JP2007146095A - Resin composition, prepreg, and laminated board and printed circuit board produced by using the same - Google Patents

Resin composition, prepreg, and laminated board and printed circuit board produced by using the same Download PDF

Info

Publication number
JP2007146095A
JP2007146095A JP2005372674A JP2005372674A JP2007146095A JP 2007146095 A JP2007146095 A JP 2007146095A JP 2005372674 A JP2005372674 A JP 2005372674A JP 2005372674 A JP2005372674 A JP 2005372674A JP 2007146095 A JP2007146095 A JP 2007146095A
Authority
JP
Japan
Prior art keywords
resin composition
aluminum hydroxide
inorganic filler
resins
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005372674A
Other languages
Japanese (ja)
Other versions
JP4706468B2 (en
Inventor
Masato Miyatake
正人 宮武
Akira Murai
曜 村井
Ikuo Sugawara
郁夫 菅原
Shinji Shimaoka
伸治 島岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005372674A priority Critical patent/JP4706468B2/en
Publication of JP2007146095A publication Critical patent/JP2007146095A/en
Application granted granted Critical
Publication of JP4706468B2 publication Critical patent/JP4706468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition giving a metal-clad laminated board having excellent heat-resistance, peeling strength, etc. <P>SOLUTION: The resin composition contains an inorganic filler and a thermosetting resin as essential components. The inorganic filler comprises aluminum hydroxide having an average particle diameter of 1.0-5.0μm, containing ≤0.2 mass% particles of ≤0.5μm diameter, having a BET specific surface area of ≤1.5 m<SP>2</SP>/g and containing ≤20 ppm of coarse particles having particle diameter of ≥45μm. The invention further provides a prepreg, and a laminated board and a printed circuit board produced by using the composition, etc. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐熱性およびピール強度などが改善された金属張積層板が得られる樹脂組成物、プリプレグならびにそれを用いた積層板およびプリント配線板に関するものである。   The present invention relates to a resin composition from which a metal-clad laminate having improved heat resistance and peel strength, a prepreg, a laminate using the same, and a printed wiring board.

電子機器の小型化、高性能化に伴い、プリント配線板の高密度化、薄型化が進んでいる。薄型化に対応するため、金属張積層板では高弾性率化の要求が高まり、充填剤が使用されるケースが多くなってきている。充填剤を使用する場合、硬度が高い充填剤を高充填すると積層板の高弾性率化に有効である一方、ドリル加工の際にドリルの磨耗量が大きくなるという問題がある。高弾性を維持しつつ、ドリル磨耗を改善させる手法として,硬度が比較的低い水酸化アルミニウム等を併用する方法がある。
しかしながら、水酸化アルミニウムは燃焼時に冷却効果を発現する水を多くトラップしているため、ある程度の量以上配合すると樹脂組成物や積層板の耐熱性が急激に低下する問題がある。これは、水酸化アルミニウムが水をリリースする温度がはんだの溶融温度よりも低いことに起因しており、今後溶融温度が更に高くなる鉛フリーはんだではより顕著になると思われる。さらにプリント配線板の薄型化が進む中で、極薄の積層板においてフィラー中に粗大粒子が含有される場合、粗大粒子が存在する部分で不良が発生したり、十分な絶縁信頼性が確保できなくなる。
With the downsizing and high performance of electronic devices, printed wiring boards are becoming denser and thinner. In order to cope with the reduction in thickness, there is an increasing demand for high elastic modulus in metal-clad laminates, and the use of fillers is increasing. When a filler is used, high filling with a filler having a high hardness is effective for increasing the elastic modulus of the laminate, but there is a problem that the amount of wear of the drill becomes large during drilling. As a technique for improving drill wear while maintaining high elasticity, there is a method using aluminum hydroxide or the like having a relatively low hardness.
However, since aluminum hydroxide traps a lot of water that exhibits a cooling effect at the time of combustion, there is a problem that the heat resistance of the resin composition or the laminate is drastically lowered when blended in a certain amount or more. This is due to the fact that the temperature at which aluminum hydroxide releases water is lower than the melting temperature of the solder, and it seems that it becomes more prominent in lead-free solders where the melting temperature will become higher in the future. As printed wiring boards are becoming thinner, if the filler contains coarse particles in an ultra-thin laminate, defects may occur in the areas where coarse particles exist, and sufficient insulation reliability can be secured. Disappear.

一般にプリント配線板や半導体パッケージに用いられる基板には、難燃性を付与するためにハロゲン難燃剤(主に臭素系)やリン化合物が用いられているが、燃焼時に猛毒のダイオキシン類等の発生が懸念されるため、使用しない方向にある。一方、部品の実装においては、従来Sn−Pb系はんだが主に使用されていたが、近年、廃棄処理時などに土壌を汚染するので鉛を用いないはんだ材料への転換が進んでいる。鉛フリーはんだでは、融点が10℃から40℃ほど上昇するため、実装時におけるリフロー温度も同程度上昇する。
このような状況下で、環境に対応するパッケージ用基板には、ハロゲン化合物やリン化合物を用いずに優れた難燃性を有すると共に、鉛フリーはんだに対応可能な、優れた耐熱性が要求されている。
In general, halogen flame retardants (mainly bromine-based) and phosphorus compounds are used for printed circuit boards and substrates used in semiconductor packages to provide flame retardancy, but extremely toxic dioxins are generated during combustion. Because there is concern, it is in the direction not to use. On the other hand, Sn-Pb solder has been mainly used for mounting components. However, in recent years, the soil has been contaminated at the time of disposal or the like, and the conversion to a solder material that does not use lead has been progressing. With lead-free solder, the melting point rises from 10 ° C. to 40 ° C., so the reflow temperature during mounting also rises to the same extent.
Under these circumstances, packaging substrates that support the environment are required to have excellent heat resistance that is compatible with lead-free solder, as well as having excellent flame resistance without using halogen compounds or phosphorus compounds. ing.

さらに、パッケージのパッド面積の微小化が進んでおり、鉛フリーはんだボールの特性変化と相まって、はんだボール接続の信頼性が高いことが要求されている。そのため、用いられる基板にはピール強度(金属箔引き剥がし強さ)の向上が強く望まれている。
また,高温域での強度や弾性率等の高温特性を向上させるためには、従来以上の高いガラス転移温度(Tg)が必要となる。この低熱膨張率化や高弾性率化に対する要求を満たすために充填剤の添加による方法がある(例えば特許文献1を参照)。
特開2003−64198号公報
Further, the miniaturization of the pad area of the package is progressing, and it is required that the reliability of the solder ball connection is high in combination with the change in characteristics of the lead-free solder ball. Therefore, an improvement in peel strength (metal foil peeling strength) is strongly desired for the substrate used.
Moreover, in order to improve high temperature characteristics such as strength and elastic modulus in a high temperature range, a higher glass transition temperature (Tg) than before is required. In order to satisfy the demand for the low thermal expansion coefficient and high elastic modulus, there is a method by adding a filler (see, for example, Patent Document 1).
JP 2003-64198 A

本発明の目的は、こうした現状に鑑み、耐熱性およびピール強度などが改善された金属張積層板が得られる樹脂組成物を提供することである。   In view of the current situation, an object of the present invention is to provide a resin composition from which a metal-clad laminate with improved heat resistance and peel strength can be obtained.

本発明者は、前記目的を達成するために鋭意研究を重ねた結果、特定の水酸化アルミニウムを含む無機充填剤と熱硬化性樹脂からなる樹脂組成物が、上記目的に沿うものであることを見出した。本発明は、かかる知見に基づいて完成したものである。   As a result of intensive studies to achieve the above object, the present inventor has found that a resin composition comprising an inorganic filler containing a specific aluminum hydroxide and a thermosetting resin meets the above object. I found it. The present invention has been completed based on such findings.

すなわち、本発明は、以下の樹脂組成物、プリプレグならびに積層板およびプリント配線板を提供するものである。
1.無機充填剤と熱硬化樹脂を必須成分とし、無機充填剤として、平均粒子径が1.0μm〜5.0μm、0.5μm以下の粒子が0.2質量%以下、BET比表面積が1.5m2/g以下、粒子径45μm以上の粗大粒子量が20ppm以下である水酸化アルミニウムを含むことを特徴とする樹脂組成物。
2.熱硬化樹脂が、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、トリアジン樹脂、メラミン樹脂及びこれら樹脂を変性した変性樹脂からなる群から選ばれる少なくとも1種の樹脂である上記1の樹脂組成物。
3.水酸化アルミニウム以外の無機充填剤として、平均粒径0.4〜0.7μmの球状シリカを含むものである上記1又は2の樹脂組成物。
4.樹脂組成物中の無機充填剤が40〜70質量%であり、無機充填剤の25〜75質量%が球状シリカ、25〜75質量%が水酸化アルミニウムである上記3の樹脂組成物。
5.上記1〜4のいずれかの樹脂組成物を、基材に含浸させた後、乾燥して得られるプリプレグ。
6.上記5のプリプレグを1枚以上重ね、加熱加圧成形して得られる積層板。
7.重ねたプリプレグの少なくとも一方に金属箔を重ねた後、加熱加圧成形して得られた金属張積層板である上記6の積層板。
8.上記6又は7の積層板を使用し、回路加工して得られるプリント配線板。
That is, the present invention provides the following resin composition, prepreg, laminate and printed wiring board.
1. An inorganic filler and a thermosetting resin are essential components, and the inorganic filler has an average particle size of 1.0 μm to 5.0 μm, 0.5 μm or less of particles of 0.2% by mass or less, and a BET specific surface area of 1.5 m. 2 / g or less, The resin composition characterized by including the aluminum hydroxide whose coarse particle quantity of a particle diameter of 45 micrometers or more is 20 ppm or less.
2. The resin composition according to 1 above, wherein the thermosetting resin is at least one resin selected from the group consisting of epoxy resins, phenol resins, polyimide resins, triazine resins, melamine resins, and modified resins obtained by modifying these resins.
3. The resin composition according to 1 or 2 above, which contains spherical silica having an average particle size of 0.4 to 0.7 μm as an inorganic filler other than aluminum hydroxide.
4). 4. The resin composition as described in 3 above, wherein the inorganic filler in the resin composition is 40 to 70% by mass, 25 to 75% by mass of the inorganic filler is spherical silica, and 25 to 75% by mass is aluminum hydroxide.
5. A prepreg obtained by impregnating a base material with any one of the above resin compositions 1 to 4 and then drying.
6). A laminate obtained by laminating one or more prepregs of 5 above and heating and pressing.
7). 6. The laminate of 6 above, which is a metal-clad laminate obtained by stacking a metal foil on at least one of the stacked prepregs and then heating and pressing.
8). A printed wiring board obtained by processing a circuit using the laminate of 6 or 7 above.

本発明の樹脂組成物は、耐熱性やピール強度などが改善された金属張積層板が得られるので、プリント配線板などに好適に用いることができる。
すなわち、本発明の樹脂組成物より作製した積層板は、粒度分布がシャープでありかつ微粒子の少ない水酸化アルミニウムを用いるため、高い耐熱性を発現する。また同時に良好なピール強度(金属箔引き剥がし強さ)が得られる。
The resin composition of the present invention can be suitably used for printed wiring boards and the like because a metal-clad laminate with improved heat resistance and peel strength can be obtained.
That is, the laminate produced from the resin composition of the present invention uses aluminum hydroxide having a sharp particle size distribution and few fine particles, and thus exhibits high heat resistance. At the same time, good peel strength (metal foil peel strength) can be obtained.

本発明の樹脂組成物は、無機充填剤と熱硬化樹脂を必須成分とし、特定の水酸化アルミニウムを含む無機充填剤を用いることを特徴とするものである。
先ず、本発明で使用する水酸化アルミニウムについて詳細に説明する。
本発明で使用される水酸化アルミニウムは、平均粒子径が1.0μm〜5.0μm、好ましくは2.5〜4.0μmのものである。平均粒子径を1.0μm以上とすることにより、樹脂材料に水酸化アルミニウムを加えてワニスを作製する際に大幅に増粘し、ガラス基材等への含浸することや、プリプレグをプレスした時の成形が困難になることがなくなり、また、粒子の凝集が発生し水酸化アルミニウムの分散性が不十分となることがなくなる。一方、平均粒子径を5.0μm以下とすることにより、ワニスを作製した際に沈降が早いため作業性が悪くなることがなくなり、また、近年の薄型化に対応した絶縁信頼性等を高いプリント基板を得ることができる。
The resin composition of the present invention is characterized in that an inorganic filler and a thermosetting resin are essential components and an inorganic filler containing a specific aluminum hydroxide is used.
First, the aluminum hydroxide used in the present invention will be described in detail.
The aluminum hydroxide used in the present invention has an average particle size of 1.0 μm to 5.0 μm, preferably 2.5 to 4.0 μm. When the average particle size is 1.0 μm or more, when the varnish is made by adding aluminum hydroxide to the resin material, the viscosity is greatly increased, and when impregnating into a glass substrate or pressing a prepreg It is no longer difficult to mold, and the aggregation of particles does not occur and the dispersibility of aluminum hydroxide does not become insufficient. On the other hand, by setting the average particle size to 5.0 μm or less, when the varnish is produced, the sedimentation is quick, so that the workability is not deteriorated, and the insulation reliability corresponding to the recent thinning is high. A substrate can be obtained.

また、本発明で使用する水酸化アルミニウムは,0.5μm以下の粒子が0.2質量%以下、好ましくは0.1質量%以下、BET比表面積が1.5m2/g以下、好ましくは1.3m2/g以下のものである。
水酸化アルミニウムの脱水開始温度はギブサイト型からベーマイト型へ転移する温度と等しいため、ベーマイト化を抑制することにより水酸化アルミニウムの耐熱性が向上する。0.5μm以下の微粒子は比表面積が高いため表面吸着水分が多く、240℃付近の低い温度で脱水を開始するが、本発明の水酸化アルミニウムはそのような微粒子が0.2質量%以下であり、シャープな粒度分布を示すのでベーマイト化が抑制され、樹脂組成物や積層板、プリント配線板とした時に耐熱性が大きく改善される。
また、BET比表面積が1.5m2/g以下と小さく、0.5μm以下の粒子が0.2質量%以下と微粒子が少ないことから、樹脂材料と水酸化アルミニウム表面との濡れ性が向上し、界面の接着性が良くなっている。そのため、積層板において金属箔の引き剥がし強さが向上する効果が得られる。
さらに、本発明で使用する水酸化アルミニウムは、45μm以上の粗大粒子量が20ppm以下、好ましくは10ppm以下のものである。20ppm以下とすることにより,絶縁信頼性が確保され、優れた耐電圧性が得られる。
本発明で使用する水酸化アルミニウムは、微粒子が少なくシャープな粒度分布を示しており耐熱性に優れることから、はんだ付けのような加工の際に水の放出に起因した樹脂のふくれが発生することがない。特に溶融温度が高い鉛フリーはんだにも耐える良好な耐熱性を示す。
さらに本発明で使用する水酸化アルミニウムは、粗大粒子量が非常に少ないため,薄物の基板においても絶縁信頼性や耐電圧性が良好である。
The aluminum hydroxide used in the present invention has a particle size of 0.5 μm or less of 0.2% by mass or less, preferably 0.1% by mass or less, and a BET specific surface area of 1.5 m 2 / g or less, preferably 1 .3 m 2 / g or less.
Since the dehydration start temperature of aluminum hydroxide is equal to the temperature of transition from the gibbsite type to the boehmite type, the heat resistance of the aluminum hydroxide is improved by suppressing the formation of boehmite. Fine particles of 0.5 μm or less have a large specific surface area and thus have a large amount of moisture adsorbed on the surface, and dehydration starts at a low temperature around 240 ° C. The aluminum hydroxide of the present invention has such fine particles of 0.2% by mass or less. In addition, since it exhibits a sharp particle size distribution, boehmite formation is suppressed, and heat resistance is greatly improved when a resin composition, a laminated board, or a printed wiring board is used.
In addition, since the BET specific surface area is as small as 1.5 m 2 / g or less and the particle size of 0.5 μm or less is 0.2 mass% or less and there are few fine particles, the wettability between the resin material and the aluminum hydroxide surface is improved. , Interfacial adhesion is improved. Therefore, an effect of improving the peeling strength of the metal foil in the laminated plate can be obtained.
Further, the aluminum hydroxide used in the present invention has a coarse particle amount of 45 μm or more of 20 ppm or less, preferably 10 ppm or less. By setting it to 20 ppm or less, insulation reliability is ensured and excellent voltage resistance is obtained.
The aluminum hydroxide used in the present invention has a sharp particle size distribution with few fine particles and is excellent in heat resistance, so that resin blistering due to release of water occurs during processing such as soldering. There is no. In particular, it exhibits good heat resistance that can withstand lead-free solder with a high melting temperature.
Furthermore, since the aluminum hydroxide used in the present invention has a very small amount of coarse particles, the insulation reliability and voltage resistance are good even for thin substrates.

本発明においては、充填剤として水酸化アルミニウムと共に平均粒径0.4〜0.7μmの球状シリカを用いることが好ましい。このような球状シリカを使用することで剛性の向上が得られる。また、平均粒径を0.4μm以上とすることにより、樹脂組成物の粘度が増加して作業性が悪化することが避けられ、0.7μm以下とすることにより、ドリル加工時にドリル刃のチッピング等の問題の発生が避けられる。
また、本発明においては、上記の水酸化アルミニウムおよびシリカの他に、それら以外の無機充填剤を併用することもできる。併用する無機充填剤の種類や形状、粒径は特に限定するものではなく、例えば炭酸カルシウム、アルミナ、酸化チタン、マイカ、炭酸アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウム、ガラス短繊維やホウ酸アルミニウムや炭化ケイ素等の各種ウィスカ等が挙げられる。なお、これらを数種類用いてもよい。
In the present invention, it is preferable to use spherical silica having an average particle size of 0.4 to 0.7 μm together with aluminum hydroxide as a filler. By using such spherical silica, improvement in rigidity can be obtained. In addition, by setting the average particle size to 0.4 μm or more, it is possible to avoid the viscosity of the resin composition from increasing and workability to be deteriorated. The occurrence of such problems can be avoided.
In the present invention, in addition to the above aluminum hydroxide and silica, other inorganic fillers can be used in combination. The type, shape, and particle size of the inorganic filler used in combination are not particularly limited. For example, calcium carbonate, alumina, titanium oxide, mica, aluminum carbonate, magnesium silicate, aluminum silicate, short glass fiber, aluminum borate, Examples include various whiskers such as silicon carbide. Several of these may be used.

樹脂組成物中の無機充填剤の配合量は40〜70質量%とすることが好ましく、さらに好ましくは45〜60質量%である。40質量%以上とすることによりドリル加工性が良くなり、70質量%以下とすることにより流動性に優れ、プレス時の成形性が良くなる。
また、平均粒径0.4〜0.7μmの球状シリカを無機充填剤中で25〜75質量%、水酸化アルミニウムが25〜75質量%とすることが好ましい。球状シリカおよび水酸化アルミニウムを該範囲とすることにより、前述のように、優れた難燃性を有すると共に、鉛フリーはんだに対応する耐熱性を有し、優れたピール強度、ドリル加工性、絶縁信頼性および成形性を有する金属張積層板が得られる樹脂組成物となる。
It is preferable that the compounding quantity of the inorganic filler in a resin composition shall be 40-70 mass%, More preferably, it is 45-60 mass%. When it is 40% by mass or more, the drilling workability is improved, and when it is 70% by mass or less, the fluidity is excellent and the moldability during pressing is improved.
Moreover, it is preferable that spherical silica with an average particle diameter of 0.4-0.7 micrometer is 25-75 mass% in an inorganic filler, and aluminum hydroxide is 25-75 mass%. By making spherical silica and aluminum hydroxide within this range, as described above, it has excellent flame resistance, heat resistance corresponding to lead-free solder, excellent peel strength, drillability, insulation A resin composition is obtained from which a metal-clad laminate having reliability and formability is obtained.

また本発明においては、これらの無機充填剤には、樹脂と充填剤の界面接着性や無機充填剤の分散性を向上させるために、各種カップリング剤やシリコーン重合体等を用いて無機充填剤の表面処理をすることが好ましい。
プリプレグに水酸化アルミニウムのような金属水酸化物を適用する際の課題としては、充填量の増加と共に難燃性が向上する一方で耐熱性が低下する点が挙げられる。そのため従来は難燃化に必要な量を充填した場合、鉛フリーはんだに対応可能な高い耐熱性を得ることができなかった。
本発明においては、無機充填剤を充填し、優れた難燃性(UL94 V−0)を維持したまま耐熱性を向上させる手段として、無機充填剤として特定の水酸化アルミニウムと共に球状シリカを用い、これを熱硬化性樹脂に配合して無機充填剤の表面に嵩高い応力緩和処理層を形成することにより、無機充填剤中から水分が発生しても樹脂に直接ダメージを与えることがなくなり、そのため積層板の実装温度領域において水分発生に起因した樹脂クラックが抑制され、耐熱性が大幅に向上する。
In the present invention, these inorganic fillers include various kinds of coupling agents, silicone polymers, etc. in order to improve the interfacial adhesion between the resin and the filler and the dispersibility of the inorganic filler. It is preferable to perform the surface treatment.
A problem in applying a metal hydroxide such as aluminum hydroxide to the prepreg is that the flame resistance is improved as the filling amount is increased while the heat resistance is lowered. For this reason, conventionally, when the amount necessary for flame retardancy is filled, high heat resistance compatible with lead-free solder could not be obtained.
In the present invention, as a means of improving heat resistance while filling with an inorganic filler and maintaining excellent flame retardancy (UL94 V-0), spherical silica is used together with specific aluminum hydroxide as an inorganic filler, By blending this with a thermosetting resin to form a bulky stress relaxation treatment layer on the surface of the inorganic filler, even if moisture is generated from the inorganic filler, the resin is not directly damaged, Resin cracks due to moisture generation are suppressed in the mounting temperature region of the laminate, and heat resistance is greatly improved.

また、本発明においては、充填剤の高分散性が発現され、充填剤を高充填化した際に発生する樹脂ワニスの粘度上昇を抑えることができる。このため、樹脂に充填剤を高充填化しても、ガラス基材への良好な含浸性を示し、この材料で作製した基板の耐電食性は非常に良好である。また、界面接着性が大きく向上すること等から、ピール強度、ドリル加工性および絶縁信頼性が優れたものとなり、本発明の樹脂組成物を用いて製造された積層板から回路を形成して得られるプリント配線板は、鉛フリーはんだへの対応が可能であり、かつ高い信頼性が得られる。   Moreover, in this invention, the high dispersibility of a filler is expressed and the viscosity raise of the resin varnish which generate | occur | produces when a filler is highly filled can be suppressed. For this reason, even if the resin is highly filled with a filler, the glass substrate exhibits good impregnation properties, and the substrate made of this material has very good resistance to electric corrosion. In addition, since the interfacial adhesion is greatly improved, it has excellent peel strength, drilling workability and insulation reliability, and is obtained by forming a circuit from a laminate produced using the resin composition of the present invention. The printed wiring board can be compatible with lead-free soldering and has high reliability.

カップリング剤としては、例えばシラン系カップリング剤、チタネート系カップリング剤等が用いられる。シラン系カップリング剤としては、炭素官能性シランが用いられ、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピル(メチル)ジメトキシシラン、2−(2,3−エポキシシクロヘキシル)エチルトリメトキシシランのようなエポキシ基含有シラン;3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピル(メチル)ジメトキシシランのようなアミノ基含有シラン;3−(トリメトキシリル)プロピルテトラメチルアンモニウムクロリドのようなカチオン性シラン;ビニルトリエトキシシランのようなビニル基含有シラン;3−メタクリロキシプロピルトリメトキシシランのようなアクリル基含有シラン;および3−メルカプトプロピルトリメトキシシランのようなメルカプト基含有シランが例示される。
一方、チタネート系カップリング剤としては、チタンプロポキシド、チタンブトキシドのようなチタン酸アルキルエステルが例示される。
これらのカップリング剤やシリコーン重合体は2種以上併用してもよい。
As the coupling agent, for example, a silane coupling agent, a titanate coupling agent, or the like is used. As the silane coupling agent, a carbon-functional silane is used, and 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl (methyl) dimethoxysilane, 2- (2,3-epoxycyclohexyl) ethyltri Epoxy group-containing silane such as methoxysilane; 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyl (methyl) ) Amino group-containing silane such as dimethoxysilane; Cationic silane such as 3- (trimethoxylyl) propyltetramethylammonium chloride; Vinyl group-containing silane such as vinyltriethoxysilane; 3-Methacryloxypropyltrimethoxysilane Acrylic group-containing silane such as Mercapto group-containing silane such as beauty 3-mercaptopropyltrimethoxysilane and the like.
On the other hand, examples of titanate coupling agents include alkyl titanates such as titanium propoxide and titanium butoxide.
Two or more of these coupling agents and silicone polymers may be used in combination.

本発明で用いる熱硬化性樹脂は、特に限定されないが、例えばエポキシ系樹脂、ポリイミド系樹脂、トリアジン系樹脂、フェノール系樹脂、メラミン系樹脂及び、これら樹脂を変性した変性樹脂が用いられる。また,これらの樹脂は2種類以上を併用してもよく、必要に応じて各種硬化剤、硬化促進剤等を使用し、これらを溶剤溶液として配合しても構わない。
これらの熱硬化性樹脂の中で、耐熱性、耐湿性等の特性やコスト等のバランスを考慮するとエポキシ樹脂を用いることが好ましい。エポキシ樹脂としては、分子内に2個以上のエポキシ基を有する化合物が用いられ、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、多官能フェノール類のグリシジルエーテル化合物、二官能アルコール類のグリシジルエーテル化合物、およびそれらの水素添加物等が挙げられる。これらのエポキシ樹脂を単独で用いても、2種以上を併用してもよい。
また、硬化後の樹脂組成物のガラス転移温度(Tg)や耐熱性を向上するために、分子内に3個以上のエポキシ基を有するエポキシ樹脂を用いることが好ましい。このような樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等がある。
The thermosetting resin used in the present invention is not particularly limited. For example, epoxy resins, polyimide resins, triazine resins, phenol resins, melamine resins, and modified resins obtained by modifying these resins are used. Two or more of these resins may be used in combination, and various curing agents, curing accelerators, etc. may be used as necessary, and these may be blended as a solvent solution.
Among these thermosetting resins, it is preferable to use an epoxy resin in consideration of the balance between characteristics such as heat resistance and moisture resistance and cost. As the epoxy resin, a compound having two or more epoxy groups in the molecule is used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin. Bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin, dicyclopentadiene type epoxy resin, glycidyl ether compound of polyfunctional phenols, glycidyl ether compound of bifunctional alcohols, and hydrogenated products thereof . These epoxy resins may be used alone or in combination of two or more.
Moreover, in order to improve the glass transition temperature (Tg) and heat resistance of the cured resin composition, it is preferable to use an epoxy resin having three or more epoxy groups in the molecule. Examples of such resins include phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolac type epoxy resins, bisphenol F novolak type epoxy resins, and the like.

硬化剤としては、従来公知の種々のものを使用することができ、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、無水フタル酸、無水ピロメリット酸、フェノールノボラックやクレゾールノボラック等の多官能性フェノール等をあげることができる。これら硬化剤は何種類か併用することも可能である。
硬化促進剤としては、例えばイミダゾール系化合物、有機リン系化合物、第3級アミン、第4級アンモニウム塩等が用いられ、2種類以上を併用してもよい。
また、本発明の樹脂組成物には、必要に応じて、さらに着色剤、酸化防止剤、還元剤、紫外線遮蔽剤などを適宜配合することができる。
As the curing agent, various conventionally known ones can be used, and examples thereof include dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, phthalic anhydride, pyromellitic anhydride, polyfunctional phenols such as phenol novolac and cresol novolac. be able to. Several kinds of these curing agents can be used in combination.
As the curing accelerator, for example, an imidazole compound, an organic phosphorus compound, a tertiary amine, a quaternary ammonium salt, or the like is used, and two or more kinds may be used in combination.
Moreover, a coloring agent, antioxidant, a reducing agent, an ultraviolet shielding agent, etc. can be further suitably mix | blended with the resin composition of this invention as needed.

本発明においては上記の無機充填剤および熱硬化性樹脂を含む樹脂組成物をワニス化し、基材に含浸させた、加熱、乾燥して、Bステージ化することによりプリント配線板用プリプレグを得ることができる。
これら樹脂材料及び無機充填剤を希釈してワニス化するために溶剤が用いられる。この溶剤は、特に限定されず、例えばアセトン,メチルエチルケトン,トルエン,キシレン,メチルイソブチルケトン,酢酸エチル,エチレングリコールモノメチルエーテル,N,N−ジメチルホルムアミド,メタノール,エタノール等が挙げられる。これらの溶剤は何種類かを混合してもよい。また、ワニスの固形分濃度は、特に限定されず、樹脂組成や無機充填剤の種類及び配合量等により適宜変更できるが,50質量%〜80質量%の範囲が好ましい。50質量%以上とすることより適度のワニス粘度とプリプレグの樹脂分となり、80質量%以下とすることによりワニスの増粘等によるプリプレグの外観等の悪化が回避される。
In the present invention, a resin composition containing the above inorganic filler and thermosetting resin is varnished, impregnated into a substrate, heated, dried, and B-staged to obtain a prepreg for a printed wiring board. Can do.
A solvent is used to dilute the resin material and the inorganic filler to form a varnish. The solvent is not particularly limited, and examples thereof include acetone, methyl ethyl ketone, toluene, xylene, methyl isobutyl ketone, ethyl acetate, ethylene glycol monomethyl ether, N, N-dimethylformamide, methanol, ethanol and the like. Several types of these solvents may be mixed. Moreover, the solid content density | concentration of a varnish is not specifically limited, Although it can change suitably with the kind and compounding quantity, etc. of a resin composition and an inorganic filler, the range of 50 mass%-80 mass% is preferable. By setting it to 50% by mass or more, an appropriate varnish viscosity and the resin content of the prepreg are obtained, and by setting it to 80% by mass or less, deterioration of the appearance of the prepreg due to varnish thickening or the like is avoided.

前記各成分を配合して得たワニスは、基材に含浸させ、例えば乾燥炉中で80〜200℃の範囲で乾燥させることにより、プリント配線板用プリプレグが得られる。
基材としては,金属箔張り積層板や多層印刷配線板を製造する際に用いられるものであれば特に制限されないが,通常織布や不織布等の繊維基材が用いられる。繊維基材としては,たとえばガラス,アルミナ,アスベスト,ボロン,シリカアルミナガラス,シリカガラス,チラノ,炭化ケイ素,窒化ケイ素,ジルコニア等の無機繊維やアラミド,ポリエーテルエーテルケトン,ポリエーテルイミド,ポリエーテルサルフォン,カーボン,セルロース等の有機繊維等及びこれらの混抄系があり,特にガラス繊維の織布が好ましく用いられる。
The varnish obtained by blending the above components is impregnated into a base material, and dried in the range of 80 to 200 ° C. in a drying furnace, for example, to obtain a prepreg for a printed wiring board.
The substrate is not particularly limited as long as it is used when producing a metal foil-clad laminate or a multilayer printed wiring board, but a fiber substrate such as a woven fabric or a nonwoven fabric is usually used. Examples of the fiber substrate include inorganic fibers such as glass, alumina, asbestos, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia, aramid, polyether ether ketone, polyether imide, polyether sal There are organic fibers such as phon, carbon, cellulose and the like, and mixed papers thereof, and glass fiber woven fabric is particularly preferably used.

上記により得られたプリプレグを少なくとも1枚以上重ね、加熱加圧成形することにより積層板が得られる。加熱温度は150〜200℃、好ましくは170〜190℃であり、圧力は1.0〜8.0MPa、好ましくは2.0〜6.0MPaであり、プリプレグ特性や、プレス機の能力、目的積層板の厚み等により適宜決定する。
また、プリプレグを少なくとも1枚以上重ねて、その片側又は両側に金属箔を配して、加熱加圧成形して金属張積層板を製造することができる。金属箔としては主に銅箔やアルミ箔を用いるが、他の金属箔を用いても良い。金属箔の厚みは通常3〜200μmである。
さらに、これらの積層板を使用し、回路加工してプリント配線板が得られる。
A laminated board is obtained by stacking at least one prepreg obtained as described above and performing heat and pressure molding. The heating temperature is 150 to 200 ° C., preferably 170 to 190 ° C., and the pressure is 1.0 to 8.0 MPa, preferably 2.0 to 6.0 MPa. The prepreg characteristics, press machine capability, and desired lamination It is determined appropriately depending on the thickness of the plate.
Moreover, a metal-clad laminate can be produced by stacking at least one prepreg, placing a metal foil on one side or both sides, and heat-pressing it. Although copper foil and aluminum foil are mainly used as the metal foil, other metal foils may be used. The thickness of the metal foil is usually 3 to 200 μm.
Furthermore, a printed wiring board is obtained by using these laminates and processing the circuit.

次に、本発明を実施例により、さらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
なお、以下の実施例および比較例において、部は質量部を表す。また、耐熱性、ピール強度(金属箔引き剥がし強さ)、ドリル加工性、絶縁信頼性(耐電圧性)および成形性の評価方法は以下の通りである。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples.
In the following examples and comparative examples, the part represents part by mass. Moreover, the evaluation methods of heat resistance, peel strength (stripping strength of metal foil), drill workability, insulation reliability (voltage resistance) and formability are as follows.

(1)耐熱性:
両面銅張積層板(プリプレグ4枚重ね)を50mm×50mmに切断し、260℃および288℃のはんだにフローティングし、ふくれが発生するまでの時間を測定した。
(2)ピール強度(金属箔引き剥がし強さ):
JIS C 5016に準じて測定した。銅箔の厚さは18μmとした。
(3)ドリル加工性:
両面銅張積層板(プリプレグ4枚重ね)を用いて,ドリル径0.1mm、回転数160krpm、送り速度1.6m/min,重ね枚数2枚,エントリーボード150μmアルミ板にて加工を実施し、穴位置精度および壁面粗さを測定した。
(4)絶縁信頼性(耐電圧性):
両面銅張積層板(プリプレグ1枚重ね)を用いて,全面エッチングした基板の上下に1000Vの電圧を30秒印加して,絶縁不良の有無を評価した。各試料につき30枚を測定し,絶縁不良の発生枚数を評価した。
(5)成形性:目視によった。
(1) Heat resistance:
A double-sided copper-clad laminate (4 prepregs) was cut into 50 mm × 50 mm, floated on solder at 260 ° C. and 288 ° C., and the time until blistering was measured.
(2) Peel strength (stripping strength of metal foil):
It measured according to JIS C 5016. The thickness of the copper foil was 18 μm.
(3) Drill workability:
Using double-sided copper-clad laminate (4 prepreg stacks), drill diameter 0.1mm, rotation speed 160krpm, feed rate 1.6m / min, stacking number 2 sheets, entry board 150μm aluminum plate, Hole position accuracy and wall roughness were measured.
(4) Insulation reliability (voltage resistance):
Using a double-sided copper-clad laminate (one prepreg layer), a voltage of 1000 V was applied to the top and bottom of the substrate that was etched on the entire surface for 30 seconds to evaluate the presence or absence of insulation failure. Thirty sheets were measured for each sample, and the number of insulation defects was evaluated.
(5) Formability: visually observed.

実施例1
以下の樹脂材料および無機充填剤を配合し、メチルエチルケトンを加えて固形分70質量%のワニスを調製した。
(熱硬化性樹脂)
ビスフェノールAノボラック型エポキシ樹脂 69部
(大日本インキ化学工業株式会社の商品名エピクロンN−865)
テトラブロモビスフェノールA型エポキシ樹脂 31部
(大日本インキ化学工業株式会社の商品名エピクロン153)
フェノールノボラック樹脂 42部
(大日本インキ化学工業株式会社の商品名フェノライトTD−2106)
(硬化促進剤)
2−エチル−4−メチルイミダゾール 0.2部
(無機充填剤)
水酸化アルミニウム(I) 70部
(昭和電工(株)製HP−360、平均粒径3.2μm)
球状シリカ 70部
(アドマテックス製 SO−25H、平均粒径0.6μm)
得られたワニスを厚さ約0.06mmのガラス布(#1080,E−ガラス)に含浸後,150℃で3〜10分加熱乾燥して樹脂分60質量%のプリプレグを得た。これらプリプレグ4枚または1枚を重ね,その両側に厚みが18μmの銅箔を重ね,175℃,90分,3.0MPaのプレス条件で両面銅張積層板を作製した。
ワニス固形分の比率と、使用した水酸化アルミニウムの物性および得られた両面銅張積層板の評価結果を第1表に示す。
Example 1
The following resin materials and inorganic filler were blended, and methyl ethyl ketone was added to prepare a varnish having a solid content of 70% by mass.
(Thermosetting resin)
69 parts of bisphenol A novolac type epoxy resin (trade name Epicron N-865 of Dainippon Ink & Chemicals, Inc.)
Tetrabromobisphenol A type epoxy resin 31 parts (trade name Epicron 153 of Dainippon Ink & Chemicals, Inc.)
Phenol novolac resin 42 parts (trade name Phenolite TD-2106 from Dainippon Ink & Chemicals, Inc.)
(Curing accelerator)
2-ethyl-4-methylimidazole 0.2 part (inorganic filler)
70 parts of aluminum hydroxide (I) (HP-360 manufactured by Showa Denko KK, average particle size 3.2 μm)
70 parts of spherical silica (manufactured by Admatechs SO-25H, average particle size 0.6 μm)
The obtained varnish was impregnated into a glass cloth (# 1080, E-glass) having a thickness of about 0.06 mm and then dried by heating at 150 ° C. for 3 to 10 minutes to obtain a prepreg having a resin content of 60% by mass. Four or one of these prepregs were stacked, a copper foil having a thickness of 18 μm was stacked on both sides thereof, and a double-sided copper-clad laminate was produced under a press condition of 175 ° C., 90 minutes, 3.0 MPa.
The ratio of the varnish solid content, the physical properties of the aluminum hydroxide used, and the evaluation results of the obtained double-sided copper-clad laminate are shown in Table 1.

実施例2
水酸化アルミニウム(I)に代えて、水酸化アルミニウム(II)(昭和電工(株)製HP−360、平均粒径4.0μm)を用いてワニスを調製した他は、実施例1と同様に行った。ワニス固形分の比率と、使用した水酸化アルミニウムの物性および得られた両面銅張積層板の評価結果を第1表に示す。
Example 2
The varnish was prepared using aluminum hydroxide (II) (HP-360 manufactured by Showa Denko KK, average particle size: 4.0 μm) instead of aluminum hydroxide (I) in the same manner as in Example 1. went. The ratio of the varnish solid content, the physical properties of the aluminum hydroxide used, and the evaluation results of the obtained double-sided copper-clad laminate are shown in Table 1.

比較例1
ワニス固形分の比率と、水酸化アルミニウム(I)に代えて、水酸化アルミニウム(III)(住友化学(株)製CL−303)を用いてワニスを調製した他は、実施例1と同様に行った。使用した水酸化アルミニウムの物性および得られた両面銅張積層板の評価結果を第1表に示す。
Comparative Example 1
The varnish was prepared in the same manner as in Example 1 except that the varnish was prepared using aluminum hydroxide (III) (CL-303 manufactured by Sumitomo Chemical Co., Ltd.) instead of the varnish solid content and aluminum hydroxide (I). went. The physical properties of the aluminum hydroxide used and the evaluation results of the obtained double-sided copper-clad laminate are shown in Table 1.

比較例2
水酸化アルミニウム(I)に代えて、水酸化アルミニウム(IV)(昭和電工(株)製H−32)を用いてワニスを調製した他は、実施例1と同様に行った。ワニス固形分の比率と、使用した水酸化アルミニウムの物性および得られた両面銅張積層板の評価結果を第1表に示す。
Comparative Example 2
It carried out similarly to Example 1 except having prepared varnish using aluminum hydroxide (IV) (Showa Denko Co., Ltd. product H-32) instead of aluminum hydroxide (I). The ratio of the varnish solid content, the physical properties of the aluminum hydroxide used, and the evaluation results of the obtained double-sided copper-clad laminate are shown in Table 1.

比較例3
水酸化アルミニウム(I)に代えて、水酸化アルミニウム(V)(住友化学(株)製CL−310)を用いてワニスを調製した他は、実施例1と同様に行った。ワニス固形分の比率と、使用した水酸化アルミニウムの物性および得られた両面銅張積層板の評価結果を第1表に示す。
Comparative Example 3
The same procedure as in Example 1 was conducted except that the varnish was prepared using aluminum hydroxide (V) (CL-310 manufactured by Sumitomo Chemical Co., Ltd.) instead of aluminum hydroxide (I). The ratio of the varnish solid content, the physical properties of the aluminum hydroxide used, and the evaluation results of the obtained double-sided copper-clad laminate are shown in Table 1.

比較例4
水酸化アルミニウム(I)に代えて、水酸化アルミニウム(VI)(昭和電工(株)製H−43)を用いてワニスを調製した他は、実施例1と同様に行った。ワニス固形分の比率と、使用した水酸化アルミニウムの物性および得られた両面銅張積層板の評価結果を第1表に示す。
Comparative Example 4
It carried out similarly to Example 1 except having prepared varnish using aluminum hydroxide (VI) (Showa Denko Co., Ltd. product H-43) instead of aluminum hydroxide (I). The ratio of the varnish solid content, the physical properties of the aluminum hydroxide used, and the evaluation results of the obtained double-sided copper-clad laminate are shown in Table 1.

実施例3
シリカの配合量を15部としてワニスを調製した他は、実施例1と同様に行った。ワニス固形分の比率と、使用した水酸化アルミニウムの物性および得られた両面銅張積層板の評価結果を第1表に示す。
Example 3
The same procedure as in Example 1 was performed except that the varnish was prepared with a silica content of 15 parts. The ratio of the varnish solid content, the physical properties of the aluminum hydroxide used, and the evaluation results of the obtained double-sided copper-clad laminate are shown in Table 1.

実施例4
シリカの配合量を240部としてワニスを調製した他は、実施例1と同様に行った。ワニス固形分の比率と、使用した水酸化アルミニウムの物性および得られた両面銅張積層板の評価結果を第1表に示す。
Example 4
The same procedure as in Example 1 was performed except that the varnish was prepared with 240 parts of silica. The ratio of the varnish solid content, the physical properties of the aluminum hydroxide used, and the evaluation results of the obtained double-sided copper-clad laminate are shown in Table 1.

Figure 2007146095
Figure 2007146095

Claims (8)

無機充填剤と熱硬化樹脂を必須成分とし、無機充填剤として、平均粒子径が1.0μm〜5.0μm、0.5μm以下の粒子が0.2質量%以下、BET比表面積が1.5m2/g以下、粒子径45μm以上の粗大粒子量が20ppm以下である水酸化アルミニウムを含むことを特徴とする樹脂組成物。 An inorganic filler and a thermosetting resin are essential components, and the inorganic filler has an average particle size of 1.0 μm to 5.0 μm, 0.5 μm or less of particles of 0.2% by mass or less, and a BET specific surface area of 1.5 m. 2 / g or less, The resin composition characterized by including the aluminum hydroxide whose coarse particle quantity of a particle diameter of 45 micrometers or more is 20 ppm or less. 熱硬化樹脂が、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、トリアジン樹脂、メラミン樹脂及びこれら樹脂を変性した変性樹脂からなる群から選ばれる少なくとも1種の樹脂である請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the thermosetting resin is at least one resin selected from the group consisting of epoxy resins, phenol resins, polyimide resins, triazine resins, melamine resins, and modified resins obtained by modifying these resins. 水酸化アルミニウム以外の無機充填剤として、平均粒径0.4〜0.7μmの球状シリカを含むものである請求項1又は2に記載の樹脂組成物。   The resin composition according to claim 1 or 2, which contains spherical silica having an average particle size of 0.4 to 0.7 µm as an inorganic filler other than aluminum hydroxide. 樹脂組成物中の無機充填剤が40〜70質量%であり、無機充填剤の25〜75質量%が球状シリカ、25〜75質量%が水酸化アルミニウムである請求項3に記載の樹脂組成物。   The resin composition according to claim 3, wherein the inorganic filler in the resin composition is 40 to 70 mass%, 25 to 75 mass% of the inorganic filler is spherical silica, and 25 to 75 mass% is aluminum hydroxide. . 請求項1〜4のいずれかに記載の樹脂組成物を、基材に含浸させた後、乾燥して得られるプリプレグ。   A prepreg obtained by impregnating a resin composition according to any one of claims 1 to 4 into a substrate and then drying. 請求項5に記載のプリプレグを1枚以上重ね、加熱加圧成形して得られる積層板。   A laminate obtained by stacking one or more prepregs according to claim 5 and heating and pressing. 重ねたプリプレグの少なくとも一方に金属箔を重ねた後、加熱加圧成形して得られた金属張積層板である請求項6に記載の積層板。   The laminate according to claim 6, wherein the laminate is a metal-clad laminate obtained by superposing a metal foil on at least one of the overlaid prepregs and then heating and pressing. 請求項6又は7に記載の積層板を使用し、回路加工して得られるプリント配線板。   A printed wiring board obtained by processing a circuit using the laminated board according to claim 6.
JP2005372674A 2005-11-02 2005-12-26 Resin composition, prepreg, and laminate and printed wiring board using the same Active JP4706468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005372674A JP4706468B2 (en) 2005-11-02 2005-12-26 Resin composition, prepreg, and laminate and printed wiring board using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005319438 2005-11-02
JP2005319438 2005-11-02
JP2005372674A JP4706468B2 (en) 2005-11-02 2005-12-26 Resin composition, prepreg, and laminate and printed wiring board using the same

Publications (2)

Publication Number Publication Date
JP2007146095A true JP2007146095A (en) 2007-06-14
JP4706468B2 JP4706468B2 (en) 2011-06-22

Family

ID=38207881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005372674A Active JP4706468B2 (en) 2005-11-02 2005-12-26 Resin composition, prepreg, and laminate and printed wiring board using the same

Country Status (1)

Country Link
JP (1) JP4706468B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101062A (en) * 2006-10-17 2008-05-01 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminated plate and semiconductor device
JP2009074036A (en) * 2007-02-23 2009-04-09 Panasonic Electric Works Co Ltd Epoxy resin composition, prepreg, laminate and printed wiring board
WO2011061894A1 (en) * 2009-11-20 2011-05-26 パナソニック電工株式会社 Prepreg, laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187937A (en) * 2000-12-19 2002-07-05 Matsushita Electric Works Ltd Epoxy resin composition, prepreg, and metal-clad laminate
JP2002212397A (en) * 2001-01-19 2002-07-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004175895A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Resin composition for laminate, electrical prepreg, metal foil with electrical resin, electrical laminate, printed wiring board and multilayer printed wiring board
JP2005239760A (en) * 2004-02-24 2005-09-08 Hitachi Chem Co Ltd Resin composition, prepreg and metal clad laminated board
JP2006124420A (en) * 2004-10-26 2006-05-18 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006199565A (en) * 2004-05-13 2006-08-03 Showa Denko Kk Aluminum hydroxide and use thereof
JP2007051267A (en) * 2005-07-20 2007-03-01 Hitachi Chem Co Ltd Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187937A (en) * 2000-12-19 2002-07-05 Matsushita Electric Works Ltd Epoxy resin composition, prepreg, and metal-clad laminate
JP2002212397A (en) * 2001-01-19 2002-07-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004175895A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Resin composition for laminate, electrical prepreg, metal foil with electrical resin, electrical laminate, printed wiring board and multilayer printed wiring board
JP2005239760A (en) * 2004-02-24 2005-09-08 Hitachi Chem Co Ltd Resin composition, prepreg and metal clad laminated board
JP2006199565A (en) * 2004-05-13 2006-08-03 Showa Denko Kk Aluminum hydroxide and use thereof
JP2006124420A (en) * 2004-10-26 2006-05-18 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2007051267A (en) * 2005-07-20 2007-03-01 Hitachi Chem Co Ltd Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101062A (en) * 2006-10-17 2008-05-01 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminated plate and semiconductor device
JP2009074036A (en) * 2007-02-23 2009-04-09 Panasonic Electric Works Co Ltd Epoxy resin composition, prepreg, laminate and printed wiring board
WO2011061894A1 (en) * 2009-11-20 2011-05-26 パナソニック電工株式会社 Prepreg, laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting
US8603624B2 (en) 2009-11-20 2013-12-10 Panasonic Corporation Prepreg, laminate, metal clad laminate, circuit board, and circuit board for LED mounting

Also Published As

Publication number Publication date
JP4706468B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP6109569B2 (en) Epoxy resin composition for circuit board, prepreg, laminate, resin sheet, laminate substrate for printed wiring board, printed wiring board, and semiconductor device
JP5703547B2 (en) Resin composition, prepreg, laminate, multilayer printed wiring, and semiconductor device
JP2007051267A (en) Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board
JP6512521B2 (en) Laminated board, metal-clad laminated board, printed wiring board, multilayer printed wiring board
JPWO2003018675A1 (en) Resin composition, prepreg, laminate and semiconductor package
JP2011089038A (en) Resin composition
JP2009049062A (en) Method of manufacturing substrate for metal base circuit, and substrate for metal base circuit
JP2007211182A (en) Resin composition, pre-preg, laminated board and metal-plated lamianted board and printed wiring board
JP2009138075A (en) Resin composition, prepreg using the same, and laminate
JP2017157618A (en) Support body-attached resin sheet
JP2011178883A (en) Prepreg, laminated board, multilayer printed wiring board, and semiconductor device
JP2013023666A (en) Epoxy resin material, cured product, and plasma-roughened cured product
JP2015034300A (en) Resin composition
JP4706468B2 (en) Resin composition, prepreg, and laminate and printed wiring board using the same
JP4706332B2 (en) Resin composition, prepreg, laminate and printed wiring board using the same
JP2016023294A (en) Resin film-provided prepreg and metal-clad laminate and printed wiring board using the same
JP6624545B2 (en) Thermosetting resin composition, metal-clad laminate, insulating sheet, printed wiring board, method for manufacturing printed wiring board, and package substrate
JP2009105270A (en) Manufacturing method of board for metal base circuit for light emitting element, and board for metal base circuit for light emitting element
JP5508342B2 (en) B-stage film for printed wiring board and multilayer board
JP2010087013A (en) Method for manufacturing inter-layer insulating sheet, built-up multilayer substrate, and circuit board
JP2005209489A (en) Insulation sheet
JP2011088950A (en) Prepreg, metal-clad laminate and printed circuit board using them
JP2014055226A (en) Prepreg, and metal-clad laminate and printed circuit board using the same
JP4858359B2 (en) Epoxy resin composition for prepreg, prepreg, laminate and printed wiring board using the same
JP2015005712A (en) Insulator film for printed-circuit board, and product using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

R151 Written notification of patent or utility model registration

Ref document number: 4706468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350