JPS6338735A - Reinforcing member for high load transmission belt - Google Patents
Reinforcing member for high load transmission beltInfo
- Publication number
- JPS6338735A JPS6338735A JP61179416A JP17941686A JPS6338735A JP S6338735 A JPS6338735 A JP S6338735A JP 61179416 A JP61179416 A JP 61179416A JP 17941686 A JP17941686 A JP 17941686A JP S6338735 A JPS6338735 A JP S6338735A
- Authority
- JP
- Japan
- Prior art keywords
- power transmission
- load power
- reinforcing material
- transmission belt
- belt according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 141
- 230000003014 reinforcing effect Effects 0.000 title claims abstract description 83
- 239000004744 fabric Substances 0.000 claims abstract description 103
- 229920005989 resin Polymers 0.000 claims abstract description 89
- 239000011347 resin Substances 0.000 claims abstract description 89
- 239000000835 fiber Substances 0.000 claims abstract description 78
- 239000011159 matrix material Substances 0.000 claims abstract description 50
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 46
- 238000000748 compression moulding Methods 0.000 claims abstract description 13
- 239000012779 reinforcing material Substances 0.000 claims description 152
- 229910052751 metal Inorganic materials 0.000 claims description 88
- 239000002184 metal Substances 0.000 claims description 88
- 239000011888 foil Substances 0.000 claims description 64
- 238000004804 winding Methods 0.000 claims description 45
- 239000000843 powder Substances 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 28
- 229920006231 aramid fiber Polymers 0.000 claims description 25
- 239000011256 inorganic filler Substances 0.000 claims description 18
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 12
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 11
- 239000002759 woven fabric Substances 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 239000000395 magnesium oxide Substances 0.000 claims description 10
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 10
- 230000002787 reinforcement Effects 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 9
- 230000006835 compression Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- 239000004745 nonwoven fabric Substances 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 238000000465 moulding Methods 0.000 abstract description 10
- 239000012784 inorganic fiber Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 31
- 230000017525 heat dissipation Effects 0.000 description 24
- 238000000034 method Methods 0.000 description 14
- 238000005299 abrasion Methods 0.000 description 10
- 238000005452 bending Methods 0.000 description 9
- 239000010931 gold Substances 0.000 description 9
- 229910052737 gold Inorganic materials 0.000 description 9
- 239000004760 aramid Substances 0.000 description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 8
- 230000005484 gravity Effects 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 229920003235 aromatic polyamide Polymers 0.000 description 7
- 238000009941 weaving Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 239000010687 lubricating oil Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000011162 core material Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011490 mineral wool Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- -1 7-El TSS m Polymers 0.000 description 1
- 235000003301 Ceiba pentandra Nutrition 0.000 description 1
- 244000146553 Ceiba pentandra Species 0.000 description 1
- 241000234435 Lilium Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002343 gold Chemical class 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16G—BELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
- F16G5/00—V-belts, i.e. belts of tapered cross-section
- F16G5/16—V-belts, i.e. belts of tapered cross-section consisting of several parts
- F16G5/166—V-belts, i.e. belts of tapered cross-section consisting of several parts with non-metallic rings
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
【発明の詳細な説明】
(a)産業上の利用分野
本発明は伝動効率及び耐久性を向上させた高負荷伝動ベ
ルト用補強材に関するものである。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a reinforcing material for high-load power transmission belts with improved transmission efficiency and durability.
(b)従来の技術
従来、高負荷伝動ベルトとして、ベルトの片面にフグ状
の補強材を取り付けるものがある。このような高負荷伝
動ベルトの補強材としては、■金属製の棒体、パイプ体
又は板体、或いは合成↑』{謂や強化樹脂を成形して形
成した棒体、パイプ体、或いは板体のもの(待朋昭59
ー117937号公報参照)、及プ■ 1ないし複数,
層のゴム1F気布をvL層シタチノ(特開昭59−16
GO51号公報参照)、更に■熱硬化性…詣を含浸させ
た帆布を渦巻状にして挿入せしめたもの(実開昭59−
153749号公報参照)、等が挙げられる。(b) Prior Art Conventionally, some high-load power transmission belts have a puffer-shaped reinforcing material attached to one side of the belt. Reinforcing materials for such high-load power transmission belts include ■metal rods, pipes, or plates, or synthetic ↑ {so-called rods, pipes, or plates formed by molding reinforced resin. Things (Machitomo 1959)
(Refer to Publication No. 117937), and ■ one or more,
The rubber 1F air cloth of the layer is made of vL layer (Japanese Patent Application Laid-Open No. 59-16
(Refer to GO51 publication), and further ■Thermosetting... A canvas impregnated with pilgrims is inserted in a spiral shape (Utility Model No. 59-
153749), etc.
(c)考案が解決しようとする間厘点
しかしながら、上記■の補強材は以下に述べる間mがあ
る。(c) Problems to be solved by the invention However, the reinforcing material (2) above has the following problems.
即ち、先ず、上記金属製の棒体、パイプ体、或いは板体
からなる補強材は、自己潤滑性を有しないので、3音の
防止や摩耗の減少を図るために潤滑油を供給する必要が
あり、この潤滑油によって伝動効率が低下し、しかも、
潤滑油の飛故により周囲を汚染したり、特に、食品関係
等の使mにあたっては、潤滑油が飛散、混入して衛生上
問題が生じる等の問題がある。That is, first of all, since the reinforcing material made of the metal rod, pipe, or plate does not have self-lubricating properties, it is necessary to supply lubricating oil to prevent three-tone noise and reduce wear. Yes, this lubricating oil reduces transmission efficiency, and
There are problems such as the lubricating oil scattering and contaminating the surrounding area, and especially when used in food-related applications, the lubricating oil scatters and gets mixed in, causing hygienic problems.
また、金属は比重が大きいので、ベルト全体の重量が増
大し、回忙時の遠心力に対応して周辺部品の強度を高め
る必要があるうえ、高回転で耐久性が低下する等の問題
もある。In addition, since metal has a high specific gravity, the weight of the entire belt increases, and the strength of peripheral parts must be increased to cope with the centrifugal force during busy rotation, and there are problems such as reduced durability at high rotation speeds. be.
一方、今成用N製或いは強化樹脂製の補強材は、軽量で
あり、しが&、cJ滑油を使用しない乾式伝動が可能に
なるので、金属製の補強材にfl’つ上記の問題は解消
できる。On the other hand, reinforcing materials made of Imanari YoN or reinforced resin are lightweight and enable dry transmission without using lubricating oil, so they do not have the above-mentioned problems compared to metal reinforcing materials. can be resolved.
しかしながら、従来の合成+Jf脂製或いは強化(kj
N製の補強材は組織が比較的粗雑であって、剛性が比較
的低いために、ベルトが幅方向に変形してプーリー等の
伝動輪との接触面積が一定とならず、伝動損失が大きく
なるといった問題がある。However, conventional synthesis + Jf resin or reinforced (kj
N reinforcing material has a relatively coarse structure and relatively low rigidity, so the belt deforms in the width direction, resulting in uneven contact area with transmission wheels such as pulleys, resulting in large transmission losses. There is a problem with this.
また、上記の■および■の補強材のうち、繊維強化樹脂
(FRP)を、重ねて積層したり或いは渦巻状に積層し
たものはその池の強化樹脂製の補強材よりも剛性が高く
、従来のものの中では最も高い伝動効率を得ることがで
きるが、これらのものは、層間の密着力が比較的弱く、
高負荷によって積層板が眉間から破壊することがあり、
高負荷での耐久性に問題がある。Furthermore, among the reinforcing materials in ■ and ■ above, those made of fiber-reinforced resin (FRP) that are laminated or laminated in a spiral shape have higher rigidity than the reinforcing materials made of reinforced resin. Although the highest transmission efficiency can be obtained among these materials, the adhesion between these layers is relatively weak, and
The laminate may break from the glabella due to high loads.
There is a problem with durability under high loads.
(,1)間厘点を解決するための′I=段本元本発明上
記の事情を4慮してなされたものであって、伝動効率お
よび耐久性を向上させた高負荷伝動ベルト用補強材を提
供することを目的とするものである。(, 1) 'I=Danmoto Original Invention for Solving the Problems The present invention was made in consideration of the above circumstances, and is a reinforcing material for high-load power transmission belts that improves transmission efficiency and durability. The purpose is to provide
本願の第1発明に係る高負荷伝動ベルト用補強材は、上
記の目的を達成するために、無8!a維または有機繊維
で形成した補強布に、熱硬化性樹脂を含有するマトリッ
クスI(脂を含浸させた少なくとも1枚のプリプレグシ
ートを渦巻状に巻回し、これを成形型内で加熱、加圧し
て所望の断面形状に圧縮成形して成ることを特徴とする
ものである。The reinforcing material for high-load power transmission belts according to the first invention of the present application has the following advantages: Matrix I containing a thermosetting resin (at least one prepreg sheet impregnated with fat) is spirally wound around a reinforcing cloth made of a fiber or organic fiber, and this is heated and pressurized in a mold. It is characterized in that it is compression molded into a desired cross-sectional shape.
また、本願の第2発明は、上記の第1発明の目的に加え
て、高負荷時の摩擦熱による補強材の硬度低下や、この
硬度低下に伴う摩擦係数の低下による伝動効率の着しい
低下、更に、高負荷・高回転時の茗しい発熱によるベル
トの破断等を防止でき、しかも、重量の増加を最小限に
抑えるようにした高負荷伝動ベルト用補強材である6即
ち、本願の第2発明に係る高負荷伝動ベルト用補強材は
、無機繊維または有機繊維で形成した補強布に、熱硬化
性樹脂を含有するマ) l)ックス゛ 樹脂を含浸
させた少なくとも1枚のプリプレグシートと−2を4箔
とを渦巻状に巻回し、これを成形型内で加熱、加圧して
所望の断面形状に圧縮成形して成ることを特徴とするも
のである。In addition to the object of the first invention, the second invention of the present application also provides for a reduction in the hardness of the reinforcing material due to frictional heat during high loads, and a severe reduction in transmission efficiency due to a reduction in the coefficient of friction accompanying this reduction in hardness. Furthermore, the reinforcing material for high-load power transmission belts is capable of preventing the belt from breaking due to excessive heat generation at high loads and high rotations, and also minimizes the increase in weight. The reinforcing material for high-load power transmission belts according to the second invention comprises: a reinforcing cloth made of inorganic fibers or organic fibers containing a thermosetting resin; l) at least one prepreg sheet impregnated with a resin; 2 and 4 foils are spirally wound, and this is heated and pressurized in a mold to compression mold it into a desired cross-sectional shape.
更に、本願の第3発明は、上記の第1発明の目的に加え
て、補強材のif摩耗性を一層向上でさるようにした高
負荷伝動ベルト用補強材であって、その要旨は、無8!
la維または有機繊維で形成した補強布に、熱硬化性!
41117を含有するマトリックスUtMを含浸させた
少なくと61枚のプリプレグシートと、このプリプレグ
シートにおける巻回内側面の少なくとも一部分に重ね合
わされたアラミドi維補強布とを渦巻状に巻回し、これ
を成形型内で加熱、加圧して所望の断面形状に圧縮成形
して成ることを特徴とするものである。Furthermore, a third invention of the present application is a reinforcing material for a high-load power transmission belt, which further improves the if abrasion resistance of the reinforcing material in addition to the object of the first invention, the gist of which is as follows: 8!
Thermosetting reinforcement fabric made of LA fiber or organic fiber!
At least 61 prepreg sheets impregnated with matrix UtM containing 41117 and an aramid i-fiber reinforcing cloth superimposed on at least a portion of the inner surface of the winding of the prepreg sheets are spirally wound and molded. It is characterized by being compression-molded into a desired cross-sectional shape by heating and pressurizing it in a mold.
加えて、本第4発明は、上記の第1発明、第2発明及び
第3発明の総ての目的、即ち、伝hfiJJ効率、耐摩
耗性および耐久性が高く、最小限の重量の増加で高負荷
時の摩擦熱による補強材の硬度低下や、この硬度低下に
伴つrI擦係数の低下に伴う伝動効率の低下、更に高負
荷・高回転時の者しい発熱によるベルトの破断等を防止
できるようにした高貴荷伝動ベルト用補強材についての
ものである。In addition, the fourth invention achieves all of the objectives of the first, second and third inventions above, namely, high transmission efficiency, high wear resistance and durability, with minimal increase in weight. Prevents the hardness of the reinforcing material from decreasing due to frictional heat during high loads, the decrease in transmission efficiency due to the decrease in the rI friction coefficient that comes with this decrease in hardness, and the breakage of the belt due to significant heat generation during high loads and high rotations. This article concerns a reinforcing material for high-grade load transmission belts.
以下、本発明について詳細に説明する。The present invention will be explained in detail below.
本発明iこ用いられる補強布は無機繊維または有機繊維
で形成されたものである。The reinforcing fabric used in the present invention is made of inorganic fibers or organic fibers.
上記無機MILm、とじては、特に限定されるものでは
ないが、例えば、炭素繊維、ガラス繊維、石英t& m
、セラミック繊維、ワイス力、はう素a維、金属(繊維
、岩綿、鉱滓綿、シリコンカーバイド繊維、アスベスト
、セラミンク繊維等が挙げられる。The above-mentioned inorganic MILm is not particularly limited, but for example, carbon fiber, glass fiber, quartz T&M
, ceramic fiber, Weiss force, borosilicate a fiber, metal (fiber, rock wool, mineral wool, silicon carbide fiber, asbestos, ceramic fiber, etc.).
また、上記有8!a維としては、特に限定されるもので
はないが、例えば、ビスコースレーヨン等の再生繊維、
アセチルセルロース等の半合成aa、ポリエステル、ポ
リアミド、ポリアクリロニトリル、アクリロニトリル−
塩化ビニル共重合体、ポリビニルアルコール、ポリ塩化
ビニル、ポリ塩化ビニリデン等の合成繊維、綿、カポッ
ク等の植物繊維、絹、羊毛等の動物繊維が挙げられる。Also, there are 8 above! Examples of the a-fiber include, but are not particularly limited to, recycled fibers such as viscose rayon,
Semi-synthetic AA such as acetylcellulose, polyester, polyamide, polyacrylonitrile, acrylonitrile-
Examples include synthetic fibers such as vinyl chloride copolymer, polyvinyl alcohol, polyvinyl chloride, and polyvinylidene chloride, vegetable fibers such as cotton and kapok, and animal fibers such as silk and wool.
補強布の組繊は、特に限定されず、ロービング、クロス
、マット等を採用できるが、機械的強度が最も優れてい
るクロスを採mすることが好ましい。The fibers of the reinforcing cloth are not particularly limited, and roving, cloth, mat, etc. can be used, but it is preferable to use cloth, which has the best mechanical strength.
クロスの場合には、経糸まだは緯糸が補強布の巻回方向
と直角な長手方向と一致するようにしてら、経糸および
緯糸がそれぞれ補強布の氏子)j向と所定の角度で交叉
するようにしてもよい。In the case of cloth, the warp and weft should be aligned with the longitudinal direction perpendicular to the winding direction of the reinforcing cloth, and the warp and weft should each intersect with the direction of the reinforcing cloth at a predetermined angle. You can.
また、クロスの織り力としては、例えば、平織す、繻子
織り等種々の織り方を自由に採用することができる。し
かしながら、補強材の太さを増大することなく、側圧に
対する剛性を高めるために、上記補強布の巻回方向と直
角な長手方向の繊it量が、当該補強布の巻回方向と同
方向である福島方向のmixより多くすることが好まし
い。この場合、補強布においで、その長手方向の繊M1
量と幅方向のlII雑量の重量比が3:1〜7二1であ
るとこが好ましく、特にその重量比が3:1〜5:1で
あることが最ら望ましい。補強布においで、その氏子か
向の繊維量と幅方向のに&維量との比が3:1よりも小
さい場合には、側圧に対する剛性を高める効果が乏しく
、一方、この重量比が7:1を超えると、補強布のrg
、さが厚くなり過ぎてプリプレグシートを所定の大きさ
の中に所要回数にわたって巻回することが困難になる場
合がある。特に、この比が3=1〜5:1の範囲では圧
縮強度の低下が比較的少ないので一層好ましい。In addition, various weaving methods such as plain weaving and satin weaving can be freely adopted as the weaving strength of the cloth. However, in order to increase the rigidity against lateral pressure without increasing the thickness of the reinforcing material, the amount of fibers in the longitudinal direction perpendicular to the winding direction of the reinforcing fabric is set in the same direction as the winding direction of the reinforcing fabric. It is preferable to increase the amount by more than a certain mix in the Fukushima direction. In this case, in the reinforcing cloth, the fibers M1 in the longitudinal direction are
It is preferable that the weight ratio between the amount and the miscellaneous amount of lII in the width direction is from 3:1 to 721, and most preferably, the weight ratio is from 3:1 to 5:1. In the reinforcing fabric, if the ratio of the amount of fibers in the direction facing the parishioners to the amount of fibers in the width direction is less than 3:1, the effect of increasing the stiffness against lateral pressure is poor; : If it exceeds 1, the rg of the reinforcing fabric
If the prepreg sheet becomes too thick, it may be difficult to wind the prepreg sheet the required number of times within a predetermined size. In particular, it is more preferable for this ratio to be in the range of 3=1 to 5:1 since the decrease in compressive strength is relatively small.
このように補強布の長手方向の繊維量を幅方向の繊維量
よりも多くするには、例えば、繊維比率を変更した平織
9の織布を使用したり、経糸の太さが綿糸の太さの2〜
6倍であるトルコ襦子ar+の織布を使用すればよい。In this way, in order to make the amount of fibers in the longitudinal direction of the reinforcing fabric larger than the amount of fibers in the width direction, for example, a woven fabric with a plain weave 9 with a different fiber ratio may be used, or the thickness of the warp may be the same as that of the cotton thread. 2~
It is sufficient to use a woven fabric of Turkish rug ar+ which is 6 times the size.
上記補強布には熱硬化性樹脂を含有するマ) Uクロス
樹脂が含浸される。The reinforcing cloth is impregnated with a U-cross resin containing a thermosetting resin.
上記マトリックス樹脂に含有される熱硬化性樹脂として
は、特に限定されるものではなく、例えば、熱硬化性ポ
リエステル樹脂、エポキシ樹脂、7エ/−ルtss m
、ポリイミド樹脂等が挙げられる。The thermosetting resin contained in the matrix resin is not particularly limited, and examples thereof include thermosetting polyester resin, epoxy resin, 7-El TSS m
, polyimide resin, etc.
に記マトリックス<H脂には、熱放散性を高めるために
、金属粉末を分散状に含有させることができる。このよ
うにしてマトリックス樹脂の熱放散性を高めることによ
り、プーリーとベルト或いは補強材との間の摩擦熱によ
るベルト或いは補強材の硬度低下を防止して、硬度低下
による伝動効率の低下を防止できると共に、高負荷・高
回転時の過大な摩擦熱によるベルトの破断を防止できる
。In order to improve heat dissipation properties, metal powder can be contained in the matrix <H resin in a dispersed state. By increasing the heat dissipation properties of the matrix resin in this way, it is possible to prevent a decrease in the hardness of the belt or the reinforcement material due to frictional heat between the pulley and the belt or reinforcement material, thereby preventing a decrease in transmission efficiency due to the decrease in hardness. At the same time, it is possible to prevent belt breakage due to excessive frictional heat at high loads and high rotations.
金属粉末としては、特に限定されるものではないが、熱
伝動性が優れ、且つ、安価なアルミニウム、■、鉄等を
使用でき、中でも比重の小さいアルミニウムを使用する
ことが好ましい。The metal powder is not particularly limited, but aluminum, iron, etc., which have excellent thermal conductivity and are inexpensive, can be used, and among them, it is preferable to use aluminum, which has a low specific gravity.
また、金属粉末の粒子径は熱硬化性樹脂内への分散性を
考慮して、5〜500μIとすることが好ましく、この
範囲で粒子径の大きいものと小さいものとの双方が含ま
れることが一層好ましい。In addition, the particle size of the metal powder is preferably 5 to 500 μI in consideration of dispersibility in the thermosetting resin, and this range includes both large and small particle sizes. More preferred.
金属粉末の熱硬化性樹脂への)昆合量は熱硬化性樹脂に
対して15〜100体積%が良好である。The amount of metal powder incorporated into the thermosetting resin is preferably 15 to 100% by volume based on the thermosetting resin.
15体積%を下回ると放熱効果が乏しくなるので好まし
くな(、また、100体積%を上回るときには放熱効果
が限界値に達するうえ、熱硬化性樹脂の比重が大さくな
ると共に、機械的強度が者しく低下するので好ましくな
い。If it is less than 15% by volume, the heat dissipation effect will be poor, so it is not preferable (and if it exceeds 100% by volume, the heat dissipation effect will reach its limit value, the specific gravity of the thermosetting resin will increase, and the mechanical strength will deteriorate). This is not preferable because it lowers the temperature significantly.
また、上記マトリックス樹脂に無機充填材を分散状に含
有させて、耐摩耗性を高めることら可能である。It is also possible to improve wear resistance by incorporating an inorganic filler into the matrix resin in a dispersed manner.
上記無機充填材としては、時に限定されるものではない
が、補強材と接触するプーリー等に損傷を4えないよう
に、例えば、チタン酸カリウムウィスカー、グラ7アイ
トカーボン粉、−高純度酸化マグネシウム等を用いるの
が好ましい。The above-mentioned inorganic fillers may include, but are not limited to, potassium titanate whiskers, graphite carbon powder, high-purity magnesium oxide, etc., in order to avoid damage to pulleys etc. that come into contact with the reinforcing material. It is preferable to use the following.
これらの無機充填材のうち、特に高純度酸化マグネシウ
ムを添加したばあいには高摩耗性を最も高めることがで
きる。この無機充填材の熱硬化性樹脂への混合量は熱硬
化性樹脂に対して10〜100体積%とすることが好ま
しい。10体積%を下回ると、その効果が乏しいので好
土しくなく、一方、100体積%を上回ると効果が限界
値に達するうえ、磯賊的強度が低下するので好ましくな
マトリックス樹脂を補強布に含浸させる方法として1よ
、コーティング、スプレイイング、ディッピング等のウ
ェット方式やフィルム状或いはキャリー紙に塗布された
マトリックス樹脂を溶融状態にして補強布に含浸させる
ドライ方式が採用される。 プリプレグシートは1枚で
あってもよく、複数枚であってもよい。複数枚の場合に
は各プリプレグシートの補強布の種類 (組織、織り力
、繊、W等の種類)が異なっていてもよ(、また、同じ
ものでもよい。複数枚のプリプレグシートを使用する場
合には、先に巻回されたプリプレグシートと後続のプリ
プレグシートとの剥離が一層生じ難くなるように複数枚
のプリプレグシートが少なくともそれらの一部分同士が
1代するようにして渦巻状に巻回してされる場合と、f
fi複による段が形成されないように複数枚のプリプレ
グシートがその1枚の巻終わり端部に他の1枚の巻始め
端部が連続するようにして渦巻状に巻回されている場合
とがある。尚、プリプレグシートを巻回するときにはa
a強化合成用樹脂FRP)或いは金属の芯材を使用して
もよい。Among these inorganic fillers, particularly when high purity magnesium oxide is added, high abrasion resistance can be maximized. The amount of this inorganic filler mixed into the thermosetting resin is preferably 10 to 100% by volume based on the thermosetting resin. If it is less than 10% by volume, the effect will be poor and it will not be a good material. On the other hand, if it exceeds 100% by volume, the effect will reach the limit value and the strength will decrease, so it is preferable to impregnate the reinforcing cloth with matrix resin. Methods 1 include a wet method such as coating, spraying, and dipping, and a dry method in which a matrix resin coated on a film or carrier paper is molten and impregnated into the reinforcing cloth. The number of prepreg sheets may be one or more. In the case of multiple prepreg sheets, the type of reinforcing fabric (structure, weaving force, fiber, W type, etc.) of each prepreg sheet may be different (or may be the same.Using multiple prepreg sheets) In some cases, a plurality of prepreg sheets are wound in a spiral shape so that at least a portion of them overlaps each other, so that peeling between the previously wound prepreg sheet and the subsequent prepreg sheet is less likely to occur. f
In order to prevent the formation of steps due to fi folding, there are cases in which multiple prepreg sheets are spirally wound so that the end of one sheet is continuous with the beginning end of another sheet. be. In addition, when winding the prepreg sheet, a
(a) A reinforced synthetic resin (FRP) or a metal core material may be used.
巻回された、プリプレグシート(第1発明)およびプリ
プレグシー)と金属箔(第2発明)、又はプリプレグシ
ートとこの巻回内側面の少なくとら一部分に重ね合わさ
れたアラミド繊維補強布の巻回物(第3発明)、並びに
プリプレグシートとこの巻回内側面の少な(とも一部分
に重ね合わされたアラミド繊維補強布と金属箔との巻回
物(第4発明)を、それぞれ加熱、加圧して圧縮成形す
る際の圧力は、成形品の#a維体積含有率が40〜75
%、好ましくは50〜60%程度で、空隙率が2%以下
の緻密な組織を得るために、50kg/cI112以上
の圧力で圧縮成形することが好ましい。圧力がこれを下
回る場合には、成形品のIM、維体積含有率が小さくな
るとともに空隙率が大きくなり、十分な剛性が得られな
いので好ましくない。この加熱時間や加熱温度等は熱硬
化性樹脂の種類や性質によって適宜選定されるのであり
、また、必要に応じて加熱・加圧成形後に硬化処理をす
ることも可能である。A wound prepreg sheet (first invention) and metal foil (second invention), or a prepreg sheet and a winding of aramid fiber reinforcing cloth overlaid on at least a portion of the inner surface of the winding. (Third invention), as well as a prepreg sheet and a wound product of aramid fiber reinforced cloth and metal foil (fourth invention), which are partially overlapped on the inside surface of this winding (fourth invention), and compressed by heating and pressurizing, respectively. The pressure during molding is such that the #a fiber volume content of the molded product is 40 to 75.
%, preferably about 50 to 60%, and compression molding is preferably performed at a pressure of 50 kg/cI112 or more in order to obtain a dense structure with a porosity of 2% or less. If the pressure is lower than this, the IM and fiber volume content of the molded article will decrease and the porosity will increase, making it impossible to obtain sufficient rigidity, which is not preferable. The heating time, heating temperature, etc. are appropriately selected depending on the type and properties of the thermosetting resin, and if necessary, it is also possible to perform a curing treatment after heating and pressure molding.
ところで、本願の$2発明及び本願のtJS4発明にお
いて用いられる金114mは、特に限定されるものでは
ないが、熱伝導性が優れ、且つ、安価なアルミニウム箔
、胴箔、鉄箔等が使用され、これらの中では比重の小さ
いアルミニウム箔が最も好ましい。By the way, the gold 114m used in the $2 invention of the present application and the tJS4 invention of the present application is not particularly limited, but aluminum foil, body foil, iron foil, etc., which have excellent thermal conductivity and are inexpensive, can be used. Among these, aluminum foil having a small specific gravity is most preferable.
金属箔のFIさは、1、テに限定されるものではないが
、30〜150μm程度が好ましい。30μIllを下
回るときには放熱性を高める効果が乏しくなるので好ま
しくなく、−力、150μmを上回るときにはる回作業
が困難になるうえ高重量化するので好ましくない。The FI of the metal foil is not limited to 1.Te, but is preferably about 30 to 150 μm. If it is less than 30 .mu.Ill, the effect of increasing heat dissipation will be poor, which is undesirable, and if it exceeds 150 .mu.m, it will be difficult to rotate and the weight will be increased, which is undesirable.
金属箔は、巻回されたプリプレグシートの外周、即ち、
補強材の少なくとも最外周層の全周にわたって巻回され
るように構成してもよい。この場合、プリプレグシート
からの剥離を一層確実(こ防止するために、プリプレグ
シートの巻終わり端部の内側に金属箔の巻始め端部が巻
込むように構成することが好ましい。The metal foil is applied to the outer periphery of the wound prepreg sheet, i.e.
The reinforcing material may be configured to be wound around the entire circumference of at least the outermost layer. In this case, in order to more reliably prevent peeling from the prepreg sheet, it is preferable that the starting end of the metal foil is wound inside the ending end of the prepreg sheet.
また、金属箔を、巻回されたプリプレグシートの中に巻
き込んで、補強材の少なくとも最外周層の全周をプリプ
レグシート層で構成してもよい。Alternatively, the entire circumference of at least the outermost layer of the reinforcing material may be constituted by the prepreg sheet layer by winding the metal foil into a wound prepreg sheet.
この場合、放熱効果を高めるという観、つ:がら、金属
箔を最外周層のプリプレグシート層とその直ぐ内側のプ
リプレグシート層との間に巻き込むことが好ましい。ま
た、この際、この金属箔を境とする剥離の発生を防止す
るために、金yC箔に多数の孔を形成し、加熱、加圧し
て圧縮成形する時にこの金m箔の両側のプリプレグシー
トが互いに;8着ないし融着するように構成することが
好ましい。In this case, in order to enhance the heat dissipation effect, it is preferable to wrap the metal foil between the outermost prepreg sheet layer and the prepreg sheet layer immediately inside it. At this time, in order to prevent the occurrence of peeling along this metal foil, a large number of holes are formed in the gold yC foil, and prepreg sheets on both sides of this gold m foil are formed when compression molding is performed by heating and pressurizing. It is preferable that the two are bonded or fused to each other.
この孔径は0.2〜3.Om+oが好ましい。孔径が、
この・見聞を下回ると金属箔を挟むプリプレグシート同
士の結合力が小さくなり、剥離防止効果が乏しくなるば
あいがあるので好ましくなく、一方、この範囲を上回る
と放熱効果が乏しくなるので好ましくない。This pore diameter is 0.2 to 3. Om+o is preferred. The pore diameter is
If it falls below this range, the bonding force between the prepreg sheets sandwiching the metal foil becomes small, which may result in a poor peeling prevention effect, which is undesirable.On the other hand, if it exceeds this range, the heat dissipation effect becomes poor, which is not preferable.
また、孔の間隔は孔径とも関連するが、2〜30mm程
度が良好である。孔の間隔が2ωm未満になると放熱効
果が乏しくなり、一方、30n+a+を超えると金11
.Mを挟んでのプリプレグシート同士の結合力が小さく
なり、2+1離防止効果が乏しくなるので好ましくない
。Further, although the interval between the holes is related to the hole diameter, it is preferably about 2 to 30 mm. When the hole spacing is less than 2ωm, the heat dissipation effect becomes poor, while when it exceeds 30n+a+, gold 11
.. This is not preferable because the bonding force between the prepreg sheets sandwiching M becomes small and the 2+1 separation prevention effect becomes poor.
更;こ、本願の第3発明及び第4発明に用いられるアラ
ミドt!&維補強布は、織布であっても不織布であって
もよく、コストダウンを図るために他の繊維を混合した
ものであってもよい。しかしながら、比較的安価でコス
トダウンを図れると同時:こ尉摩耗性が良好で、しから
、軽量化をはかる一ヒで有利なアラミド繊維補強布を使
用することが最ら有利である。Furthermore, the aramid t! used in the third and fourth inventions of the present application! & The fiber-reinforced fabric may be a woven fabric or a non-woven fabric, or may be a mixture of other fibers in order to reduce costs. However, it is most advantageous to use aramid fiber reinforced fabric, which is relatively inexpensive, has good abrasion resistance, and is advantageous in terms of weight reduction, as well as cost reduction.
尚、アラミド繊維補強布には、加熱、加圧して圧縮成形
する時にプリプレグシートに含浸させた熱硬化性樹脂が
浸透してくるので、必ずしも上記のような熱硬化性a+
脂を含浸させる必要はないが、上記熱硬化性樹脂を含浸
させるのは差し支えないのである。Note that the thermosetting resin impregnated into the prepreg sheet permeates into the aramid fiber reinforced fabric when it is compressed by heating and pressurizing, so it is not necessarily the case that the thermosetting resin is
Although it is not necessary to impregnate the resin with fat, there is no problem in impregnating it with the thermosetting resin.
(e)作用
上記のように構成された本願のPt512明1こよると
、渦巻状に巻回されたプリプレグシートを成形型内で加
熱、加圧して圧1!2i成形−rるので、成形品のia
R体積含有量を高めることができ、空アの少ないm密な
補強材が得られる。このようにして繊維体積含有量が高
められ、また、緻密な組織に成されることにより、剛性
、耐久性及び伝動効率が高められる作用を有するのであ
る。(e) Function According to the Pt512 structure of the present invention constructed as described above, the spirally wound prepreg sheet is heated and pressurized in the mold to form the pressure 1!2i. product ia
The R volume content can be increased, and a dense reinforcing material with few voids can be obtained. In this way, the fiber volume content is increased and the fiber is formed into a dense structure, which has the effect of increasing rigidity, durability, and transmission efficiency.
また、本願の第2発明によれば、本願の第1発明と同様
に、剛性、耐久性及び伝動効率が高められる。そのうえ
、金属箔によって、プーリーとベルトあるいは補強材と
の摩擦による発熱を良好に放散させることができ、この
ような摩擦熱による補強材の硬度低下や、この硬度低下
に伴う摩擦係数の1氏下による伝動効率の着しい低下や
、高負荷・高回転時の著しい発熱によるベルトの破断等
を防止する作用を有するのである。Further, according to the second invention of the present application, the rigidity, durability, and transmission efficiency are improved similarly to the first invention of the present application. Furthermore, the metal foil can effectively dissipate heat generated by friction between the pulley and the belt or the reinforcing material, reducing the hardness of the reinforcing material due to such frictional heat and reducing the coefficient of friction by 1 degree due to this reduction in hardness. This has the effect of preventing a severe drop in transmission efficiency due to this, as well as preventing belt breakage due to significant heat generation during high loads and high rotations.
また、このような放熱性を得るためには軽量な金属箔を
付加するだけで済むので、補強材の重量増加が最小限に
抑えられる。Furthermore, in order to obtain such heat dissipation properties, it is sufficient to simply add a lightweight metal foil, so that the increase in weight of the reinforcing material can be minimized.
更に、本願の第3発明によれば、上記の第1発明と同様
に、剛性、耐久性及び伝動効率が高められる。そのうえ
、プリプレグシートの間に耐摩耗・17mの優れたアラ
ミド繊維補強布またはアラミド繊維補強布が巻き込まれ
るので、補強材全体としての酎;?純性が著しく高めら
れる作用を有する・のである。Furthermore, according to the third invention of the present application, the rigidity, durability, and transmission efficiency are improved similarly to the first invention. In addition, abrasion resistant and 17m long aramid fiber reinforced cloth or aramid fiber reinforced cloth is wrapped between the prepreg sheets, so the overall strength of the reinforcing material is excellent. It has the effect of significantly increasing purity.
加えて、本願の第4発明によれば、本願の第1発明と同
様に、剛性、耐久性及び伝動効率が高められるうえ、本
願の第2発明と同様に、放熱性を高めて摩擦熱による補
強材の硬度低下や、この硬度低下に伴う摩擦係数の低下
による伝動効率の著しい低下、更に、高負荷・高回転時
の7しい発熱によるベルトの破断等を防止することがで
き、しかも、本願の第3発明と同様に、補強材全体とし
ての耐摩耗性を著しく高める作用を有するのである。In addition, according to the fourth invention of the present application, similar to the first invention of the present application, the rigidity, durability, and transmission efficiency are increased, and similarly to the second invention of the present application, heat dissipation is increased and the heat dissipation due to frictional heat is improved. It is possible to prevent a decrease in the hardness of the reinforcing material, a significant decrease in transmission efficiency due to a decrease in the friction coefficient accompanying this decrease in hardness, and furthermore, it is possible to prevent belt breakage due to excessive heat generation at high loads and high rotations. Similarly to the third invention, this has the effect of significantly increasing the wear resistance of the reinforcing material as a whole.
(r)実施例
以下、本発明を実施例に基づき詳細に説明するが、本発
明はこれに限定されるものではない。(r) Examples Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited thereto.
[f51発明の一実施例(実施例1)1以下、本願の第
1発明の一実施例(実施例1)を第1図ないし第7図に
基づいて詳細に説明する。[f51 Embodiment (Example 1) of the Invention 1 Hereinafter, an embodiment (Example 1) of the first invention of the present application will be described in detail based on FIGS. 1 to 7.
第1図は本願の第1発明の一実施例に係る高負荷伝動ベ
ルト用補強材の断面図であり、第2図はそれを用いた高
負荷伝動ベルトの斜視図であり、第3図(1)はその補
強布の組織を示す平面図であり、第31:J(2)はそ
の補強布のllHmを示す断面図であり、’j’+ 4
スはそのプリプレグシートを巻回する要望を示す斜視
図であり、第5図は巻回されたプリプレグシートを加熱
、加圧して圧縮成形する要望を示す縦断面図である。FIG. 1 is a cross-sectional view of a reinforcing material for a high-load power transmission belt according to an embodiment of the first invention of the present application, FIG. 2 is a perspective view of a high-load power transmission belt using the reinforcing material, and FIG. 1) is a plan view showing the structure of the reinforcing cloth, and No. 31:J(2) is a sectional view showing llHm of the reinforcing cloth, and 'j'+4
FIG. 5 is a perspective view showing the desire to wind the prepreg sheet, and FIG. 5 is a longitudinal sectional view showing the desire to compression mold the wound prepreg sheet by heating and pressurizing it.
この高負荷伝動ベルト用補強材Cは、補強布1に熱硬化
性樹脂を含有するマトリックス樹脂2を含浸させた1枚
のプリプレグシート3を巻回し、これを上下一対の金型
4a、4b内で所定の圧力で加圧すると共に所定の温度
で所定の時間にわたって加熱、加圧して圧縮成形される
。また、この加熱、加圧して圧縮成形した後、所定の温
度で所定の時間にわたり加熱することにより後硬化処理
が行なわれる。This reinforcing material C for high-load power transmission belts is made by winding a prepreg sheet 3 in which a reinforcing cloth 1 is impregnated with a matrix resin 2 containing a thermosetting resin, and inserting this into a pair of upper and lower molds 4a and 4b. Compression molding is carried out by applying pressure at a predetermined pressure and heating and pressing at a predetermined temperature for a predetermined time. After compression molding by heating and pressurizing, a post-curing treatment is performed by heating at a predetermined temperature for a predetermined time.
上記補強布1は、特に限定されるものではなく、例えば
、ガラス繊維、炭素N&維、シリコンカーバイド(哉維
等の黒磯am、ポリエステル繊維、アラミド[!¥fの
合成繊維、錦等の天然繊維等を使用することができるが
、この場合、ガラス繊維が使用されている。The reinforcing cloth 1 is not particularly limited, and may be made of, for example, glass fiber, carbon fiber, carbon fiber, silicon carbide (Kuroisoam such as carbon fiber), polyester fiber, synthetic fiber of aramid [!¥f], natural fiber such as brocade, etc. etc., but in this case glass fiber is used.
また、補強布1は、機械的特性のばらつきが最も少ない
織布(7yラスクロス)が使用される6織布のはり方は
乎ar+、トルコ;;子fi Q等公知の織り方を自由
に選択できるが、ここでは、ノに本釣な磯子戒的特性を
確認するために、第3[,71(1)及び第3図(2)
に示すような目付l 20 OK/ In”の平織りが
採用される。In addition, for the reinforcing fabric 1, a woven fabric (7Y Lascross) with the least variation in mechanical properties is used.6 The weaving method of the woven fabric is freely selected from known weaving methods such as Ar+, Turkey, Fi Q, etc. However, here, in order to confirm the characteristics of Isogo Kai, which is a real book fishing, we will use Fig. 3 [, 71 (1) and Fig.
A plain weave with a basis weight of 120 OK/In is used as shown in the figure.
このような補強布1の#a維の方向は、第4(71に示
すように、経糸1aまたは緯糸11Jをプリプレグシー
ト3の巻回方向(矢印Aで示す)と同方向1こしてもよ
く、また、flO図に示すように、経糸1dまたは緯糸
1bが巻回方向と所定の角度で交叉する、いわゆる、バ
イアス状であってもよい。The direction of #a fibers of such reinforcing fabric 1 may be determined by winding the warp 1a or weft 11J in the same direction as the winding direction (indicated by arrow A) of the prepreg sheet 3 (as shown in 71). Alternatively, as shown in the flO diagram, the warp 1d or the weft 1b may intersect with the winding direction at a predetermined angle, which is a so-called bias shape.
また、後述するように、補強布1においで、その巻回方
向と直角な艮手力向のIn推量を当1該補強布1の巻回
方向と同方向である幅方向の15.64t Hよりら多
くすることが考えられるが、ここでは本発明の最も基本
的な作用を確認するために、第4図に示すように、経糸
1aまたは緯糸1bをプリプレグシート3の巻回方向(
矢印Aで示す)と同方向にし、艮手力向のa推量と幅方
向のオ裁維呈との重量化を1:1としたものが使用され
る。In addition, as will be described later, in the reinforcing cloth 1, the estimated In in the direction of force perpendicular to the winding direction of the reinforcing cloth 1 is 15.64t H in the width direction, which is the same direction as the winding direction of the reinforcing cloth 1. However, in order to confirm the most basic effect of the present invention, the warp yarns 1a or the weft yarns 1b are arranged in the winding direction of the prepreg sheet 3 (
The direction is the same as that shown by arrow A), and the ratio of weighting of the force direction (a) to the force direction (a) in the width direction is 1:1.
上記マトリックス樹脂2に含有される熱硬化性樹脂とし
ては、特に限定されるものではないが、例えば、熱硬化
性ポリエステル樹脂、エポキシ樹月旨、フェ/−ルU(
脂、ポリイミド樹脂等が使mされる。ここでは、接着力
、硬化時の収縮量の少なさ、寸法安定性、8!機械的度
等に優れている酸硬化型エポキシ用財(エポキシ当量4
50 )が使用されている。The thermosetting resin contained in the matrix resin 2 is not particularly limited;
resin, polyimide resin, etc. are used. Here, adhesive strength, low amount of shrinkage during curing, dimensional stability, 8! Acid-curing epoxy product with excellent mechanical properties (epoxy equivalent: 4
50) is used.
ところで、後述するように、マトリックス替(脂2に金
属粉末や黒磯充填材を分散、混合することが可fi2で
あるが、ここでは、後にこれらを混合したものとの差異
を明らかにするために、これらを混合しない酸硬化型エ
ポキシわ(脂でマトリックスV(脂2が溝成されている
。By the way, as will be described later, it is possible to disperse and mix metal powder and Kuroiso filler in the matrix replacement (fat 2), but here, in order to clarify the difference from a mixture of these , Acid-curing epoxy resin which does not mix these (matrix V (fat 2) is formed with fat.
マトリックス樹脂2を補強布1に含浸させる方法として
は、コーティング、スプレー等による塗布、ディッピン
グ等の公知の方法が挙げられる。Methods for impregnating the reinforcing cloth 1 with the matrix resin 2 include known methods such as coating, spraying, dipping, and the like.
これらのいずれも採用することが可能であるが、ここで
は、比較的簡単に実施できる塗布の方法が探ルされる。Any of these can be employed, but here we are looking for a coating method that is relatively easy to implement.
即ち、溶耐に溶解した上記酸硬化型エボキン樹脂からな
るマトリックスa5 !rf!2を口付H200K/
vn 2のガラスを哉維からなる平ユリの補・二重1に
塗布して含浸させ、乾燥させること1こよりプリプレグ
シート3を得た。That is, the matrix a5 is made of the acid-curable Evokin resin dissolved in the melt-resistant material. rf! 2 with mouth H200K/
A prepreg sheet 3 was obtained by coating Vn 2 glass on a flat lily double layer 1 made of fibers, impregnating it, and drying it.
このようにして得た1枚のプリプレグシート3は、第4
図に示すように、補強布1の経糸1aまたは緯糸1bが
巻回方向と同方向を向くようにして片側の巻始め端部を
内側に渦巻状に巻回される。One prepreg sheet 3 obtained in this way has a fourth
As shown in the figure, the reinforcing fabric 1 is spirally wound inward at one winding start end with the warp 1a or the weft 1b facing in the same direction as the winding direction.
このプリプレグシート3の巻回においで、倒えば第7図
に示すように、芯材5を使丁し、これを中心として巻回
することが可能であるが、ここでは、本発明の最も基本
的な作用を確認するために、芯材5を使用せずにプリプ
レグシート3を巻回する。When winding the prepreg sheet 3, it is possible to use the core material 5 as shown in FIG. In order to confirm this effect, the prepreg sheet 3 was wound without using the core material 5.
尚、上記芯材5はアルミニウム等の比較的比重の小さい
金属或いは繊維強化樹脂で形成することか補強材Cの軽
量化を図る上で有利である。It is advantageous for the core material 5 to be made of a metal with a relatively low specific gravity such as aluminum or a fiber-reinforced resin, in order to reduce the weight of the reinforcing material C.
補強材Ci:変求されるす法が大きい1′じ合には、複
数枚のプリプレグシート3を使用すればよい。Reinforcing material Ci: For 1' cases where the change in strength is large, a plurality of prepreg sheets 3 may be used.
この場合、1枚のプリプレグシート3の少なくともる終
わl)端部の内側に池のプリプレグシート3の巻き始め
端部を巻込めば、各プリプレグシート3が互いに分離し
難くなるので有利である。In this case, it is advantageous to wrap the winding start end of the prepreg sheet 3 inside at least the last end of one prepreg sheet 3, since this makes it difficult for the prepreg sheets 3 to separate from each other.
巻回されたプリプレグシート3は、第5図に示すように
、上下一対の金型4a、4b内で加熱、加圧して圧縮成
形される。As shown in FIG. 5, the wound prepreg sheet 3 is compression-molded by heating and pressurizing it in a pair of upper and lower molds 4a and 4b.
加熱、加圧成形時の圧力は、成形品の繊維体積含有率が
40〜75%、好ましくは50〜60%程度で、空隙率
が2%以下の緻密なm識を得るために、50 kg/
cm2以上とすることが好ましい。The pressure during heating and pressure molding is 50 kg in order to obtain a dense molded product with a fiber volume content of 40 to 75%, preferably about 50 to 60%, and a porosity of 2% or less. /
It is preferable to set it as cm2 or more.
圧力がこれを下回る場合には、成形品の繊維体積含有率
が小さくなると共に2隙率が大きくなり、両性が十分に
高められないので好ましくない。この場合は、60kg
/c1112の圧力が加えられる。If the pressure is lower than this, the fiber volume content of the molded article will decrease and the 2-porosity will increase, which is not preferable because the amphoteric property will not be sufficiently enhanced. In this case, 60kg
A pressure of /c1112 is applied.
加熱、加圧時の加熱温度及びその時間は、マトリックス
樹脂2に含有された熱硬化性樹脂、この場合、酸硬化型
エポキシ用脂を硬化させるに足る温度及び時間であれば
よく、この場合は、温度180℃で10分間にわたり成
形される。The heating temperature and time during heating and pressurization may be any temperature and time sufficient to cure the thermosetting resin contained in the matrix resin 2, in this case, the acid-curing epoxy resin; , for 10 minutes at a temperature of 180°C.
この成形後にυI#を完全に硬化させる。この硬化では
、加熱・加圧成形により既に成形品の密度が緻密に購成
されているが、更に、未硬化肖胃を完全に硬化させるに
足る温度及び時間で加熱が行なわれる。After this molding, υI# is completely cured. In this curing process, the density of the molded product has already been achieved through heating and pressure molding, but heating is further performed at a temperature and time sufficient to completely harden the uncured porosity.
即ち、この場合には、上記成形品を温度200℃の条件
下で20時間にわたり加熱して確実な硬化処理が竹なわ
れる。That is, in this case, the molded article is heated at a temperature of 200° C. for 20 hours to ensure reliable curing.
以上のようにして得た高負荷伝動ベルト用補強材Cは、
例えば第2図に示すように、平ベル)Bの両面にこれを
挟んで互いに対向するように配置され、通しボルト・ナ
ツト、リベット笠の固定具Fによって互いに結合される
。The reinforcing material C for high-load power transmission belts obtained as above is
For example, as shown in FIG. 2, they are placed on both sides of a flat bell (B) so as to face each other with the flat bell in between, and are connected to each other by fixing devices F such as through bolts, nuts, and rivet caps.
このようにして得た高負荷伝動ベルト用補強村Cの曲げ
強度、曲げ弾性率、圧縮強さは:jS lii二示す通
りである。The bending strength, bending elastic modulus, and compressive strength of the reinforced village C for a high-load power transmission belt obtained in this manner are as shown in Table 1.
(比較例)
目付量200g/l112のプラス#哉維からなる平、
識ワの補強布1に溶剤に溶解した酸硬化型二がキシ樹脂
からなるマトリックスリ(脂2を塗布し、乾燥させた複
数枚のプリプレグシート3を積層して図示しない平板の
間に挾み、実施例1と同様の条件で成形して比較例を得
た。(Comparative example) A flat plate made of plus #yasha fiber with a basis weight of 200g/l112,
A plurality of prepreg sheets 3, which are coated with acid-curing type 2 resin dissolved in a solvent and dried in a reinforcing cloth 1 of Shikiwa, are laminated and sandwiched between flat plates (not shown). A comparative example was obtained by molding under the same conditions as in Example 1.
この比較例の曲げ強度、曲げ弾性率、圧綜強さは第1表
に示す通りである。The bending strength, bending elastic modulus, and crushing strength of this comparative example are as shown in Table 1.
(以下余白)
第1表
二の第1表から明らかなように、上記の一実施例と比較
例とを比較すると、上記の一実施例の力が曲げ弾性率お
よび圧縮強度が強いことから、剛性が高く、耐側圧性に
優れていることがわかる。(Left below) As is clear from Table 1 in Table 1 and Table 2, when comparing the above example and the comparative example, the force of the above example has a strong bending elastic modulus and compressive strength. It can be seen that it has high rigidity and excellent lateral pressure resistance.
[第1発明の池の実施例(実施例2)]本願の第1発明
の他の実施例(実施例2)では、上記の一実施例におい
で、補強布1の艮手力向のvJ、推量が幅方向の繊維量
より多くした以外は実施例1と同様にして高負荷伝動ベ
ルト用補強材Cを得た。[Embodiment of the first invention (Example 2)] In another embodiment (Example 2) of the first invention of the present application, in the above-mentioned example, vJ of the force direction of the reinforcing cloth 1 is A reinforcing material C for a high-load transmission belt was obtained in the same manner as in Example 1, except that the amount of fiber was greater than the amount of fibers in the width direction.
この場合、補強布1においで、その艮手力向(経糸方向
)のN&41を量と幅方向(緯糸方向)の繊維量の重量
比が3:1〜7:1とするのが好ましく、特にこの重量
比を3=1〜5:1とすることが更に好ましい。In this case, in the reinforcing fabric 1, it is preferable that the weight ratio of the amount of N&41 in the force direction (warp direction) to the amount of fiber in the width direction (weft direction) is 3:1 to 7:1, especially It is more preferable that this weight ratio is 3=1 to 5:1.
このように補強布1においで、その1″r、方向の繊維
量を幅方向の繊維量よりも多くするには、例えば、繊維
比率を変更した平進つの織布を使用することらできるが
、ここでは、?tS8図(1)及グ第8図(2)に示す
ような、経糸1aの太さが緯糸1bの太さの2〜6倍で
あるプラス繊維からなるトルコ;子織りの織布であって
、その艮手力向(経糸方向)の繊重量と幅方向(緯糸方
向)の15ME量の重量比が4:1である補強布1を用
いた。In this way, in order to make the amount of fibers in the 1"r direction larger than the amount of fibers in the width direction in the reinforcing fabric 1, it is possible to use, for example, a straight woven fabric with a changed fiber ratio. , here, as shown in Figure 8 (1) and Figure 8 (2), the thickness of the warp 1a is 2 to 6 times the thickness of the weft 1b. A reinforcing fabric 1 was used, which is a woven fabric in which the weight ratio of the fiber weight in the weft direction (warp direction) to the 15ME amount in the width direction (weft direction) is 4:1.
この実施例におけるその池の購成は」二記の一実施例と
同様であるので、共通する説明は省略する。The purchase of the pond in this embodiment is the same as in the embodiment described in Section 2, so common explanations will be omitted.
このようにして得た高負荷伝動ベルト用補強材Cと上記
の一実施例(実施例1)との曲げ強度、曲げ弾性率、圧
縮強さを比較して第2表に示す。Table 2 shows a comparison of the bending strength, bending elastic modulus, and compressive strength of the thus obtained reinforcing material C for a high-load power transmission belt and the above-mentioned example (Example 1).
(以下余白)
第2表
第2表によれば、補強布においで、その艮手力向の繊維
量と幅方向の繊維量との比が1:1の乎謀りの補強布を
使用する上記の−・実施例(実施例1)の場合に比べる
と、トルコ繻子織りの補強布を使用するこの実施例の場
合は曲げ強度及1曲げ弾性率が大きいことからベルト用
補強材Cの側圧に対する剛性が高く、1tlIllI圧
性が優れていることがわかる。(The following is a margin) Table 2 According to Table 2, in the reinforcing cloth, the ratio of the amount of fiber in the direction of force to the amount of fiber in the width direction is 1:1 is used. Compared to the example (Example 1), this example, which uses Turkish satin weave reinforcing cloth, has a higher bending strength and 1 bending elastic modulus, so it has a higher resistance to the lateral pressure of the belt reinforcing material C. It can be seen that the rigidity is high and the pressure resistance is excellent.
[第1発明の更に池の実施例(実施例3〜5)1上記の
第1発明の各実施例に係る高負荷伝動ベルト用補強材C
を使用する動力伝送システムでは、伝達される動力のほ
とんどがベルト用補強材Cとプーリーとの摩擦ないし噛
み合いによって伝達されるので、ベルト用補強材Cが受
ける側圧は非常に高いのが通詞である。このような高い
側圧に灯して高負荷伝動ベルトないしベルト用補強材C
の耐久性を一層高めることは好ましい、:とである。[Embodiments of the first invention (Examples 3 to 5) 1 Reinforcing material C for high-load power transmission belts according to each embodiment of the above-mentioned first invention
In a power transmission system that uses a . In light of such high lateral pressure, high-load transmission belts or belt reinforcement C
It is preferable to further increase the durability of: and.
又、上記各実施例においで、例えば、上記の本草の第1
発明の他の実施例(実施例2)においで、マトリックス
樹脂2の熱硬化性1刃脂に無磯充填材を分散混合させて
、ベルトないしベル)Jilt補強材Cの耐摩耗性を高
めることが可能である。Further, in each of the above Examples, for example, the first herb of the above-mentioned
In another embodiment of the invention (Example 2), the abrasion resistance of the Jilt reinforcing material C (belt or bell) is improved by dispersing and mixing a non-porous filler into the thermosetting resin of the matrix resin 2. is possible.
無機充填材としては、プーリー等に損傷をりえないよう
なものが好ましく、例えば、チタン酸カリウムウィスカ
ー、グラ7フイトカーボン粉、高純度酸化マグネシウム
等をその例として挙げることができる。これらの中でも
、高純度酸化マグネシウムは最も耐摩耗性を高めること
ができるから好ましい。The inorganic filler is preferably one that does not cause damage to the pulley or the like, and examples thereof include potassium titanate whiskers, graphite carbon powder, and high-purity magnesium oxide. Among these, high-purity magnesium oxide is preferred because it can improve wear resistance the most.
無機充填材の)昆合量は、マトリックス用、噌2中の熱
硬化性tatmtに灯して10〜100体積%とするこ
とが好ましい。10体積%を下回る場合には効果が乏し
いので好ましくなく、100体積%を上回る場合は効果
が限界(直に達するうえ、機械的強度が低下するので好
ましくない。The amount of inorganic filler) is preferably 10 to 100% by volume based on the thermosetting tatmt in the matrix and in the filler. If it is less than 10% by volume, the effect is poor, which is not preferable, and if it exceeds 100% by volume, the effect will reach its limit (soon) and the mechanical strength will decrease, which is not preferable.
1本的には、マトリックス用脂2に酸硬化型エポキシu
(脂に対して30体積%のチタン酸カリウムウィスカー
(実施例3)、30体積%のグラファイトカーボン(実
施例4)、或いは50体積%の高純度酸化マグネシウム
(実施例5)を混入し、これらのマFす7クスQJIJ
ff2をそれぞれ異なる補強布1に含浸させて各プリプ
レグシート3を得る。Basically, acid-curing epoxy u is used as the matrix fat 2.
(30% by volume of potassium titanate whiskers (Example 3), 30% by volume of graphite carbon (Example 4), or 50% by volume of high-purity magnesium oxide (Example 5) are mixed with the fat. NomaFs7cusQJIJ
Each prepreg sheet 3 is obtained by impregnating different reinforcing cloths 1 with ff2.
これらのプリプレグシート3を使用して上記の実施例2
と同様にしてマトリックスC1脂2の成分の異なる3種
類の高負荷伝動ベルト用補強材Cを得た。Example 2 above using these prepreg sheets 3
Three types of reinforcing materials C for high-load power transmission belts having different components of matrix C1 and fat 2 were obtained in the same manner as above.
このようにして得た各高負荷伝動ベルト用補強材Cの性
質を上記実施例2の高負荷伝動ベルト用補強材Cと比較
して第3表に示す。これらの実施例3・4の高負荷伝動
ベルト用補強材Cがすべて実施例2の高負荷伝動ベルト
用補強材Cよりも摩耗量が少なく耐摩耗性に優れている
ことが第3表から認められる。The properties of each reinforcing material C for high-load power transmission belts thus obtained are shown in Table 3 in comparison with the reinforcing material C for high-load power transmission belts of Example 2 above. It is recognized from Table 3 that all of these reinforcing materials C for high-load power transmission belts of Examples 3 and 4 have less wear and are superior in abrasion resistance than the reinforcing materials C for high-load power transmission belts of Example 2. It will be done.
また、50体積%の高純度酸化マグネシウムを使用した
ものが最も優れた耐摩耗性を有rることがi3表かられ
かる。Furthermore, it can be seen from Table i3 that the one using 50% by volume of high-purity magnesium oxide has the best wear resistance.
[第1発明のもう一つの実施例(実施例6)1上記本願
の第1発明の各実施例においで、高負荷・高回転時のプ
ーリーとベル)B及びベルト用補強材Cとの間の摩擦熱
を周囲に放散させることは、摩擦熱によるベルト或いは
ベルト用補強材Cの硬度の低下の防止や硬度低下による
伝動効率の低下の防止、更に、高負荷・高回転時の過大
な摩Pl熱によるベルトの破断の防止等を図る上で有利
である。[Another embodiment of the first invention (Example 6) 1 In each of the above embodiments of the first invention of the present application, between the pulley and the bell) B and the belt reinforcing material C during high load and high rotation. Dissipating the frictional heat to the surroundings prevents a decrease in the hardness of the belt or the belt reinforcing material C due to frictional heat, prevents a decrease in transmission efficiency due to a decrease in hardness, and also prevents excessive friction during high loads and high rotations. This is advantageous in preventing belt breakage due to Pl heat.
そこで、本厘の第1発明の各実施例、例えば実施例2に
おいで、マトリックスtj(m 2に金属粉末を分数、
混合し、補強材の熱伝達率及び放熱性を高めるようにす
ることが好ましい。Therefore, in each embodiment of Honrin's first invention, for example, in Example 2, the matrix tj (m 2 is filled with metal powder as a fraction,
Preferably, they are mixed to increase the heat transfer coefficient and heat dissipation properties of the reinforcing material.
金属粉末としては、特に限定されるものではないが、熱
伝導性が優れ、且つ、安価なアルミニウム、銅、鉄等を
使用できる。ここでは、軽量化を図る上で有利になるよ
うに、これらの中でも比重の小さいアルミニウム粉末を
使用した。The metal powder is not particularly limited, but aluminum, copper, iron, etc., which have excellent thermal conductivity and are inexpensive, can be used. Here, aluminum powder, which has the lowest specific gravity among these powders, was used in order to be advantageous in terms of weight reduction.
金属粉末の粒子径は熱硬化性v1謂への分散性を考慮し
て、5〜500μ噛とすることが好ましく、この範囲で
粒子径の大きいものと小さいも゛のとの双方が含まれる
ことが一層好ましい。ここでは、便宜上、粒子径が10
〜50μmの範囲のアルミニウム粉末を使用した。The particle size of the metal powder is preferably 5 to 500 μm in consideration of dispersibility in thermosetting v1, and this range includes both large and small particle sizes. is more preferable. Here, for convenience, the particle size is 10
Aluminum powder in the range ˜50 μm was used.
金属粉末の熱硬化性樹脂への混合量は放熱効果および閃
械的強度の両面上り熱硬化性樹脂に対して15〜100
体積%が良好である。The amount of metal powder mixed into the thermosetting resin is 15 to 100% for the thermosetting resin, which improves both heat dissipation effect and flash mechanical strength.
Volume % is good.
ここでは、放熱効果と1械的強度とが調和的1こ最良と
なるように、マトリックス樹脂2に含有された酸硬化型
エポキシ…脂に対して・10体積%のアルミニウム粉末
からなる金属粉末が分散、混合されて成る。Here, in order to harmonically achieve the best heat dissipation effect and mechanical strength, a metal powder consisting of 10% by volume of aluminum powder is added to the acid-curing epoxy resin contained in the matrix resin 2. Consists of being dispersed and mixed.
このように金属粉末を混合したマトリックス(3(WI
2を実施例2と同様の補強布1に含?2′:せでプリプ
レグシート3を得る。In this way, a matrix (3 (WI
2 in the same reinforcing fabric 1 as in Example 2? 2': Prepreg sheet 3 is obtained.
このようにして得た1枚のプリプレグシート3を使用し
て上2天施例2と同様に加熱、加圧して圧縮成形した後
、硬化処理して高負荷f云勤ベルト用補強材Cを得た。Using one prepreg sheet 3 obtained in this way, it was heated, pressurized, and compression molded in the same manner as in Example 2 above, and then hardened to form a reinforcing material C for high-load service belts. Obtained.
このようにして得た高負荷伝動ベルト用補強材Cの特性
を、:jS4表に、実施例2の特性と対比して示す。The properties of the thus obtained reinforcing material C for a high-load power transmission belt are shown in Table 4 in comparison with the properties of Example 2.
この第4表がら明らかなように、金属勢末をマトリック
ス!MWt2中に分1安させたらの;立て!tたF島伝
導率を有することがわかる。このようにして、マトリッ
クス例店2(二金属粉末を混入して、熱に44?を高め
ることにより、プーリーとベルト或いはベルト用補強材
Cとのy′l擦)二よる発熱を良好に放散させることが
でき、摩擦熱によるベルト用補強材Cの強度低下や、こ
の強度低下(二伴う摩擦係数の低下による伝動効率のま
しい低下、更に、高負荷・高回転時の著しい発熱による
ベルトの破断tグを防止できる。また、野蚕な金属粉末
を付加するだけであるから重量の増加を比較的小さく抑
えることができる。As is clear from Table 4, the matrix of metals is used! If you lower it by 1 minute during MWt2, it will stand! It can be seen that the F island conductivity is t. In this way, the heat generated by the matrix 2 (the friction between the pulley and the belt or the belt reinforcing material C) can be effectively dissipated by increasing the heat by mixing two metal powders. This can lead to a decrease in the strength of the belt reinforcing material C due to frictional heat, a decrease in transmission efficiency due to this decrease in strength (2) and a decrease in the transmission efficiency due to the accompanying decrease in the coefficient of friction, and furthermore, a decrease in the belt strength due to significant heat generation at high loads and high rotations. Breakage can be prevented.Furthermore, since only the raw metal powder is added, the increase in weight can be kept relatively small.
[第2発明の実施例(実施例7〜9)]第99図び第1
0図に示された本願の第2発明の一実1例(実施例7)
においては、ベルト用補強材Cの放熱性を高めるために
、巻回されたプリプレグシート3の外側に1周にJ)た
って金B= * 6が巻回され、ベルト用補強材Cの最
外周層が全周にわたって金属箔6で構成される。[Embodiments of the second invention (Examples 7 to 9)] Figure 99 and Figure 1
An example of the second invention of the present application shown in Figure 0 (Example 7)
In order to improve the heat dissipation of the belt reinforcing material C, gold B = * 6 is wound around the outside of the wrapped prepreg sheet 3, and the outermost periphery of the belt reinforcing material C is The layer is composed of metal foil 6 over the entire circumference.
この場合、金属箔6は、その巻始め端部をプリプレグシ
ート3の巻終わり端正の内側に巻き込んで、金属箔6が
プリプレグシート3から21I品し几いよう:こしても
よいが、こ二では巻回(r:業を容易にするためにプリ
プレグシート3を8終わってからその外側に金属m6を
巻始めるようにしてある。In this case, the metal foil 6 may be wrapped with its winding start end inside the winding end edge of the prepreg sheet 3 to prevent the metal foil 6 from being rolled from the prepreg sheet 3. In order to make the winding process easier, the metal m6 is started to be wound around the outside of the prepreg sheet 3 after the prepreg sheet 3 is finished 8 times.
実施例7のその他の構成は上記実施例2と同様であるの
で、共通する説明は省略する。The other configurations of the seventh embodiment are the same as those of the second embodiment, so common explanations will be omitted.
また、第11図及び第12図に示す本願の第2発明の他
の実施例(実施例8)では、ベルト用補強材Cの放熱性
を高めるために、金属箔6がプリプレグシート3の巻回
内側面に重ね今わせて8き込まれ、補強材Cの少なくと
も最外周層が全周にわたってプリプレグシート層で構成
されて成る。In addition, in another embodiment (Embodiment 8) of the second invention of the present application shown in FIGS. 11 and 12, the metal foil 6 is used as a winding of the prepreg sheet 3 in order to improve the heat dissipation property of the belt reinforcing material C. The reinforcing material C is made of a prepreg sheet layer over the entire circumference, and at least the outermost layer of the reinforcing material C is made of a prepreg sheet layer.
この場合、放熱効果を高めるためには、3属雇6を最外
周のプリプレグシート層とその直ぐ内側のプリプレグシ
ート層との間に位置させることが好ましい。In this case, in order to enhance the heat dissipation effect, it is preferable that the three members 6 be located between the outermost prepreg sheet layer and the prepreg sheet layer immediately inside thereof.
この実施例8のその他の構成は上記実施例2と同様に構
成されているので、共通する1災明は省略する。The rest of the structure of this Embodiment 8 is the same as that of the above-mentioned Embodiment 2, so a common feature will be omitted.
更に、第13図及r、F第14図に示す本、Wffの第
22明のもう一つの実施例(実施例9)では、ベルト用
補強材Cの放熱性を高めるために、金属箔6がプリプレ
グシート3の最外周層を構成する部分の巻回内側面に重
ね合わされて巻き込まれ、ベルト用補強材Cの少なくと
も最外周層が全周iこわたってプリプレグシートaで構
成されている点では、上記の実施例8と同様であるが、
この金属箔6を境i:rるプリプレグシート3の剥離を
防止するために、金属箔6には多数の孔7を形成したも
のが使用されて成る。Furthermore, in another embodiment (Example 9) of book 22 of the book Wff shown in FIGS. 13 and 14, the metal foil 6 is is overlapped and rolled up on the inner surface of the winding of the portion constituting the outermost layer of the prepreg sheet 3, and at least the outermost layer of the belt reinforcing material C is composed of the prepreg sheet a over the entire circumference i. , similar to Example 8 above, but
In order to prevent the prepreg sheet 3 bordering the metal foil 6 from peeling off, the metal foil 6 is formed with a large number of holes 7.
実施例9のその他の構成は上記実施例2と同様にt3成
されているので、共通する説明は省略する。The other configurations of the ninth embodiment are t3 similar to those of the second embodiment, so common explanations will be omitted.
上記の実施例7〜9においで、金R?Ff Gとしては
、特に限定されるものではないが、熱伝導性の良好な金
属であり、且つ、安価なアルミニウム箔、銅箔、鉄箔等
が使用できる。ここでは、軽量化を図る上で有利になる
ように、比重が最も小さいアルミニウム箔が使用されて
成る。In Examples 7 to 9 above, gold R? FfG is not particularly limited, but metals with good thermal conductivity and inexpensive aluminum foil, copper foil, iron foil, etc. can be used. Here, aluminum foil with the lowest specific gravity is used to advantageously reduce weight.
金属箔6の厚さは、特に限定されるものではないが、放
熱効果と巻回作業性及び高重量化を避ける等の趣口から
30〜150μm程度に謂堅するのが好ましい、ここで
は、金属箔6のJ17 Jzを80μmとし、これによ
って、放熱性を十分に高めると共に、巻回乍業が比較的
容易になしうるように構成して成る。Although the thickness of the metal foil 6 is not particularly limited, it is preferably set to about 30 to 150 μm from the viewpoint of heat dissipation effect, ease of winding, and avoidance of increased weight. Here, J17 Jz of the metal foil 6 is set to 80 μm, thereby sufficiently increasing heat dissipation performance and making winding work relatively easy.
また、金!J4箔6の巻回数は1周に限定される乙ので
はなく、2周以上にしてもよい。Also, gold! The number of turns of the J4 foil 6 is not limited to one turn, but may be two or more turns.
上記実施例9では、加熱、加圧して圧縮成形する時1こ
金属箔6の両側のプリプレグシート3が孔7を通って互
いに溶着ないし融着されるので、金属箔6を境とする剥
離が確実に防止されることになる。In the above embodiment 9, when compression molding is performed by heating and pressurizing, the prepreg sheets 3 on both sides of the single metal foil 6 are welded or fused to each other through the holes 7, so that peeling along the metal foil 6 is prevented. This will definitely be prevented.
上記実施例9において金a箔6に形成される孔7の孔径
は0.2〜3.01nmが好ましく、ここでは1.0I
III11とされる。孔7の径が二の範11を下回ると
金属箔6を挟むプリプレグシート3同合力が小さくなり
、剥籠防止効果が乏しくなるので好ましくなく、一方、
この範囲全上回ると放熱を高める効果が乏しくなるので
好ましくない。In the above Example 9, the hole diameter of the hole 7 formed in the gold a foil 6 is preferably 0.2 to 3.01 nm, and here 1.0 I
It is considered to be III11. If the diameter of the hole 7 is less than the second range 11, the combined force of the prepreg sheets 3 sandwiching the metal foil 6 becomes small, and the effect of preventing peeling becomes poor, which is not preferable.
Exceeding this range is not preferable because the effect of increasing heat dissipation becomes poor.
また、実施例9においで、孔7の間隔はその径とち関連
するが、2〜30mm程度が良好であり、ここでは5T
Q111とされて成る。In addition, in Example 9, the interval between the holes 7 is related to its diameter, but approximately 2 to 30 mm is good, and here, 5T
It is designated as Q111.
このようにして得た本τの第2発明の各実施例の高負荷
伝動ベル)Jll補強材Cの特性を上記実施例2及び実
施例6の特性と比較して第4表に示す。Table 4 shows the characteristics of the high-load power transmission bell) Jll reinforcing material C of each Example of the second invention of the present τ obtained in this way, in comparison with the characteristics of Example 2 and Example 6.
第4表から、第2発明の各実施例の高負荷伝動ベルト用
補強材Cは、それらの熱伝導率が第1発明の実施側2及
び実施例6の高負荷伝動ベルト用補強材Cよりも大さく
、特に最外層が金属箔6で(5成された上記実施例7で
はその放熱効果が最も大きいことが認められる。このよ
うに金属箔6をプリプレグシート3とともに巻回するこ
とによってベルト用補強材Cの放熱効果を高めることが
でき、その結果、プーリーとベル)B或いはベルト用補
強材Cとの摩擦:二よる発熱を良好に放散させることが
できるのであり、これによって、このような)?、擦熱
によるベルト用補強材Cの強度低下や、この強度低下に
ともなう摩擦係数の低下による伝動効窄の者しい低下、
更に、高負荷・高回転時のとしい発熱によるベル)Bの
破断等を防止することができる。From Table 4, it can be seen that the reinforcing materials C for high-load power transmission belts of each Example of the second invention have higher thermal conductivity than the reinforcing materials C for high-load power transmission belts of Implementation Side 2 of the first invention and Example 6. In particular, it is recognized that the heat dissipation effect is the greatest in the above-mentioned Example 7 in which the outermost layer is made of metal foil 6 (5).By winding the metal foil 6 together with the prepreg sheet 3 in this way, the belt As a result, the heat generated by friction between the pulley and the belt reinforcing material C or the belt reinforcing material C can be effectively dissipated. What)? , a decrease in the strength of the belt reinforcing material C due to frictional heat, and a significant decrease in transmission effectiveness due to a decrease in the coefficient of friction that accompanies this decrease in strength;
Furthermore, it is possible to prevent breakage of the bell (B) due to excessive heat generation at high loads and high rotations.
また、このような放熱性を得るためには重量な金y4箔
6を付加するだけで済むので、補強材Cの重量増加を最
小限に抑えることができる。In addition, in order to obtain such heat dissipation properties, it is sufficient to simply add the heavy gold Y4 foil 6, so that the increase in the weight of the reinforcing material C can be minimized.
[第3発明の実施例(実施例10)1
第15図及び第16図に示す本願の第3発明の一実施例
(実池例10)に係る高負荷伝動ベルト用補強材Cは、
当該補強材Cの耐摩耗性を高めるために、本願の第1発
明ないし第3発明のプリプレグシート3と同様に構成さ
れたプリプレグシート3と共に、第16図に示すように
アラミド41 at補強布8をプリプレグシート3の巻
回内側面の少なくとも一部分に巻回し、上記の各実施例
1一つと同様に加熱、加圧して圧縮成形して得たらので
ある。[Example 10 of the third invention 1 The reinforcing material C for a high-load power transmission belt according to an example (actual example 10) of the third invention of the present application shown in FIGS. 15 and 16 is
In order to improve the abrasion resistance of the reinforcing material C, an aramid 41 at reinforcing cloth 8 is used as shown in FIG. was wound around at least a portion of the inner surface of the prepreg sheet 3, heated and pressurized and compression molded in the same manner as in each of the above embodiments.
アラミド繊維補強布8を巻き込む位置は特に限定されず
、例えば、プリプレグシート3の少なくとも最外層の全
周の巻回内側面1こアラミド(:&維補強布8を重ねて
巻回することが可能である57ラミド繊維補強布8とし
ては、アラミド良識!t !!li強布、アラミド艮繊
維と他の繊維との混織補強布、アラミド繊維補強布等を
使用することができるが、ここでは十分なa117耗性
が得られ、比重が1.・1と小さく、しかも、安価なア
ラミド繊維7.1強布が使用される。The position at which the aramid fiber reinforcing cloth 8 is wound is not particularly limited, and for example, the aramid fiber reinforcing cloth 8 can be wound around the entire circumference of at least the outermost layer of the prepreg sheet 3. As the 57 lamid fiber reinforced cloth 8, it is possible to use aramid sensibility!t!!li strong cloth, a blended reinforced cloth of aramid fibers and other fibers, aramid fiber reinforced cloth, etc. Aramid fiber 7.1 strong fabric is used, which has sufficient a117 abrasion resistance, has a small specific gravity of 1.1, and is inexpensive.
アラミド15. ML補強布8(こは、プリプレグシー
ト3と同様のマトリックスjM脂2を含浸させてもよい
が、加熱、加圧して圧縮成形するときにプリプレグシー
ト3のマトリックス樹脂2がアラミド繊維補強布8に、
侵透していくので、予めマトリックスt7(’M 2を
含?2させる必要はない。勿論、アラミド繊維補強布8
にマトリックスυIN2を予め含浸させてもよいことは
いうまでもない。Aramid 15. ML reinforcing cloth 8 (this may be impregnated with the same matrix resin 2 as the prepreg sheet 3, but the matrix resin 2 of the prepreg sheet 3 may be impregnated with the aramid fiber reinforcing cloth 8 during compression molding by heating and pressurizing. ,
It is not necessary to include the matrix t7 ('M2?2) in advance.Of course, the aramid fiber reinforced cloth 8
It goes without saying that the matrix υIN2 may be impregnated in advance.
その池の構成は上記実施例2と同様であるので、共通す
る説明は省略する。The configuration of the pond is the same as that of the second embodiment, so common explanations will be omitted.
このようにして得た実施例10に係る高負荷伝動ベルト
用補強材Cの特性を、上記の本願の第1発明の実施側2
〜5と比較してfPI3表に示す。The characteristics of the reinforcing material C for a high-load power transmission belt according to Example 10 obtained in this way were determined by the implementation side 2 of the first invention of the present application.
-5 compared to fPI3 table.
第3友から、この実施例10に係る高負荷伝動ベルト用
補強材Cは、これの摩耗量が上記実施例2と比較して小
さいことから、耐摩耗性が「2れていることがわかる。From the third friend, it can be seen that the high-load power transmission belt reinforcing material C according to Example 10 has a wear resistance of "2" because the amount of wear is smaller than that of Example 2. .
(以下余白)
[第・を発明の実施例(実施例11)1第17図及び第
13図に示を本願の第・1′2明の一実施例に係る高負
荷伝動ベル)Jll補’;j2村Cは、上記実施例2と
同様のプリプレグシート3と、J二元実施例10と同様
のアラミド繊維補強布8と、上記各実施例7〜つと同様
の金属箔6とが巻回され、」−記の実施例1と同様に、
予備成形し、加熱加圧成形をした後、完全に硬化して得
ることができる。(The following is a blank space) [The high-load power transmission bell according to an embodiment of the invention (Example 11) 1 is shown in FIGS. 17 and 13. ; j2 Village C is a prepreg sheet 3 similar to the above Example 2, an aramid fiber reinforcing cloth 8 similar to the J Binary Example 10, and a metal foil 6 similar to the above Examples 7 to 1 wound. As in Example 1,
It can be obtained by preforming, heating and pressing, and then completely curing.
これらの谷構成要素であるプリプレグシート3についで
は上記の実施例1−6で、また金属箔6については上記
の実施例7〜9で、更に、アラミド繊維補強布8につい
ては上記の実施例10で、それぞれ説明した通りであり
、また、加熱、加圧して1縮成形した後の完全硬イヒに
ついて;土上記の実施例1で説明した通りであるので、
ここでは説明の重複を避けるためにこれらの説明を省略
動る。The prepreg sheet 3, which is the valley component, is explained in Examples 1-6 above, the metal foil 6 is explained in Examples 7-9, and the aramid fiber reinforced fabric 8 is explained in Example 10 above. As explained in Example 1 above, the complete hardness after heating, pressurizing and shrink molding is as explained in Example 1 above.
These explanations will be omitted here to avoid duplication.
尚、この実施例11では、金属箔6は、プリプレグシー
ト3の最外周層を構成する部分の巻回内側面に重ね合わ
されたアラミド繊維補強布8の更に巻回内側面に重ね合
わされて巻き込まれるよう1こ構成されているが、金属
箔6をプリプレグシート3及びアラミド繊維補強布8を
巻終わった外側に巻回することも可能である。In this Embodiment 11, the metal foil 6 is rolled up so as to be superimposed on the inner surface of the aramid fiber reinforcing cloth 8, which is superimposed on the inner surface of the outermost layer of the prepreg sheet 3. However, it is also possible to wrap the metal foil 6 on the outside after the prepreg sheet 3 and the aramid fiber reinforcing cloth 8 have been wound.
このようにして得られた実施例11に係る高負荷伝動ベ
ルト用補強材Cの特性を第5表に実7亀例2と比較して
示す。Table 5 shows the characteristics of the reinforcing material C for a high-load power transmission belt according to Example 11 obtained in this manner in comparison with that of Example 2.
(以下余白)
第5表
第5表からこの実施例11に係る高負荷(ム動ベルト用
補強材Cが実施例2に係る高負荷伝動ベルト用補強材C
よりも耐摩耗性及び熱伝導率が優れていることがわかる
。(Leaving space below) Table 5 From Table 5, it can be seen that the reinforcing material C for high-load transmission belts according to Example 11 is the reinforcing material C for high-load power transmission belts according to Example 2.
It can be seen that the abrasion resistance and thermal conductivity are superior to that of the above.
し)発明の効果
以上のように、本願の第1発明の高負荷伝力ベルト用補
強材によれば、成形時の加圧により成形品の密度が緻密
にされると共(二、渦巻状に巻回されたプリプレグシー
トの層間の結合が強ft、さ/するので、剛性が高く、
耐側圧性が高められる。その結ffi、この補強材ない
しこれが結合されるベルトの耐久性及び伝動効率が高め
られる効果をaするのである。B) Effects of the Invention As described above, according to the reinforcing material for high-load power transmission belts of the first invention of the present application, the density of the molded product is made dense by the pressure applied during molding, and the density of the molded product is made dense (2. The bond between the layers of the prepreg sheet wound around the sheet is strong, so the rigidity is high.
Lateral pressure resistance is increased. As a result, the durability and transmission efficiency of the reinforcing material or the belt to which it is coupled are enhanced.
また、本願の:52発明の高負荷伝動ベルト用補強材に
よれば、上記第1発明の効果に加えて、金属箔によって
放熱性が高められるので、高AM時の摩擦熱による補強
材の硬度の低下やこの硬度の低下に伴う伝動効率の低下
を防止でき、また、高負荷・高回転■、7の過大な摩擦
熱によるベルトの破断を防止できる効果を奏するのであ
る。Further, according to the reinforcing material for a high-load power transmission belt of the :52 invention of the present application, in addition to the effect of the first invention, heat dissipation is enhanced by the metal foil, so that the hardness of the reinforcing material is reduced by frictional heat during high AM. It is possible to prevent a decrease in transmission efficiency due to a decrease in hardness and a decrease in hardness, and also to prevent belt breakage due to excessive frictional heat in high load/high rotation (2) and (7).
更:こ、本願の第32明の高負荷イ云勤ベルト用剤・ユ
材によれば、上記第1発明の効果に加えて、アラミド繊
維補強布によってベルト用補強材の耐17耗性が高めら
れ、ベルト、1補強材ないしこれが結さされるベルトの
耐久性を一層高める効果を有する。Furthermore, according to the agent and material for high-load service belts according to the 32nd aspect of the present application, in addition to the effects of the first invention, the aramid fiber reinforcing fabric improves the abrasion resistance of the belt reinforcing material. This has the effect of further increasing the durability of the belt, the reinforcing material, or the belt to which it is tied.
また更に、本願の第4発明の高負荷伝f4hベルト用補
強材によれば、上記第1発明の効果に茄えて、アラミド
;裁・推補強布によってベルト用補強材の耐)γ純性が
高められ、ベルト用補強材ないしこれが結合されるベル
トの耐久性を一層高めることができると共:こ、金属箔
によって放熱性が高められるので、高負荷時の摩擦熱に
よるベル)J’ll補強材の硬度低下やこの硬度の低下
に伴う伝動効率の低下を防止できるうえ、高負荷・高回
転時の過大な摩擦熱によるベルトの破断を防止でさる効
果を有するのである。Furthermore, according to the reinforcing material for a high-load transmission F4H belt according to the fourth invention of the present application, in addition to the effects of the first invention, the aramid; It is possible to further increase the durability of the belt reinforcement material or the belt to which it is bonded.The heat dissipation is increased by the metal foil, so the belt reinforcement due to frictional heat during high loads is reduced. In addition to preventing a decrease in the hardness of the material and a decrease in transmission efficiency due to this decrease in hardness, it is also effective in preventing belt breakage due to excessive frictional heat during high loads and high rotations.
第1図は本願の第1発明の一実施例(実施例1)に係る
高負荷f云動ベルト用補強材の断面図、第2図はその高
負荷伝動ベルトの斜視図、第3図(1)はその補強布の
組nを示す平面図、第3図(2)はその補強布の11.
1を示す断面図、第・1図はそのプリプレグシートを巻
回する要望を示す斜視して、第5図は巻回されたプリプ
レグシートを加熱、加圧する要領を示すRwIr面図、
第6図は池のプリプレグシートを巻回する要領を示す斜
視図、第7図は上記−実施例の変形例の縦断面図、Pt
58図(1)は本願の第1発明の池の実施例の補強布の
組織を示す平面図、第8図(2)はその補強布の組nを
示す断面図、第9図は本願のfat、 2発明の一実施
例(実施例7)に係る高負荷伝動ベルト用補強材の断面
図、第10図はそのプリプレグシート及びfl、4箔を
巻回する要望を示す斜視図、第11図は本ニゲnの第2
発明の池の実施例(実施例8)に係る高負荷(伝動ベル
)用補強材の断面図、第12図はそのプリプレグシート
及び金属箔を巻回する変頭を示すa11図、第13図は
本願の第2発明のもう一つの実施例(実施例9)に係る
高負荷伝動ベルト用補強材の断面図、第14図はそのプ
リプレグシート及び金属箔を巻回する要領を示す斜視図
、第15図は本願の第32明の一実施例(実施例10)
に係る高負荷伝動ベル)7171強材の断面図、第16
図はそのプリプレグシート及びアラミド繊維補強布を巻
回rる要領を示す斜視図、第17図は本願のfjS4発
明の−’X 1m例(実施例10)に係る高負荷伝動ベ
ルト用補強材の断面図、第18図はそのプリプレグシー
ト、アラミド繊維補強布及び金属箔を巻回する要望を示
す斜視図である。
1・・・補強布、1a・・・経糸、1b・・・緯糸、2
・・・マトリックス樹脂、3・・・プリプレグシート、
・!a、4b・・・Z型、6・・・金属箔、7・・・孔
、3・・・アラミド繊維補強布。
特許出MA、 日東電気工業株式公社]・・ 棉j敷
外
1′;!L・・−爪斤・
1b・・4舟、
2−・・ マド“〕、クスノ月盾
3−−− フ1リフ・しり°ふ′ト
4a、4b ・・ 全ジグ
第5図
1貫6図FIG. 1 is a sectional view of a reinforcing material for a high-load power transmission belt according to an embodiment (Example 1) of the first invention of the present application, FIG. 2 is a perspective view of the high-load power transmission belt, and FIG. 1) is a plan view showing the reinforcing fabric group n, and FIG. 3(2) is a plan view showing the reinforcing fabric set 11.
1 is a perspective view showing the desire to wind the prepreg sheet, and FIG. 5 is a RwIr side view showing the procedure for heating and pressurizing the wound prepreg sheet.
Fig. 6 is a perspective view showing the procedure for winding the prepreg sheet of the pond, Fig. 7 is a vertical cross-sectional view of a modification of the above-mentioned embodiment, Pt
Figure 58 (1) is a plan view showing the structure of the reinforcing cloth of the embodiment of the first invention of the present application, Figure 8 (2) is a sectional view showing the set n of the reinforcing cloth, and Figure 9 is the 10 is a cross-sectional view of a reinforcing material for a high-load power transmission belt according to an embodiment (Example 7) of the invention; FIG. 10 is a perspective view showing a request for winding the prepreg sheet and fl; 4 foil; FIG. The figure is the second edition of Honnigen n.
A sectional view of the reinforcing material for high load (transmission bell) according to the embodiment (Example 8) of the pond of the invention, FIG. 14 is a cross-sectional view of a reinforcing material for a high-load power transmission belt according to another embodiment (Example 9) of the second invention of the present application, and FIG. 14 is a perspective view showing the procedure for winding the prepreg sheet and metal foil. FIG. 15 is an embodiment of the 32nd light of the present application (Embodiment 10)
Cross-sectional view of 7171 reinforced material (high-load transmission bell), No. 16
The figure is a perspective view showing the procedure for winding the prepreg sheet and the aramid fiber reinforcing cloth, and Figure 17 is a diagram showing the reinforcing material for high-load power transmission belts according to the -'X 1m example (Example 10) of the fjS4 invention of the present application. The sectional view and FIG. 18 are perspective views showing the desire to wind the prepreg sheet, aramid fiber reinforced cloth, and metal foil. 1... Reinforcement cloth, 1a... Warp, 1b... Weft, 2
...Matrix resin, 3...Prepreg sheet,
・! a, 4b... Z type, 6... Metal foil, 7... Hole, 3... Aramid fiber reinforced cloth. Patent issue MA, Nitto Electric Industry Co., Ltd.]... Soft j Shikigai 1';! L... - Tsumeko, 1b... 4 boats, 2... Mad "], Kusuno Tsukihiro 3 --- F1 riff, Shiri° foot 4a, 4b... All jigs Figure 5, 1 piece 6 figure
Claims (70)
硬化性樹脂を含有するマトリックス樹脂を含浸させた少
なくとも1枚のプリプレグシートを渦巻状に巻回し、こ
れを成形型内で加熱、加圧して所望の断面形状に圧縮成
形して成る高負荷伝動ベルト用補強材。(1) At least one prepreg sheet impregnated with a matrix resin containing a thermosetting resin is spirally wound around a reinforcing cloth made of inorganic or organic fibers, and this is heated and processed in a mold. A reinforcing material for high-load power transmission belts that is compressed and molded into the desired cross-sectional shape.
圧縮成形により形成された特許請求の範囲第1項に記載
の高負荷伝動ベルト用補強材。(2) The reinforcing material for a high-load power transmission belt according to claim 1, which is formed by compression molding by heating and pressurizing at a pressure of 50 kg/cm^2 or more.
の繊維量が当該補強布の巻回方向と同方向である幅方向
の繊維量より大である特許請求の範囲第1項または第2
項に記載の高負荷伝動ベルト用補強材。(3) In the reinforcing cloth, the amount of fibers in the longitudinal direction perpendicular to the winding direction is greater than the amount of fibers in the width direction, which is the same direction as the winding direction of the reinforcing cloth. 2
Reinforcing material for high-load power transmission belts as described in .
の繊維量の重量比が3:1〜7:1である特許請求の範
囲第3項に記載の高負荷伝動ベルト用補強材。(4) The reinforcing material for a high-load power transmission belt according to claim 3, wherein the weight ratio of the amount of fibers in the longitudinal direction to the amount of fibers in the width direction of the reinforcing cloth is 3:1 to 7:1.
の繊維量の重量比が3:1〜5:1である特許請求の範
囲第3項または第4項に記載の高負荷伝動ベルト用補強
材。(5) High load transmission according to claim 3 or 4, wherein the reinforcing cloth has a weight ratio of fiber content in the longitudinal direction to fiber content in the width direction of 3:1 to 5:1. Reinforcement material for belts.
特許請求の範囲第1項ないし第5項のいずれかに記載の
高負荷伝動ベルト用補強材。(6) The reinforcing material for a high-load power transmission belt according to any one of claims 1 to 5, wherein the reinforcing fabric is made of a woven fabric of Turkish satin weave.
された金属粉末とを含有する特許請求の範囲第1項ない
し第6項のいずれかに記載の高負荷伝動ベルト用補強材
。(7) The reinforcing material for a high-load power transmission belt according to any one of claims 1 to 6, wherein the matrix resin contains a thermosetting resin and metal powder dispersed therein.
100体積%の金属粉末を含有するものである特許請求
の範囲第7項に記載の高負荷伝動ベルト用補強材。(8) Matrix resin is 15 to 15% relative to thermosetting resin
The reinforcing material for a high-load power transmission belt according to claim 7, which contains 100% by volume of metal powder.
囲第7項又は第8項に記載の高負荷伝動ベルト用補強材
。(9) The reinforcing material for a high-load power transmission belt according to claim 7 or 8, wherein the metal powder is aluminum powder.
請求の範囲第7項ないし第9項のいずれかに記載の高負
荷伝動ベルト用補強材。(10) The reinforcing material for a high-load power transmission belt according to any one of claims 7 to 9, wherein the metal powder has a particle size of 5 to 500 μm.
散された無機充填材とを含有する特許請求の範囲第1項
ないし第10項のいずれかに記載の高負荷伝動ベルト用
補強材。(11) The reinforcing material for a high-load power transmission belt according to any one of claims 1 to 10, wherein the matrix resin contains a thermosetting resin and an inorganic filler dispersed therein.
許請求の範囲第11項に記載の高負荷伝動ベルト用補強
材。(12) The reinforcing material for a high-load power transmission belt according to claim 11, wherein the inorganic filler is high-purity magnesium oxide.
〜100体積%の無機充填材を含有する特許請求の範囲
11項または第12項に記載の高負荷伝動ベルト用補強
材。(13) Matrix resin is 10% relative to thermosetting resin
The reinforcing material for a high-load power transmission belt according to claim 11 or 12, which contains ~100% by volume of an inorganic filler.
熱硬化性樹脂を含有するマトリックス樹脂を含浸させた
少なくとも1枚のプリプレグシートと金属箔とを渦巻状
に巻回し、これを成形型内で加熱、加圧して所望の断面
形状に圧縮成形して成る高負荷伝動ベルト用補強材。(14) Reinforced cloth made of inorganic or organic fibers,
At least one prepreg sheet impregnated with a matrix resin containing a thermosetting resin and metal foil are spirally wound, and this is heated and pressurized in a mold to compression mold it into a desired cross-sectional shape. A reinforcing material for high-load power transmission belts.
請求の範囲第14項に記載の高負荷伝動ベルト用補強材
。(15) The reinforcing material for a high-load power transmission belt according to claim 14, wherein the metal foil is made of aluminum foil.
求の範囲14項または第15項に記載の高負荷伝動ベル
ト用補強材。(16) The reinforcing material for a high-load power transmission belt according to claim 14 or 15, wherein the metal foil has a thickness of 30 to 150 μm.
成されている特許請求の範囲第14項ないし第16項の
いずれかに記載の高負荷伝動ベルト用補強材。(17) The reinforcing material for a high-load power transmission belt according to any one of claims 14 to 16, wherein at least the outermost layer is made of metal foil over the entire circumference.
箔の巻始め端部が巻込まれている特許請求の範囲第17
項に記載の高負荷伝動ベルト用補強材。(18) Claim 17, in which the winding start end of the metal foil is wound inside the winding end end of the prepreg sheet.
Reinforcing material for high-load power transmission belts as described in .
シート層で構成されている特許請求の範囲第14項ない
し第16項のいずれかに記載の高負荷伝動ベルト用補強
材。(19) The reinforcing material for a high-load power transmission belt according to any one of claims 14 to 16, wherein at least the outermost peripheral layer is composed of a prepreg sheet layer over the entire circumference.
範囲第14項ないし第19項のいずれかに記載の高負荷
伝動ベルト用補強材。(20) The reinforcing material for a high-load power transmission belt according to any one of claims 14 to 19, wherein a large number of holes are formed in the metal foil.
0mmである特許請求の範囲第20項に記載の高負荷伝
動ベルト用補強材。(21) The diameter of each hole formed in the metal foil is 0.2 to 3.
The reinforcing material for a high-load power transmission belt according to claim 20, which has a thickness of 0 mm.
である特許請求の範囲第21項に記載の高負荷伝動ベル
ト用補強材。(22) The distance between each hole formed in the metal foil is 2 to 30 mm.
A reinforcing material for a high-load power transmission belt according to claim 21.
て圧縮成形により形成された特許請求の範囲第14項な
いし第22項のいずれかに記載の高負荷伝動ベルト用補
強材。(23) The reinforcing material for a high-load power transmission belt according to any one of claims 14 to 22, which is formed by compression molding by heating and pressurizing at a pressure of 50 kg/cm^2 or more.
向の繊維量が当該補強布の巻回方向と同方向である幅方
向の繊維量より大である特許請求の範囲第14項ないし
第23項のいずれかに記載の高負荷伝動ベルト用補強材
。(24) In the reinforcing cloth, the amount of fibers in the longitudinal direction perpendicular to the winding direction is greater than the amount of fibers in the width direction, which is the same direction as the winding direction of the reinforcing cloth. The reinforcing material for a high-load power transmission belt according to any one of Item 23.
向の繊維量の重量比が3:1〜7:1である特許請求の
範囲第24項に記載の高負荷伝動ベルト用補強材。(25) The reinforcing material for a high-load power transmission belt according to claim 24, wherein the weight ratio of the amount of fibers in the longitudinal direction to the amount of fibers in the width direction of the reinforcing cloth is 3:1 to 7:1.
向の繊維量の重量比が3:1〜5:1である特許請求の
範囲第25項に記載の高負荷伝動ベルト用補強材。(26) The reinforcing material for a high-load power transmission belt according to claim 25, wherein in the reinforcing cloth, the weight ratio of the amount of fibers in the longitudinal direction to the amount of fibers in the width direction is 3:1 to 5:1.
る特許請求の範囲第14項ないし第26項のいずれかに
記載の高負荷伝動ベルト用補強材。(27) The reinforcing material for a high-load power transmission belt according to any one of claims 14 to 26, wherein the reinforcing cloth is made of a woven fabric of Turkish satin weave.
散された金属粉末とを含有する特許請求の範囲第14項
ないし第27項のいずれかに記載の高負荷伝動ベルト用
補強材。(28) The reinforcing material for a high-load power transmission belt according to any one of claims 14 to 27, wherein the matrix resin contains a thermosetting resin and metal powder dispersed therein.
〜100体積%の金属粉末を含有するものである特許請
求の範囲第28項に記載の高負荷伝動ベルト用補強材。(29) Matrix resin is 15% compared to thermosetting resin
The reinforcing material for a high-load power transmission belt according to claim 28, which contains metal powder in an amount of 100% by volume.
範囲第28項または第29項に記載の高負荷伝動ベルト
用補強材。(30) The reinforcing material for a high-load power transmission belt according to claim 28 or 29, wherein the metal powder is aluminum powder.
請求の範囲第28項ないし第30項のいずれかに記載の
高負荷伝動ベルト用補強材。(31) The reinforcing material for a high-load power transmission belt according to any one of claims 28 to 30, wherein the metal powder has a particle size of 5 to 500 μm.
された無機充填材とを含有する特許請求の範囲第14項
ないし第31項のいずれかに記載の高負荷伝動ベルト用
補強材。(32) The reinforcing material for a high-load power transmission belt according to any one of claims 14 to 31, wherein the matrix resin contains a thermosetting resin and an inorganic filler dispersed therein.
許請求の範囲第32項に記載の高負荷伝動ベルト用補強
材。(33) The reinforcing material for a high-load power transmission belt according to claim 32, wherein the inorganic filler is high-purity magnesium oxide.
〜100体積%の無機充填材を含有する特許請求の範囲
第32項または第33項に記載の高負荷伝動ベルト用補
強材。(34) Matrix resin is 10% relative to thermosetting resin
The reinforcing material for a high-load power transmission belt according to claim 32 or 33, which contains ~100% by volume of an inorganic filler.
熱硬化性樹脂を含有するマトリックス樹脂を含浸させた
少なくとも1枚のプリプレグシートと、このプリプレグ
シートの巻回内側面の少なくとも一部分に重ね合わされ
たアラミド繊維補強布とを渦巻状に巻回し、これを成形
型内で加熱、加圧して所望の断面形状に圧縮成形して成
る高負荷伝動ベルト用補強材。(35) Reinforcing cloth made of inorganic or organic fibers,
At least one prepreg sheet impregnated with a matrix resin containing a thermosetting resin and an aramid fiber reinforcing cloth overlaid on at least a portion of the inner surface of the prepreg sheet are spirally wound. A reinforcing material for high-load power transmission belts that is compression-molded into the desired cross-sectional shape by heating and pressurizing it in a mold.
範囲第35項に記載の高負荷伝動ベルト用補強材。(36) The reinforcing material for a high-load power transmission belt according to claim 35, wherein the aramid fiber reinforcing fabric is a nonwoven fabric.
て圧縮成形により形成された特許請求の範囲第35項ま
たは第36項に記載の高負荷伝動ベルト用補強材。(37) The reinforcing material for a high-load power transmission belt according to claim 35 or 36, which is formed by compression molding by heating and pressurizing at a pressure of 50 kg/cm^2 or more.
向の繊維量が当該補強布の巻回方向と同方向である幅方
向の繊維量より大である特許請求の範囲第35項ないし
第37項のいずれかに記載の高負荷伝動ベルト用補強材
。(38) In the reinforcing cloth, the amount of fibers in the longitudinal direction perpendicular to the winding direction is greater than the amount of fibers in the width direction, which is the same direction as the winding direction of the reinforcing cloth. The reinforcing material for a high-load power transmission belt according to any one of Item 37.
向の繊維量の重量比が3:1〜7:1である特許請求の
範囲第38項に記載の高負荷伝動ベルト用補強材。(39) The reinforcing material for a high-load power transmission belt according to claim 38, wherein the weight ratio of the amount of fibers in the longitudinal direction to the amount of fibers in the width direction of the reinforcing cloth is 3:1 to 7:1.
向の繊維量の重量比が3:1〜5:1である特許請求の
範囲第38項または第39項に記載の高負荷伝動ベルト
用補強材。(40) High load transmission according to claim 38 or 39, wherein the reinforcing cloth has a weight ratio of fiber content in the longitudinal direction to fiber content in the width direction of 3:1 to 5:1. Reinforcement material for belts.
る特許請求の範囲第35項ないし第40項のいずれかに
記載の高負荷伝動ベルト用補強材。(41) The reinforcing material for a high-load power transmission belt according to any one of claims 35 to 40, wherein the reinforcing fabric is made of a woven fabric of Turkish satin weave.
散された金属粉末とを含有する特許請求の範囲第35項
ないし第41項のいずれかに記載の高負荷伝動ベルト用
補強材。(42) The reinforcing material for a high-load power transmission belt according to any one of claims 35 to 41, wherein the matrix resin contains a thermosetting resin and metal powder dispersed therein.
〜100体積%の金属粉末を含有するものである特許請
求の範囲第42項に記載の高負荷伝動ベルト用補強材。(43) Matrix resin is 15% compared to thermosetting resin
The reinforcing material for a high-load power transmission belt according to claim 42, which contains metal powder in an amount of 100% by volume.
範囲第42項または第43項に記載の高負荷伝動ベルト
用補強材。(44) The reinforcing material for a high-load power transmission belt according to claim 42 or 43, wherein the metal powder is aluminum powder.
請求の範囲第42項ないし第44項のいずれかに記載の
高負荷伝動ベルト用補強材。(45) The reinforcing material for a high-load power transmission belt according to any one of claims 42 to 44, wherein the metal powder has a particle size of 5 to 500 μm.
された無機充填材とを含有する特許請求の範囲第35項
ないし第45項のいずれかに記載の高負荷伝動ベルト用
補強材。(46) The reinforcing material for a high-load power transmission belt according to any one of claims 35 to 45, wherein the matrix resin contains a thermosetting resin and an inorganic filler dispersed therein.
許請求の範囲第46項に記載の高負荷伝動ベルト用補強
材。(47) The reinforcing material for a high-load power transmission belt according to claim 46, wherein the inorganic filler is high-purity magnesium oxide.
〜100体積%の無機充填材を含有する特許請求の範囲
第46項または第47項に記載の高負荷伝動ベルト用補
強材。(48) Matrix resin is 10% relative to thermosetting resin
The reinforcing material for a high-load power transmission belt according to claim 46 or 47, which contains ~100% by volume of an inorganic filler.
熱硬化性樹脂を含有するマトリックス樹脂を含浸させた
少なくとも1枚のプリプレグシートと、このプリプレグ
シートにおける巻回内側面の少なくとも一部分に重ね合
わされたアラミド繊維補強布と、金属箔とを渦巻状に巻
回し、これを成形型内で加熱、加圧して所望の断面形状
に圧縮成形して成る高負荷伝動ベルト用補強材。(49) Reinforcing cloth made of inorganic or organic fibers,
At least one prepreg sheet impregnated with a matrix resin containing a thermosetting resin, an aramid fiber reinforcing cloth superimposed on at least a portion of the inner surface of the winding of the prepreg sheet, and metal foil are spirally wound. This reinforcing material for high-load power transmission belts is made by compression-molding it into the desired cross-sectional shape by heating and pressurizing it in a mold.
第49項に記載の高負荷伝動ベルト用補強材。(50) The reinforcing material for a high-load power transmission belt according to claim 49, wherein the metal foil is an aluminum foil.
求の範囲第49項または第50項に記載の高負荷伝動ベ
ルト用補強材。(51) The reinforcing material for a high-load power transmission belt according to claim 49 or 50, wherein the metal foil has a thickness of 30 to 150 μm.
成されている特許請求の範囲第49項ないし第51項の
いずれかに記載の高負荷伝動ベルト用補強材。(52) The reinforcing material for a high-load power transmission belt according to any one of claims 49 to 51, wherein at least the outermost layer is made of metal foil over the entire circumference.
箔の巻始め端部が巻込まれている特許請求の範囲第52
項に記載の高負荷伝動ベルト用補強材。(53) Claim 52, in which the winding start end of the metal foil is wound inside the winding end end of the prepreg sheet.
Reinforcing material for high-load power transmission belts as described in .
シート層で構成されている特許請求の範囲第49項ない
し第51項のいずれかに記載の高負荷伝動ベルト用補強
材。(54) The reinforcing material for a high-load power transmission belt according to any one of claims 49 to 51, wherein at least the outermost layer is made of a prepreg sheet layer over the entire circumference.
範囲第52項ないし第54項のいずれかに記載の高負荷
伝動ベルト用補強材。(55) The reinforcing material for a high-load power transmission belt according to any one of claims 52 to 54, wherein a large number of holes are formed in the metal foil.
0mmである特許請求の範囲第55項に記載の高負荷伝
動ベルト用補強材。(56) The diameter of each hole formed in the metal foil is 0.2 to 3.
The reinforcing material for a high-load power transmission belt according to claim 55, which has a thickness of 0 mm.
である特許請求の範囲第55項または第56項に記載の
高負荷伝動ベルト用補強材。(57) The distance between each hole formed in the metal foil is 2 to 30 mm.
A reinforcing material for a high-load power transmission belt according to claim 55 or 56.
範囲第49項ないし第57項のいずれかに記載の高負荷
伝動ベルト用補強材。(58) The reinforcing material for a high-load power transmission belt according to any one of claims 49 to 57, wherein the aramid fiber reinforcing fabric is a nonwoven fabric.
て圧縮成形により形成された特許請求の範囲第49項な
いし第58項のいずれかに記載の高負荷伝動ベルト用補
強材。(59) The reinforcing material for a high-load power transmission belt according to any one of claims 49 to 58, which is formed by compression molding by heating and pressurizing at a pressure of 50 kg/cm^2 or more.
向の繊維量が当該補強布の巻回方向と同方向である幅方
向の繊維量より大である特許請求の範囲第49項ないし
第59項のいずれかに記載の高負荷伝動ベルト用補強材
。(60) In the reinforcing cloth, the amount of fibers in the longitudinal direction perpendicular to the winding direction is greater than the amount of fibers in the width direction, which is the same direction as the winding direction of the reinforcing cloth. 59. The reinforcing material for a high-load power transmission belt according to any one of Item 59.
向の繊維量の重量比が3:1〜7:1である特許請求の
範囲第60項に記載の高負荷伝動ベルト用補強材。(61) The reinforcing material for a high-load power transmission belt according to claim 60, wherein in the reinforcing cloth, the weight ratio of the amount of fibers in the longitudinal direction to the amount of fibers in the width direction is 3:1 to 7:1.
向の繊維量の重量比が3:1〜5:1である特許請求の
範囲第59項または第60項に記載の高負荷伝動ベルト
用補強材。(62) The high-load power transmission belt according to claim 59 or 60, wherein the reinforcing fabric has a weight ratio of fiber content in the longitudinal direction to fiber content in the width direction of 3:1 to 5:1. reinforcement material.
る特許請求の範囲第49項ないし第62項のいずれかに
記載の高負荷伝動ベルト用補強材。(63) The reinforcing material for a high-load power transmission belt according to any one of claims 49 to 62, wherein the reinforcing cloth is made of a woven fabric of Turkish satin weave.
散された金属粉末とを含有する特許請求の範囲第49項
ないし第63項のいずれかに記載の高負荷伝動ベルト用
補強材。(64) The reinforcing material for a high-load power transmission belt according to any one of claims 49 to 63, wherein the matrix resin contains a thermosetting resin and metal powder dispersed therein.
〜100体積%の金属粉末を含有するものである特許請
求の範囲第64項に記載の高負荷伝動ベルト用補強材。(65) The matrix resin is 15% compared to the thermosetting resin.
65. The reinforcing material for a high-load power transmission belt according to claim 64, which contains metal powder in an amount of 100% by volume.
範囲第64項または第65項に記載の高負荷伝動ベルト
用補強材。(66) The reinforcing material for a high-load power transmission belt according to claim 64 or 65, wherein the metal powder is aluminum powder.
請求の範囲第64項ないし第66項のいずれかに記載の
高負荷伝動ベルト用補強材。(67) The reinforcing material for a high-load power transmission belt according to any one of claims 64 to 66, wherein the metal powder has a particle size of 5 to 500 μm.
散された無機充填材とを含有する特許請求の範囲第49
項ないし第67項のいずれかに記載の高負荷伝動ベルト
用補強材。(68) Claim 49, wherein the matrix resin contains a thermosetting resin and an inorganic filler dispersed therein.
The reinforcing material for a high-load power transmission belt according to any one of Items 67 to 67.
許請求の範囲第68項に記載の高負荷伝動ベルト用補強
材。(69) The reinforcing material for a high-load power transmission belt according to claim 68, wherein the inorganic filler is high-purity magnesium oxide.
〜100体積%の無機充填材を含有する特許請求の範囲
第68項または第69項に記載の高負荷伝動ベルト用補
強材。(70) Matrix resin is 10% relative to thermosetting resin
The reinforcing material for a high-load power transmission belt according to claim 68 or 69, which contains ~100% by volume of an inorganic filler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61179416A JPS6338735A (en) | 1986-07-30 | 1986-07-30 | Reinforcing member for high load transmission belt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61179416A JPS6338735A (en) | 1986-07-30 | 1986-07-30 | Reinforcing member for high load transmission belt |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6338735A true JPS6338735A (en) | 1988-02-19 |
Family
ID=16065483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61179416A Pending JPS6338735A (en) | 1986-07-30 | 1986-07-30 | Reinforcing member for high load transmission belt |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6338735A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0230562U (en) * | 1988-08-19 | 1990-02-27 | ||
JP2009138199A (en) * | 2007-12-10 | 2009-06-25 | Boeing Co:The | Metal impregnated composite and method of manufacturing the same |
WO2010070890A1 (en) * | 2008-12-18 | 2010-06-24 | パナソニック株式会社 | Prepreg, process for production thereof, and printed wiring board using same |
JP2017094491A (en) * | 2015-11-18 | 2017-06-01 | トヨタ自動車株式会社 | Method for producing tank, and the tank |
JP2017110806A (en) * | 2015-12-14 | 2017-06-22 | 三ツ星ベルト株式会社 | Friction transmission belt and manufacturing method therefor |
JP2018091483A (en) * | 2016-11-28 | 2018-06-14 | 三ツ星ベルト株式会社 | Non-endless v-belt and manufacturing method thereof |
-
1986
- 1986-07-30 JP JP61179416A patent/JPS6338735A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0230562U (en) * | 1988-08-19 | 1990-02-27 | ||
JP2009138199A (en) * | 2007-12-10 | 2009-06-25 | Boeing Co:The | Metal impregnated composite and method of manufacturing the same |
WO2010070890A1 (en) * | 2008-12-18 | 2010-06-24 | パナソニック株式会社 | Prepreg, process for production thereof, and printed wiring board using same |
JP2017094491A (en) * | 2015-11-18 | 2017-06-01 | トヨタ自動車株式会社 | Method for producing tank, and the tank |
JP2017110806A (en) * | 2015-12-14 | 2017-06-22 | 三ツ星ベルト株式会社 | Friction transmission belt and manufacturing method therefor |
JP2018091483A (en) * | 2016-11-28 | 2018-06-14 | 三ツ星ベルト株式会社 | Non-endless v-belt and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8168106B2 (en) | Process for producing a reinforcing woven fabric, a preform and a fiber reinforced plastic molded component | |
JP2935569B2 (en) | High thermal conductivity non-metallic honeycomb | |
JP2004131538A (en) | Carbon nanofiber-dispersed resin fiber-reinforced composite material | |
JPH02134233A (en) | Manufacture of moldable composite material | |
US20050104441A1 (en) | Fiber reinforced composite wheels | |
JPS6338735A (en) | Reinforcing member for high load transmission belt | |
CN105538816A (en) | Flaky molded material-prepreg mixed composite material and manufacturing method thereof | |
CN106671538A (en) | Thermoplastic composite material with semi-closed honeycomb sandwich structure and preparation method thereof | |
JPS6050146B2 (en) | Sheet for stamping molding | |
US5391425A (en) | Composite material with shrinkage barrier | |
WO2018121789A1 (en) | Fibre fabric composite structural component, automobile framework prepared using same, and method | |
JP3585642B2 (en) | Method of manufacturing FRP molded body and method of manufacturing FRP pipe | |
JP2007216554A (en) | Fiber-reinforced synthetic resin pipe | |
JPS6046599B2 (en) | speaker cone | |
JPS5823627Y2 (en) | flange structure | |
CN113199910A (en) | Resin-based fiber composite sheet, spoke and non-pneumatic tire | |
JPH0228046Y2 (en) | ||
JP2926736B2 (en) | Multi-layer thermoplastic composite molding | |
JPS6350571B2 (en) | ||
JP2556995Y2 (en) | Helmet cap | |
JPS60179232A (en) | Manufacture of frp structure | |
JPH0320339B2 (en) | ||
JP3558177B2 (en) | Helmet | |
JPH045314Y2 (en) | ||
JP3124312B2 (en) | Manufacturing method of lightweight composite molding |