、前記樹脂組成物全量に対して前記無機充填材が65〜85質量%含有されていることを特徴とするものである。 The prepreg according to the present invention is a prepreg formed by impregnating a woven fabric base material with a resin composition containing a thermosetting resin and an inorganic filler and drying by heating until a semi-cured state is obtained. the glass transition temperature by dynamic viscoelasticity measurement of the prepreg Ri 120 to 170 ° C. der, wherein the inorganic filler to the resin composition the total amount is one which is characterized that you have contained 65 to 85 wt% .

前記プリプレグにおいて、前記無機充填材全量に対して50質量%以上が平均粒径3μm以下の球状シリカであることが好ましい。   In the prepreg, it is preferable that 50% by mass or more of the inorganic filler is spherical silica having an average particle size of 3 μm or less.

前記プリプレグにおいて、前記織布基材の厚みが10〜200μmであることが好ましい。   In the prepreg, the thickness of the woven fabric base material is preferably 10 to 200 μm.

本発明に係る金属張積層板は、前記プリプレグに金属箔を積層して形成されていることを特徴とするものである。   The metal-clad laminate according to the present invention is formed by laminating a metal foil on the prepreg.

本発明に係るプリント配線板は、前記金属張積層板に導体パターンを設けて形成されていることを特徴とするものである。   The printed wiring board according to the present invention is formed by providing a conductive pattern on the metal-clad laminate.

本発明に係る多層プリント配線板は、前記プリプレグを介してプリント配線板に金属箔を積層し、前記金属箔の不要部分を除去して導体パターンを設けて形成されていることを特徴とするものである。   The multilayer printed wiring board according to the present invention is formed by laminating a metal foil on the printed wiring board through the prepreg, and removing a unnecessary portion of the metal foil to provide a conductor pattern. It is.

本発明によれば、プリプレグの動的粘弾性測定によるガラス転移温度が120〜170℃であることによって、プリプレグの粉落ちを低減することができるものである。またこのプリプレグを用いると、外観が良好な積層板(金属張積層板及びプリント配線板)を製造することができるものである。   According to the present invention, the powder transition of the prepreg can be reduced by the glass transition temperature measured by dynamic viscoelasticity measurement of the prepreg being 120 to 170 ° C. Moreover, when this prepreg is used, a laminated board (a metal-clad laminated board and a printed wiring board) with a favorable external appearance can be manufactured.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明に係るプリプレグは、樹脂組成物を織布基材に含浸させると共に、これを半硬化状態(Bステージ状態)となるまで加熱乾燥することによって形成されている。   The prepreg according to the present invention is formed by impregnating a woven fabric substrate with a resin composition and heating and drying it until it is in a semi-cured state (B stage state).

上記の樹脂組成物は、熱硬化性樹脂及び無機充填材を含有する。   The above resin composition contains a thermosetting resin and an inorganic filler.

ここで、熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シアネート樹脂、メラミン樹脂、イミド樹脂等を用いることができる。特にエポキシ樹脂としては、例えば、多官能エポキシ樹脂、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂等を用いることができる。   Here, as a thermosetting resin, an epoxy resin, a phenol resin, cyanate resin, a melamine resin, an imide resin etc. can be used, for example. In particular, as the epoxy resin, for example, a polyfunctional epoxy resin, a bisphenol type epoxy resin, a novolac type epoxy resin, a biphenyl type epoxy resin, or the like can be used.

また無機充填材としては、例えば、シリカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、タルク、アルミナ等を用いることができる。   Examples of the inorganic filler that can be used include silica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, talc, and alumina.

また無機充填材は、樹脂組成物全量に対して60〜85質量%含有されていることが好ましい。このように、無機充填材の含有量が60質量%以上であることによって、プリプレグ、積層板(金属張積層板及びプリント配線板)の熱膨張率(CTE:coefficient of thermal expansion)を低くしたり、弾性率を上げたりすることができると共に、これらの寸法安定性も向上させることができるものである。また無機充填材の含有量が85質量%以下であれば、粘度の上昇を抑制しながら無機充填材を樹脂組成物に含有させることができると共に、プリプレグの粉落ちをより低減し、さらに外観が良好な積層板(金属張積層板及びプリント配線板)を得ることができるものである。   The inorganic filler is preferably contained in an amount of 60 to 85% by mass with respect to the total amount of the resin composition. As described above, when the content of the inorganic filler is 60% by mass or more, the coefficient of thermal expansion (CTE) of the prepreg and the laminate (metal-clad laminate and printed wiring board) is reduced. The elastic modulus can be increased, and the dimensional stability can be improved. Further, if the content of the inorganic filler is 85% by mass or less, the inorganic filler can be contained in the resin composition while suppressing an increase in viscosity, and the powdered prepreg is further reduced, and the appearance is further improved. A good laminate (metal-clad laminate and printed wiring board) can be obtained.

また無機充填材全量に対して50質量%以上(上限は100%)が平均粒径3μm以下(下限は0.2μm)の球状シリカであることが好ましく、平均粒径2μm以下(下限は0.2μm)の球状シリカであることがより好ましい。このように、無機充填材の半分以上が粒径の小さい球状シリカであることによって、無機充填材の凝集を抑制し、熱硬化性樹脂と無機充填材との分離をさらに抑制することができるものである。なお、平均粒径は、レーザ回折式粒度分布測定装置を用いてメディアン径(50%径)として測定することができる。   Moreover, it is preferable that 50 mass% or more (upper limit is 100%) of spherical fillers having an average particle diameter of 3 μm or less (lower limit is 0.2 μm) with respect to the total amount of the inorganic filler, and the average particle diameter is 2 μm or less (lower limit is 0.00). 2 μm) of spherical silica is more preferable. As described above, since more than half of the inorganic filler is spherical silica having a small particle size, the aggregation of the inorganic filler can be suppressed and the separation between the thermosetting resin and the inorganic filler can be further suppressed. It is. The average particle diameter can be measured as a median diameter (50% diameter) using a laser diffraction particle size distribution measuring apparatus.

また樹脂組成物は、硬化剤及び硬化促進剤を含有してもよい。   Moreover, the resin composition may contain a curing agent and a curing accelerator.

ここで、硬化剤としては、例えば、フェノール系硬化剤、ジシアンジアミド硬化剤等を用いることができる。   Here, as a hardening | curing agent, a phenol type hardening | curing agent, a dicyandiamide hardening | curing agent, etc. can be used, for example.

また硬化促進剤としては、例えば、イミダゾール類、フェノール化合物、アミン類、有機ホスフィン類等を用いることができる。   Moreover, as a hardening accelerator, imidazoles, a phenol compound, amines, organic phosphines, etc. can be used, for example.

そして、上記の熱硬化性樹脂、無機充填材、必要に応じて硬化剤、硬化促進剤を配合することによって樹脂組成物を調製することができ、さらにこれを溶剤で希釈することによって樹脂組成物のワニスを調製することができる。溶剤としては、例えば、メチルエチルケトン、トルエン、スチレン、メトキシプロパノール等を用いることができる。   And a resin composition can be prepared by blending the above-mentioned thermosetting resin, an inorganic filler, and a curing agent and a curing accelerator as required, and further by diluting this with a solvent, the resin composition Varnish can be prepared. As the solvent, for example, methyl ethyl ketone, toluene, styrene, methoxypropanol or the like can be used.

織布基材としては、例えば、ガラスクロス、ガラスペーパー、ガラスマット等のように無機繊維からなるものや、アラミドクロス等のように有機繊維からなるものを用いることができる。   Examples of the woven fabric substrate that can be used include those made of inorganic fibers such as glass cloth, glass paper, and glass mat, and those made of organic fibers such as aramid cloth.

また織布基材の厚みは10〜200μmであることが好ましく、10〜100μmであることがより好ましい。このように、織布基材の厚みが10μm以上であることによって、プリプレグ、積層板(金属張積層板及びプリント配線板)の反りの発生を抑制することができるものである。また織布基材の厚みが200μm以下であることによって、パッケージの薄型化を図ることができるものである。   Moreover, it is preferable that the thickness of a woven fabric base material is 10-200 micrometers, and it is more preferable that it is 10-100 micrometers. Thus, when the thickness of the woven fabric substrate is 10 μm or more, the occurrence of warpage of the prepreg and the laminate (metal-clad laminate and printed wiring board) can be suppressed. Moreover, when the thickness of the woven fabric substrate is 200 μm or less, the package can be thinned.

そして、本発明に係るプリプレグは、上記の樹脂組成物を織布基材に含浸させると共に、これを半硬化状態となるまで加熱乾燥して製造することができるが、このようにして得られたプリプレグの動的粘弾性測定によるガラス転移温度は120〜170℃である。好ましくはプリプレグのガラス転移温度は130〜160℃であり、より好ましくは140〜160℃である。このようなガラス転移温度を示すプリプレグを得るためには、例えば、樹脂含有率、加熱温度、加熱時間等を適宜調整すればよい。具体的には、加熱温度を高く、加熱時間を長くすれば、熱硬化性樹脂の硬化が進み、プリプレグのガラス転移温度は加熱前に比べて高くなる。一例を挙げると、ガラス転移温度が100℃のプリプレグを乾燥炉内において100〜180℃で1〜6分間、追加的に加熱すれば、ガラス転移温度が120〜170℃のプリプレグを得ることができる。そして、プリプレグのガラス転移温度は、通常、金属張積層板のガラス転移温度を測定するのに使用されているDMA法(dynamic mechanical analysis method)を転用して測定することができる。   The prepreg according to the present invention can be produced by impregnating the above-mentioned resin composition into a woven fabric base material and heating and drying it until it is in a semi-cured state. The glass transition temperature of the prepreg measured by dynamic viscoelasticity is 120 to 170 ° C. The glass transition temperature of the prepreg is preferably 130 to 160 ° C, more preferably 140 to 160 ° C. In order to obtain a prepreg exhibiting such a glass transition temperature, for example, the resin content, the heating temperature, the heating time, and the like may be appropriately adjusted. Specifically, if the heating temperature is increased and the heating time is lengthened, the thermosetting resin is cured, and the glass transition temperature of the prepreg becomes higher than that before heating. As an example, if a prepreg having a glass transition temperature of 100 ° C. is additionally heated in a drying furnace at 100 to 180 ° C. for 1 to 6 minutes, a prepreg having a glass transition temperature of 120 to 170 ° C. can be obtained. . The glass transition temperature of the prepreg can be measured by diverting a DMA method (dynamic mechanical analysis method) that is usually used to measure the glass transition temperature of a metal-clad laminate.

上記のように、プリプレグの動的粘弾性測定によるガラス転移温度が120〜170℃であることによって、プリプレグの樹脂の粉落ちを低減することができるものである。すなわち、プリプレグのハンドリングの際や、プリプレグを所定の大きさに切断する場合などに、プリプレグの表面や切断面などからの粉落ちが発生しにくくなる。そして、後述のように金属張積層板を製造するにあたって、プリプレグと金属箔とを積層する際にこれらの間に樹脂粉が混入するとこの箇所が打痕となるが、上記のように粉落ちが発生しにくくなるので、樹脂粉の混入による歩留まりの低下を抑制することができる。さらにガラス転移温度が120〜170℃のプリプレグを用いて製造された積層板のガラス転移温度は高くなる。しかし、プリプレグのガラス転移温度が120℃より低い場合には、ガラス転移温度が120℃以上のプリプレグに比べて粉落ちが発生しやすくなる。またこのようなプリプレグを用いて積層板を製造する場合には、ガラス転移温度が120℃以上のプリプレグを用いる場合に比べて、熱硬化性樹脂と無機充填材とが分離して外観不良が発生しやすくなる。特に熱硬化性樹脂と無機充填材とが分離すると、積層板にクラックが発生しやすくなる。逆にプリプレグのガラス転移温度が170℃より高い場合には、プリプレグが硬化しすぎであり、積層板を製造するときに樹脂流れが悪くなり、樹脂が極端に少ないところや樹脂が存在しないところができて、積層板に外観不良が発生しやすくなる。   As mentioned above, when the glass transition temperature by the dynamic viscoelasticity measurement of a prepreg is 120-170 degreeC, the powder fall of the resin of a prepreg can be reduced. That is, when handling the prepreg or when cutting the prepreg to a predetermined size, powder falling off from the surface or cut surface of the prepreg is less likely to occur. And when manufacturing a metal-clad laminate as will be described later, when resin powder is mixed between them when laminating a prepreg and a metal foil, this portion becomes a dent, but as described above, the powder falls off. Since it becomes difficult to generate | occur | produce, the fall of the yield by mixing of resin powder can be suppressed. Furthermore, the glass transition temperature of the laminated board manufactured using the prepreg whose glass transition temperature is 120-170 degreeC becomes high. However, when the glass transition temperature of the prepreg is lower than 120 ° C., powder falling tends to occur as compared with a prepreg having a glass transition temperature of 120 ° C. or higher. Moreover, when manufacturing a laminated board using such a prepreg, the thermosetting resin and the inorganic filler are separated from each other as compared with the case where a prepreg having a glass transition temperature of 120 ° C. or higher is used. It becomes easy to do. In particular, when the thermosetting resin and the inorganic filler are separated, cracks are likely to occur in the laminate. Conversely, when the glass transition temperature of the prepreg is higher than 170 ° C., the prepreg is excessively cured, and the resin flow becomes worse when manufacturing a laminate, and there is a place where the resin is extremely small or no resin exists. As a result, poor appearance of the laminate is likely to occur.

また本発明に係る金属張積層板は、上記のプリプレグに金属箔を積層して形成されている。プリプレグは硬化して絶縁層となる。この場合、1枚のプリプレグの片面又は両面に金属箔を積層して成形してもよいし、複数枚のプリプレグを重ね、この片面又は両面に金属箔を積層して成形してもよい。金属箔としては、例えば、銅箔、アルミニウム箔、ステンレス箔等を用いることができる。上記の積層成形は、例えば、多段真空プレス、ダブルベルトプレス、線圧ロール、真空ラミネーター等を用いて加熱・加圧して行うことができる。成形条件は、例えば、温度が140〜350℃、圧力が0.5〜6.0MPa、時間が1〜240分間である。上記のようにして製造された金属張積層板については、動的粘弾性測定によるガラス転移温度は280〜300℃程度となり、外観も良好である。本発明に係るプリプレグのガラス転移温度は従来のものより高いので、従来と同様に積層成形すると、得られる積層板のガラス転移温度は従来のものより高くなる。また従来の積層板のガラス転移温度でよければ、本発明に係るプリプレグのガラス転移温度が高いことにより成形時間を短くすることができるので、積層板の生産性を向上させることができる。   The metal-clad laminate according to the present invention is formed by laminating a metal foil on the prepreg. The prepreg is cured to become an insulating layer. In this case, a metal foil may be laminated and formed on one or both sides of one prepreg, or a plurality of prepregs may be laminated and a metal foil may be laminated on one or both sides. For example, a copper foil, an aluminum foil, a stainless steel foil, or the like can be used as the metal foil. The above lamination molding can be performed by heating and pressurizing using, for example, a multistage vacuum press, a double belt press, a linear pressure roll, a vacuum laminator, and the like. The molding conditions are, for example, a temperature of 140 to 350 ° C., a pressure of 0.5 to 6.0 MPa, and a time of 1 to 240 minutes. About the metal-clad laminated board manufactured as mentioned above, the glass transition temperature by a dynamic viscoelasticity measurement will be about 280-300 degreeC, and its external appearance is also favorable. Since the glass transition temperature of the prepreg according to the present invention is higher than that of the conventional one, when the lamination molding is performed in the same manner as in the past, the glass transition temperature of the obtained laminated plate becomes higher than that of the conventional one. Moreover, if the glass transition temperature of the conventional laminated board is good, since the molding time can be shortened because the glass transition temperature of the prepreg according to the present invention is high, the productivity of the laminated board can be improved.

また本発明に係るプリント配線板は、上記の金属張積層板に導体パターンを設けて形成されている。導体パターンの形成は、例えば、サブトラクティブ法、アディティブ法等により行うことができる。上記のようにして製造されたプリント配線板についても、外観が良好でガラス転移温度が高いものである。   The printed wiring board according to the present invention is formed by providing a conductor pattern on the metal-clad laminate. The conductor pattern can be formed by, for example, a subtractive method or an additive method. The printed wiring board manufactured as described above also has a good appearance and a high glass transition temperature.

プリント配線板は、通常、導体パターンが2層以下であるが、次のようにして導体パターンが3層以上あるプリント配線板(多層プリント配線板)を製造することができる。   The printed wiring board usually has two or less conductor patterns, but a printed wiring board (multilayer printed wiring board) having three or more conductor patterns can be produced as follows.

すなわち、本発明に係る多層プリント配線板は、上記のプリプレグを介してプリント配線板に金属箔を積層し、この金属箔の不要部分を除去して導体パターンを設けて形成することができる。この場合、多層プリント配線板を形成するためのコア材となるプリント配線板は、本発明に係るプリプレグを用いて形成されていることが好ましいが、その他のプリプレグを用いて形成されていてもよい。また、プリプレグを介して金属箔を積層するのは、プリント配線板の片面でもよいし、両面でもよい。金属箔としては、上記と同様のものを用いることができる。積層成形及び成形条件は、金属張積層板を製造する場合と同様である。導体パターンの形成は、プリント配線板を製造する場合と同様に行うことができる。上記のようにして製造された多層プリント配線板についても、外観が良好でガラス転移温度が高いものである。特に、本発明に係るプリプレグを用いてプリント配線板を製造し、これをコア材として多層プリント配線板を製造すると、この多層プリント配線板は外観がさらに良好となる。なお、導体パターンの層数は特に限定されない。   That is, the multilayer printed wiring board according to the present invention can be formed by laminating a metal foil on the printed wiring board via the prepreg and removing a unnecessary portion of the metal foil to provide a conductor pattern. In this case, the printed wiring board serving as the core material for forming the multilayer printed wiring board is preferably formed using the prepreg according to the present invention, but may be formed using other prepregs. . Further, the metal foil may be laminated via the prepreg on one side or both sides of the printed wiring board. As the metal foil, the same ones as described above can be used. Lamination molding and molding conditions are the same as in the case of manufacturing a metal-clad laminate. The conductor pattern can be formed in the same manner as when a printed wiring board is manufactured. The multilayer printed wiring board produced as described above also has a good appearance and a high glass transition temperature. In particular, when a printed wiring board is manufactured using the prepreg according to the present invention and a multilayer printed wiring board is manufactured using this as a core material, the appearance of the multilayer printed wiring board is further improved. The number of conductor patterns is not particularly limited.

その後、上記のプリント配線板又は多層プリント配線板に半導体素子を実装して封止することによって、FBGA(Fine pitch Ball Grid Array)等のパッケージを製造することができる。   Then, a package such as FBGA (Fine Pitch Ball Grid Array) can be manufactured by mounting and sealing a semiconductor element on the printed wiring board or the multilayer printed wiring board.

以下、本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

(実施例1)
熱硬化性樹脂として、多官能エポキシ樹脂である日本化薬株式会社製「EPPN502H」を用いた。
Example 1
As the thermosetting resin, “EPPN502H” manufactured by Nippon Kayaku Co., Ltd., which is a polyfunctional epoxy resin, was used.

また無機充填材として、球状シリカである株式会社アドマテックス製「SO−C6」(平均粒径2μm)を用いた。   As the inorganic filler, “SO-C6” (average particle size 2 μm) manufactured by Admatechs Co., Ltd., which is spherical silica, was used.

また硬化剤として、フェノール系硬化剤である明和化成株式会社製「MEH7600」を用いた。   As the curing agent, “MEH7600” manufactured by Meiwa Kasei Co., Ltd., which is a phenolic curing agent, was used.

また硬化促進剤として、2−エチル−4−メチルイミダゾール(四国化成工業株式会社製)を用いた。   Further, 2-ethyl-4-methylimidazole (manufactured by Shikoku Chemicals Co., Ltd.) was used as a curing accelerator.

また織布基材として、ガラスクロスである旭化成株式会社製「1037クロス」(厚み30μm)を用いた。   As a woven fabric base material, “1037 cloth” (thickness 30 μm) manufactured by Asahi Kasei Corporation, which is a glass cloth, was used.

そして、上記の熱硬化性樹脂、無機充填材、硬化剤、硬化促進剤を表1に示す配合量で配合し、さらに溶剤(メチルエチルケトン)で希釈することによって樹脂組成物のワニスを調製した。   And the varnish of the resin composition was prepared by mix | blending said thermosetting resin, an inorganic filler, a hardening | curing agent, and a hardening accelerator with the compounding quantity shown in Table 1, and also diluting with a solvent (methyl ethyl ketone).

次に、上記の樹脂組成物を織布基材に含浸させると共に、これを半硬化状態となるまで100〜200℃で5〜15分間、乾燥炉内において加熱乾燥(一次加熱)することによってプリプレグを製造した。さらにこのプリプレグを120℃で2分間、追加的に加熱乾燥(二次加熱)した。   Next, the woven fabric base material is impregnated with the above resin composition, and the prepreg is heated and dried (primary heating) in a drying furnace at 100 to 200 ° C. for 5 to 15 minutes until it becomes a semi-cured state. Manufactured. Further, this prepreg was additionally dried by heating (secondary heating) at 120 ° C. for 2 minutes.

次に、上記のプリプレグを2枚重ね、この両面に金属箔として銅箔(三井金属鉱業株式会社製「3EC−VLP」、厚み18μm)を積層して成形することによって、金属張積層板として銅張積層板(CCL)を製造した。上記の積層成形は、多段真空プレスを用いて加熱・加圧して行った。成形条件は、温度が220℃、圧力が6.0MPa、時間が160分間である。   Next, two prepregs as described above are stacked, and copper foil ("3EC-VLP" manufactured by Mitsui Mining & Smelting Co., Ltd., thickness 18 μm) is laminated and molded on both sides as a metal foil, thereby forming copper as a metal-clad laminate. A tension laminate (CCL) was produced. The above lamination molding was performed by heating and pressurizing using a multistage vacuum press. The molding conditions are a temperature of 220 ° C., a pressure of 6.0 MPa, and a time of 160 minutes.

(実施例2)
二次加熱を150℃で2分間とした以外は、実施例1と同様にしてプリプレグ及び金属張積層板を製造した。
(Example 2)
A prepreg and a metal-clad laminate were produced in the same manner as in Example 1 except that the secondary heating was performed at 150 ° C. for 2 minutes.

(実施例3)
二次加熱を170℃で2分間とした以外は、実施例1と同様にしてプリプレグ及び金属張積層板を製造した。
(Example 3)
A prepreg and a metal-clad laminate were produced in the same manner as in Example 1 except that the secondary heating was performed at 170 ° C. for 2 minutes.

(実施例4)
熱硬化性樹脂、無機充填材、硬化剤、硬化促進剤の配合量を変更した以外は、実施例2と同様にしてプリプレグ及び金属張積層板を製造した。
Example 4
A prepreg and a metal-clad laminate were produced in the same manner as in Example 2 except that the blending amounts of the thermosetting resin, the inorganic filler, the curing agent, and the curing accelerator were changed.

(実施例5)
熱硬化性樹脂、無機充填材、硬化剤、硬化促進剤の配合量を変更した以外は、実施例2と同様にしてプリプレグ及び金属張積層板を製造した。
(Example 5)
A prepreg and a metal-clad laminate were produced in the same manner as in Example 2 except that the blending amounts of the thermosetting resin, the inorganic filler, the curing agent, and the curing accelerator were changed.

(実施例6)
実施例1と同様にしてプリプレグを製造した。
(Example 6)
A prepreg was produced in the same manner as in Example 1.

次に、プリプレグを1枚とした以外は、実施例1と同様にして金属張積層板を製造した。   Next, a metal-clad laminate was produced in the same manner as in Example 1 except that only one prepreg was used.

次に、サブトラクティブ法により金属張積層板の片面にのみ導体パターンを設けてプリント配線板を製造した。   Next, a printed wiring board was manufactured by providing a conductor pattern only on one side of the metal-clad laminate by the subtractive method.

その後、プリント配線板の導体パターン形成面に、上記と同様のプリプレグを介して、金属箔として銅箔(三井金属鉱業株式会社製「3EC−VLP」、厚み18μm)を積層して成形することによって、多層プリント配線板を製造した。上記の積層成形は、多段真空プレスを用いて加熱・加圧して行った。成形条件は、温度が220℃、圧力が6.0MPa、時間が160分間である。   Thereafter, a copper foil (“3EC-VLP” manufactured by Mitsui Kinzoku Mining Co., Ltd., thickness 18 μm) is laminated and formed on the conductor pattern forming surface of the printed wiring board as a metal foil via a prepreg similar to the above. A multilayer printed wiring board was manufactured. The above lamination molding was performed by heating and pressurizing using a multistage vacuum press. The molding conditions are a temperature of 220 ° C., a pressure of 6.0 MPa, and a time of 160 minutes.

(比較例1)
二次加熱を行わなかった以外は、実施例1と同様にしてプリプレグ及び金属張積層板を製造した。
(Comparative Example 1)
A prepreg and a metal-clad laminate were produced in the same manner as in Example 1 except that secondary heating was not performed.

(比較例2)
二次加熱を180℃で2分間とした以外は、実施例1と同様にしてプリプレグ及び金属張積層板を製造した。
(Comparative Example 2)
A prepreg and a metal-clad laminate were produced in the same manner as in Example 1 except that the secondary heating was performed at 180 ° C. for 2 minutes.

(プリプレグのガラス転移温度)
プリプレグの動的粘弾性測定によるガラス転移温度をJIS C 6481に準じてDMA法(dynamic mechanical analysis method)により測定した。具体的には、まずプリプレグを50mm×5mmの大きさに切断して試料を作製した。次にこの試料について動的粘弾性測定装置(エスアイアイ・ナノテクノロジー株式会社製「DMS6100」)を用い、5℃/分の条件で昇温して、tanδのピーク位置をガラス転移温度とした。
(Glass transition temperature of prepreg)
The glass transition temperature of the prepreg measured by dynamic viscoelasticity was measured by a DMA method (dynamic mechanical analysis method) according to JIS C 6481. Specifically, a prepreg was first cut into a size of 50 mm × 5 mm to prepare a sample. Next, the sample was heated using a dynamic viscoelasticity measuring apparatus (“DMS6100” manufactured by SII Nano Technology Co., Ltd.) at 5 ° C./min, and the peak position of tan δ was defined as the glass transition temperature.

(プリプレグの粉落ち)
340mm×500mmの大きさのプリプレグを50枚重ね、これを高さ20mmからスチール台上に落下させて、樹脂の粉落ちの様子を観察した。落ちた粉の多さで次のように良否を判定した。
(Prepreg powder fall)
Fifty prepregs each having a size of 340 mm × 500 mm were stacked and dropped onto a steel table from a height of 20 mm, and the state of resin powdering was observed. The quality was determined as follows based on the amount of powder dropped.

「○」:粉落ちがほとんどないもの。   “◯”: The powder is almost free from falling off.

「△」:粉落ちが少しあるが、実用上は特に問題がないもの。   “△”: Slightly powdered, but no problem in practical use.

「×」:粉落ちが非常に多いもの。   "X": A thing with much powder fall-off.

(金属張積層板の外観)
金属張積層板の金属箔をエッチングにより除去し、除去面を観察することによって外観の良否を次のように判定した。
(Appearance of metal-clad laminate)
The metal foil of the metal-clad laminate was removed by etching, and the appearance was judged as follows by observing the removed surface.

「○」:熱硬化性樹脂と無機充填材との分離に起因するスジ模様が見られないもの。   “◯”: A streak pattern caused by separation between the thermosetting resin and the inorganic filler is not observed.

「△」:上記のスジ模様が部分的に見られるが、実用上は特に問題がないもの。   “Δ”: The above streak pattern is partially seen, but there is no particular problem in practical use.

「×(A)」:上記のスジ模様が全体的に見られるもの。   “× (A)”: The above-mentioned streak pattern can be seen as a whole.

「×(B)」:樹脂が少ないところ又は樹脂が存在しないところが見られるもの。   “× (B)”: A place where a small amount of resin or a place where no resin exists is observed.

(金属張積層板のガラス転移温度)
金属張積層板の動的粘弾性測定によるガラス転移温度をJIS C 6481に準じてDMA法(dynamic mechanical analysis method)により測定した。具体的には、まず金属張積層板の金属箔をエッチングにより除去し、これを50mm×5mmの大きさに切断して試料を作製した。次にこの試料について動的粘弾性測定装置(エスアイアイ・ナノテクノロジー株式会社製「DMS6100」)を用い、5℃/分の条件で昇温して、tanδのピーク位置をガラス転移温度とした。
(Glass transition temperature of metal-clad laminate)
The glass transition temperature of the metal-clad laminate measured by dynamic viscoelasticity measurement was measured according to JIS C 6481 by the DMA method (dynamic mechanical analysis method). Specifically, first, the metal foil of the metal-clad laminate was removed by etching, and this was cut into a size of 50 mm × 5 mm to prepare a sample. Next, the sample was heated using a dynamic viscoelasticity measuring apparatus (“DMS6100” manufactured by SII Nano Technology Co., Ltd.) at 5 ° C./min, and the peak position of tan δ was defined as the glass transition temperature.

Figure 0005988220
Figure 0005988220

表1から明らかなように、動的粘弾性測定によるガラス転移温度が120〜170℃である実施例1〜5のプリプレグは粉落ちが低減されている。またこのようなプリプレグを用いると、外観が良好な金属張積層板を製造することもできる。   As is apparent from Table 1, the prepregs of Examples 1 to 5 having a glass transition temperature of 120 to 170 ° C. by dynamic viscoelasticity measurement have reduced powder falling. In addition, when such a prepreg is used, a metal-clad laminate having a good appearance can be produced.

これに対して、比較例1のプリプレグでは、動的粘弾性測定によるガラス転移温度が120℃未満であるので、粉落ちが発生している。またこのようなプリプレグを用いて製造された金属張積層板の外観は不良である。   On the other hand, in the prepreg of Comparative Example 1, since the glass transition temperature by dynamic viscoelasticity measurement is less than 120 ° C., powder falling occurs. Moreover, the external appearance of the metal-clad laminate produced using such a prepreg is poor.

また比較例2では、プリプレグの粉落ちは低減されているが、金属張積層板の外観が不良である。   Moreover, in the comparative example 2, although the powder fall of a prepreg is reduced, the external appearance of a metal-clad laminated board is unsatisfactory.

Claims (6)

熱硬化性樹脂及び無機充填材を含有する樹脂組成物を織布基材に含浸させると共に、半硬化状態となるまで加熱乾燥して形成されたプリプレグであって、
前記プリプレグの動的粘弾性測定によるガラス転移温度が120〜170℃であり、
前記樹脂組成物全量に対して前記無機充填材が65〜85質量%含有されていることを特徴とする
プリプレグ。
A prepreg formed by impregnating a woven fabric base material with a resin composition containing a thermosetting resin and an inorganic filler, and drying by heating until a semi-cured state,
Ri glass transition temperature of 120 to 170 ° C. der by dynamic viscoelasticity measurement of the prepreg,
Prepregs wherein the inorganic filler to the resin composition the total amount characterized that you have contained 65 to 85 wt%.
前記無機充填材全量に対して50質量%以上が平均粒径3μm以下の球状シリカであることを特徴とする
請求項1に記載のプリプレグ。
The prepreg according to claim 1, wherein 50% by mass or more of the inorganic filler is spherical silica having an average particle diameter of 3 μm or less.
前記織布基材の厚みが10〜200μmであることを特徴とする
請求項1又は2に記載のプリプレグ。
The prepreg according to claim 1 or 2 , wherein the woven fabric base has a thickness of 10 to 200 µm.
請求項1乃至のいずれか一項に記載のプリプレグに金属箔を積層して形成されていることを特徴とする
金属張積層板。
A metal-clad laminate, wherein the prepreg according to any one of claims 1 to 3 is laminated with a metal foil.
請求項に記載の金属張積層板に導体パターンを設けて形成されていることを特徴とする
プリント配線板。
A printed wiring board, wherein the metal-clad laminate according to claim 4 is provided with a conductor pattern.
請求項1乃至のいずれか一項に記載のプリプレグを介してプリント配線板に金属箔を積層し、前記金属箔の不要部分を除去して導体パターンを設けて形成されていることを特徴とする
多層プリント配線板。
A metal foil is laminated on a printed wiring board through the prepreg according to any one of claims 1 to 3 , and an unnecessary portion of the metal foil is removed to provide a conductor pattern. Multi-layer printed wiring board.
JP2013187585A 2012-09-28 2013-09-10 Prepreg, metal-clad laminate, printed wiring board, multilayer printed wiring board Active JP5988220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013187585A JP5988220B2 (en) 2012-09-28 2013-09-10 Prepreg, metal-clad laminate, printed wiring board, multilayer printed wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012217615 2012-09-28
JP2012217615 2012-09-28
JP2013187585A JP5988220B2 (en) 2012-09-28 2013-09-10 Prepreg, metal-clad laminate, printed wiring board, multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2014080582A JP2014080582A (en) 2014-05-08
JP5988220B2 true JP5988220B2 (en) 2016-09-07

Family

ID=50402804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013187585A Active JP5988220B2 (en) 2012-09-28 2013-09-10 Prepreg, metal-clad laminate, printed wiring board, multilayer printed wiring board

Country Status (4)

Country Link
JP (1) JP5988220B2 (en)
KR (1) KR101683662B1 (en)
CN (1) CN103709427B (en)
TW (1) TWI551632B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000021706A1 (en) 2020-09-15 2022-03-15 Francesco Beneduce INNOVATIVE FORMULATION IN WATER-SOLUBLE CAPSULE FOR PERSONAL CLEANSING, WITH HIGH COMPATIBILITY AND LOW ENVIRONMENTAL IMPACT

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288416A (en) 1995-04-14 1996-11-01 Mitsubishi Gas Chem Co Inc Plastic semiconductor package
JPH11181124A (en) * 1997-12-25 1999-07-06 Sumitomo Bakelite Co Ltd Prepreg
JP4322463B2 (en) * 2002-03-20 2009-09-02 住友ベークライト株式会社 Copper-clad laminate prepreg and copper-clad laminate
JP5004483B2 (en) * 2006-03-15 2012-08-22 株式会社Adeka Epoxy resin curable composition for prepreg
JP4926811B2 (en) * 2006-04-28 2012-05-09 日立化成工業株式会社 Resin composition, prepreg, laminate and wiring board
JP4971919B2 (en) * 2007-09-13 2012-07-11 パナソニック株式会社 Transparent laminate
JP5417724B2 (en) 2008-03-25 2014-02-19 味の素株式会社 A method for producing a multilayer printed wiring board.
JP2009231222A (en) * 2008-03-25 2009-10-08 Ajinomoto Co Inc Insulating resin sheet
JP5493948B2 (en) * 2010-02-08 2014-05-14 住友ベークライト株式会社 Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP5426477B2 (en) * 2010-05-24 2014-02-26 パナソニック株式会社 Flame-retardant resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board

Also Published As

Publication number Publication date
CN103709427B (en) 2017-09-15
CN103709427A (en) 2014-04-09
KR20140042738A (en) 2014-04-07
TW201431917A (en) 2014-08-16
JP2014080582A (en) 2014-05-08
KR101683662B1 (en) 2016-12-07
TWI551632B (en) 2016-10-01

Similar Documents

Publication Publication Date Title
JP6512521B2 (en) Laminated board, metal-clad laminated board, printed wiring board, multilayer printed wiring board
JP5234195B2 (en) Prepreg, laminated board, printed wiring board, and semiconductor device
JP5771987B2 (en) Multilayer circuit board, insulating sheet, and semiconductor package using multilayer circuit board
JP5344022B2 (en) Epoxy resin composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
CN104943297B (en) Prepreg, metal-clad stack and printed wiring board
JP6410405B2 (en) Resin substrate, prepreg, printed wiring board, semiconductor device
JP5428232B2 (en) Prepreg, laminated board, multilayer printed wiring board, and semiconductor device
JP5547032B2 (en) Thermally conductive resin composition, resin sheet, prepreg, metal laminate and printed wiring board
JP2012131947A (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, resin sheet, printed wiring board, and semiconductor device
JP2011178883A (en) Prepreg, laminated board, multilayer printed wiring board, and semiconductor device
JP2010163598A (en) Prepreg, method for producing the same, and printed wiring board using the same
TW201311453A (en) Method for manufacturing laminated board
JP5056787B2 (en) Laminated board, multilayer printed wiring board, and semiconductor device
TW201352083A (en) Metal-clad laminated board, printed wiring board, semiconductor package, and semiconductor device
JP6624545B2 (en) Thermosetting resin composition, metal-clad laminate, insulating sheet, printed wiring board, method for manufacturing printed wiring board, and package substrate
JP5988220B2 (en) Prepreg, metal-clad laminate, printed wiring board, multilayer printed wiring board
JP7248867B2 (en) Composite sheet and laminate
WO2013021587A1 (en) Prepreg, laminated board, printed wiring board, semiconductor package, and semiconductor device
JP2009094217A (en) Semiconductor, printed circuit board for semiconductor device, and copper clad laminate
JP2005209489A (en) Insulation sheet
JP7081231B2 (en) Manufacturing method of prepreg, laminated board, printed wiring board, semiconductor package and prepreg
JP5861995B2 (en) Resin composition, prepreg, resin layer, circuit board, and semiconductor device
JP2015228390A (en) Method for manufacturing substrate
JP7069967B2 (en) Heat dissipation board
JP7124355B2 (en) Resin substrate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160729

R151 Written notification of patent or utility model registration

Ref document number: 5988220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151