JP2016023294A - Resin film-provided prepreg and metal-clad laminate and printed wiring board using the same - Google Patents

Resin film-provided prepreg and metal-clad laminate and printed wiring board using the same Download PDF

Info

Publication number
JP2016023294A
JP2016023294A JP2014150727A JP2014150727A JP2016023294A JP 2016023294 A JP2016023294 A JP 2016023294A JP 2014150727 A JP2014150727 A JP 2014150727A JP 2014150727 A JP2014150727 A JP 2014150727A JP 2016023294 A JP2016023294 A JP 2016023294A
Authority
JP
Japan
Prior art keywords
prepreg
resin film
resin
mass
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014150727A
Other languages
Japanese (ja)
Inventor
邦幸 小林
Kuniyuki Kobayashi
邦幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014150727A priority Critical patent/JP2016023294A/en
Publication of JP2016023294A publication Critical patent/JP2016023294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin film-provided prepreg having a low water absorption rate and being excellent in heat resistance, and to provide a metal-clad laminate and a printed wiring board.SOLUTION: A resin film-provided prepreg consists of a prepreg formed by impregnating glass cloth with a thermosetting resin composition and drying and a resin film containing fluorine atoms on one or both sides of the prepreg. The thermosetting resin composition contains an epoxy resin. The resin film containing fluorine atoms is composed of a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) or a fluoroethylene-vinyl ether alternate copolymer.SELECTED DRAWING: None

Description

本発明は、プリント配線板用材料として好適な樹脂フィルム付プリプレグ、これを用いた金属張り積層板及びプリント配線板に関する。   The present invention relates to a prepreg with a resin film suitable as a printed wiring board material, a metal-clad laminate using the same, and a printed wiring board.

電子機器の小型化、高性能化に伴い、その中に搭載されるプリント配線板は、高多層化、薄物化、スルーホールの小径化および穴間隔の狭小等による高密度化が進んでいる。さらに、携帯電話やモバイルコンピュータ等の携帯情報端末機器に搭載されるプリント配線板には、マイクロプロセッシングユニット(MPU)をプリント配線板上に直接搭載するプラスチックパッケージや各種モジュール用のプリント配線板をはじめとして、大容量の情報を高速に処理することが求められている。そのため、信号処理の高速化や低伝送損失化、更なるダウンサイジングが必要となってきており、プリント配線板は、より一層の高密度化が進み、これまで以上の微細配線が要求されている。   Along with the downsizing and high performance of electronic devices, printed wiring boards mounted therein are increasing in density by increasing the number of layers, reducing the thickness, reducing the diameter of through-holes, and reducing the interval between holes. Furthermore, printed wiring boards mounted on portable information terminal devices such as mobile phones and mobile computers include plastic packages in which a microprocessing unit (MPU) is directly mounted on a printed wiring board and printed wiring boards for various modules. Therefore, it is required to process a large amount of information at high speed. Therefore, high-speed signal processing, low transmission loss, and further downsizing have become necessary, and printed wiring boards are becoming increasingly denser and require finer wiring than ever before. .

上記のような事情に伴い、MPUを搭載するプリント配線板やモジュール用プリント配線板には、これまで以上の接続信頼性を確保するために、耐熱性に優れた材料が要求されるようになってきた。   Due to the circumstances as described above, a printed wiring board for mounting an MPU or a printed wiring board for a module is required to have a material having excellent heat resistance in order to ensure connection reliability higher than ever. I came.

また、近年の環境問題に対する急速な関心の高まりに伴い、プリント配線板に使用されるはんだとして、鉛が含まれていない鉛フリーはんだを使用する傾向が強くなってきているが、鉛フリーはんだは、従来のはんだに比べて融点が高いため、プリント配線板の部品実装時におけるはんだリフロー温度についても、従来の鉛入りはんだ使用時と比較して高くなる傾向にある。それゆえ、プリント配線板に使用される材料には、より優れた耐熱性が要求されるようになってきている。耐熱性を良好にする手法として、吸水率を低くすることが挙げられる。従来の手法としては、フィラー量を増やして、有機樹脂成分比率を下げる手法が取られていた(特許文献1参照)。しかし、前記方法では、吸湿率の低下には限界があった。   In addition, with the rapid increase in interest in environmental issues in recent years, there is a growing tendency to use lead-free solder that does not contain lead as the solder used in printed wiring boards. Since the melting point is higher than that of the conventional solder, the solder reflow temperature at the time of mounting the component of the printed wiring board tends to be higher than that at the time of using the conventional lead-containing solder. Therefore, more excellent heat resistance is required for materials used for printed wiring boards. As a technique for improving heat resistance, reducing the water absorption rate can be mentioned. As a conventional method, a method of increasing the amount of filler and reducing the organic resin component ratio has been taken (see Patent Document 1). However, the above method has a limit in reducing the moisture absorption rate.

特開2011−219770号公報JP 2011-219770 A

上記を鑑みて、本発明は、従来よりも吸水率が低く、耐熱性に優れたプリント配線板用材料として好適な樹脂フィルム付プリプレグ、金属張り積層板、及びプリント配線板を提供することを目的とする。   In view of the above, an object of the present invention is to provide a prepreg with a resin film, a metal-clad laminate, and a printed wiring board, which are suitable as a printed wiring board material having a lower water absorption rate and superior heat resistance. And

上記目的を達成するための本発明に係る樹脂フィルム付プリプレグの要旨とするところは、プリプレグの少なくとも一方の面にフッ素原子を含有する樹脂フィルムを配置したことにある。   The gist of the prepreg with a resin film according to the present invention for achieving the above object is that a resin film containing a fluorine atom is disposed on at least one surface of the prepreg.

本発明は、[1]熱硬化性樹脂組成物をガラスクロスに含浸し、乾燥してなるプリプレグの両面又は少なくとも一方の面に、フッ素原子を含有する樹脂フィルムを配置してなる樹脂フィルム付プリプレグである。
また、本発明は、[2]熱硬化性樹脂組成物が、エポキシ樹脂を含む上記[1]に記載の樹脂フィルム付プリプレグである。
また、本発明は、[3]フッ素原子を含有する樹脂フィルムが、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)又はフルオロエチレン・ビニルエーテル交互共重合体のフィルムである上記[1]又は[2]に記載の樹脂フィルム付プリプレグである。
また、本発明は、[4]上記[1]〜[3]のいずれかに記載の樹脂フィルム付プリプレグを、単層のままか、又は2枚以上積層し、その片面、もしくは両面に金属箔を配置し、これを加熱、加圧して得られる金属張り積層板である。
また、本発明は、[5]上記[4]に記載の金属張り積層板を用いて配線を形成してなるプリント配線板である。
The present invention relates to [1] a prepreg with a resin film, wherein a glass film is impregnated with a thermosetting resin composition and a resin film containing fluorine atoms is disposed on both surfaces or at least one surface of a prepreg formed by drying. It is.
Moreover, this invention is a prepreg with a resin film as described in said [1] in which a [2] thermosetting resin composition contains an epoxy resin.
[3] The present invention provides [3] wherein the resin film containing a fluorine atom is a film of tetrafluoroethylene / hexafluoropropylene copolymer (FEP) or a fluoroethylene / vinyl ether alternating copolymer. 2] is a prepreg with a resin film.
The present invention also provides [4] the prepreg with a resin film according to any one of the above [1] to [3] as a single layer or by laminating two or more sheets, and a metal foil on one side or both sides thereof. Is a metal-clad laminate obtained by placing and heating and pressurizing this.
Moreover, this invention is a printed wiring board formed by forming wiring using the metal-clad laminated board of [5] said [4].

本発明によれば、従来よりも吸水率が低く、耐熱性に優れたプリント配線板用材料として好適な樹脂フィルム付プリプレグ、金属張り積層板、およびプリント配線板を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide a prepreg with a resin film, a metal-clad laminate, and a printed wiring board, which are suitable as a printed wiring board material having a lower water absorption rate and superior heat resistance than before.

本発明は、熱硬化性樹脂組成物をガラスクロスに含浸し、乾燥してなるプリプレグの両面又は少なくとも一方の面に、フッ素原子を含有する樹脂フィルムを配置してなる樹脂フィルム付プリプレグである。なお、本発明において、熱硬化性樹脂組成物とは、熱硬化性樹脂を含む樹脂組成物である。
以下、本発明の実施形態について詳述する。
本発明に用いる熱硬化性樹脂としては、特に限定されないが、例えば、エポキシ樹脂系、トリアジン樹脂系、フェノール樹脂系、メラミン樹脂系、ポリエステル樹脂系これらの変性系が挙げられる。また、これらの樹脂は2種類以上を併用してもよい。
汎用性、コストなどの点から考慮するとエポキシ樹脂を使用することが好ましい。エポキシ樹脂の種類としては、(a)分子内に2個以上のエポキシ基を有するものであることが好ましく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、多官能フェノールのジグリシジルエーテル化物、多官能アルコールのジグリシジルエーテル化物、これらのハロゲン化物、これらの水素添加物があり、何種類かを併用することもできる。耐熱性を良好にするのにTgが高いことは効果があり、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、多官能フェノールのジグリシジルエーテル化物等のノボラック型エポキシ樹脂などが好ましい。
The present invention is a prepreg with a resin film in which a glass film is impregnated into a glass cloth and dried, and a resin film containing fluorine atoms is disposed on both surfaces or at least one surface of the prepreg. In the present invention, the thermosetting resin composition is a resin composition containing a thermosetting resin.
Hereinafter, embodiments of the present invention will be described in detail.
Although it does not specifically limit as a thermosetting resin used for this invention, For example, an epoxy resin type | system | group, a triazine resin type | system | group, a phenol resin type | system | group, a melamine resin type | system | group, a polyester resin type | system | group modified | denatured these are mentioned. Two or more of these resins may be used in combination.
In view of versatility and cost, it is preferable to use an epoxy resin. The type of epoxy resin is preferably (a) one having two or more epoxy groups in the molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic Type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, diglycidyl etherified product of polyfunctional phenol, diglycidyl etherified product of polyfunctional alcohol, halides thereof, hydrogenation thereof There are things, and several types can be used together. A high Tg is effective for improving heat resistance, and a novolac type epoxy resin such as a phenol novolac type epoxy resin, a cresol novolak type epoxy resin, a bisphenol A novolak type epoxy resin, or a diglycidyl etherified product of a polyfunctional phenol. Etc. are preferable.

本発明に用いるフッ素原子を含有する樹脂フィルムは、フッ素原子を含有するフッ素樹脂からなるものである。これらのフッ素樹脂として、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン共重合体(PCTFE)、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)、フルオロエチレン・ビニルエーテル交互共重合体(FEVE)、フルオロエチレン・ビニルエステル共重合体(4F-FEVs)、トリフルオロエチレン・ビニルエステル共重合体(3F−FEVs)、アモルファスフッ素樹脂(CYTOP、旭硝子株式会社製)等が挙げられる。
これらのフッ素樹脂は熱可塑性樹脂であって接着性を有するだけでなく、耐熱性、吸湿性の優れた特性を有しているものが好ましい。特に、フッ素樹脂としてテトラフルオロエチレン・ヘキサフルオロプロピレン共重合体樹脂(FEP)またはフルオロエチレン・ビニルエーテル交互共重合体(FEVE)、アモルファスフッ素樹脂(CYTOP)が上記諸特性の点でより好ましい。
従って、例えば、フッ素樹脂からなる樹脂フィルムが被着形成されたプリプレグの表面に、前記樹脂フィルムを接着剤として、金属箔、好ましくは銅箔を接着することができ、金属張り積層板(銅張り積層板)を得ることができる。
The resin film containing fluorine atoms used in the present invention is made of a fluororesin containing fluorine atoms. These fluororesins include tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), and polyvinylidene fluoride. Ride (PVDF), Polychlorotrifluoroethylene copolymer (PCTFE), Chlorotrifluoroethylene / ethylene copolymer (ECTFE), Fluoroethylene / vinyl ether alternating copolymer (FEVE), Fluoroethylene / vinyl ester copolymer (4F-FEVs), trifluoroethylene / vinyl ester copolymers (3F-FEVs), amorphous fluororesin (CYTOP, manufactured by Asahi Glass Co., Ltd.) and the like.
These fluororesins are preferably thermoplastic resins having not only adhesiveness but also excellent heat resistance and hygroscopic properties. In particular, tetrafluoroethylene / hexafluoropropylene copolymer resin (FEP), fluoroethylene / vinyl ether alternating copolymer (FEVE), and amorphous fluororesin (CYTOP) are more preferable as the fluororesin in view of the above characteristics.
Therefore, for example, a metal foil, preferably a copper foil, can be bonded to the surface of a prepreg on which a resin film made of a fluororesin is deposited using the resin film as an adhesive. Laminate) can be obtained.

本発明で用いる熱硬化性樹脂組成物には、上記熱硬化性樹脂に加え、無機充填剤を配合することが好ましい。無機充填剤の配合量は、樹脂組成物中の全固形分に対して、15〜35質量%であることが好ましい。無機充填剤の配合量が15質量%未満であると樹脂組成物の耐熱性が劣る傾向にあり、35質量%を超えると樹脂組成物の流動性が小さくなり、プレス時の成形性が低下する傾向にある。   In addition to the said thermosetting resin, it is preferable to mix | blend an inorganic filler with the thermosetting resin composition used by this invention. It is preferable that the compounding quantity of an inorganic filler is 15-35 mass% with respect to the total solid in a resin composition. If the blending amount of the inorganic filler is less than 15% by mass, the heat resistance of the resin composition tends to be inferior, and if it exceeds 35% by mass, the fluidity of the resin composition is reduced and the moldability during pressing is reduced. There is a tendency.

上記無機充填剤としては、特に限定されないが、例えば、炭酸カルシウム、アルミナ、マイカ、炭酸アルミニウム、水酸化アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウム、シリカ、タルク、ガラス短繊維やホウ酸アルミニウムや炭化ケイ素等の各種ウィスカを用いることができる。また、これらを数種類併用しても良い。耐熱性の観点では、シリカを用いることが好ましく、さらに特性向上の観点から、水酸化アルミニウムとシリカを併用することが好ましい。   The inorganic filler is not particularly limited. For example, calcium carbonate, alumina, mica, aluminum carbonate, aluminum hydroxide, magnesium silicate, aluminum silicate, silica, talc, short glass fiber, aluminum borate, and silicon carbide. Various whiskers such as can be used. These may be used in combination. From the viewpoint of heat resistance, it is preferable to use silica, and from the viewpoint of improving characteristics, it is preferable to use aluminum hydroxide and silica in combination.

本発明においては、無機充填剤のうち80質量%以上をシリカとすることが好ましい。また、シリカは、金属張り積層板の成形性および作業性の観点から、球状シリカであることが好ましい。また、シリカの平均粒径は、0.4〜5μmの範囲であることが好ましい。特に、シリカの平均粒径が1〜5μmの範囲であると、組成物の耐熱性と接着強度を両立させる上で非常に好ましい。また、ドリル加工時の作業性をも重視する場合には、シリカの平均粒径を0.4〜0.7μmの範囲にすることが好ましい。ただし、シリカの平均粒径が0.4μm未満であるとワニスの増粘が著しく、作業性が低下する傾向にあり、さらに、金属箔との接着強度が低下する傾向にある。また、平均粒径が5μmを超えるとドリル加工時にドリル刃の磨耗量が増加したり、小径穴あけ時の穴位置精度が悪化し易くなる。さらに、チッピング等の問題が発生し易くなる傾向がある。また、シリカの含水率は、0.04質量%以下であることが好ましい。シリカの含水率が0.04質量%を超えるとシリカの凝集が発生し易くなり、金属箔張り積層板の外観上の問題が発生し易くなったり、耐熱性が劣る傾向にある。なお、上記球状シリカは、公知の合成方法、例えば、特開昭61−17416号公報に記載された方法等により得ることができる。また、株式会社アドマテックス、電気化学工業株式会社、マイクロン株式会社、東燃株式会社などから合成シリカが市販されており、これらを好適に使用することができる。なお、平均粒径は、市販のレーザー光散乱式粒度分布測定装置等を用いて測定することができる。   In the present invention, it is preferable that 80% by mass or more of the inorganic filler is silica. Silica is preferably spherical silica from the viewpoint of moldability and workability of the metal-clad laminate. Moreover, it is preferable that the average particle diameter of a silica is the range of 0.4-5 micrometers. In particular, when the average particle diameter of the silica is in the range of 1 to 5 μm, it is very preferable for achieving both the heat resistance and the adhesive strength of the composition. In addition, when emphasizing workability at the time of drilling, it is preferable that the average particle diameter of silica is in the range of 0.4 to 0.7 μm. However, when the average particle size of silica is less than 0.4 μm, the varnish is remarkably thickened, the workability tends to be lowered, and the adhesive strength to the metal foil tends to be lowered. On the other hand, when the average particle diameter exceeds 5 μm, the amount of wear of the drill blade increases during drilling, and the hole position accuracy when drilling small diameters tends to deteriorate. Furthermore, problems such as chipping tend to occur. Moreover, it is preferable that the moisture content of a silica is 0.04 mass% or less. When the moisture content of silica exceeds 0.04% by mass, the silica is likely to agglomerate, the problem of appearance of the metal foil-clad laminate tends to occur, and the heat resistance tends to be inferior. The spherical silica can be obtained by a known synthesis method such as the method described in JP-A No. 61-17416. Synthetic silica is commercially available from Admatechs Co., Ltd., Electrochemical Industry Co., Ltd., Micron Co., Ltd., Tonen Co., Ltd., etc., and these can be suitably used. The average particle size can be measured using a commercially available laser light scattering particle size distribution measuring device or the like.

無機充填剤の配合方法としては、従来公知の技術を用いることができ、特に限定されないが、例えば、混練機を用いる方法や国際公開第97/01595号パンフレットに開示された方法を用いることができる。   As a method for blending the inorganic filler, a conventionally known technique can be used, and is not particularly limited. For example, a method using a kneader or a method disclosed in International Publication No. 97/01595 can be used. .

また、本発明で用いる熱硬化性樹脂組成物には、公知の硬化剤、硬化促進剤、難燃剤、着色剤、酸化防止剤、還元剤、紫外線不透過剤等の添加剤を必要に応じて適宜量添加してもよい。特に、熱硬化性樹脂として上記(a)分子内に2個以上のエポキシ基を有するエポキシ樹脂を用いる場合には、硬化剤を配合することが好ましく、例えば、従来公知のジシアンジアミド、ジアミノフェニルメタン、ジアミノフェニルスルフォン、無水フタル酸、無水ピロメリット酸、フェノールノボラックやクレゾールノボラック等の多官能性フェノールを用いることができ、これらは何種類かを併用することもできる。耐熱性、信頼性を考慮すると(b)フェノール類とホルムアルデヒドの重縮合物を使用することが好ましい。フェノール類とホルムアルデヒドの重縮合物としては、分子内に2個以上のフェノール性水酸基を有するものであることが好ましく、例えば、フェノール、クレゾール、アルキルフェノール、カテコール、ビスフェノールA、ビスフェノールF、ビスフェノールS等のノボラック樹脂、およびこれらのハロゲン化物が挙げられ、これらは何種類かを併用してもよい。また、フェノール類とホルムアルデヒドの重縮合物以外のフェノール性水酸基を含有する化合物を併用してもよいが、その場合にも、分子内に2個以上のフェノール性水酸基を有する化合物を用いることが好ましい。また、分子内に2個以上のフェノール性水酸基を有する化合物のハロゲン化物を併用すると、難燃性を付与できるため好ましい。硬化剤の配合量は、本発明で用いる樹脂組成物に使用する熱硬化性樹脂の種類や配合量に応じて、適宜決定すればよく、特に限定されないが、硬化剤として、フェノール類とホルムアルデヒドの重縮合物ならびに上記併用可能なフェノール性水酸基を有する化合物を用いる場合には、使用するエポキシ樹脂のエポキシ基に対してフェノール性水酸基が0.8〜1.2当量となるように配合することが好ましく、0.9〜1.1当量となるように配合することがより好ましい。   In addition, the thermosetting resin composition used in the present invention may contain additives such as known curing agents, curing accelerators, flame retardants, colorants, antioxidants, reducing agents, and UV opaque agents as necessary. An appropriate amount may be added. In particular, when (a) an epoxy resin having two or more epoxy groups in the molecule is used as the thermosetting resin, it is preferable to blend a curing agent, for example, conventionally known dicyandiamide, diaminophenylmethane, Polyfunctional phenols such as diaminophenylsulfone, phthalic anhydride, pyromellitic anhydride, phenol novolac and cresol novolac can be used, and several of these can be used in combination. Considering heat resistance and reliability, it is preferable to use (b) a polycondensate of phenols and formaldehyde. The polycondensate of phenols and formaldehyde is preferably one having two or more phenolic hydroxyl groups in the molecule, such as phenol, cresol, alkylphenol, catechol, bisphenol A, bisphenol F, bisphenol S, etc. Examples thereof include novolak resins and their halides, and these may be used in combination. In addition, a compound containing a phenolic hydroxyl group other than a polycondensate of phenols and formaldehyde may be used in combination, but also in that case, it is preferable to use a compound having two or more phenolic hydroxyl groups in the molecule. . In addition, it is preferable to use a halide of a compound having two or more phenolic hydroxyl groups in the molecule because flame retardancy can be imparted. The blending amount of the curing agent may be appropriately determined according to the type and blending amount of the thermosetting resin used in the resin composition used in the present invention, and is not particularly limited, but the curing agent includes phenols and formaldehyde. When using a polycondensate and a compound having a phenolic hydroxyl group that can be used in combination, the compound may be blended so that the phenolic hydroxyl group is 0.8 to 1.2 equivalents relative to the epoxy group of the epoxy resin to be used. Preferably, it is blended so as to be 0.9 to 1.1 equivalents.

また、硬化促進剤としては、イミダゾール類などが挙げられる。これらは単独で用いてもよく、2種類以上併用してもよい。   Moreover, imidazoles etc. are mentioned as a hardening accelerator. These may be used alone or in combination of two or more.

また、本発明で用いる熱硬化性樹脂組成物は、耐熱性の観点から、樹脂成分中の窒素含有率が0.1〜10質量%の範囲であることが好ましく、0.1〜5質量%の範囲であることがより好ましい。窒素を含有する化合物として、(c)トリアジン環あるいはイソシアヌル環を有する樹脂を含むことが好ましい。特に限定されないが、例えば、シアヌレート類、メラミン類、フェノール類とトリアジン環を有する化合物とアルデヒド類との縮合物及びそのグリシジルエーテル化物、イソシアヌレート類、イソシアヌレート型エポキシ樹脂が挙げられ、これらは単独でもしくは2種以上を併用して用いることができる。上記(c)成分は、樹脂成分中の窒素含有率が上記範囲となるように配合することが好ましい。   Moreover, it is preferable that the thermosetting resin composition used by this invention is the range whose nitrogen content in a resin component is 0.1-10 mass% from a heat resistant viewpoint, and is 0.1-5 mass%. More preferably, it is the range. As the nitrogen-containing compound, it is preferable to include (c) a resin having a triazine ring or an isocyanuric ring. Although not particularly limited, for example, cyanurates, melamines, condensation products of phenols and compounds having a triazine ring and aldehydes, and glycidyl etherified products thereof, isocyanurates, isocyanurate type epoxy resins, and the like Or in combination of two or more. The component (c) is preferably blended so that the nitrogen content in the resin component is within the above range.

本発明で用いる熱硬化性樹脂組成物は、上記熱硬化性樹脂と上記無機充填剤と、必要に応じて添加される各種添加剤を、有機溶媒に溶解し、ワニスとして用いることが好ましい。   The thermosetting resin composition used in the present invention is preferably used as a varnish by dissolving the thermosetting resin, the inorganic filler, and various additives added as necessary in an organic solvent.

上記有機溶媒としては、特に限定されないが、例えば、アセトン、キシレン、メチルセルソルブ、メチルエチルケトン、メチルイソブチルケトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、キノリン、シクロペンタノン、m−クレゾール、クロロホルムが挙げられ、これらは単独でも2種以上併用しても良い。また、ワニス中の固形分濃度は特に制限はなく、樹脂組成物の組成や各組成の配合量等により適宜変更できるが、50〜85質量%の範囲であることが好ましい。ワニス中の固形分濃度が50質量%未満であると、ワニス粘度が小さくなる上、プリプレグに含浸した場合の樹脂分が低くなってしまう恐れがあり、85質量%を超えるとワニスの増粘等によりプリプレグの外観等が低下し易い。   Examples of the organic solvent include, but are not limited to, acetone, xylene, methyl cellosolve, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, quinoline. , Cyclopentanone, m-cresol, and chloroform. These may be used alone or in combination of two or more. The solid content concentration in the varnish is not particularly limited and can be appropriately changed depending on the composition of the resin composition, the blending amount of each composition, and the like, but is preferably in the range of 50 to 85% by mass. If the solid content concentration in the varnish is less than 50% by mass, the varnish viscosity becomes small and the resin content when impregnated in the prepreg may be low. If it exceeds 85% by mass, the viscosity of the varnish is increased. As a result, the appearance of the prepreg tends to deteriorate.

また、本発明で用いる熱硬化性樹脂組成物作製時の作業性、および使用時の塗布作業性をより良好ならしめるため、必要に応じて希釈剤を添加することができる。このような希釈剤としては、例えば、ブチルセロソルブ、カルビトール、酢酸ブチルセロソルブ、酢酸カルビトール、エチレングリコールジエチルエーテル、α−テルピネオールの比較的沸点の高い有機溶剤、PGE(フェニルグリシジルエーテル、日本化薬株式会社製)、PP−101(アルキルフェニルグリシジルエーテル、東都化成株式会社製)、ED−502、503、509(アデカグリシドール、株式会社ADEKA製)、YED−122(アルキルフェノールモノグリシジルエーテル、三菱化学株式会社製)、KBM−403(3−グリシドキシプロピルトリメトキシシラン)、LS−7970(1,3−ビス(3´−グリシジルオキシプロピル)−1,1,3,3−テトラメチルジシロキサン)(信越化学工業株式会社製)、TSL−8350(γ−グリシドキシプロピルトリメトキシシラン)、TSL−8355(γ−グリシドキシプロピルメチルジメトキシシラン)、TSL−9905(γ−グリシドキシプロピルペンタメトキシジシロキサン)(東芝シリコーン株式会社製)等の1分子中に1〜2個のエポキシ基を有する反応性希釈剤の公知の化合物が挙げられる。   Moreover, in order to make the workability | operativity at the time of preparation of the thermosetting resin composition used by this invention, and the application | coating workability | operativity at the time of use better, a diluent can be added as needed. Examples of such diluents include, for example, butyl cellosolve, carbitol, butyl cellosolve, carbitol acetate, ethylene glycol diethyl ether, α-terpineol, an organic solvent having a relatively high boiling point, PGE (phenylglycidyl ether, Nippon Kayaku Co., Ltd.). Manufactured), PP-101 (alkyl phenyl glycidyl ether, manufactured by Tohto Kasei Co., Ltd.), ED-502, 503, 509 (Adeka glycidol, manufactured by ADEKA), YED-122 (alkyl phenol monoglycidyl ether, manufactured by Mitsubishi Chemical Corporation) ), KBM-403 (3-glycidoxypropyltrimethoxysilane), LS-7970 (1,3-bis (3′-glycidyloxypropyl) -1,1,3,3-tetramethyldisiloxane) (Shin-Etsu) Chemical Industry Co., Ltd.), TSL-8350 (γ-glycidoxypropyltrimethoxysilane), TSL-8355 (γ-glycidoxypropylmethyldimethoxysilane), TSL-9905 (γ-glycidoxypropylpentamethoxydisiloxane) (Toshiba Silicone Corporation) And a known compound of a reactive diluent having 1 to 2 epoxy groups in one molecule.

本発明で用いるプリプレグは、例えば、熱硬化性樹脂組成物と有機溶媒とを配合して得た樹脂ワニスを、基材に含浸させて、乾燥することにより得ることができる。ここで使用する基材としては、特に限定されないが、一般的には織布や不織布等の繊維基材が用いられる。繊維基材としては、例えば、ガラス、アルミナ、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維やアラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、セルロース等の有機繊維およびこれらの混抄系があり、特にガラス繊維の織布や不織布が好ましく用いられる。また、基材の厚みは、所望のプリプレグまたは積層板の厚さに合わせて適宜選択すればよく、特に限定されないが、好ましくは0.01〜0.4mm、より好ましくは0.02〜0.3mmのものを用いる。プリプレグを製造する時の乾燥条件は、特に限定されないが、乾燥温度60〜200℃、乾燥時間1〜30分間の間で目的のプリプレグ特性に合わせて自由に選択することができる。また、基材中の含浸樹脂組成物の割合は、特に限定されないが、好ましくは30〜90質量%であり、より好ましくは40〜80質量%である。   The prepreg used in the present invention can be obtained, for example, by impregnating a substrate with a resin varnish obtained by blending a thermosetting resin composition and an organic solvent, and drying. Although it does not specifically limit as a base material used here, Generally fiber base materials, such as a woven fabric and a nonwoven fabric, are used. Examples of the fiber substrate include inorganic fibers such as glass, alumina, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia, aramid, polyether ether ketone, polyether imide, polyether sulfone. Further, there are organic fibers such as cellulose and mixed papers thereof, and glass fiber woven fabrics and nonwoven fabrics are particularly preferably used. The thickness of the substrate may be appropriately selected according to the desired thickness of the prepreg or laminate, and is not particularly limited, but is preferably 0.01 to 0.4 mm, more preferably 0.02 to 0.00. A 3 mm one is used. The drying conditions for producing the prepreg are not particularly limited, but can be freely selected according to the desired prepreg characteristics within a drying temperature of 60 to 200 ° C. and a drying time of 1 to 30 minutes. Moreover, the ratio of the impregnating resin composition in the substrate is not particularly limited, but is preferably 30 to 90% by mass, and more preferably 40 to 80% by mass.

本発明の樹脂フィルム付プリプレグは、前記プリプレグの両面又は少なくとも一方の面に、フッ素原子を含有する樹脂フィルムを配置してなるものである。
従って、樹脂フィルムは、プリプレグの表面に、直接貼り付いていてもよく、あるいは、他のフィルム等を介して、プリプレグの表面に、配置されていてもよい。
なお、樹脂フィルムを、プリプレグの表面に、直接貼り付ける方法としては、特に限定しないが、例えば、ラミネート法、プレス法などが挙げられる。
本発明で用いる樹脂フィルムは、フッ素原子を含んでおり、樹脂フィルムとプリプレグの接着方法としては、ラミネート法が好ましく、タック性を多く有するプリプレグの樹脂組成物のタック性低下にも有効となる。
フッ素原子を含有する樹脂フィルムとプリルレグをラミネートする方法としては、熱硬化性樹脂組成物をガラスクロスに含浸、乾燥したプリプレグの片面、または両面にフッ素樹脂によって形成したフィルムを配置して、樹脂フィルムのフッ素樹脂の軟化点以上、又は、プリプレグの熱硬化性樹脂組成物の軟化点以上の温度に加熱して、ロール等でラミネートする方法があり、フッ素樹脂層を有するプリプレグ(樹脂フィルム付プリプレグ)を作製することができる。ロールでラミネートする条件としては、例えば、圧力0.5〜10MPa、温度50〜180℃、ロール速度0.5〜4m/分である。
フッ素原子を含有する樹脂フィルムの厚みは、限定するものではないが、片面の厚みとして0.1〜50μmが好ましく、1〜18μmがより好ましく、2〜15μmが更に好ましい。
The prepreg with a resin film of the present invention is formed by arranging a resin film containing a fluorine atom on both surfaces or at least one surface of the prepreg.
Therefore, the resin film may be directly attached to the surface of the prepreg, or may be disposed on the surface of the prepreg via another film or the like.
In addition, although it does not specifically limit as a method of sticking a resin film directly on the surface of a prepreg, For example, the laminating method, the press method, etc. are mentioned.
The resin film used in the present invention contains fluorine atoms, and as a method for bonding the resin film and the prepreg, a laminating method is preferable, and it is effective for reducing the tackiness of a resin composition of a prepreg having a lot of tackiness.
As a method of laminating a resin film containing fluorine atoms and a prill leg, a resin film is formed by placing a film formed of a fluororesin on one side or both sides of a dried prepreg impregnated in a glass cloth with a thermosetting resin composition. There is a method of heating to a temperature equal to or higher than the softening point of the fluororesin or a temperature equal to or higher than the softening point of the thermosetting resin composition of the prepreg and laminating with a roll or the like, and a prepreg having a fluororesin layer (prepreg with a resin film) Can be produced. The conditions for laminating with a roll are, for example, a pressure of 0.5 to 10 MPa, a temperature of 50 to 180 ° C., and a roll speed of 0.5 to 4 m / min.
Although the thickness of the resin film containing a fluorine atom is not limited, 0.1-50 micrometers is preferable as a single-sided thickness, 1-18 micrometers is more preferable, and 2-15 micrometers is still more preferable.

本発明の金属張り積層板は、目的とする積層板の厚みに合わせて、本発明のフッ素原子含有樹脂フィルム付プリプレグを単層のままか、または2枚以上積層し、その片面または両面に金属箔を重ね、加熱加圧して製造することができる。使用する金属箔としては主に銅箔やアルミ箔を用いるが、他の金属箔を用いてもよい。金属箔の厚みは通常2〜200μmである。また、加熱加圧は、一般的な方法により行えばよく、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機を使用し、好ましくは、温度130〜230℃、圧力0.5〜10MPa、より好ましくは、温度160〜210℃、圧力1〜4MPaの条件で0.1〜5時間加熱加圧する。これらの条件は、プリプレグ特性、使用する熱硬化性樹脂の反応性、プレス機の能力、目的の積層板の厚み等により適宜決定することが望ましい。なお、成形温度は、フッ素原子を含有する樹脂フィルムとして、フッ素樹脂を用いた場合、その軟化点や融点が高い場合、前記温度より高い温度で、短時間だけ加熱して樹脂フィルム同士、樹脂フィルムと金属箔の接着が行われるよう設定することができる。   The metal-clad laminate of the present invention is a single layer or a laminate of two or more prepregs with a fluorine atom-containing resin film of the present invention according to the desired thickness of the laminate, and the metal is laminated on one or both sides. It can be manufactured by overlapping foils and heating and pressing. As the metal foil to be used, copper foil or aluminum foil is mainly used, but other metal foil may be used. The thickness of the metal foil is usually 2 to 200 μm. The heating and pressurization may be performed by a general method, for example, using a multistage press, a multistage vacuum press, continuous molding, or an autoclave molding machine, preferably at a temperature of 130 to 230 ° C. and a pressure of 0.5 to 10 MPa. More preferably, it is heated and pressurized for 0.1 to 5 hours under the conditions of a temperature of 160 to 210 ° C. and a pressure of 1 to 4 MPa. These conditions are desirably determined appropriately depending on the prepreg characteristics, the reactivity of the thermosetting resin used, the ability of the press, the thickness of the target laminate, and the like. In addition, as for the molding temperature, when a fluororesin is used as a resin film containing a fluorine atom, when its softening point or melting point is high, it is heated only for a short time at a temperature higher than the above temperature, and the resin films or resin films And metal foil can be set to be bonded.

本発明のプリント配線板は、上記本発明の金属箔張り積層板をサブトラクト法や穴あけ加工などのプリント配線板の製造方法において公知の方法により加工することで得ることができる。また、本発明のプリプレグ、金属張り積層板、およびプリント配線板を適宜組み合わせて積層、加工することで、多層配線板を得ることもできる。   The printed wiring board of the present invention can be obtained by processing the metal foil-clad laminate of the present invention by a known method in a printed wiring board manufacturing method such as a subtracting method or drilling. A multilayer wiring board can also be obtained by appropriately laminating and processing the prepreg of the present invention, a metal-clad laminate, and a printed wiring board.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to this.

<ワニスの調整>
(実施例1)
クレゾールノボラック型エポキシ樹脂(新日鉄住金化学株式会社製、商品名YDCN−700)30質量部、テトラブロモビスフェノールA型エポキシ樹脂(東都化成株式会社製、商品名YDB−400)70質量部、ジシアンジアミド4質量部、粉砕シリカ(平均粒径5μm、含水率0.06質量%)45質量部、1−シアノエチル−2−メチルイミダゾール0.4質量部を、メチルエチルケトンとエチレングリコールモノメチルエーテルの混合溶剤(質量比で1:1)に溶解して、不揮発分70質量%のワニスを得た。
<Adjustment of varnish>
Example 1
30 parts by mass of a cresol novolac type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name YDCN-700), 70 parts by mass of a tetrabromobisphenol A type epoxy resin (manufactured by Toto Kasei Co., Ltd., trade name YDB-400), 4 parts by mass of dicyandiamide Parts, pulverized silica (average particle size 5 μm, water content 0.06% by mass) 45 parts by mass, 1-cyanoethyl-2-methylimidazole 0.4 parts by mass, mixed solvent (by mass ratio) of methyl ethyl ketone and ethylene glycol monomethyl ether 1: 1) to obtain a varnish having a nonvolatile content of 70% by mass.

(実施例2)
クレゾールノボラック型エポキシ樹脂(新日鉄住金化学株式会社製、商品名YDCN−700)30質量部、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン株式会社製、商品名エピコート828)70質量部、難燃剤であるテトラブロモビスフェノールA(DEAD SEA−Bromine社製)58質量部、フェノールノボラック樹脂(DIC株式会社製、商品名フェノライトTD−2106)32質量部、球状シリカ(平均粒径0.7μm、含水率0.02質量%)98質量部、フェニルイミダゾール0.5質量部を、メチルエチルケトンとプロピレングリコールモノメチルエーテルの混合溶剤(質量比で2:1)に溶解して、不揮発分70質量%のワニスを得た。
(Example 2)
30 parts by mass of a cresol novolac type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name YDCN-700), 70 parts by mass of a bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., trade name Epicoat 828), tetra which is a flame retardant Bromobisphenol A (manufactured by DEAD SEA-Bromine) 58 parts by mass, phenol novolac resin (manufactured by DIC, trade name Phenolite TD-2106) 32 parts by mass, spherical silica (average particle size 0.7 μm, water content 0. 02 parts by mass) 98 parts by mass and 0.5 parts by mass of phenylimidazole were dissolved in a mixed solvent of methyl ethyl ketone and propylene glycol monomethyl ether (2: 1 by mass ratio) to obtain a varnish having a nonvolatile content of 70% by mass.

(実施例3)
フェノールノボラック型エポキシ樹脂(DIC株式会社製、商品名N−740)30質量部、クレゾールノボラック型エポキシ樹脂(東都化成株式会社製、商品名YDCN−703)70質量部、テトラブロモビスフェノールA型エポキシ樹脂(DIC株式会社製、商品名エピクロン153)65質量部、ビスフェノールAノボラック樹脂(DIC株式会社製、商品名VH−4150)75質量部、粉砕シリカ(平均粒径5μm、含水率0.06質量%)60質量部、ウンデシルイミダゾール0.8質量部を、メチルエチルケトンとプロピレングリコールモノメチルエーテルの混合溶剤(質量比で2:1)に溶解して、不揮発分70質量%のワニスを得た。
(Example 3)
30 parts by mass of phenol novolac type epoxy resin (manufactured by DIC Corporation, trade name N-740), 70 parts by mass of cresol novolac type epoxy resin (trade name YDCN-703, manufactured by Toto Kasei Co., Ltd.), tetrabromobisphenol A type epoxy resin 65 parts by mass (product name: Epicron 153, manufactured by DIC Corporation), 75 parts by mass of bisphenol A novolac resin (product name: VH-4150, manufactured by DIC Corporation), pulverized silica (average particle size: 5 μm, moisture content: 0.06% by mass) ) 60 parts by mass and 0.8 parts by mass of undecylimidazole were dissolved in a mixed solvent of methyl ethyl ketone and propylene glycol monomethyl ether (2: 1 by mass ratio) to obtain a varnish having a nonvolatile content of 70% by mass.

<プリプレグの作製>
実施例1〜3のワニスをそれぞれ厚み100μmのガラス織布(IPC品番2116タイプ)に、含浸し、それぞれ150℃の乾燥器中で4分間乾燥し、樹脂分48質量%のB−ステージ状態のプリプレグを得た。
<Preparation of prepreg>
Each of the varnishes of Examples 1 to 3 was impregnated into a 100 μm-thick glass woven fabric (IPC product number 2116 type) and dried in a drier at 150 ° C. for 4 minutes, respectively. A prepreg was obtained.

<フッ素原子を含有する樹脂フィルムの作製>
厚み50μmのPET(ポリエチレンテレフタレート)フィルムに、FEVE交互共重合体(フルオロエチレン・ビニルエーテル交互共重合体)としてルミフロン(旭硝子株式会社製)5質量%メチルエチルケトン溶液に、イソホロンジイソシアネートを固形分に対して5質量%となるよう混合した溶液を塗布し、60〜75℃で加熱することを繰り返し厚み約5μmのFEVEの樹脂フィルムを得た。
<Preparation of resin film containing fluorine atoms>
A PET (polyethylene terephthalate) film having a thickness of 50 μm, a FEVE alternating copolymer (fluoroethylene / vinyl ether alternating copolymer) as a Lumiflon (Asahi Glass Co., Ltd.) 5 mass% methyl ethyl ketone solution, and isophorone diisocyanate in a solid content of 5%. The solution mixed so that it might become mass% was apply | coated, and it heated at 60-75 degreeC repeatedly, and obtained the resin film of FEVE of thickness about 5 micrometers.

<樹脂フィルムのラミネート>
上記で得られたプリプレグ表面の両面に、上記で得たFEVEの樹脂フィルムをロールラミネートにより積層した(ロールラミネート時には、PETフィルムも同時にラミネートし、使用時には、PETフィルムを剥離してFEVE付プリプレグを使用)。なお、ロールラミネート条件は、圧力2MPa、温度160℃、ロール速度2m/分である。
これをそれぞれ実施例1〜3とした。また、上記で得たFEVEの樹脂フィルムをラミネートしないプリプレグを、それぞれ比較例1〜3とした。
<Resin film lamination>
The FEVE resin film obtained above was laminated on both surfaces of the prepreg surface obtained above by roll lamination (at the time of roll lamination, the PET film was laminated at the same time, and at the time of use, the PET film was peeled off to remove the prepreg with FEVE. use). The roll laminating conditions are a pressure of 2 MPa, a temperature of 160 ° C., and a roll speed of 2 m / min.
These were designated as Examples 1 to 3, respectively. Moreover, the prepreg which does not laminate the FEVE resin film obtained above was made into Comparative Examples 1-3, respectively.

<金属張積層板の作製>
上記で得られた各FEVE付プリプレグ(実施例1〜3)及び、樹脂フィルムをラミネートしていない各プリプレグ(比較例1〜3)をそれぞれ8枚ずつ重ね、その両面に厚み18μmの銅箔を配し、実施例1〜3および比較例1〜3のプリプレグを用いたものは圧力3.5MPa、温度180℃で90分間加熱、加圧して、両面銅張り積層板を得た。
<Production of metal-clad laminate>
Each prepreg with FEVE (Examples 1 to 3) obtained above and each prepreg (Comparative Examples 1 to 3) not laminated with a resin film are stacked 8 by 8 respectively, and a copper foil having a thickness of 18 μm is formed on both surfaces. The prepregs of Examples 1 to 3 and Comparative Examples 1 to 3 were heated and pressurized at a pressure of 3.5 MPa and a temperature of 180 ° C. for 90 minutes to obtain a double-sided copper-clad laminate.

<評価>
以上のように作製した各両面銅張り積層板の銅箔をエッチングにより除去し、吸湿はんだ耐熱性、および吸水率を評価した。
<Evaluation>
The copper foil of each double-sided copper-clad laminate produced as described above was removed by etching, and moisture-absorbing solder heat resistance and water absorption were evaluated.

基板の吸湿はんだ耐熱性は、121℃、100%RHの加圧チャンバー中にて所定時間加熱、加圧、吸湿処理(PCT処理)した後に、288℃のはんだ槽に20秒間浸積した基板の外観を観察することで評価した。   The moisture absorption solder heat resistance of the substrate is that of a substrate immersed in a solder bath at 288 ° C. for 20 seconds after heating, pressurizing and moisture absorption treatment (PCT treatment) for a predetermined time in a pressurized chamber of 121 ° C. and 100% RH. Evaluation was made by observing the appearance.

吸水率は、121℃、100%RHの加圧チャンバー中にて所定時間加熱、加圧、吸湿処理(PCT処理)した基板の処理前後の質量を測定し、評価した。すなわち、加熱前後の基板の質量差を加熱前の基板の質量で除し、100分率で表した。   The water absorption was evaluated by measuring the mass before and after treatment of a substrate heated, pressurized and moisture-absorbed (PCT treated) for a predetermined time in a pressurized chamber at 121 ° C. and 100% RH. That is, the difference in mass of the substrate before and after heating was divided by the mass of the substrate before heating, and expressed as 100 minutes.

以上の評価結果を表1に示した。なお、基板の吸湿はんだ耐熱性の各評価記号は、○:変化無し、△:ミーズリング発生、×:ふくれ発生を意味し、3つの記号は、3つの試験片により評価した結果である。また、表1において、例えば「PCT−3h」とは、PCT処理を3時間行ったことを表す。   The above evaluation results are shown in Table 1. In addition, each evaluation code | symbol of moisture absorption solder heat resistance of a board | substrate means (circle): No change, (triangle | delta): Generation | occurrence | production of a mess ring, *: Generation | occurrence | production of blistering, and three symbols are the results evaluated by three test pieces. In Table 1, for example, “PCT-3h” represents that the PCT process was performed for 3 hours.

Figure 2016023294
(吸水率;質量%)
Figure 2016023294
(Water absorption rate: mass%)

表1から、実施例1〜3の積層板は、比較例と比べ、吸水率が低く、吸湿はんだ耐熱性に優れ、耐熱性が良好であることが確認できた。   From Table 1, it has confirmed that the laminated board of Examples 1-3 was low in water absorption compared with the comparative example, was excellent in moisture absorption solder heat resistance, and heat resistance.

Claims (5)

熱硬化性樹脂組成物を、ガラスクロスに含浸し、乾燥してなるプリプレグの両面又は少なくとも一方の面に、フッ素原子を含有する樹脂フィルムを配置してなる樹脂フィルム付プリプレグ。   A prepreg with a resin film in which a resin film containing a fluorine atom is disposed on both surfaces or at least one surface of a prepreg obtained by impregnating a glass cloth with a thermosetting resin composition and drying. 熱硬化性樹脂組成物が、エポキシ樹脂を含む請求項1に記載の樹脂フィルム付プリプレグ。   The prepreg with a resin film according to claim 1, wherein the thermosetting resin composition contains an epoxy resin. フッ素原子を含有する樹脂フィルムが、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)又はフルオロエチレン・ビニルエーテル交互共重合体のフィルムである請求項1又は2に記載の樹脂フィルム付プリプレグ。   The prepreg with a resin film according to claim 1 or 2, wherein the resin film containing a fluorine atom is a film of a tetrafluoroethylene / hexafluoropropylene copolymer (FEP) or a fluoroethylene / vinyl ether alternating copolymer. 請求項1〜3のいずれかに記載の樹脂フィルム付プリプレグを、単層のままか、又は2枚以上積層し、その片面、もしくは両面に金属箔を配置し、これを加熱、加圧して得られる金属張り積層板。   The prepreg with a resin film according to any one of claims 1 to 3 is a single layer, or two or more layers are laminated, and a metal foil is disposed on one side or both sides thereof, and heated and pressurized. Metal-clad laminate. 請求項4に記載の金属張り積層板を用いて配線を形成してなるプリント配線板。   A printed wiring board obtained by forming wiring using the metal-clad laminate according to claim 4.
JP2014150727A 2014-07-24 2014-07-24 Resin film-provided prepreg and metal-clad laminate and printed wiring board using the same Pending JP2016023294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014150727A JP2016023294A (en) 2014-07-24 2014-07-24 Resin film-provided prepreg and metal-clad laminate and printed wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014150727A JP2016023294A (en) 2014-07-24 2014-07-24 Resin film-provided prepreg and metal-clad laminate and printed wiring board using the same

Publications (1)

Publication Number Publication Date
JP2016023294A true JP2016023294A (en) 2016-02-08

Family

ID=55270353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014150727A Pending JP2016023294A (en) 2014-07-24 2014-07-24 Resin film-provided prepreg and metal-clad laminate and printed wiring board using the same

Country Status (1)

Country Link
JP (1) JP2016023294A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636885B (en) * 2017-05-24 2018-10-01 台燿科技股份有限公司 Method of manufacturing metal-clad laminate and uses of the same
WO2020059606A1 (en) * 2018-09-18 2020-03-26 Agc株式会社 Laminate, printed board, and method for manufacturing same
JP2020090564A (en) * 2018-12-03 2020-06-11 日本メクトロン株式会社 Adhesive film, adhesive composition, and flexible printed circuit board
WO2020145133A1 (en) * 2019-01-11 2020-07-16 ダイキン工業株式会社 Fluororesin composition, fluororesin sheet, multilayer body and substrate for circuits

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636885B (en) * 2017-05-24 2018-10-01 台燿科技股份有限公司 Method of manufacturing metal-clad laminate and uses of the same
WO2020059606A1 (en) * 2018-09-18 2020-03-26 Agc株式会社 Laminate, printed board, and method for manufacturing same
CN112703107A (en) * 2018-09-18 2021-04-23 Agc株式会社 Laminate, printed board, and method for producing same
JPWO2020059606A1 (en) * 2018-09-18 2021-08-30 Agc株式会社 Laminates, printed circuit boards and their manufacturing methods
CN112703107B (en) * 2018-09-18 2023-05-02 Agc株式会社 Laminate, printed board, and method for producing same
JP7400722B2 (en) 2018-09-18 2023-12-19 Agc株式会社 Laminate, printed circuit board and manufacturing method thereof
JP2020090564A (en) * 2018-12-03 2020-06-11 日本メクトロン株式会社 Adhesive film, adhesive composition, and flexible printed circuit board
JP7223569B2 (en) 2018-12-03 2023-02-16 ユニマテック株式会社 Adhesive film, adhesive composition and flexible printed circuit board
WO2020145133A1 (en) * 2019-01-11 2020-07-16 ダイキン工業株式会社 Fluororesin composition, fluororesin sheet, multilayer body and substrate for circuits
JPWO2020145133A1 (en) * 2019-01-11 2021-09-09 ダイキン工業株式会社 Fluororesin composition, fluororesin sheet, laminate and circuit board
JP7060825B2 (en) 2019-01-11 2022-04-27 ダイキン工業株式会社 Fluororesin composition, fluororesin sheet, laminate and circuit board
US11963297B2 (en) 2019-01-11 2024-04-16 Daikin Industries, Ltd. Fluororesin composition, fluororesin sheet, laminate and substrate for circuits

Similar Documents

Publication Publication Date Title
JP6587177B2 (en) Prepreg, metal-clad laminate, printed wiring board
JP2005272722A (en) Thermosetting resin composition, resin film and product
KR20110059784A (en) Laminate, circuit board and semiconductor device
TWI737851B (en) Printed circuit board and semiconductor package
TWI772369B (en) Statically bendable copper clad laminates and printed circuit boards
JP2017059779A (en) Method for manufacturing printed wiring board
JP2007051267A (en) Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board
JP2016023294A (en) Resin film-provided prepreg and metal-clad laminate and printed wiring board using the same
JP5904078B2 (en) Prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JP6620457B2 (en) Resin composition
JP2012241179A (en) Epoxy resin composition for prepreg, the prepreg, and multilayer printed wiring board
JP6366136B2 (en) Epoxy resin composition, resin sheet, prepreg, metal-clad laminate, printed wiring board
JP2010285523A (en) Resin composition, prepreg, laminated board, multilayer printed wiring, and semiconductor device
WO2015072261A1 (en) Resin-layer-equipped carrier material, laminate, circuit board, and electronic device
JP2007009217A (en) Resin composition, prepreg, and printed wiring board using the same
JP5398087B2 (en) Adhesive for heat dissipation substrate and heat dissipation substrate
US20140162072A1 (en) Thermosetting resin compositions, resin films in b-stage, metal foils, copper clad boards and multi layer build-up boards
TWI504663B (en) Resin composition
JP2016201510A (en) Prepreg for printed wiring board, metal-clad laminated board using the same, and printed wiring board
JP2014055226A (en) Prepreg, and metal-clad laminate and printed circuit board using the same
JPWO2015072262A1 (en) Metal-clad laminate, circuit board, and electronic device
JP5428212B2 (en) Resin composition, prepreg and printed wiring board using the same
JP2012153755A (en) Epoxy resin composition, prepreg, laminate, resin sheet, printed circuit board and semiconductor device
JP2016023293A (en) Resin film-provided prepreg and metal-clad laminate and printed wiring board using the same
CN114901741B (en) Thermosetting heat-conducting dielectric composite material