JP2010163598A - Prepreg, method for producing the same, and printed wiring board using the same - Google Patents

Prepreg, method for producing the same, and printed wiring board using the same Download PDF

Info

Publication number
JP2010163598A
JP2010163598A JP2009216644A JP2009216644A JP2010163598A JP 2010163598 A JP2010163598 A JP 2010163598A JP 2009216644 A JP2009216644 A JP 2009216644A JP 2009216644 A JP2009216644 A JP 2009216644A JP 2010163598 A JP2010163598 A JP 2010163598A
Authority
JP
Japan
Prior art keywords
prepreg
inorganic filler
vol
less
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009216644A
Other languages
Japanese (ja)
Inventor
Toshiyuki Asahi
俊行 朝日
Naoyuki Tani
直幸 谷
Shoyo Kitagawa
祥与 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009216644A priority Critical patent/JP2010163598A/en
Priority to PCT/JP2009/006906 priority patent/WO2010070890A1/en
Publication of JP2010163598A publication Critical patent/JP2010163598A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg from which a printed wiring board having both drilling machinability and thermal conductivity can be manufactured. <P>SOLUTION: The prepreg is produced by impregnating a substrate consisting of a glass woven or nonwoven fabric with a resin composition containing an inorganic filler. In the prepreg, the inorganic filler content is adjusted to 30 to 70 vol.% relative to the prepreg. Further, the inorganic filler contains a component which has both thermal conductivity of 9 W/mK or above and a Mohs' hardness of 6 or below in an amount of 60 vol.% or larger relative to the inorganic filler. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発熱する電子部品を実装するプリント配線板・金属基板及び、その絶縁層として用いられるプリプレグ及びその製造方法に関するものである。   The present invention relates to a printed wiring board / metal substrate on which a heat generating electronic component is mounted, a prepreg used as an insulating layer thereof, and a manufacturing method thereof.

近年、機器の小型化・高性能化に伴う電子部品(高機能系半導体、パワー系半導体、トランス等)の発熱が課題となっており、ヒートシンクや、ファン、ヒートパイプといった熱対策が施されている。そのような発熱する電子部品を実装するプリント配線板は、高機能な半導体を搭載し、高密度実装に対応するために多層板構成になっており、ガラスエポキシ樹脂からなるプリプレグと銅箔とからなる部材を、複数枚積層し、硬化したものが用いられている場合と、金属の放熱板と銅箔を接着する接着剤層で構成される金属基板がある。   In recent years, heat generation of electronic components (high-functional semiconductors, power semiconductors, transformers, etc.) accompanying miniaturization and high performance of equipment has become an issue, and heat countermeasures such as heat sinks, fans, heat pipes have been taken Yes. A printed wiring board for mounting such heat-generating electronic components is equipped with a high-performance semiconductor and has a multilayer board configuration to support high-density mounting. It consists of a prepreg made of glass epoxy resin and copper foil. There are a metal substrate composed of an adhesive layer that adheres a metal heat sink and a copper foil, and a case where a plurality of members are laminated and cured.

金属基板においては、電子部品の熱を放熱板に伝えるために、熱伝導率を向上させる取組がなされており、熱伝導率の高い無機フィラの充填量を増やしている。従って接着剤層として用いられる樹脂組成物には、無機フィラを高密度に添加する取組(特許文献参照)が多くなされている。しかし、このような樹脂組成物は多層板構成にしない金属基板においては、ドリル加工を行わないため、ドリル加工性に関しては考慮されておらず、アルミナ等の硬い無機フィラ(熱伝導率が高いため)を用いている。また、熱伝導率の向上のため充填率も多くドリル加工時にドリル刃が著しく摩耗する。   In the metal substrate, in order to transmit the heat of the electronic component to the heat radiating plate, efforts are made to improve the thermal conductivity, and the filling amount of the inorganic filler having a high thermal conductivity is increased. Therefore, many attempts have been made to add inorganic fillers at high density to resin compositions used as adhesive layers (see Patent Literature). However, since such a resin composition does not perform drilling in a metal substrate that does not have a multilayer board configuration, drilling workability is not considered, and a hard inorganic filler such as alumina (because of high thermal conductivity) ) Is used. Further, the filling rate is high due to the improvement of the thermal conductivity, and the drill blade is significantly worn during drilling.

多層板においては放熱板もなく、プリプレグの熱伝導性が低いため、現状では熱対策として考慮されているわけではなく、基板の強度や、熱膨張率、難燃性を得るために、シリカや水酸化アルミニウムを少量(20vol%程度)含んでいるのが現状である。ドリル加工性においては多層のプリント配線板として、ドリル加工がほぼ必須の工程であるため、ドリル加工精度を改善する目的として特許文献1の様にモース硬度の低い無機フィラを充填する提案がなされている。  In the multilayer board, there is no heat sink, and the thermal conductivity of the prepreg is low, so it is not considered as a heat countermeasure at present, and in order to obtain the strength of the substrate, the coefficient of thermal expansion, flame retardancy, The present condition is that it contains a small amount (about 20 vol%) of aluminum hydroxide. As drilling processability, as a multilayer printed wiring board, drilling is an almost indispensable process, so as to improve drilling accuracy, a proposal for filling an inorganic filler with low Mohs hardness as in Patent Document 1 has been made. Yes.

特開2000−117733号公報JP 2000-117733 A

プリント配線板は、これまで熱対策としてあまり考慮されていなかったが、実装された電子部品が直接接触しており、熱を効果的に伝搬できるため、基板自体が放熱板の硬化を果たす新たな熱対策として用いることができる可能性があることがわかった。多層板構成である従来のプリント配線板の場合、熱伝導率だけではなくドリル加工性との両立が必須であるが、現行の熱伝導率の高い金属基板用途の材料ではドリル刃の摩耗が激しくなる課題があった。また、ドリル加工性の悪化はスルーホールのドリル穴形状や穴径も劣化するため、メッキ接続の信頼性も低下してしまう。   Up to now, printed wiring boards have not been considered much as a heat countermeasure, but since the mounted electronic components are in direct contact and can effectively transmit heat, the board itself is a new material that cures the heat sink. It was found that it could be used as a heat countermeasure. In the case of a conventional printed wiring board with a multilayer board configuration, it is essential to achieve not only thermal conductivity but also drillability. However, drilling of the drill blade is severe in current materials for metal substrates with high thermal conductivity. There was a problem. In addition, the deterioration of the drill workability also deteriorates the drill hole shape and hole diameter of the through hole, so that the reliability of the plating connection also decreases.

そこで本発明は熱伝導率だけではなくドリル刃の耐摩耗性を考慮したプリント配線板及び、そのプリプレグを提供することを目的とする。   Accordingly, an object of the present invention is to provide a printed wiring board and a prepreg thereof in consideration of not only thermal conductivity but also wear resistance of a drill blade.

この目的を達成するために、本発明は、無機フィラを含有する樹脂組成物をガラス織布又はガラス不織布の基材に含浸させたプリプレグにおいて、前記無機フィラのプリプレグに対する充填率を30vol%以上70vol%以下とし、前記無機フィラは、熱伝導率9W/mK以上かつモース硬度6以下の成分を60vol%以上とすることを特徴とするプリプレグとするものである。   In order to achieve this object, the present invention provides a prepreg obtained by impregnating a glass woven fabric or glass nonwoven fabric with a resin composition containing an inorganic filler, and the filling ratio of the inorganic filler to the prepreg is 30 vol% or more and 70 vol%. %, And the inorganic filler is a prepreg characterized by containing a component having a thermal conductivity of 9 W / mK or more and a Mohs hardness of 6 or less of 60 vol% or more.

本発明のプリプレグ及び、その製造方法とこれを用いたプリント配線板によれば、熱伝導率が9W/mK以上と高い無機フィラを60vol%以上含んでおり、無機フィラの充填率をプリプレグに対して30vol%以上70vol%以下とすることでプリプレグ及び成形後のプリント配線板の熱伝導率を向上させることができる。かつ無機フィラのモース硬度を6以下とすることで、無機フィラの高い充填率においても高いドリル加工性を実現できる。加えて、無機フィラの熱伝導率が高いことで、ドリル加工時の熱を効果的に分散させることで、温度上昇に伴う樹脂の溶融を低減することができドリル刃の溝の埋まり等による加工性の低下を抑制できる。   According to the prepreg of the present invention, its manufacturing method and a printed wiring board using the prepreg, it contains 60 vol% or more of inorganic filler having a thermal conductivity as high as 9 W / mK or more, and the filling rate of the inorganic filler with respect to the prepreg By adjusting the content to 30 vol% or more and 70 vol% or less, the thermal conductivity of the prepreg and the printed wiring board after molding can be improved. Moreover, by setting the Mohs hardness of the inorganic filler to 6 or less, high drill workability can be realized even at a high filling rate of the inorganic filler. In addition, the high thermal conductivity of the inorganic filler effectively dissipates heat during drilling, which can reduce the melting of the resin as the temperature rises. The decline in sex can be suppressed.

また、略多面体形状特に略立方体や略直方体形状の無機フィラを用いることで、熱のパーコレーションがよくなり、ドリル加工性の劣化を抑制できる比較的少ない充填量でも熱伝導率を向上させることができる。   Further, by using an inorganic filler having a substantially polyhedral shape, particularly a substantially cubic or substantially rectangular parallelepiped shape, heat percolation is improved, and thermal conductivity can be improved even with a relatively small filling amount capable of suppressing deterioration of drill workability. .

本発明のプリプレグを用いて作製したプリント配線板を用いることで、電子部品の熱を基板に拡散し放熱性を向上することで、電子部品の温度低減が可能となり、電子部品の高密度実装化、高機能化、ハイパワー化、機器の小型、高機能化を達成することができる。   By using the printed wiring board manufactured using the prepreg of the present invention, the heat of the electronic component is diffused to the substrate and the heat dissipation is improved, so that the temperature of the electronic component can be reduced and the electronic component can be mounted at high density. Higher functions, higher power, smaller equipment and higher functions can be achieved.

酸化アルミニウム配合の場合のHit数とドリル残存率の関係を示す図The figure which shows the relationship between Hit number and drill residual ratio in the case of aluminum oxide combination 酸化マグネシウム配合の場合のHit数とドリル残存率の関係を示す図The figure which shows the relation between the Hit number and drill residual ratio in the case of magnesium oxide combination 炭酸マグネシウム配合の場合のHit数とドリル残存率の関係を示す図The figure which shows the relationship between Hit number and drill residual ratio in the case of magnesium carbonate combination

(実施例1)
以下、本発明の実施例1として、プリプレグについて説明する。
Example 1
Hereinafter, a prepreg will be described as Example 1 of the present invention.

本発明のプリプレグに用いられる樹脂は、特に限定されるものではないが、エポキシ樹脂系、ポリイミド樹脂系、トリアジン樹脂系、フェノール樹脂系、メラミン樹脂系及びこれら樹脂の変性系樹脂を用いることができる。また、前記各種樹脂を2種類以上の混合の他、必要に応じて各種硬化剤、硬化促進剤を使用しても良い。例えば、エポキシ樹脂を用いた場合、耐熱性や強度、接着性等の特性が基板に適している。またポリイミド樹脂を用いた場合は耐熱性や屈曲性をプリント配線板に付加することができる。樹脂に、硬化剤を使用する場合には、例えばエポキシ樹脂に用いる場合には、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、無水フタル酸、無水ピロメリット酸、及び、フェノールノボラックやクレゾールノボラック等の多官能性フェノール等を用いることができる。前記硬化剤は、単独で使用しても、複数種を併用することも可能であり、その種類及び量は、限定されるものではなく、適宜決められる。樹脂に、促進剤を使用する場合には、前述した硬化剤と同様に、種々使用することができ、具体的には、イミダゾール系化合物、有機リン系化合物、アミン及びアンモニウム塩等が用いられ、2種以上を併用しても良い。また、ゴムや熱可塑樹脂を添加してもよい。   The resin used in the prepreg of the present invention is not particularly limited, but epoxy resin, polyimide resin, triazine resin, phenol resin, melamine resin, and modified resins of these resins can be used. . Moreover, you may use various hardening | curing agents and hardening accelerators as needed other than mixing the said various resin 2 or more types. For example, when an epoxy resin is used, characteristics such as heat resistance, strength, and adhesiveness are suitable for the substrate. When polyimide resin is used, heat resistance and flexibility can be added to the printed wiring board. When a curing agent is used for the resin, for example, when used for an epoxy resin, polyfunctionality such as dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, phthalic anhydride, pyromellitic anhydride, and phenol novolac and cresol novolac Sexual phenol and the like can be used. The curing agent can be used alone or in combination of two or more kinds, and the kind and amount thereof are not limited and can be appropriately determined. In the case of using an accelerator for the resin, it can be used in a variety of manners similar to the curing agent described above. Specifically, imidazole compounds, organic phosphorus compounds, amines, ammonium salts, and the like are used. Two or more kinds may be used in combination. Also, rubber or thermoplastic resin may be added.

ガラス織布/不織布はプリプレグにおける構造体として、プリプレグの強度を上げる効果が得られ、硬化後の熱膨張率の制御、寸法安定性、機械強度を高める効果が得られる。ガラス織布/不織布は10〜300μm程度のものが望ましい。ガラス織布/不織布の厚みが10μm未満の場合、プリプレグあるいはプリプレグを硬化してなるプリント配線板の機械強度(例えば引張り強度等)に影響を与える可能性がある。ガラス織布/不織布の厚みが300μmを越えた場合、プリプレグの作製時における乾燥工程への影響が大きくなってしまう。   The glass woven fabric / nonwoven fabric as a structure in the prepreg has the effect of increasing the strength of the prepreg, and the effects of controlling the thermal expansion coefficient after curing, dimensional stability, and mechanical strength are obtained. The glass woven / nonwoven fabric is preferably about 10 to 300 μm. When the thickness of the glass woven fabric / nonwoven fabric is less than 10 μm, it may affect the mechanical strength (for example, tensile strength) of the prepreg or a printed wiring board obtained by curing the prepreg. When the thickness of the glass woven fabric / nonwoven fabric exceeds 300 μm, the influence on the drying process during production of the prepreg becomes large.

前記樹脂に充填する無機フィラは、熱伝導率9W/mK以上かつ、モース硬度6以下の無機フィラが60vol%以上であり、例えば、窒化ホウ素、酸化マグネシウム、珪酸ジルコニウム、水酸化マグネシウム、珪酸ジルコニウム、炭酸マグネシウム、水酸化アルミニウム等を用いることができる。熱伝導率を9W/mK以上とすることで、プリプレグを成形・硬化した後のプリント配線板の熱伝導率を0.8W/mK以上とすることができ発熱する電子部品の熱を効果的に分散し、電子部品の温度を低減することができる。また、ドリル加工時に発生する熱も分散することができ、樹脂の温度上昇に伴う例えばドリル刃溝の埋設といったドリル加工性の低下を抑制できる。また、熱伝導率9W/mK以上の無機フィラが30vol%以下になると、プリント配線板の熱伝導率が低下する。   The inorganic filler filled in the resin has an inorganic filler having a thermal conductivity of 9 W / mK or more and a Mohs hardness of 6 or less of 60 vol% or more. For example, boron nitride, magnesium oxide, zirconium silicate, magnesium hydroxide, zirconium silicate, Magnesium carbonate, aluminum hydroxide, or the like can be used. By setting the thermal conductivity to 9 W / mK or more, the thermal conductivity of the printed wiring board after molding and curing the prepreg can be set to 0.8 W / mK or more, and the heat of the electronic components that generate heat is effectively reduced. It is possible to disperse and reduce the temperature of the electronic component. Further, heat generated during drilling can also be dispersed, and a decrease in drill workability such as embedding of a drill blade groove accompanying an increase in resin temperature can be suppressed. Moreover, when the inorganic filler with a thermal conductivity of 9 W / mK or more is 30 vol% or less, the thermal conductivity of the printed wiring board is lowered.

ドリル加工に用いられるドリル刃の硬度は、クロムメッキのモース硬度が9であり、モース硬度10のダイヤモンドコーティングしたドリル刃もあるが、コストや加工性を考えると、無機フィラのモース硬度は少なくともドリル刃以下である必要があり、望ましくは6以下である。モース硬度が4以下になるとさらにドリル加工性を向上させることができる。   As for the hardness of the drill blade used for drilling, Mohs hardness of chrome plating is 9, and there is a diamond-coated drill blade with Mohs hardness of 10, but considering the cost and workability, the Mohs hardness of inorganic filler is at least drill It must be below the blade, and preferably below 6. Drilling workability can be further improved when the Mohs hardness is 4 or less.

無機フィラはプリプレグに対して充填率が30vol%以上70vol%以下になるようにする必要がある。ここでvol%により規定しているのは密度の異なる無機フィラに変更しても、熱伝導率・ドリル加工性への効果を一定にするためであり、材料を複数定義した場合wt%で記載することは本質的に成立していない。また、基板に成形したときの熱伝導率は、ガラス織布/不織布も含めてプリプレグ全体に対して熱伝導率の高い無機フィラの充填率を定義することで所望の値を得ることができる。無機フィラのプリプレグに対する充填率を30vol%以上とすることで、プリプレグの熱伝導率を0.8W/mK以上とすることができる。無機フィラ/プリプレグの値を大きくするためにはガラスクロスに含浸する樹脂組成物において無機フィラ/樹脂組成物の割合を増やすことと、プリプレグにおける樹脂分比率/プリプレグを増やすことが有効である(ガラス織布/不織布は熱伝導率が低い)。それぞれ、樹脂組成物/プリプレグの充填率を50vol%以上とすることで、無機フィラ/プリプレグの充填率を30vol%以上にすることができる。同様に無機フィラ/樹脂組成物の充填率を40vol%以上とすることで、無機フィラ/プリプレグの充填率を30vol%以上にすることができる。   The inorganic filler needs to have a filling rate of 30 vol% or more and 70 vol% or less with respect to the prepreg. The vol% is defined here in order to make the effect on thermal conductivity and drilling work constant even when changing to inorganic fillers with different densities. When multiple materials are defined, they are described in wt%. To do is essentially not true. Moreover, the desired value can be obtained for the thermal conductivity when formed on the substrate by defining the filling rate of the inorganic filler having a high thermal conductivity with respect to the entire prepreg including the glass woven fabric / nonwoven fabric. The thermal conductivity of a prepreg can be 0.8 W / mK or more by making the filling rate with respect to the prepreg of an inorganic filler 30 vol% or more. In order to increase the value of the inorganic filler / prepreg, it is effective to increase the ratio of the inorganic filler / resin composition in the resin composition impregnated into the glass cloth and to increase the resin fraction / prepreg in the prepreg (glass Woven / nonwoven fabrics have low thermal conductivity). By setting the filling rate of the resin composition / prepreg to 50 vol% or more, the filling rate of the inorganic filler / prepreg can be set to 30 vol% or more. Similarly, by setting the filling rate of the inorganic filler / resin composition to 40 vol% or more, the filling rate of the inorganic filler / prepreg can be set to 30 vol% or more.

また、無機フィラのプリプレグに対する充填率が70vol%以上になると、プリプレグの溶融粘度の上昇、銅箔とプリプレグの接着力低下など、基板成形が難しくなる場合がある。   Moreover, when the filling rate with respect to the prepreg of an inorganic filler will be 70 vol% or more, board | substrate shaping | molding may become difficult, such as a raise of the melt viscosity of a prepreg, and the adhesive force fall of copper foil and a prepreg.

また樹脂組成物/プリプレグの充填率が95vol%以上になると、構造体となっているガラス織布/不織布の割合の低下による強度不足等の課題が生じる場合がある。   When the filling ratio of the resin composition / prepreg is 95 vol% or more, there may be a problem such as insufficient strength due to a decrease in the ratio of the glass woven fabric / nonwoven fabric that is a structure.

また、無機フィラ/樹脂組成物の充填率が90vol%以上になると、樹脂と無機フィラと溶剤の混合体(ワニス)の粘度が上がってしまい、プリプレグ作製時の含浸工程が難しくなる。また樹脂不足よりプリプレグの溶融粘度も上昇してしまい、多層基板成形時のフロー性が著しく低下し信頼性の高いプリント配線板が提供できなくなる場合がある。   Further, when the filling ratio of the inorganic filler / resin composition is 90 vol% or more, the viscosity of the mixture (varnish) of the resin, the inorganic filler, and the solvent increases, and the impregnation process at the time of preparing the prepreg becomes difficult. In addition, the melt viscosity of the prepreg also increases due to the lack of resin, and the flowability at the time of forming the multilayer substrate may be significantly reduced, making it impossible to provide a highly reliable printed wiring board.

ドリル加工性の悪化はスルーホールの穴形状や穴径に影響をあたえ、スルーホールのメッキ接続の信頼性が低下するが、無機フィラ/プリプレグの充填率を増やすことで、プリプレグを硬化したあとの熱膨張係数(特に厚み方向)を小さくすることができる。これによりZ軸方向の熱膨張係数を小さくすることでスルーホールの信頼性が向上する。スルーホールはドリル加工後にメッキすることで形成されるため、メッキ部分は金属材料(一般的には銅)の熱膨張係数を有しており、Z軸方向の熱膨張係数を下げることで、熱膨張差が小さくなり、発生する応力が低下する。45ppm/℃以下の熱膨張係数にすると信頼性も高く、熱衝撃や熱サイクルに対しても耐久性が向上し望ましい。更に35ppm/℃以下にすることで、より信頼性も向上する。   Deterioration of drillability affects the hole shape and diameter of the through hole, and the reliability of the plated connection of the through hole decreases. However, by increasing the filling rate of the inorganic filler / prepreg, A thermal expansion coefficient (especially thickness direction) can be made small. Thereby, the reliability of the through hole is improved by reducing the thermal expansion coefficient in the Z-axis direction. Since the through hole is formed by plating after drilling, the plated part has a thermal expansion coefficient of a metal material (generally copper), and by reducing the thermal expansion coefficient in the Z-axis direction, The expansion difference is reduced, and the generated stress is reduced. When the coefficient of thermal expansion is 45 ppm / ° C. or less, the reliability is high and the durability against thermal shock and thermal cycle is improved, which is desirable. Furthermore, reliability is further improved by setting it as 35 ppm / degrees C or less.

無機フィラは略多面体形状が望ましく、更に略立方体形状及び/または略直方体形状が好ましい。熱伝導率を向上させるためには無機フィラの充填率を増加させる必要がある。そのため、球状に近づけた無機フィラが用いられていることが多いが無機フィラの増加はドリル加工性の低減にもつながってしまう。同じ充填率で考えると、無機フィラの平面同士の接触が熱のパーコレーション的に望ましく、略多面体形状の無機フィラを用いることで熱伝導率を向上させることができる。ここでの略多面体形状は平面部分を有する立体という意味であり、曲面部分を全く持たないという意味ではない。中でも、略立方体や略直方体形状は接触面積を高めることができる。ただし、アスペクト比が3以上の板状や針状の無機フィラは混練性が悪く溶融粘度が上昇してしまう。アスペクト比は2.5以下の形状が、溶融粘度の悪化を防ぎつつ熱伝導率を向上できる点で望ましい。   The inorganic filler preferably has a substantially polyhedral shape, more preferably a substantially cubic shape and / or a substantially rectangular parallelepiped shape. In order to improve the thermal conductivity, it is necessary to increase the filling rate of the inorganic filler. For this reason, an inorganic filler close to a spherical shape is often used, but an increase in the inorganic filler leads to a decrease in drill workability. Considering the same filling rate, the contact between the planes of the inorganic filler is desirable in terms of heat percolation, and the thermal conductivity can be improved by using the inorganic filler having a substantially polyhedral shape. The substantially polyhedral shape here means a solid body having a flat surface portion, and does not mean that there is no curved surface portion at all. Especially, a substantially cubic shape or a substantially rectangular parallelepiped shape can increase a contact area. However, a plate-like or needle-like inorganic filler having an aspect ratio of 3 or more has poor kneadability and increases the melt viscosity. A shape with an aspect ratio of 2.5 or less is desirable in terms of improving thermal conductivity while preventing deterioration of melt viscosity.

フィラは不純物が少なく、結晶化度が高い方が、熱伝導率も高くなりやすい。また、結晶化度が向上することにより、表面が平滑になりBET値や給油量が減少する。また、形状も結晶系に応じた形になりやすい。したがって、混練性の向上や溶融粘度を低減することができる。また、表面の平滑性はパーコレーション向上にもつながる。立方晶または、正方晶の結晶構造をもつフィラは、略立方体や略直方体形状に成長しやすいため無機フィラとして望ましい。結晶化度は例えば、X線回折でのピークの半値幅等で簡易的に計測することができる。Cu−Kα線を用いた粉末X線回折法において立方晶のフィラの場合(200)面のピークの半値幅が0.3度以下が望ましい。また、(111)面、(220)面のピークの半値幅も小さい方がよく、望ましくは0.3度以下である。   The filler has fewer impurities and a higher crystallinity, the higher the thermal conductivity. Also, the crystallinity is improved, the surface becomes smooth, and the BET value and the amount of oil supply decrease. Also, the shape tends to be a shape corresponding to the crystal system. Therefore, the kneadability can be improved and the melt viscosity can be reduced. Also, the smoothness of the surface leads to an improvement in percolation. A filler having a cubic or tetragonal crystal structure is desirable as an inorganic filler because it tends to grow into a substantially cubic or substantially rectangular parallelepiped shape. The degree of crystallinity can be easily measured by, for example, the half width of the peak in X-ray diffraction. In the case of a cubic filler in the powder X-ray diffraction method using Cu—Kα rays, the half width of the peak on the (200) plane is preferably 0.3 ° or less. Moreover, it is better that the half-value widths of the peaks on the (111) plane and the (220) plane are also small, preferably 0.3 degrees or less.

また、これらの無機フィラは表面処理を施していてもよい。表面処理により耐湿性や接着強度、分散性の向上が図れる。表面処理としては、シランカップリング剤やチタネートカップリング剤、リン酸エステル、スルホン酸エステル、カルボン酸エステルの他、アルミナやシリカコート、シリコーン系の材料で被覆されていてもよい。なお無機フィラの充填率を増加するために、異なる粒度分布を有する複数種の無機フィラを選び、これらを混合して使用しても良い。   These inorganic fillers may be subjected to a surface treatment. The surface treatment can improve moisture resistance, adhesive strength, and dispersibility. As the surface treatment, in addition to a silane coupling agent, a titanate coupling agent, a phosphoric acid ester, a sulfonic acid ester, and a carboxylic acid ester, it may be coated with an alumina, silica coat, or silicone material. In order to increase the filling rate of the inorganic filler, a plurality of types of inorganic fillers having different particle size distributions may be selected and used in combination.

(実施例2)
以下、本発明の実施例2としてプリプレグの製造方法の一例について説明する。
(Example 2)
Hereinafter, an example of a method for producing a prepreg will be described as Example 2 of the present invention.

所定量配合された樹脂と無機フィラと溶剤からなるワニスを攪拌、混練し、ガラス織布/不織布にワニスを含浸させた後に、加熱乾燥し、溶剤分を除去するとともに樹脂を半硬化状態にすることでプリプレグを作製する。   Stir and knead varnish consisting of resin, inorganic filler, and solvent in a specified amount, impregnate glass woven / nonwoven fabric with varnish, heat dry, remove solvent, and make resin semi-cured Thus, a prepreg is produced.

次にプリプレグを用いて、熱伝導性が高くドリル加工性のよいプリント配線基板を作製する方法について説明する。プリプレグを1枚以上重ねて積層体とし、該積層体に銅箔を重ねて加熱加圧することで銅張積層板とすることができる。次に銅張積層板の銅箔を所定形状にパターニングする。なおパターニングは一般的な工程(フォトレジスト形成、露光、現像、エッチング、フォトレジストの除去)を用いることができる。その後、必要に応じて積層工程とパターニング工程を繰り返して多層板が構成できる。次にこの積層体の所定位置にドリル加工やレーザー等で孔を形成し、銅メッキを行うことでスルーホールを形成後、最外層をパターニングする。次にソルダーレジスト等を形成しプリント配線板を完成させる。   Next, a method for producing a printed wiring board having high thermal conductivity and good drillability using a prepreg will be described. One or more prepregs are stacked to form a laminate, and a copper clad laminate can be obtained by stacking a copper foil on the laminate and heating and pressing. Next, the copper foil of the copper clad laminate is patterned into a predetermined shape. The patterning can be performed by a general process (photoresist formation, exposure, development, etching, photoresist removal). Then, a multilayer board can be constituted by repeating the lamination process and the patterning process as necessary. Next, a hole is formed at a predetermined position of the laminated body by drilling or laser, etc., and copper plating is performed to form a through hole, and then the outermost layer is patterned. Next, a solder resist or the like is formed to complete the printed wiring board.

なお、製造方法は上記記載の方法に限定されるわけではない。また、プリプレグは、プリント配線板の構成材料としてだけではなく、金属基板の銅箔と放熱板間の接着材料としても使用することができる。   The manufacturing method is not limited to the method described above. The prepreg can be used not only as a constituent material of a printed wiring board but also as an adhesive material between a copper foil of a metal substrate and a heat sink.

以上のように、本発明にかかるプリプレグ及びその製造方法とこれを用いたプリント配線板を用いることによって、携帯電話、テレビ、あるいは電装品、あるいは産業用等の放熱が要求される機器の小型化、高性能化が可能となる。   As described above, by using the prepreg according to the present invention, a manufacturing method thereof, and a printed wiring board using the prepreg, downsizing of a mobile phone, a television, an electrical component, or a device that requires heat dissipation such as industrial use is required. High performance is possible.

(実験1)
実験1として、発明者らの実験、評価結果の一例について説明する。
(Experiment 1)
As Experiment 1, an example of the inventors' experiments and evaluation results will be described.

無機フィラとして酸化アルミニウム(住友化学社製 モース硬度9)、酸化マグネシウム(神島化学工業社製 モース硬度6)、炭酸マグネシウム(神島化学社製 モース硬度3)を用いてドリル加工性を検討した。無機フィラの粒径は全て1〜5μmの範囲である。   Drilling workability was examined using aluminum oxide (Morse hardness 9 manufactured by Sumitomo Chemical Co., Ltd.), magnesium oxide (Morse hardness 6 manufactured by Kamijima Chemical Co., Ltd.), and magnesium carbonate (Morse hardness 3 manufactured by Kamishima Chemical Co., Ltd.) as the inorganic filler. The particle size of the inorganic filler is in the range of 1 to 5 μm.

無機フィラをエポキシ樹脂(ビスフェノールF系+硬化剤)と配合し、MEKを溶剤としてディスパーミルで拡散しワニスを作製した。このワニスをガラス織布(#1080:重量48g/m)に含浸しプリプレグを作製した。無機フィラのプリプレグに対する充填率を10,30,50,70vol%になるように、無機フィラ/樹脂組成物の割合(20vol%以上〜90vol%以下)とプリプレグの厚みを調整した。 An inorganic filler was blended with an epoxy resin (bisphenol F type + curing agent), and MEK was used as a solvent to diffuse with a disper mill to prepare a varnish. This varnish was impregnated into a glass woven fabric (# 1080: weight 48 g / m 2 ) to prepare a prepreg. The ratio of the inorganic filler / resin composition (from 20 vol% to 90 vol%) and the thickness of the prepreg were adjusted so that the filling ratio of the inorganic filler to the prepreg was 10, 30, 50, 70 vol%.

このプリプレグを6枚積層し、上下の最外層に厚み18μmの銅箔を積層し、熱プレス機で加熱(180℃×1h)・加圧(2MPa)成形することで硬化しサンプル基板を作製した。同じ厚みのR−1566をリファレンスとした。   Six prepregs were laminated, 18 μm thick copper foil was laminated on the upper and lower outermost layers, and cured by heating (180 ° C. × 1 h) / pressurizing (2 MPa) with a hot press to prepare a sample substrate. . R-1566 having the same thickness was used as a reference.

このサンプル基板にドリル加工を行い、1000,2000,3000HIT後のドリル刃径の変化を測定した。ドリル径は初期φ0.5mmの物を用いた。ドリル加工時には、エントリーボード(アルミ:0.12mmt)と、バックアップボード(ベーク板:1.5mmt)の間にサンプル基板を挟んだ形で加工を行った。   This sample substrate was drilled and the change in the drill blade diameter after 1000, 2000, 3000 HIT was measured. A drill having an initial diameter of 0.5 mm was used. At the time of drilling, the sample board was sandwiched between an entry board (aluminum: 0.12 mmt) and a backup board (baked board: 1.5 mmt).

ドリルの残存刃率を図1〜3に示す。図1に示す酸化アルミニウムを用いた場合、無機フィラ/プリプレグ10vol%の充填率でドリルの磨耗量が8.1%と大きく、30vol%となると11.8%と10%を超えてしまいドリル加工性に課題が生じた。これはモース硬度が高いことによるドリルの摩耗である。図2に示す酸化マグネシウムを用いた場合、70vol%の充填率でドリルの摩耗量は8.2%であり、図3に示す炭酸マグネシウムでは30%の充填率で4.0%であった。リファレンスのR−1566の摩耗率は1.0%であった。   The remaining blade rate of the drill is shown in FIGS. When the aluminum oxide shown in FIG. 1 is used, the drill wear amount is large at 8.1% with a filling rate of 10% by volume of inorganic filler / prepreg, and exceeds 11.8% and 10% at 30% by volume. There was a problem with sex. This is the wear of the drill due to the high Mohs hardness. When the magnesium oxide shown in FIG. 2 was used, the wear amount of the drill was 8.2% at a filling rate of 70 vol%, and the magnesium carbonate shown in FIG. 3 was 4.0% at a filling rate of 30%. The wear rate of the reference R-1566 was 1.0%.

(実験2)
実験2として、無機フィラとして複数の酸化マグネシウム(神島化学工業社製、タテホ化学製)を用いて、結晶化度(フィラ形状)と熱伝導率の関係を検討した。無機フィラの粒径は全て1〜5μmの範囲である。
(Experiment 2)
As Experiment 2, a plurality of magnesium oxides (manufactured by Kamishima Chemical Co., Ltd., manufactured by Tateho Chemical Co., Ltd.) were used as inorganic fillers, and the relationship between crystallinity (filler shape) and thermal conductivity was examined. The particle size of the inorganic filler is in the range of 1 to 5 μm.

サンプルのプリプレグ作製は実施例1と同様であり、無機フィラのプリプレグに対する充填率を30vol%とした。無機フィラ/樹脂組成物の割合(20vol%以上90vol%以下)とプリプレグの厚みを調整した。   Preparation of the sample prepreg was the same as in Example 1, and the filling ratio of the inorganic filler to the prepreg was set to 30 vol%. The ratio of the inorganic filler / resin composition (20 vol% or more and 90 vol% or less) and the thickness of the prepreg were adjusted.

このプリプレグを4枚積層し、上下の最外層に厚み18μmの銅箔を積層し、熱プレス機で加熱(180℃×1h)・加圧(2MPa)成形後、銅箔を全てエッチングにより除去し、約φ12.7mmの円板形状に加工し熱伝導率評価サンプルを作製した。また、結晶化度を計測するために粉末X線回折を実施し、解析ソフト(Jade)で(111)面、(200)面、(220)面ピークの検出と、それぞれのピークの半値幅の算出を行った。   Four prepregs are laminated, and a copper foil with a thickness of 18 μm is laminated on the upper and lower outermost layers. After heating (180 ° C. × 1 h) and pressurizing (2 MPa) with a hot press machine, all the copper foil is removed by etching. The sample was processed into a disk shape of about φ12.7 mm to produce a thermal conductivity evaluation sample. In addition, powder X-ray diffraction was performed to measure crystallinity, and (111), (200), and (220) plane peaks were detected by analysis software (Jade), and the half-value width of each peak was Calculation was performed.

(200)面の半値幅の値と熱伝導率の関係を[表1]に示す。   The relationship between the value of the half width of the (200) plane and the thermal conductivity is shown in [Table 1].

Figure 2010163598
Figure 2010163598

[表1]より、半値幅の小さい試料の方が熱伝導率が高く0.3以下の試料で、熱伝導
率0.8W/mKが達成できている。また、ばらつきも小さい。これは結晶自体の熱伝導率が高いことと、熱的なパーコレーションが向上していることが原因と思われる。
From [Table 1], the sample with a smaller half-value width has a higher thermal conductivity and is 0.3 or less, and a thermal conductivity of 0.8 W / mK can be achieved. Also, the variation is small. This is probably because the crystal itself has a high thermal conductivity and the thermal percolation is improved.

なお、製造方法は上記記載の方法に限定されるわけではない。また、プリプレグは、プリント配線板の構成材料としてだけではなく、金属基板の銅箔と放熱板間の接着材料としても使用することができる。   The manufacturing method is not limited to the method described above. The prepreg can be used not only as a constituent material of a printed wiring board but also as an adhesive material between a copper foil of a metal substrate and a heat sink.

以上のように、本発明にかかるプリプレグ及びその製造方法とこれを用いたプリント配線板を用いることによって、携帯電話、テレビ、あるいは電装品、あるいは産業用等の放熱が要求される機器の小型化や高性能化、高信頼性化が可能となる。   As described above, by using the prepreg according to the present invention, a manufacturing method thereof, and a printed wiring board using the prepreg, downsizing of a mobile phone, a television, an electrical component, or a device that requires heat dissipation such as industrial use is required. And higher performance and higher reliability.

Claims (12)

無機フィラを含有する樹脂組成物をガラス織布又はガラス不織布の基材に含浸させたプリプレグにおいて、前記無機フィラのプリプレグに対する充填率を30vol%以上70vol%以下とし、前記無機フィラは、熱伝導率9W/mK以上かつモース硬度6以下の成分を前記無機フィラ中60vol%以上含んでいるプリプレグ。 In a prepreg in which a glass woven fabric or glass nonwoven fabric base material is impregnated with a resin composition containing an inorganic filler, the filling ratio of the inorganic filler to the prepreg is set to 30 vol% or more and 70 vol% or less, and the inorganic filler has a thermal conductivity. A prepreg containing a component of 9 W / mK or more and a Mohs hardness of 6 or less in the inorganic filler of 60 vol% or more. 略多面体形状の無機フィラを含有する樹脂組成物をガラス織布又はガラス不織布の基材に含浸させたプリプレグにおいて、前記無機フィラのプリプレグに対する充填率を30vol%以上70vol%以下とし、前記無機フィラは、熱伝導率9W/mK以上かつモース硬度6以下の成分を前記無機フィラ中60vol%以上含んでいるプリプレグ。 In a prepreg obtained by impregnating a glass woven fabric or glass nonwoven fabric base material with a resin composition containing a substantially polyhedral inorganic filler, the filling rate of the inorganic filler with respect to the prepreg is set to 30 vol% or more and 70 vol% or less. A prepreg containing a component having a thermal conductivity of 9 W / mK or more and a Mohs hardness of 6 or less in the inorganic filler of 60 vol% or more. 硬化後の熱伝導率が0.8W/mK以上20.0W/mK以下であることを特徴とする請求項1または2記載のプリプレグ。 The prepreg according to claim 1 or 2, wherein the heat conductivity after curing is 0.8 W / mK or more and 20.0 W / mK or less. 前記無機フィラが 窒化ホウ素、酸化マグネシウム、珪酸ジルコニウム、水酸化マグネシウム、珪酸ジルコニウム、炭酸マグネシウム、水酸化アルミニウムを少なくとも1種類以上含む請求項1または2記載のプリプレグ。 The prepreg according to claim 1 or 2, wherein the inorganic filler contains at least one kind of boron nitride, magnesium oxide, zirconium silicate, magnesium hydroxide, zirconium silicate, magnesium carbonate, and aluminum hydroxide. 前記無機フィラが略立方体形状及び/または略直方体形状である請求項2記載のプリプレグ。 The prepreg according to claim 2, wherein the inorganic filler has a substantially cubic shape and / or a substantially rectangular parallelepiped shape. 前記無機フィラが立方晶または、正方晶である請求項2記載のプリプレグ。 The prepreg according to claim 2, wherein the inorganic filler is cubic or tetragonal. 前記無機フィラのCu−Kα線を用いた粉末X線回折での(200)面のピークの半値幅が0.3度以下である請求項1または2記載のプリプレグ。 The prepreg according to claim 1 or 2, wherein the half width of the peak on the (200) plane in powder X-ray diffraction using Cu-Kα rays of the inorganic filler is 0.3 ° or less. 前記樹脂組成物のプリプレグに対する充填率を50vol%以上95vol%以下とすることを特徴とする請求項1または2記載のプリプレグ。 The prepreg according to claim 1 or 2, wherein a filling ratio of the resin composition to the prepreg is 50 vol% or more and 95 vol% or less. 前記無機フィラの樹脂組成物に対する充填率を40vol%以上90vol%以下とすることを特徴とする請求項1または2記載のプリプレグ。 The prepreg according to claim 1 or 2, wherein a filling rate of the inorganic filler with respect to the resin composition is 40 vol% or more and 90 vol% or less. 前記プリプレグを硬化した絶縁板の厚み方向の線膨張係数が、前記絶縁板のガラス転移温度Tg以下の範囲で45ppm/℃以下である請求項1または2記載のプリプレグ。 The prepreg according to claim 1 or 2, wherein a linear expansion coefficient in a thickness direction of the insulating plate obtained by curing the prepreg is 45 ppm / ° C or less in a range of the glass transition temperature Tg or less of the insulating plate. 請求項1及び/または2に記載のプリプレグを1枚以上重ねて積層体となし、該積層体の片面又は両面に金属箔を重ねて加熱加圧成形をしたことを特徴とする金属箔張積層板。 A metal foil-clad laminate, wherein one or more prepregs according to claim 1 and / or 2 are laminated to form a laminate, and metal foil is laminated on one side or both sides of the laminate and heat-pressed. Board. 請求項1及び/または2に記載のプリプレグが構成材の絶縁層として用いられたことを特徴とするプリント配線板。  A printed wiring board, wherein the prepreg according to claim 1 and / or 2 is used as an insulating layer of a constituent material.
JP2009216644A 2008-12-18 2009-09-18 Prepreg, method for producing the same, and printed wiring board using the same Pending JP2010163598A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009216644A JP2010163598A (en) 2008-12-18 2009-09-18 Prepreg, method for producing the same, and printed wiring board using the same
PCT/JP2009/006906 WO2010070890A1 (en) 2008-12-18 2009-12-16 Prepreg, process for production thereof, and printed wiring board using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008322141 2008-12-18
JP2009216644A JP2010163598A (en) 2008-12-18 2009-09-18 Prepreg, method for producing the same, and printed wiring board using the same

Publications (1)

Publication Number Publication Date
JP2010163598A true JP2010163598A (en) 2010-07-29

Family

ID=42268570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216644A Pending JP2010163598A (en) 2008-12-18 2009-09-18 Prepreg, method for producing the same, and printed wiring board using the same

Country Status (2)

Country Link
JP (1) JP2010163598A (en)
WO (1) WO2010070890A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087250A (en) * 2010-10-21 2012-05-10 Panasonic Corp Heat-conductive resin composition, resin sheet, prepreg, metal laminated plate, and print wiring board
JP2012116893A (en) * 2010-11-29 2012-06-21 Hitachi Chemical Co Ltd Prepreg, laminate and printed wiring board using the same
JP2012131945A (en) * 2010-12-24 2012-07-12 Sumitomo Bakelite Co Ltd Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2012134411A (en) * 2010-12-24 2012-07-12 Sumitomo Bakelite Co Ltd Print circuit board resin composition, prepreg, laminate sheet, resin sheet, print circuit board and semiconductor device
JPWO2016132671A1 (en) * 2015-02-16 2017-11-30 パナソニックIpマネジメント株式会社 Acrylic resin composition for sealing, cured product thereof, production method, semiconductor device using the resin composition, and production method thereof
JP2018050017A (en) * 2016-09-23 2018-03-29 Koa株式会社 Chip resistor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6074883B2 (en) 2010-10-29 2017-02-08 パナソニックIpマネジメント株式会社 Prepreg, laminate, metal foil clad laminate, circuit board and LED module
CN103596359A (en) * 2012-08-13 2014-02-19 广达电脑股份有限公司 Printed circuit board structure
JP2020170828A (en) * 2019-04-05 2020-10-15 Tdk株式会社 Substrate and laminated substrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568061B2 (en) * 1972-11-06 1981-02-21
JPS61145230A (en) * 1984-12-19 1986-07-02 Shin Kobe Electric Mach Co Ltd Epoxy resin laminate
JPH0710939B2 (en) * 1985-07-17 1995-02-08 宇部興産株式会社 Resin composition for electronic component encapsulation
JPS6338735A (en) * 1986-07-30 1988-02-19 Shinko Kagaku Kogyo Kk Reinforcing member for high load transmission belt
JPS63159443A (en) * 1986-12-23 1988-07-02 Matsushita Electric Works Ltd Laminate
JP4788457B2 (en) * 2006-04-18 2011-10-05 三菱瓦斯化学株式会社 Prepreg and copper clad laminate
JP2008270384A (en) * 2007-04-18 2008-11-06 Matsushita Electric Ind Co Ltd Printed wiring board and method of manufacturing the same
JP2008277507A (en) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd Heat radiation printed wiring board, manufacturing method thereof, and module using the board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087250A (en) * 2010-10-21 2012-05-10 Panasonic Corp Heat-conductive resin composition, resin sheet, prepreg, metal laminated plate, and print wiring board
JP2012116893A (en) * 2010-11-29 2012-06-21 Hitachi Chemical Co Ltd Prepreg, laminate and printed wiring board using the same
JP2012131945A (en) * 2010-12-24 2012-07-12 Sumitomo Bakelite Co Ltd Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2012134411A (en) * 2010-12-24 2012-07-12 Sumitomo Bakelite Co Ltd Print circuit board resin composition, prepreg, laminate sheet, resin sheet, print circuit board and semiconductor device
JPWO2016132671A1 (en) * 2015-02-16 2017-11-30 パナソニックIpマネジメント株式会社 Acrylic resin composition for sealing, cured product thereof, production method, semiconductor device using the resin composition, and production method thereof
US10797013B2 (en) 2015-02-16 2020-10-06 Panasonic Intellectual Property Management Co., Ltd. Acrylic resin composition for sealing, cured product of same, method for producing same, semiconductor device using said resin composition, and method for manufacturing said semiconductor device
JP2018050017A (en) * 2016-09-23 2018-03-29 Koa株式会社 Chip resistor

Also Published As

Publication number Publication date
WO2010070890A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP2010163598A (en) Prepreg, method for producing the same, and printed wiring board using the same
JP5771987B2 (en) Multilayer circuit board, insulating sheet, and semiconductor package using multilayer circuit board
JP6023474B2 (en) Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof
JP4735492B2 (en) Prepress and laminate for heat and pressure molding
JP2010251700A (en) Flame retardant resin composition for printed circuit board reinforced in peeling strength, printed circuit board using the same, and manufacturing method thereof
JP5547032B2 (en) Thermally conductive resin composition, resin sheet, prepreg, metal laminate and printed wiring board
US11234329B2 (en) Prepreg, substrate, metal-clad laminate, semiconductor package, and printed circuit board
JP3821728B2 (en) Prepreg
JP2012116715A (en) Method for producing magnesium oxide powder, method for producing thermosetting resin composition, and method for producing prepreg and laminate
JP4132703B2 (en) Prepreg for copper-clad laminate and copper-clad laminate using the same
JP2007009217A (en) Resin composition, prepreg, and printed wiring board using the same
JP2010238907A (en) Laminated board, multilayer printed wiring board, and semiconductor device
JP2007329371A (en) Laminate circuit board
JP5245253B2 (en) Resin composition, insulating resin sheet with film or metal foil, multilayer printed wiring board, and semiconductor device
JP2003213019A (en) Prepreg and printed wiring board using the same
JP2004277671A (en) Prepreg and printed circuit board using the same
JP2010260990A (en) Prepreg, method for producing the same and printed wiring board using the same
JP5144583B2 (en) Sheet material and printed wiring board
JP2006312751A (en) Resin composition, prepreg and copper-clad laminate using the prepreg
JP5448414B2 (en) Resin composition, prepreg, laminate, multilayer printed wiring board, and semiconductor device
JP2005209489A (en) Insulation sheet
JP5428212B2 (en) Resin composition, prepreg and printed wiring board using the same
JP4192871B2 (en) Laminated board and wiring board
JP2008238603A (en) Laminate board and printed wiring board using the same
JP2007146095A (en) Resin composition, prepreg, and laminated board and printed circuit board produced by using the same