JP5982616B2 - 眼科用検査装置 - Google Patents

眼科用検査装置 Download PDF

Info

Publication number
JP5982616B2
JP5982616B2 JP2012032980A JP2012032980A JP5982616B2 JP 5982616 B2 JP5982616 B2 JP 5982616B2 JP 2012032980 A JP2012032980 A JP 2012032980A JP 2012032980 A JP2012032980 A JP 2012032980A JP 5982616 B2 JP5982616 B2 JP 5982616B2
Authority
JP
Japan
Prior art keywords
optical system
imaging
eye
relative angle
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012032980A
Other languages
English (en)
Other versions
JP2013169233A (ja
Inventor
達也 笠原
達也 笠原
Original Assignee
株式会社コーナン・メディカル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コーナン・メディカル filed Critical 株式会社コーナン・メディカル
Priority to JP2012032980A priority Critical patent/JP5982616B2/ja
Publication of JP2013169233A publication Critical patent/JP2013169233A/ja
Application granted granted Critical
Publication of JP5982616B2 publication Critical patent/JP5982616B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Description

本発明は、眼科用検査装置に関する。より詳細には、前眼部の検査に利用される眼科用検査装置に関する。
眼科用検査装置の一例として、従来、角膜細胞を観察・撮影する装置が開発されている。この装置は、一般的にスペキュラー方式と呼ばれる撮影方式が採用されている。より詳細には、被検者に角膜の斜め前方よりスリット光を照射し、正面方向光軸に対して対称な斜め方向から角膜による反射光を受光することにより角膜上皮反射光と角膜内皮反射光を分離判別し、このうちの角膜内皮反射光より内皮細胞写真を取得するという方法である。
このようなスペキュラー方式の撮影原理によれば、角膜上皮反射光と角膜内皮反射光が分離可能であること、つまり上記両反射光がある程度の距離を有して離間することが要求される。各反射光の幅はスリットの幅に依存する。従って、両反射光を離間させるためにはスリット幅を狭くする必要があり、このことは、光が照射される角膜細胞の範囲が狭くなることを意味する。つまり、スペキュラー方式においては、一回の撮影行為で撮影可能な領域の範囲に限界がある。
このような課題を受け、広い範囲で角膜内皮細胞の観察や撮影をすることのできる撮影装置が、開発されている(例えば特許文献1参照)。
特開平6−205743号公報
上記特許文献1に開示された撮影装置は、被験者に視線を向けてもらう対象となる固視灯を複数有する。この文献1によれば、一回の撮影終了後、点灯する固視灯を変えて被験者の視線の方向を変化させた状態で改めて撮影を行うという処理が繰り返される。そして、このようにして得られた複数の画像が合成されて、パノラマ画像が作成される。これにより、撮影範囲を広げることができる。
しかしながら、この方法によれば、一連の撮影処理が終了するまでに非常に長い時間を要し、加えて被験者に多大な苦痛を与える可能性もある。この理由につき、以下で説明する。
上記装置で撮影する手順は、以下のとおりである。まず、被験者を一の固視灯に固視させた状態で装置のアライメントを行った後、撮影処理が行われる。次に、別の固視灯を点灯させ、被験者の視線を当該別の固視灯の方に向けさせ、装置のアライメントを行った後に改めて撮影処理が行われる。このような処理が複数回繰り返される。つまり、被験者の視方向の確定、アライメント、撮影という一連の流れを複数回繰り返す必要があるため、一連の撮影処理が完了するまでに多くの時間がかかる。
更に、各箇所の撮影を行う都度、被験者は点灯する固視灯を見続けなければならず、非常に撮影に労力を有することになる。被験者は、一の撮影が完了する迄はある固視灯Aを見続け、次の撮影が完了するまでは別の固視灯Bを見続け、更に次の撮影が完了するまでは別の固視灯Cを見続けなければならない。固視灯を見続けるという動作は、被験者にとって日常的な動作ではないところ、なるべく短時間で終了するのが望ましい。この観点からすれば、上記動作が繰り返し要求される上記装置の撮影方法では、一連の撮影が完了するまでに被験者に与える労力は大きいものとなってしまう。
また、上記特許文献1には、撮影範囲を広げる方法として、スリット位置を変えながら複数回撮影を行う方法も開示されている。しかし、この方法で撮影範囲を広げることは事実上困難である。以下にその理由を説明する。
上述したように、角膜内皮撮影に用いるスペキュラー法(鏡面反射法)は、角膜に向けて斜めから幅の狭いスリット光を照射し、その鏡面反射光を、撮影位置の角膜内皮面に立てた法線に対して対称の斜め方向から捉えて撮影するものである。ところが、角膜は略球面形状であり、少しでも位置が変わると鏡面反射光は正しく撮影レンズに入らない。この場合、像が暗くなったり収差が出る。また、撮影レンズは角膜内皮面を斜めから観察しているので、合焦範囲は狭くなる。なお、合焦点から外れるに従ってピントがずれる。
更に、薄い角膜(約0.5mm)の裏表の反射光を区別し、約100倍明るい上皮反射から必要な内皮反射光を分離して撮影しなければならない。合焦点から外れるに従って上皮反射光によるカブリが大きくなる。
つまり、精密なアライメントと合焦を行った撮影点近くのごく狭い範囲しか良像の撮影ができないという撮影原理上の限界がある。
特許文献1の第1実施例では、細長い長方形状の3つのスリットを有したスリット板を設ける構成が開示されている。この実施例では、スリット板を移動させることで、光軸と直交する面内でのスリット位置を変え、これによって撮影位置を変えている。また、同実施例では撮影スリットの変更に応じて光路長を補正するための光学部材を備えている。
しかし、この方法によれば、上述した原理上の限界に由来して、アライメントを行った位置の中央でのみ良画像が得られ、その両側の撮影では良画像を得にくい。また、撮影時にスリットの切り替えや光路長の補正といった操作を行う必要があるため、構造が複雑化すると共に、良好な撮影を行うための調整が極めて困難である。
特許文献1の第2実施例では、第1実施例とは異なるスリット板を設けた構成が開示されている。同文献によれば、この構成によって、一度で異なる3つの位置の撮影が可能になる旨の記述がある。
しかしながら、この実施例においても第1実施例と同様の課題がある。更に、これに加えて、同実施例によれば、3個所の撮影位置からの光が相互干渉しないよう、波長を使い分ける必要があるため、その構造は更に複雑化する。また、用いる光の波長に差があることから、内皮像にも差が生じてしまい、更に収差によって良好な像を得るのが極めて困難になる。
本発明は、上記の課題に鑑み、撮影に要する時間を短縮化し、被験者に求める労力をなるべく少なくしながらも、広い範囲の撮影を可能にする眼科用検査装置を実現することを目的とする。
上記目的を達成すべくなされた本発明は、被検者の被検眼を検査するための眼科用検査装置であって、
照明光によって前記被検眼の前眼部を斜め前方から照明する照明光学系及び前記被検眼の前眼部で前記照明光が反射された反射光を受光する撮影光学系、を含む検査光学系と、
指定された検査条件に基づいて前記検査光学系を回転移動させる光学系移動機構と、
前記被検眼の被検部位の位置の指定を受け付ける位置指定部と、を有し、
前記検査条件が前記被検部位を含むパノラマ撮影である場合、前記撮影光学系は、まず前記位置指定部で指定された前記被検部位の位置情報に基づいて前記光学系移動機構によって前記検査光学系が第1撮影位置に移動された状態で第1撮影を行った後、前記光学系移動機構によって前記検査光学系が直前の撮影位置から所定のパノラマ撮影用回転角だけ回転移動された第2撮影位置で引き続き第2撮影を行うことで、前記被検部位を含む領域の撮影を行うことを特徴とする。
上記構成によれば、検査光学系が第1撮影位置で撮影(第1撮影)した後、所定のパノラマ撮影用回転角だけ回転移動された後に第2撮影位置で撮影(第2撮影)を行う。そして、これらの撮影により、被検部位を含む領域の撮影が行われる。すなわち、予め指定された角度だけ検査光学系が自動的に回転移動して撮影を行う構成であるため、従来のように被験者に対して視方向を変えてもらう必要がない。このため、被験者に対する負担は大幅に軽減される。
また、光学系移動機構によって検査光学系を回転移動させることで被検部位の周辺領域を撮影する方式のため、点灯する固視灯を変えることで被験者の視方向を変える従来方法と比較して、被検部位を含む広い領域を撮影範囲とすることが可能となる。
光学系移動機構が検査光学系を回転移動させる場合、機械的な回転移動であるため、例えば2°といった細かい回転角度の指定も可能である。これに対し、点灯する固視灯を変えることで被験者の視方向を変える従来方法の場合、このような2°という細かい角度単位で視方向を変化させるのは極めて難しい。なぜなら、視方向を2°ずらすために点灯固視灯を変えるためには、直前に点灯していた固視灯のすぐ近傍の固視灯が点灯することとなる。このとき、被験者は点灯する固視灯が変化したことに気付かない可能性があり、この場合、被験者が依然として視方向を変えない可能性が考えられるためである。
更に、本構成によれば、被験者に対して視線の向きを変えてもらう必要がないため、一連の撮影処理を連続的に行うことが可能となる。例えば上記例のように、パノラマ撮影用回転角を2°とした場合、光学系移動機構が検査光学系を2°回転させるために必要な時間は非常に短い。つまり、被験者にとってみれば、被検部位の撮影を一回行なうために本装置に対面している間に、複数回の撮影が完了することになる。これは、一回の撮影毎に視方向を変えさせ、撮影が複数回行われていることを被験者に意識させてしまう従来方法とは大きく異なる。
上述したように、従来方法では、一回の撮影が完了すると、視方向を変えるように告げられ、その後に再度撮影が行われる。この一連の指示及び動作が繰り返される。この間、被験者は、いつになったら一連の撮影処理が完了するのかが分からず、ともすれば不安になるおそれもある。しかし、本構成によれば、操作者から撮影位置を変えるべく視方向を変えるように指示されることもなく、一連の撮影処理が短時間の間に連続的に行われるため、そのような不安感を大幅に低減させることが可能となる。
上記構成において、第1撮影位置、第2撮影位置のいずれかを被検部位の撮影位置として設定するものとしても構わない。つまり、被検部位の撮影位置にて第1撮影を行った後に前記検査光学系をパノラマ撮影用回転角だけ回転移動させて第2撮影を行ってもよい。逆に、被検部位の近傍の撮影位置にて第1撮影を行った後、前記検査光学系をパノラマ撮影用回転角だけ回転移動させることで被検部位の撮影位置に設定して第2撮影を行なってもよい。いずれの場合においても、被検部位を含む広い領域の撮影(パノラマ撮影)が可能となる。
ここで、前記撮影光学系が前記第2撮影を複数回繰り返し実行する構成とすることができる。
すなわち、第1撮影が完了した後、前記光学系移動機構が前記検査光学系を直前の撮影位置から所定のパノラマ撮影用回転角だけ回転移動させ、撮影光学系が撮影を行うという一連の動作が複数回繰り返し実行される。これにより、被検部位を含む撮影可能領域を拡げることができる。
ここで、繰り返し実行される第2撮影は、直前の撮影位置から必ずしも同一の方向に同一の角度だけ回転された状態で行われなければならないものではない。例えば、以下のような撮影態様が可能である。すなわち、1回目の第2撮影は、第1撮影の後、X方向に回転移動された状態で行われる。次に、2回目の第2撮影は、直前の位置からX方向に回転移動された状態で行われる。次に、3回目の第2撮影は、直前の位置からX及びY方向に回転移動されことで、第1撮影位置からY方向に回転移動した位置で行われる。次に、4回目の第2撮影は、直前の位置からY方向に回転移動された状態で行われる。このような撮影が行われる場合、被検部位を中心にX方向及びY方向に拡がりを持たせた領域の撮影が可能となる。なお、この場合、X方向の回転移動時のパノラマ撮影用回転角(θx)とY方向の回転移動時のパノラマ撮影用回転角(θy)は、それぞれ異なる角度で設定されているものとしても構わない。
なお、このようなパノラマ撮影が行われる場合には、各第2撮影で回転すべき角度に関する情報がパノラマ撮影用回転角として与えられる。
上記のように、第2撮影を複数回行う場合においては、前記第1撮影位置又はいずれか一の前記第2撮影位置を、前記被検部位の撮影位置としても構わない。
なお、前記光学系移動機構が前記検査光学系を前記第1撮影位置に移動させる際に、前記照明光学系の照明光軸と前記撮影光学系の撮影光軸との交差角を二分する方向の軸である光学基準軸が前記第1撮影の撮影対象部位の法線方向に一致するように前記検査光学系を回転移動させるものとすることができる。
より具体的には、本発明に係る眼科用検査装置が、
前記検査光学系に含まれる、前記被検眼の前眼部を観察する前眼部観察光学系と、前記位置指定部で指定された前記被検部位の位置情報に基づいて、前記検査光学系を前記第1撮影位置に移動させるべき回転角を算定し、前記光学系移動機構に当該回転角に関する情報を出力する回転角算定部と、を有し、
前記回転角算定部は、前記第1撮影において、前記光学基準軸に一致する前記前眼部観察光学系の観察光軸が前記第1撮影の撮影対象部位の法線方向に一致する際に満たすべき前記被検眼の視軸と前記前眼部観察光学系の光軸の間の角度を回転角として算定する。
このような構成において、前記回転角算定部が、前記第2撮影において、前記検査条件として指定されたパノラマ撮影のモードに応じて予め定められた前記パノラマ撮影用回転角に関する情報を前記光学系移動機構に出力する構成としてもよい。
ここでいうパノラマ撮影のモードとは、例えば被検部位からX方向にのみ引き伸ばす撮影モード、Y方向にのみ引き伸ばす撮影モード、又はX及びY方向に引き伸ばす撮影モードのいずれかであるものとしても構わない。
また、本発明に係る眼科用検査装置は、上記特徴に加えて、
前記検査光学系が前記第1撮影位置に存在する状態下で、前記前眼部観察光学系によって観察された前記被検眼の前眼部画像から得られる情報に基づいて、観察された前記被検眼の眼軸と前記検査条件の下での前記前眼部観察光学系の光軸との間の角度である観察相対角を算定する観察相対角算定部を備えることを別の特徴とする。
上記構成によれば、前記検査光学系が前記第1撮影位置に存在する状態下での観察時における被検眼の眼軸と前眼部観察光学系の光軸のなす角度である観察相対角を、観察相対角算定部によって算定できる。このため、前記検査光学系が前記第1撮影位置に存在する状態下で本来眼軸と光軸がなすべき角度と前記観察相対角の比較を行うことができるようになり、この比較結果に基づいて、観察時に被検者が視方向を正しく固定できていたかどうかを装置側で判断することが可能となる。
このとき、前記観察相対角算定部は、前記前眼部画像上に表示されるプルキンエ像の相対位置に基づいて前記観察相対角を算定する構成とすることができる。
より具体的には、一例として、前記観察相対角算定部が、前記前眼部画像より瞳孔の中心位置を読み取ると共に、当該瞳孔の中心位置と前記プルキンエ像の相対位置関係に基づいて前記観察相対角を算定する構成とすることができる。
また、本発明に係る眼科用検査装置は、上記特徴に加えて、
前記検査光学系を所定の基準位置から前記第1撮影位置に移動を完了させる迄の間の、前記被検眼の視方向の変化の有無を検出する視方向変化検出部を有し、
前記観察相対角算定部は、前記基準位置での前記観察相対角を基準観察相対角として算定すると共に、前記検査光学系が前記第1撮影位置に存在する状態下での前記観察相対角を移動後観察相対角として算定し、
前記視方向変化検出部は、前記基準観察相対角と前記回転角に基づいて、前記検査光学系が前記第1撮影位置に存在する状態下での前記被検眼の眼軸と前記前眼部観察光学系の光軸がなす理論的な角度を理論相対角として算定すると共に、前記移動後観察相対角と前記理論相対角の比較結果に基づいて前記被検眼の視方向の変化の有無を検出することを別の特徴とする。
上記構成によれば、観察相対角算定部によって、基準位置における観察相対角、すなわち、基準位置における眼軸と前眼部観察光学系の光軸がなす角度が基準観察相対角として得られる。このため、回転角算定部によって算定された回転角と、前記基準観察相対角に基づいて、指定された前記被検部位を含む領域のパノラマ撮影をする際の第1撮影時に満たすべき、被検眼の眼軸と前眼部観察光学系の光軸がなす角度(理論相対角)を、理論的に算出することができる。そして、観察相対角算定部は、移動後においても観察相対角(移動後観察相対角)を算定する構成である。従って、この移動後観察相対角と理論相対角とを比較することで、検査光学系が基準位置から前記第1撮影位置への移動を完了する迄の間に、被検眼の視軸の向き(視方向)が変化したか否かを検出することが可能となる。
ここで、前記観察相対角算定部は、前記基準位置において前記前眼部観察光学系の光軸を前記被検眼の前記視軸と同じ向きにした状態で前記基準観察相対角を算定する構成とすることができる。
特にこの場合、観察相対角算定部は、被検眼の眼軸と視軸のずれ角を、基準観察相対角として算定することが可能となる。
被検眼の正面に前眼部観察光学系を配置して、当該光学系をまっすぐ見るように指定、すなわち、被検眼の視軸の向きを前眼部観察光学系の光軸の向きに一致させた場合であっても、もともと存在する視軸と眼軸のズレや、輻湊(両眼視状態)の発生、斜視の存在、或いは瞳孔が厳密な真円ではないこと等に由来して、眼軸が当該光学系の光軸に平行とならず、一定の角度を有する場合が想定される。この角度は、被検眼毎に異なる態様として現れる。このため、上記構成によれば、被検眼毎の特徴を考慮して被検眼の視方向の変化の有無を判定することができる。
また、前記観察相対角算定部が、前記検査光学系が直前の撮影位置から前記パノラマ撮影用回転角だけ回転移動した状態下での前記観察相対角をパノラマ移動後観察相対角として算定し、前記視方向変化検出部が、前記基準観察相対角、前記回転角、及び前記パノラマ撮影用回転角に基づいて、前記検査光学系が前記第2撮影位置に存在するときの前記被検眼の眼軸と前記前眼部観察光学系の光軸がなす理論的な角度をパノラマ理論相対角として算定すると共に、前記パノラマ移動後観察相対角と前記パノラマ理論相対角の比較結果に基づいて前記被検眼の視方向の変化の有無を検出する構成とするのも好適である。
このように構成することで、第2撮影において、検査光学系が直前の撮影位置からパノラマ撮影用回転角の回転移動を完了する迄の間に、被検眼の視軸の向き(視方向)が変化したか否かを検出することが可能となる。
また、本発明に係る眼科用検査装置は、上記の特徴に加えて、
前記検査光学系の補正変位角度を算定して前記光学系移動機構に与える補正条件設定部を備え、
前記視方向変化検出部は、前記移動後観察相対角が前記理論相対角から所定値以上離れている場合には、前記補正条件設定部に補正指示を与え、
前記補正条件設定部は、前記移動後観察相対角を前記理論相対角に等しくするために必要な前記補正変位角度を算定することを別の特徴とする。
検査光学系の移動中に被検眼の視方向に変化があった場合、基準位置から前記第1撮影位置に移動された検査光学系によって映し出される被検眼の画像は、本来の被検位置とは異なる位置のものとなってしまう。しかし、上記構成によれば、視方向の変化が検出されると、自動的に当該変化を打ち消すための補正変位角度が補正条件設定部によって算定されるため、この補正変位角度に応じて検査光学系を回転させることで、正しく前記第1撮影の撮影対象部位が撮影対象となるように自動補正することが可能となる。これにより、被検部位を含むパノラマ撮影を行う際の撮影精度を更に高めることができる。
本発明によれば、被験者に対して視方向を変えてもらうことなく、撮影可能領域を拡げることができる。また、それと同時に撮影に要する時間が短縮化される。
本発明に係る眼科用検査装置の一実施形態の模式的側面図である。 前記眼科用検査装置の一実施形態の模式的正面図である。 前記眼科用検査装置の本体部のθy回転移動を模式的に示す側面図である。 前記本体部のθx回転移動を模式的に示す平面図である。 前記本体部に内蔵された光学系を説明するための光路図である。 被検眼の模式的正面図及び断面図である。 前記本体部の制御系の構成を概念的に示すブロック図である。 前記眼科用検査装置を用いて被検部位の検査を行う際の処理の流れを示すフローチャートである。 本体部の回転移動によるプルキンエ像の変化を説明するための概念図である。 前記眼科用検査装置によって撮影されたパノラマ画像の模式図である。 第2実施形態の眼科用検査装置が備える本体部の制御系の構成を示す概念的ブロック図である。 第2実施形態の眼科用検査装置を用いて被検部位の検査を行う際の処理の流れを示すフローチャートである。 基準アライメント完了時における観察相対角を説明するための概念図である。 前記本体部に内蔵された光学系の別実施形態を説明するための光路図である。
本発明に係る眼科用検査装置(以下、適宜「本装置」という。)の実施形態につき、図面を参照して説明する。なお、以下の各図面は模式的に図示されたものである。
〔第1実施形態〕
本装置の第1実施形態につき説明する。
[外観の構成]
図1及び図2は、本装置の一実施形態の外観を示す模式図であり、図1は側方から見たときの図面、図2は正面から見たときの図面である。
本装置1は、XYZ架台(三軸架台ともいう)3に搭載された本体部5を備え、この本体部5内に観察・撮影用の光学系部材が収納されている。本実施形態では、本装置1が角膜内皮細胞の撮影を行うための装置であるものとして説明する。
本体部5は、支持枠7に支持された状態でXYZ架台3に搭載されている。XYZ架台3は基台11を有し、この基台11上にX軸方向にスライド可能なXテーブル13が形成されている。そして、このXテーブル13上には、Z軸方向にスライド可能なZテーブル15が形成され、更にこのZテーブル15上にはY軸方向にスライド可能なYテーブル17が形成されている。なお、この各テーブルの配置方法は、図1の形態に限られるものではない。
図1に示すように、本実施形態では、被検者から見て左右方向を「X軸方向」、上下方向(鉛直方向)を「Y軸方向」、前後方向を「Z軸方向」と規定する。つまり、Xテーブル13は左右方向にスライド可能であり、Zテーブル15は前後方向にスライド可能であり、Yテーブル17は鉛直方向に昇降可能である。各軸方向の移動機構は、送りネジ方式等の公知の機構を採用することができる。
また、Z軸方向に関し、本装置1から見て被検者側を「前方」、その反対側を「後方」と記載する。
図1に示すように、本装置1は、被検者10が額当て部33に額を当て、更に顎乗せ台35に顎を乗せることで、被検者10の顔を固定した状態で利用される。本体部5内には後述する光学系(検査光学系)が備えられており、この光学系に含まれる発光素子からの放射光が照明レンズ43を介して被検眼2に照射される。そして、この光が、被検眼2の前眼部にて反射され、その反射光が撮影レンズ41を介して本体部5内の光学系に取り込まれて、後述する処理が行われる。なお、図1において、撮影レンズ41を含む撮影光学系の光軸を符号51として表し、照明レンズ43を含む照明光学系の光軸を符号53として表している。
更に、図1には図示していないが本体部5内には前眼部2を撮影するための前眼部撮影レンズが備えられており、このレンズを介しても放射光が被検眼2に照射される。この前眼部撮影レンズについては図5を参照して後述される。
本実施形態では、支持枠7がU字フレーム形状を示す構造であり、本体部5をX軸の回りに回転可能に支持している。より具体的にいえば、本装置1は、支持枠7の前方(被検者10側)に設定された基準点31を中心とした公転動作が可能となっている。この基準点31は、後述する検査光学系の光学基準軸上に設定されており、Z軸もこの基準点31を通るように設定されている。
支持枠7の側面には、基準点31を中心とした円弧形状のガイド溝9が形成されている。また、本体部5から外方に突出した複数の案内部材19が備えられており、この案内部材19は、ガイド溝9の縁に接しながら移動することができる。そして、本体部5には、基準点31を中心とした円弧形状のラック21が形成されている。支持枠7にはY回転駆動部23が設けられており、このY回転駆動部23によって回転駆動されるピニオンギア25がラック21に咬合している。Y回転駆動部23からの制御によってピニオンギア25を回転駆動することにより、基準点31を左右方向に通過するX軸の回りに本体部5を回転移動させることができる。これにより、本体部5をY軸方向(鉛直方向)に振ることができる(θy回転移動)。
図3は、本体部5における上記X軸回りのY軸方向への回転移動(θy回転移動)を模式的に示した側面図である。本体部5の位置を区別するために、位置に応じて異なる符号を付している(5a,5b,5c)。太い実線で示された本体部5aは、被検眼2と同じ高さに位置している状態を表している。また、細い二点鎖線で示された本体部5bは、本体部5aよりも高い位置に移動した状態を表しており、同様に細い二点鎖線で示された本体部5cは、本体部5aよりも低い位置に移動した状態を表している。
再び図1に戻り、支持枠7は、更に基準点31を通過するY軸の回りにも回転可能に構成されている。具体的には、Yテーブル17に連結されて前方に延びた延長板部18にX回転駆動部27が設けられている。そして支持枠7の前部がX回転駆動部27の回転軸部28と連結されている。本体部5が移動して撮影状態のときに、この回転軸部28は基準点31を通過するY軸に共通化されている。この構成により、基準点31を上下(鉛直)方向に通過するY軸の回りに本体部5を回転移動させることができる。より具体的には、本体部5を、基準点31に向かうZ軸を中心振り分けとして水平面上を左右(X軸方向)に旋回移動させることができる(θx回転移動)。
図4は、本体部5における上記Y軸回りのX軸方向への回転移動(θx回転移動)を模式的に示した平面図である。図3と同様に、本体部5の位置を区別するために、位置に応じて異なる符号を付している(5d,5e,5f)。なお、図4では、位置関係を明瞭化するために、上から見た場合に被検者10や本体部5によって隠れる領域を有する、基台11,Xテーブル13,Zテーブル15についても意図的に図示している。
図4において、太い実線で示された本体部5dは、被検眼2に向かう方向とZ軸が一致する状態を表している。また、細い二点鎖線で示された本体部5eは、本体部5dを基準にして被検者10から見て左側に振った状態を表しており、同様に細い二点鎖線で示された本体部5fは、本体部5dを基準にして被検者10から見て右側に振った状態を表している。
以上、説明したように、本体部5のX軸回りのY軸方向への回転駆動はY回転駆動部23によって自動的に行われ、Y軸回りのX軸方向への回転駆動はX回転駆動部27によって自動的に行われる。
[光学系の構成]
次に、図5を参照して本体部5に内蔵される光学系(検査光学系)の詳細な説明を行う。図5は、本体部5に内蔵された光学系の光路図である。なお、図5の構成は、あくまで一実施形態を示すものであり、この構成に限定されるものではない。例えば、後述するように、本体部5内の各光学系にはミラー69,71及び72が備えられているが、これらのミラーは本体部5の構成をできる限りコンパクトな構成とするために配置されたものであって、必ずしもこれらのミラーを備えることが必須要件というわけではない。
図5に示すように、本実施形態の本装置1は、本体部5内に撮影光学系52,照明光学系54,前眼部観察光学系56,アライメント指標投影光学系58を備えている。
図5によれば、照明光学系の光軸53(以下、「照明光軸53」と略記)と、撮影光学系の光軸51(以下、「撮影光軸51」と略記)とが交差しており、この交点が撮影光学系52の合焦点40に対応する。なお、「合焦」についての説明は後述する。また、前眼部観察光学系の光軸55(以下、「観察光軸55」と略記)が、照明光軸53と撮影光軸51のなす角を二分する位置となるように各光学系が配置されており、この観察光軸55が本体部5内の光学系の光学基準軸50に対応する。
撮影光学系52は、照明光学系54より放射された光の、前眼部2の角膜面4での反射光を受光する光学系である。より具体的には、照明光軸53と撮影光軸51の交点、すなわち前記合焦点40を被検眼2の角膜面4上に一致させるとき、当該角膜面4で反射した光が撮影光学系52の光路を介して撮像装置62で受光される。従って、本装置1では、角膜面4での反射光を撮像装置62で受光すべく、XYZ架台3をZ方向に移動させることにより、合焦点40を被検眼2の被検部位に一致させる。この動作を「合焦」と呼ぶ。
合焦点40及び基準点31は、いずれも光学基準軸50上に位置するように設定されており、基準点31は、合焦点40よりもZ軸方向に関して前方に位置している。そして、この基準点31と合焦点40の間の距離は、一般的な角膜の曲率半径R(図6(b)参照)に対応させている。なお、図6は、被検眼を模式的に示した図面であり、(a)が正面図、(b)が断面図(A1−A2線断面)に対応している。
合焦点40を被検眼2の角膜面4に位置合わせしたとき、すなわち「合焦」がなされたとき、本装置1における基準点31が被検眼2の角膜の曲率中心20の位置に一致するように設定されている(図6(b)参照)。よって、基準点31を曲率中心20に一致させた状態の下で、本体部5(すなわち光学系)を、基準点31を中心にX軸回り或いはY軸回りに回転移動させた場合、合焦点40は、被検眼2の角膜面4に沿って円弧状に移動する。
再び図5に戻り、前眼部観察光学系56は、被検眼2の前眼部を観察するための撮像装置61(ここではテレビカメラとする)を有する光学系である。前眼部観察光学系56は、被検眼2の角膜面4におけるアライメント指標光の反射像である輝点(プルキンエ像)を撮像装置61が受像することにより、前眼部の角膜頂点位置を検出することができるように構成されている。
アライメント指標投影光学系58は、前眼部観察光学系56の観察光軸55に沿って被検眼2にアライメント指標光を照射する光学系である。ここで、アライメント指標光とは、観察光軸55(これは光学基準軸50でもある)を被検眼2の角膜頂点に位置合わせするために用いられる光を指す。
以下、各光学系の構成の詳細について説明する。
照明光学系54は、角膜照明用光源としての高輝度LED素子63を有し、この高輝度LED素子63から放射された光が集光レンズ65を透過してスリット67を背後から照射する。このスリット光はミラー69で反射された後、照明レンズ43によって被検眼2の角膜面4に結像させられる。
本実施形態における撮影光学系52は、角膜内皮細胞を撮影するための撮像装置62(ここではテレビカメラとする)を有している。図5に示されるように、本実施形態では、撮影光学系52で得られる像を受像する撮像装置62は、前眼部観察光学系56で得られる像を受像する撮像装置61とは別個の撮像装置である。
被検眼2の角膜面4において反射された照明光学系54からの前記スリット光は、撮影レンズ41を透過してミラー71で反射された後、スリット73の位置で結像される。そして、この結像された光が、リレーレンズ75を透過した後、ミラー72にて反射されて撮像装置62によって受光される。
アライメント指標投影光学系58は、アライメント指標光の光源としてのLED81を備えている。このLED81からの近赤外光は、ミラー87にて方向を変え、集光レンズ89によって平行光とされ、ハーフミラー91によって被検眼2の前眼部にその正面から照射される。アライメント指標光の被検眼2の角膜面4における反射像であるプルキンエ像は、ハーフミラー91,可視光カットフィルタ92及び前眼部撮影レンズ93を透過して撮像装置61に送られる。
この撮像装置61は、撮影光学系52及び照明光学系54の前部(被検者10側)に固定配置された前眼部照明用の赤外LED82からの照明によって照明された被検眼2の前眼部像も撮影している。撮像装置61で撮影された画像は、所定の表示処理が施された後、モニタ110へと送られる(図7参照。なお図7についての説明は後述する。)。モニタ110では、前眼部観察光学系56で撮影されている前眼部像が、LED81からの放射光の反射像たるプルキンエ像と共に表示される。このプルキンエ像が撮像装置61の表示画面の画面上の所定の位置(光学基準軸50に対応する位置)に達するように、XYZ架台3をXY方向に移動させることで、光学基準軸50を角膜頂点に一致させる。この動作を「アライメント動作」と呼ぶ。このアライメント動作は、撮像装置61上において、その中央位置にプルキンエ像が出現されるように自動的に行われるものとして構わない。
固視標投影光学系59は、被検者10に対して被検眼2に固視させるための指標光を発する基準固視灯83、及びこの基準固視灯83からの指標光をアライメント指標投影光学系58の光路に沿わせるためのコールドミラー85(可視光反射・赤外光透過ミラー)を備えている。コールドミラー85で反射された指標光は、ミラー87で光路が変更され、集光レンズ89によって平行光とされて被検眼2に投影される。従って、この基準固視灯83を固視する被検者10は、遠方視することとなる。この基準固視灯83は、後述する「基準位置」における被検者の被検眼2の状態を本装置1に認識させるために利用される。
撮影光学系52、照明光学系54、前眼部観察光学系56、アライメント指標投影光学系58及び固視標投影光学系59を備えた本体部5は、前述のように、XYZの各軸方向に直線移動が可能である。更に本体部5は、基準点31を中心としたX軸回りのY軸方向への回転移動(θy回転)、及びY軸回りのX軸方向への回転移動(θx回転)が可能である。つまり、光学基準軸50を、上下左右前後方向(XYZ方向)に直線移動させ、更に基準点31を中心として上下方向及び左右方向に傾斜させることが可能である。これらの動作の組み合わせにより、光学基準軸50を被検眼2の角膜面4上の任意の点における法線に一致させることができる。このことは、任意部位の角膜内皮細胞の撮影が可能になることを意味する。
なお、初期時においては、光学基準軸50が水平状態となるように本体部5が設定されているものとして構わない。
図5に示されるように、本実施形態では、撮影光軸51と照明光軸53とが同一鉛直面内に配置されている。このとき、撮影光学系52と照明光学系54が縦型(鉛直方向)に配置され、光学基準軸50もこれら両光軸51及び53と同一の鉛直面内に位置する。撮影光学系52は、照明光学系54よりも上方に配置され、両光軸51及び53共に、本体部5の幅方向(X軸方向)のほぼ中央に配置される。また、前眼部観察光学系56及びアライメント指標投影光学系58も、ほぼ両光軸51及び53と同一の鉛直面内に配置される。
このように光学系を配置することで、本体部5の横幅(X軸方向の幅)を小さくすることができ、コンパクトな構造が実現できる。また、本体部5の回転時において、額当て部33の支柱や顎乗せ台35、或いは被検者10の頭部との干渉が避けられ、大きなθx回転角を確保することが可能になる。ただし、光学系のこのような配置は、あくまで一例であり、必ずしもこの構成に限られるものではない。
[制御系の構成及び動作]
次に、本体部5の制御を行うための制御系の構成及び動作について説明する。図7は、前記制御系の構成を概念的に示すブロック図である。なお、図7では、制御系の動作内容を明瞭化するために、図5に示した光学系についても併せて図示している。
制御系100は、撮影画像読み出し部101、前眼部画像読み出し部103、表示用処理部105、位置指定部109、回転角算定部111及び初期位置設定部119を含む構成である。また、図示しないが、必要な情報を格納するためのメモリや全体を制御するためのCPUを備えている。
図7に示した光学系移動機構95は、本体部5を移動させることで光学系の向きや位置を移動させるための機構群を指しており、図1に示すXYZ架台3(Xテーブル13,Yテーブル17,Zテーブル15)、Y回転駆動部23、及びX回転駆動部27を含めた概念である。
撮影画像読み出し部101は、撮影光学系52で得られた像、すなわち本実施形態であれば被検眼2の角膜内皮細胞を撮影するための撮像装置62で得られた画像の読み出し処理を行う。一方、前眼部画像読み出し部103は、前眼部観察光学系56で得られた像、すなわち被検眼2の前眼部画像を撮影するための撮像装置61で得られた画像の読み出し処理を行う。
以下では、撮像装置61で得られた画像を「前眼部画像」と呼び、撮像装置62で得られた画像を「撮影画像」と呼ぶ。
各画像読み出し部101及び103で得られた画像は、表示用処理部105において所定の表示処理が施された後、モニタ110に送られる。具体的には、アライメント動作が完了した後においては、前眼部画像読み出し部103によって被検眼の前眼部画像がプルキンエ像と共に読み出される。更に、合焦後においては、撮影画像読み出し部101によって被検部位における角膜内皮細胞の撮影画像が読み出される。本実施形態では、照明光学系54の光源として高輝度LED63を用いている。高輝度LED63からの放射光が角膜面4にて反射された光を受光している間、撮像装置62では撮影画像が撮影され、その情報が撮影画像読み出し部101を介してモニタ110へと送られる。
なお、モニタ110では、撮影画像と前眼部画像を切り替えながら表示することができる構成としても構わないし、両者を並べて表示できる構成としても構わない。
以下では、制御系100の動作を説明するに当たり、本装置1を実際に利用する際のフローと共に説明する。図8は、本装置1を用いて被検部位の検査を行う際の処理の流れを示すフローチャートである。
<ステップS1>
操作者は、まず本装置1に付属の電源(不図示)スイッチを操作して、電源を入れる。
<ステップS2>
制御系100は、電源ONを検出すると、制御プログラムが起動し、本体部5を初期位置に移動させるための制御を実行する。具体的には、初期位置設定部119が、内部に記録された初期位置に関する情報を光学系移動機構95に与え、光学系移動機構95が本体部5をXYZ方向に移動し、また必要に応じてθx回転やθy回転を行って、本体部5を初期位置に設定する。
ここで、初期位置の一例としては、被検者10が顎乗せ台35に顎を乗せ、額当て部33に額を当てた状態において、本体部5が被検者10のおよそ正面に位置すると共に、被検者から見てZ方向に最も離れた位置(後方の位置)とすることができる。なお、ここでいう「初期位置」は、後述の「基準位置」とは異なる概念である。
<ステップS3>
被検者10に対し、本装置1の顎乗せ台35に顎を乗せ、額当て部33に額を当てるよう指示を行う。被検者10に応じて眼の高さは異なるため、この時点では必ずしも本体部5の光学系が被検眼2を捉えているとはいえない。また、仮に捉えていたとしても、アライメント動作が行われているわけではないので、撮像装置61によって被検眼2の前眼部が明瞭に撮影されているわけではない。
<ステップS4>
操作者はモニタ110を見ながら、顎乗せ台35の高さ(Y軸方向)や、横方向(X軸方向)の顔の位置を調整し、モニタ110に被検眼2の前眼部が表示されるように被検者10の顔と本体部5の位置関係をマニュアルで調整する(プレ設定)。ただし、本ステップにおいても、あくまでアライメント動作を行っているわけではないので、前眼部画像がモニタ110に表示されるに留まり、プルキンエ像は確認できないか若しくは不鮮明である。
<ステップS5>
ステップS4において、被検眼2の前眼部がモニタ110に表示されるようになった後、被検眼2の撮影準備ステップに入る。一例としては、LED81を点灯し、被検者10にこのLED81を固視するように指示を行う。図5を参照して説明したように、このLED81からの放射光は光学基準軸50と同じ向きに平行光として被検眼2に照射されるため、被検者10はほぼ正面を見続ければよい。これにより、被検者10の視方向がある程度固定される。
<ステップS6>
被検者10に対してLED81を固視させた状態で、操作者は本装置1に付属された撮影準備ボタン(不図示)を押す。これにより、本装置1の本体部5は自動的にアライメントされる。すなわち、被検眼2の前眼部画像のほぼ中央にプルキンエ像が表示されるように、光学系移動機構95(XYZ架台3)がXYZ方向に本体部5を移動させる。
より具体的には、まずモニタ110においてプルキンエ像が検出されるまで、本体部5をZ方向に前進、すなわち被検者10側に近付ける。そして、プルキンエ像が検出された後は、このプルキンエ像を前眼部画像上の中心位置に最も近づけるように、本体部5をX及びY方向に移動させる。
前述したように、アライメント動作は、プルキンエ像を前眼部画像上の所定位置に設定することである。本実施形態では、当該所定位置を「中心位置」としているが、この所定位置は適宜設定することが可能であり、必ずしも前眼部画像上の中心位置に設定しなければならないものではない。
本ステップで行われるアライメント動作は、本体部5を被検者10の正面に配置し、光学基準軸50を水平方向(Z方向)に向け、被検者10に正面を固視させた状態で行われるものである。以下、このような条件下で行われるアライメントを「基準アライメント」と呼ぶ。この基準アライメントが実行された後の本体部5の位置を「基準位置」と呼ぶ。
なお、本実施形態では、パノラマ撮影モードが指示されたものとして説明する。一例として、本ステップにて、パノラマで撮影を行うことを指定した上で撮影準備指示を行うものとすることができる。この場合、パノラマ撮影モードを指定しなければ、一の撮影箇所のみを通常撮影モードにて撮影する指示が行われる。
<ステップS8>
次に、操作者は、入力インタフェース102を操作して、任意の被検部位を指定する。具体的には、モニタ110上に表示された被検眼2の前眼部画像を見ながら、被検部位に相当する箇所にポインタを合わせ、マウスにてクリックするか、キーボードやタッチパネル等を操作することでその位置を確定する。図6(a)では、瞳孔中心76から上方(Y軸方向)に移動した箇所77を被検部位とした場合を示している。
<ステップS9>
操作者によって指定された被検部位に関する情報に基づいて、回転角算定部111は被検部位における法線方向を確定する。そして、この法線方向と光学基準軸50を一致させた場合に被検者の視方向と光学基準軸50がなすべき角度を算定する。つまり、基準位置における光学基準軸50を基準として、光学基準軸50をどの程度の角度変位させる必要があるかを算定する。この角度が、本体部5の回転角に相当する。
より詳細には、位置指定部109が、入力インタフェース102によって特定された被検部位77の座標に関する情報を認識し、それを回転角算定部111に出力する。回転角算定部111は、前眼部画像上における所定位置(本実施形態であれば中心位置)を基準としたときの被検部位77のX及びY軸方向の変位量を算定する。そして、この変位量と角膜の曲率半径Rに基づいて被検部位77における法線方向70を確定させる演算を行う。
図6(b)は、図6(a)の正面図を、Y軸方向に平行なA1−A2線で切断したときの断面図である。図6(b)によれば、図6(a)における被検部位77の下での法線70の方向は、被検眼の曲率中心20を通り、水平状態(Z軸に平行)の光学基準軸50に対して鉛直上方にθy2の角度をなす方向である。ただし、θy2=arcsin(D/R)である。図6(b)では、法線70の向きの理解のため、被検部位77における角膜接面77sを併せて示している。被検部位77における法線70は、当然に、被検部位77における角膜接面77sに直交する。図6(a)では、瞳孔中心からみてY方向にのみ変位した箇所を被検部位としたが、X方向にも変位している場合には、左右方向の角度θx2も併せて算定される。
なお、回転角算定部111は、メモリより角膜の曲率半径Rに関する情報を読み出して被検部位77における法線70の方向を算定するものとして構わない。そして、算定された角度に関する情報はメモリ内に記録される。
<ステップS10>
回転角算定部111は、ステップS10において算定した角度を、回転角に関する情報として光学系移動機構95に出力する。光学系移動機構95は、与えられた回転角(θx2,θy2)だけ基準点31を中心として本体部5(すなわち光学系)を回転移動させる(θx回転,θy回転)。
この動作により、回転移動後に光学系の光学基準軸50と法線70の向きが一致し、撮像装置61によって撮影された前眼部画像が映し出されているモニタ110上には、ステップS8で指定された被検部位77の位置(例えば図6参照)に被検眼2のプルキンエ像が出現する。この理由につき、以下説明する。
本ステップS10の回転移動によって、光学基準軸50は、被検部位77における法線70と平行な向きとなるため、平行光であるアライメント指標光は、法線70と同じ方向に向けて被検眼2に照射される。従って、被検眼2の表面(角膜表面)における当該アライメント指標光の反射像たるプルキンエ像は、再び光学基準軸50から撮像装置61へと送られる。つまり、モニタ110上に表示されている前眼部画像は、被検眼2を法線70の方向(この時点における光学基準軸50の方向)から見た像である。
別の箇所が被検部位と設定された場合につき、図9を参照して説明する。図9では、説明の簡単化のために、視軸96と眼軸97が同じ方向を向いている場合について図示しているが、これらの間にずれ角が存在していても、同様の理屈により説明が可能である。なお、ここで視軸96とは被験者の視方向を指し、眼軸97とは眼球の前極と後極を結ぶ軸である。瞳孔中心の位置は眼軸97によって規定される。
図9(a)は本体部5の回転移動前、すなわち本体部5が基準位置に存在する時点における被検眼2の平面図及び前眼部画像に対応する。また、図9(b)は、図9(a)上で指定された被検位置77aを角膜頂点とするように本体部5を回転移動させた後における被検眼2の平面図及び前眼部画像に対応する。
図9では、前眼部画像の中心位置からX軸方向にX2だけ移動した位置77aが被検部位として特定された場合を示している(図9(a))。このとき、ステップS9において回転角(θx2)が算定され、ステップS10においてこのθx2だけ本体部5が回転移動する。この結果、被検部位77aの箇所に生じたプルキンエ像80が前眼部画像60上に現れる(図9(b))。このとき、被検部位77aが角膜頂点に一致していると判定できる。
<ステップS11>
光学基準軸50を被検部位77における法線70と平行な方向に維持したまま、合焦を行い、合焦点40を被検部位77に一致させるように位置合わせを行う。このとき、一例としては、合焦点40を被検部位77に近づけるように、本体部5をZ軸方向に少し移動させ、その後、光学基準軸50を法線70の方向に一致させるべく本体部5をX軸方向或いはY軸方向に移動させるという制御を繰り返し行うものとすることができる。
<ステップS12>
合焦が完了すると、撮影光学系52によって得られる撮影画像(ここでは角膜内皮細胞画像)を撮影する。この画像は、撮像装置62を介してモニタ110へと送られる。本ステップS12における撮影が「第1撮影」に対応する。
<ステップS20〜S23>
上述したように、本実施形態ではパノラマ撮影モードが指定されている。このため、回転角算定部111は、予め記録されていたパノラマ撮影用回転角に関する情報を読み出して、光学系移動機構95に出力する。光学系移動機構95は、与えられた回転角だけ基準点31を中心として本体部5(すなわち光学系)を回転移動させる。
ここで、回転角算定部111が、パノラマ撮影用回転角に関する情報をメモリから読み出して光学系移動機構95に出力する構成として構わない。
パノラマ撮影としては、θx回転のみを行うX方向パノラマと、θy回転のみを行うY方向パノラマの両者の撮影が可能である。つまり、パノラマ撮影モードとしては、以下の3モードが可能である。つまり、X方向パノラマ撮影のみを行った後に、画像処理を行なって一のパノラマ画像を生成するXパノラマ撮影モード、Y方向について同様の処理を行うYパノラマ撮影モード、及び、X方向パノラマとY方向パノラマの両者の撮影を行った後、画像処理を行なって一のパノラマ画像を生成するX−Yパノラマ撮影モードである。
これらのXパノラマ撮影、Yパノラマ撮影、又はX−Yパノラマ撮影の中から、どのパノラマ撮影モードを実行するかを操作者が選択できる構成としてもよい。この場合には、一例として操作者が撮影準備ボタンを押すステップS6のタイミングで撮影モードを指定できる構成とすることができる。本実施形態では、Yパノラマ撮影モードが選択されたものとして説明する。
ここでは、Yパノラマ撮影モードが選択されているため、撮影処理回数に対応したθyに関する情報がパノラマ撮影用の回転角に関する情報として、回転角算定部111に順次与えられることとなる。一例として、被検部位77からY方向に2°ずつ振った箇所で撮影を行う。なお、Xパノラマ撮影モードであればθxに関する情報が与えられ、X−Yパノラマ撮影モードであればθx,θyに関する情報が与えられる。なお、本実施形態の構成の場合、θxはθyより大きく例えば3.5°とすることができる。
光学系移動機構95は、ステップS10と同様に、与えられた回転角(θy2)だけ基準点31を中心として本体部5を回転移動させる。そして、ステップS11及びS12と同様、合焦後に撮影を行う(ステップS21、S22)。ステップS22における撮影が「第2撮影」に対応する。
その後、パノラマ撮影に必要な撮影が完了してなければ(ステップS23においてNo)、次に読み出されたパノラマ撮影用回転角に基づいてステップS20〜S22を繰り返す。必要な撮影が全て完了していれば(ステップS23においてYes)、所定の終了処理へ移行する。
この終了処理には、得られた画像の処理が含まれる。本実施形態では、被検部位77における撮影画像、及び被検部位77の撮影位置から本体部5をY方向に2°及び4°振った箇所での撮影画像の計3画像が得られる。表示用処理部105は、撮影画像読み出し部101からこれら3画像を読み出し、合成又は結合といった所定の画像処理を行うことでパノラマ画像を生成する。これにより、ステップS10での移動後の本体部5の位置から撮影可能な領域(つまり被検部位77)に加えて、Y方向に撮影範囲を拡げることができる。
なお、本実施形態では、ステップS8にて指定された被検部位の撮影をまず行った後(第1撮影)、パノラマ撮影用回転角だけ本体部5を回転移動させて被検部位近傍の撮影を行う(第2撮影)ものとした。しかし、第1撮影として、必ずしも被検部位の撮影を行わなければならないものではない。つまり、ステップS12の第1撮影、及びステップS22の第2撮影のいずれか一方で被検部位の撮影が行われる構成であればよい。後者の場合において、更に、ステップS22の第2撮影が複数回行われる場合においては、いずれか一回で被検部位の撮影が行われる構成であればよい。
本装置1によって撮影されたパノラマ画像データの模式図を図10に示す。(a)が上述したYパノラマによる撮影画像データである。また、(b)はXパノラマによるもの、(c)及び(d)はX−Yパノラマによるものである。長方形状の撮影画像が連続する形で形成されている。各撮影画像の大きさは一例として縦約0.25mm×横約0.4mmである。各図において網掛けを付した画像部A1が被検部位の撮影画像を指している。本装置1によって、被検部位を含む広い領域の撮影画像が得られる。なお、この図では被検部位の撮影画像A1がパノラマ画像の中央に位置するように撮影された状態を示しているが、このような態様に限られるものではない。また、パノラマ画像を構成する各撮影画像の枚数や組み合わせ方法についても、図10の図示態様には限られない。
〔第2実施形態〕
本装置の第2実施形態につき説明する。本実施形態では、第1実施形態と外観及び光学系の構成は共通しており、制御系の構成及び動作が異なる。以下では、第1実施形態と異なる箇所を中心に説明する。なお、以下の図面において、第1実施形態と同一の構成要素については同一の符号を付し、同一の処理ステップについては同一のステップ番号を付すことで、説明を簡略化又は省略する。
本実施形態では、第1実施形態の構成に加えて、制御系に撮影精度を高めるための機能を付加している。
[制御系の構成及び動作]
図11は、本実施形態における制御系の構成を概念的に示すブロック図である。
本実施形態の制御系100は、第1実施形態に加えて、観察相対角算定部113、視方向変化検出部114、警告出力部115、及び補正条件設定部117を備える。なお、警告出力部115と補正条件設定部117は一方のみを備える構成であっても構わない。
以下、図12に示すフローチャートを参照しながら、本実施形態の制御系100の動作を説明する。
<ステップS1〜S6>
第1実施形態と同様に、ステップS1〜S6の各ステップを実行する。
<ステップS7>
本実施形態では、ステップS6において基準アライメントが完了した後、この時点における光学基準軸50と被検眼2の眼軸のなす角度の算定が行われる。以下では、光学基準軸50と眼軸のなす角度のことを「観察相対角」という。この言葉を用いれば、本ステップS7では、基準アライメント完了時における観察相対角が算定される。この内容につき詳細を説明する。
図13は、基準アライメント完了時における観察相対角についての説明をするための概念図である。基準アライメント完了時において、被検眼2は、正面に位置している本体部5の方向に視線を向けている。すなわち、視軸96の方向はZ軸方向であり、この方向は光学基準軸50の方向と一致している。しかし、眼球の前極と後極を結ぶ軸(眼軸)は、視軸の方向と必ずしも一致しない。瞳孔中心の位置は眼軸97によって規定される。一方、プルキンエ像の位置は光学基準軸50によって規定される。この結果、基準アライメント完了時においても、前眼部画像上における瞳孔中心とプルキンエ像の位置がずれることになる。
図13(a)は、眼軸と視軸の方向が所定角θx1だけX軸方向に振れている場合を図示したものである。一方(b)は、比較のために眼軸と視軸が共に同じ方向(Z軸方向)を向いている場合を図示したものである。いずれの図も被検眼2の視軸96の方向はZ軸方向であることを想定したものである。なお、図13(a)では、理解のために眼軸97が視軸96に対して極端にずれている場合を図示している。他方で、図13(b)のように眼軸97が視軸96と同じ方向を向くことも稀である。Z軸方向に視軸96を向けた通常の被検眼2は、図13(a)と(b)の間の状態を示すことが一般的である。
既述のように、プルキンエ像80は、LED81から放射され、ハーフミラー91によって光学基準軸50と同じ向きにされたアライメント指標光(近赤外光)が、角膜面4において反射されることで得られる像である。基準アライメント完了時においては、この光学基準軸50と視軸96が同じ向きである。このため、図13(b)に示すように、仮に眼軸97が視軸96と同じ方向を向く被検眼2の場合には、アライメント指標光がZ軸方向に放射される角膜面上の点、すなわち角膜頂点84が眼軸97上に存在することとなり、この結果、前眼部画像60上において、瞳孔中心76の位置にプルキンエ像80が現れる。
しかし、上述したように、一般的に眼軸97は視軸96に対してズレ角を有している。この場合、図13(a)に示すように、角膜頂点84は眼軸97上に存在しない。つまり、眼軸97上の点として規定される瞳孔中心76の位置と、光学基準軸50と同じZ軸方向を向いている視軸96上の点として規定されるプルキンエ像80の位置は当然にズレが生じる。図13(a)では、眼軸97が視軸96に対してX方向にθx1だけズレを有する場合を想定したため、前眼部画像60上において、瞳孔中心76はプルキンエ像80からX軸方向にdだけ離隔した位置に現れている。なお、図13において、符号64は回旋点を、符号78は瞳孔を、符号74は虹彩を夫々示している。回旋点64とは、眼軸97の向きを変える際に固定される点を指す。
なお、図13(a)のように、前眼部画像60上において瞳孔中心76の位置とプルキンエ像80の位置がずれるのは、上述のように眼軸96が視軸97に対してズレ角を有している理由の他、輻湊(両眼視状態)の発生、斜視の存在、或いは瞳孔が厳密な真円ではないこと等に由来する。
言い換えれば、基準アライメント完了時において、プルキンエ像80が瞳孔中心76の位置からがどの程度ずれているかという点は、個々の被検者10の当該被検眼2(右眼か左眼か)に特有の事情であるということが分かる。つまり、基準アライメントを行ったときのプルキンエ像80と瞳孔中心76の位置関係を把握しておくことで、この被検者10の被検眼2の特徴を認識することが可能となる。
以上説明したように、本ステップでは、基準アライメント完了時に得られるプルキンエ像80と瞳孔中心76との位置関係に基づいて、基準アライメント完了時における観察相対角を算定することで、被検眼2固有の特徴を本装置1側で認識させる。
具体的には、観察相対角算定部113が、基準アライメント終了後に得られる前眼部画像を前眼部画像読み出し部103から読み出し、これによりプルキンエ像80と瞳孔中心76の相対位置関係を認識し、それに応じて観察相対角を算定する。
例えば、図13(a)の構成であれば、観察相対角はX軸方向にθx1と求められる。このθx1の値は、角膜の曲率半径R,プルキンエ像80と角膜頂点84の間の距離L,前眼部画像60上におけるプルキンエ像80と角膜中心76のX軸方向のズレ量dを用いて、θx1=arctan[d/(R−L)]として算定される。ここで、「d」の値は、前眼部画像60から読み取られる。また、RやLの値は、予めメモリに記録されており、観察相対角算定部113がメモリから必要な情報を読み出して演算処理を行うものとして構わない。Lの値としては、一般的な値(例えば3.8mm)を利用することができる他、L≒R/2として演算に用いても構わない。なお、一般的なRはR=7.7mmである。一方で、図13(b)の構成であれば、観察相対角が0と求められる。
本ステップS7で算定された、基準アライメント完了時における観察相対角に関する情報は、被検眼2に固有の情報として記録される。また、本ステップS7において、基準アライメント完了時に得られる前眼部画像60についても、メモリに記録されるものとしても構わない。
なお、図13(a)では、基準アライメント完了時、すなわち視軸96をZ軸の方向に向けたときに、X軸方向にのみ眼軸97が振れている場合を説明したが、Y軸方向にのみ振れている場合もあり得るし、両方向に振れている場合も当然にあり得る。両方向に振れている場合には、X軸方向、Y軸方向双方における観察相対角(θx1,θy1)を算定する。
<ステップS8〜S12>
第1実施形態と同様に、ステップS8〜S12の各ステップを実行する。ステップS12の実行により、被検部位77の撮影(第1撮影)が完了する。
<ステップS13〜S14>
撮影が完了すると、当該撮影された箇所がステップS8で指定した被検部位77に一致しているかどうかの検証が行われる。まず、観察相対角算定部113は、ステップS7と同様の方法により、この時点における観察相対角を算定する(ステップS13)。すなわち、前眼部画像60より、プルキンエ像80の位置を基準としたときの瞳孔中心76の相対的な位置関係を読み出して、観察相対角を算定する。すなわち、瞳孔中心76とプルキンエ像80のX方向に係る離間距離d2,角膜の曲率半径R,プルキンエ像80と角膜頂点(ここでは77a)の間の距離Lに基づいて、X方向の観察相対角が求められる。Y方向についての観察相対角も同様に算定できる。なお、本ステップS13で算定される観察相対角と、ステップS9で算定された観察相対角を区別すべく、以下では、前者を「移動後観察相対角」、後者を「基準時観察相対角」と呼ぶ。
次に、視方向変化検出部114は、ステップS7で算定された基準時観察相対角、及びステップS9で算定された回転角に基づき、ステップS8で指定された被検位置の法線70に光学基準軸50の向きを一致させた場合に、当該被検眼2が示すであろう、プルキンエ像80の位置を基準としたときの瞳孔中心76の相対的な位置関係を理論的に算定する。そして、この理論的に算定された相対角(以下、「理論相対角」という)と、ステップS13で算定された移動後観察相対角との比較を行う(ステップS14)。そして、その差が十分小さい場合には(ステップS14においてNo)、ステップS12において被検部位77が正しく撮影されていたと判定される。
ステップS7で算定された基準時観察相対角は、基準アライメント完了時における光学基準軸50と眼軸97の相対角に対応し、これは、当該被検眼2の視軸96と眼軸97の相対角に対応する。そして、光学基準軸50をステップS9で算定された回転角(θx2,θy2)だけ回転させた場合、被検眼2の視軸96の向きが変化していなければ、光学基準軸50と眼軸97の相対角は、当該回転角に基準時観察相対角を加算したものに相当するはずである。ステップS13で算定される理論相対角は、被検眼2の視軸96の向きがZ軸方向のまま固定されていれば実現するはずの観察相対角に対応する。
従って、ステップS13で得られた観察相対角(移動後観察相対角)が、ステップS14で算定される理論相対角に十分近い値を示していれば、視方向変化検出部114によって、ステップS12の撮影時においても被検眼2の視軸はZ軸方向を向いていると判断できる。すなわち、ステップS12の撮影ステップで、ステップS8で指定された被検部位が正しく撮影されたと判断できる。
<ステップS16>
移動後観察相対角と理論相対角の差が無視できない程度の値として認められる場合(ステップS14においてYes)、被検部位77が正しく撮影されていなかったと判断され、警告出力部115がその旨の情報をモニタ110等に出力させる(ステップS16)。操作者は、モニタ110を確認することで、被検眼2の視方向がずれていることが認識できる。この場合、例えば本体部5をいったん基準位置に復帰させて、被検者10に正面に位置するLED81を確認させ、そのまま視線を固定するように改めて指示をする。そして、直前のステップS9で算定した回転角に基づく回転移動、合焦を行った後、撮影を行う(ステップS10〜S12)。そして、再び移動後観察相対角を算定し(ステップS13)、理論相対角との差が小さくなっていることを確認する(ステップS14)。
なお、本体部5の回転移動にも関わらず、検査終了まで被検者10によって固視できる位置に固視灯を設けてもよい。このときの固視灯位置は、ステップS6の基準アライメント時に固視している方向にほぼ等しく、その後の本体部5の回転動作によって移動しない位置であればよい。このような構成の下では、移動後観察相対角と理論相対角の差が無視できない程度の値として認められる場合(ステップS14においてYes)、被検者10に当該固視灯に視線を向けるように指示した状態で、ステップS11に戻るようにしてもよい。
更に、制御系100が補正条件設定部117を備える構成の場合には、ステップS16において当該補正条件設定部117が、ステップS13で得られた移動後観察相対角を理論相対角に近づけるために、必要な本体部5の補正変位角度(θx回転、θy回転)を算定し、その情報を光学系移動機構95に出力して補正処理を実行する(ステップS15)。この場合、光学系移動機構95が与えられた補正情報に基づいて再度、本体部5の回転移動とアライメント及び合焦を実行することで、被検部位を撮影対象に再設定することができる。
<ステップS20〜S22>
ステップS14において、被検部位77が正しく撮影されていたと判断された場合には、第1実施形態と同様に、パノラマ撮影用に本体部5(すなわち光学系)を回転移動させる。そして、合焦後に撮影を行う(第2撮影)。
<ステップS33〜S34>
撮影後、ステップS13と同様の方法により、観察相対角算定部113はこの時点における観察相対角を算定する(ステップS33)。本ステップで算定される角度は「パノラマ移動後観察相対角」に対応する。そして、視方向変化検出部114は、ステップS7で算定された基準時観察相対角、ステップS9で算定された回転角、及びパノラマ撮影用回転角に基づき、ステップS20による回転移動によって対象となるパノラマ用の被検位置の法線70に光学基準軸50の向きを一致させた場合における理論相対角を算定する。ここで算定される角度は「パノラマ理論相対角」に対応する。そして、このパノラマ理論相対角とパノラマ移動後観察相対角との比較を行う(ステップS34)。そして、その差が十分小さい場合には(ステップS34においてNo)、ステップS22において、被検部位77からパノラマ撮影用回転角だけ移動した部位、つまり、被検部位77を含むパノラマ画像を生成するために必要な近傍位置が正しく撮影できていたと判定される。
このとき、パノラマ撮影に必要な撮影が完了してなければ(ステップS23においてNo)、次に読み出された回転角に基づいてステップS20〜S22、S33、S34)を繰り返す。必要な撮影が全て完了していれば(ステップS23においてYes)、所定の終了処理へ移行する。
一方、パノラマ移動後観察相対角とパノラマ理論相対角の差が無視できない程度の値として認められる場合(ステップS34においてYes)、上述したステップS16と同様、警告又は補正処理を実行する。
本実施形態によれば、被検部位を撮影する際に、基準アライメント時から撮影時までの間に万一被検眼2の視方向が変化したとしても、本装置1側でそのことを認識することができる。これにより、被検部位の再設定或いは自動的な補正処理を行うことで正しく被検部位を撮影することが可能となる。
つまり、第1実施形態の構成と比較した場合、被検部位及びパノラマ画像用に必要なその近傍箇所を正しく撮影できていることを操作者が認識することができる。これにより、撮影精度を高めることが可能となる。
なお、上記実施形態では、角度ズレの有無に関わらず取りあえず撮影を行い、撮影後に警告を行う構成としたが、撮影前に補正処理を行い、角度ズレが無視できる程度にまで小さくなった時点で初めて撮影を行う構成としても構わない。具体的には、第1撮影において、被検部位の撮影前に観察相対角の算定及び角度ズレの有無の判定を行う(ステップS13、S14)。そして、角度ズレがある場合には、補正処理を行い(ステップS16)、角度ズレが無視できる程度にまで小さくなった時点で初めて撮影ステップS12(第1撮影)に移行する。第2撮影においても同様に、第2撮影前に観察相対角の算定及び角度ズレの有無の判定を行う(ステップS33、S34)。そして、角度ズレがある場合には、補正処理を行い(ステップS16)、角度ズレが無視できる程度にまで小さくなった時点で初めて撮影ステップS22(第2撮影)に移行する。
また、本実施形態では、ステップS33において第2撮影時の観察相対角を算定する構成とした。しかし、ステップS7で算定した第1撮影時の観察相対角に基づいてステップS34の角度ズレ有無判定を行うものとしても構わない。これは、本実施形態があくまで連続したパノラマ撮影を想定しており、短時間の間に第1撮影と第2撮影の間で被験者の視方向が変化する可能性は低いと考えられるためである。この場合、一連のパノラマ撮影に必要な処理数を削減することができる。
〔別実施形態〕
以下、別実施形態について説明する。
〈1〉本装置1において、パノラマ撮影を行うに際し、撮影回数を操作者側で任意に設定できるものとしても構わない。この場合、入力インタフェース102において、撮影範囲の広狭を設定できる構成とし、この設定情報に基づいて制御系100において撮影回数が決定されるものとすることができる。
更に、上述の実施形態では、パノラマ撮影用回転角に関する情報が、メモリなどに予め記録されているものとしたが、この回転角についても操作者が任意に設定できる構成としても構わない。
〈2〉上記実施形態では、本体部5内において図5に示したように、2つの撮像装置61及び62を光学系に備える構成とした。しかし、図14に示すように、1つの撮像装置120のみを備える構成であっても、本装置1の光学系を実現することは可能である。
図14は、本別実施形態における本体部5内の光学系を説明するための光路図である。なお、図14において、図5と同一の要素については同一の符号を付している。
図14の構成は、図5の構成と異なり、前眼部撮影レンズ93を介した光(赤外光)が、コールドミラー121を通過して撮像装置120で受光される。コールドミラー121は、ミラー72とは異なり、可視光を反射して赤外光を透過する性質を有する。その他の要素については、図5と共通している。
撮像装置120では、撮影光学系52からの光と、前眼部観察光学系56からの光の両方が受光される。このため、両画像が混在することのないように、両光学系の光源であるLED63,赤外LED82の点灯タイミングを制御する。すなわち、LED63と赤外LED82をいずれも同じ時間間隔で点滅させ、一方のLEDが点灯中においては他方のLEDを消灯する制御を行う。例えば、前半の1/60秒間においては赤外LED82を点灯する一方でLED63を消灯し、後半の1/60秒間においては赤外LED82を消灯する一方でLED63を点灯するという制御を繰り返し行う。これにより、前半のタイミングでは撮像装置120には被検眼2の前眼部画像が撮影され、後半のタイミングでは被検部位の角膜内皮細胞の画像が撮影される。
ただし、このような時分割制御は、両光学系の画像の認識が必要な期間、例えば、図8におけるステップS11〜S14の実行中にのみ行う構成として構わない。
〈3〉 上記実施形態では、ステップS6における基準アライメント動作の完了後に観察される前眼部画像をモニタ110で見ながら、ステップS8において操作者が入力インタフェース102を操作して被検部位の位置を指定する構成とした。しかし、被検部位の位置を指定する際には必ずしも被検者の前眼部画像が必要であるわけではない。
例えば、予めダミーの前眼部画像(以下、「ダミー画像」と略記する。)を用意しておき、操作者がモニタ110上に映し出されたダミー画像を見ながら、被検部位を入力インタフェース102で指定する。この指定は、本装置1の電源ON後、ステップS9までのどのタイミングで行っても構わない。
この構成の下で、第2実施形態のように被験者の視方向が変化したことを検出する機能を付加する場合につき説明する。このとき、本装置1は、ステップS6において基準アライメントを行い、ステップS7において基準アライメント時における観察相対角(基準時観察相対角)を算定した後、ダミー画像上で指定された被検部位の位置に関する情報に基づいて、ステップS9において回転角を算定する。そして、光学系を移動させて撮影を行った後、観察相対角(移動後観察相対角)を算定する(ステップS13)。そして、基準時観察相対角と回転角より理論相対角を算定して、移動後観察相対角との比較を行い(ステップS14)、被検位置が正しく撮影できているかの検証を行う。
〈4〉 第2実施形態では、瞳孔中心とプルキンエ像の相対的位置関係に基づいて被検眼2の観察相対角を算定する構成としたが、これ以外の検出方法を利用して視方向を検出する構成としても構わない。例えば、瞳孔中心に代えて、虹彩(黒目部)と強膜(白目部)の境界、或いは他のプルキンエ像(第4プルキンエ像等)を利用して、プルキンエ像(ここでは第1プルキンエ像に相当する)の位置を把握する構成としても構わない。
〈5〉 第2実施形態では、ステップS14において、理論相対角の算定と、この理論相対角及びステップS13で算定された移動後観察相対角の比較とを行う構成とした。しかし、基準時観察相対角及び回転角に関する情報があれば、理論相対角の算定は行える。このため、理論相対角の算定ステップS9以後ステップS14までのどのタイミングで行っても構わない。
1: 本発明に係る眼科用検査装置
2: 被検眼
3: XYZ架台(三軸架台)
4: 角膜面
5: 本体部
5a,5b,5c,5d,5e,5f: 位置を区別した本体部
7: 支持枠
9: ガイド溝
10: 被検者
11: 基台
13: Xテーブル
15: Zテーブル
17: Yテーブル
18: 延長板部
19: 案内部材
20: 被検眼の角膜の曲率中心
21: ラック
23: Y回転駆動部
25: ピニオンギア
27: X回転駆動部
28: 回転軸部
31: 基準点
33: 額当て部
35: 顎乗せ台
40: 合焦点
41: 撮影レンズ
43: 照明レンズ
50: 光学基準軸
51: 撮影光学系の光軸(撮影光軸)
52: 撮影光学系
53: 照明光学系の光軸(照明光軸)
54: 照明光学系
55: 前眼部観察光学系の光軸(観察光軸)
56: 前眼部観察光学系
58: アライメント指標投影光学系
59: 固視標投影光学系
60: 前眼部画像
61: 撮像装置
62: 撮像装置
63: 高輝度LED素子
64: 回旋点
65: 集光レンズ
67: スリット
69: ミラー
70: 法線方向
71: ミラー
72: ミラー
73: スリット
74: 虹彩
75: リレーレンズ
76: 瞳孔中心
77: 被検部位
77s: 被検部位における角膜接面
78: 瞳孔
79: プルキンエ像の虚像
80: プルキンエ像
81: LED
82: 赤外LED
83: 基準固視灯
84: 角膜頂点
85: コールドミラー
87: ミラー
89: 集光レンズ
91: ハーフミラー
92: 可視光カットフィルタ
93: 前眼部撮影レンズ
95: 光学系移動機構
96: 視軸
97: 眼軸
100: 制御系
101: 撮影画像読み出し部
102: 入力インタフェース
103: 前眼部画像読み出し部
105: 表示用処理部
109: 位置指定部
110: モニタ
111: 回転角算定部
113: 観察相対角算定部
114: 視方向変化検出部
115: 警告出力部
117: 補正条件設定部
119: 初期位置設定部
120: 撮像装置
121: コールドミラー
D: 被検部位と角膜頂点の間のXY平面上における距離
L: プルキンエ像の虚像と角膜頂点の間の距離
R: 角膜の曲率半径

Claims (13)

  1. 被検者の被検眼を検査するための眼科用検査装置であって、
    照明光によって前記被検眼の前眼部を斜め前方から照明する照明光学系及び前記被検眼の前眼部で前記照明光が反射された反射光を受光する撮影光学系、を含む検査光学系と、
    指定された検査条件に基づいて前記検査光学系を回転移動させる光学系移動機構と、
    前記被検眼の被検部位の位置の指定を受け付ける位置指定部と、を有し、
    前記検査条件が前記被検部位を含むパノラマ撮影である場合、前記撮影光学系は、まず前記位置指定部で指定された前記被検部位の位置情報に基づいて前記光学系移動機構によって前記検査光学系が第1撮影位置に移動された状態で第1撮影を行った後、前記光学系移動機構によって前記検査光学系が直前の撮影位置から所定のパノラマ撮影用回転角だけ回転移動された第2撮影位置で引き続き第2撮影を行うことで、前記被検部位を含む領域の撮影を行うことを特徴とする眼科用検査装置。
  2. 前記撮影光学系が前記第2撮影を複数回繰り返し実行することを特徴とする請求項1に記載の眼科用検査装置。
  3. 前記第1撮影位置又はいずれか一の前記第2撮影位置が、前記被検部位の撮影位置であることを特徴とする請求項2に記載の眼科用検査装置。
  4. 前記光学系移動機構は、前記照明光学系の照明光軸と前記撮影光学系の撮影光軸との交差角を二分する方向の軸である光学基準軸が前記第1撮影の撮影対象部位の法線方向に一致するように前記検査光学系を回転移動させることで、前記検査光学系を前記第1撮影位置に移動させることを特徴とする請求項1〜3のいずれか1項に記載の眼科用検査装置。
  5. 前記検査光学系に含まれる、前記被検眼の前眼部を観察する前眼部観察光学系と、
    前記位置指定部で指定された前記被検部位の位置情報に基づいて、前記検査光学系を前記第1撮影位置に移動させるべき回転角を算定し、前記光学系移動機構に当該回転角に関する情報を出力する回転角算定部と、を有し、
    前記回転角算定部は、前記第1撮影において、前記光学基準軸に一致する前記前眼部観察光学系の観察光軸が前記第1撮影の撮影対象部位の法線方向に一致する際に満たすべき前記被検眼の視軸と前記前眼部観察光学系の光軸の間の角度を回転角として算定することを特徴とする請求項4に記載の眼科用検査装置。
  6. 前記回転角算定部は、前記第2撮影において、前記検査条件として指定されたパノラマ撮影のモードに応じて予め定められた前記パノラマ撮影用回転角に関する情報を前記光学系移動機構に出力することを特徴とする請求項5に記載の眼科用検査装置。
  7. 前記検査光学系が前記第1撮影位置に存在する状態下で前記前眼部観察光学系によって観察された前記被検眼の前眼部画像から得られる情報に基づいて、観察された前記被検眼の眼軸と前記検査条件の下での前記前眼部観察光学系の光軸との間の角度である観察相対角を算定する観察相対角算定部を備えることを特徴とする請求項5又は6に記載の眼科用検査装置。
  8. 前記観察相対角算定部は、前記前眼部画像上に表示されるプルキンエ像の相対位置に基づいて前記観察相対角を算定することを特徴とする請求項7に記載の眼科用検査装置。
  9. 前記観察相対角算定部は、前記前眼部画像より瞳孔の中心位置を読み取ると共に、当該瞳孔の中心位置と前記プルキンエ像の相対位置関係に基づいて前記観察相対角を算定することを特徴とする請求項に記載の眼科用検査装置。
  10. 前記検査光学系を所定の基準位置から前記第1撮影位置に移動を完了させる迄の間の、前記被検眼の視方向の変化の有無を検出する視方向変化検出部を有し、
    前記観察相対角算定部は、前記基準位置での前記観察相対角を基準観察相対角として算定すると共に、前記検査光学系が前記第1撮影位置に存在する状態下での前記観察相対角を移動後観察相対角として算定し、
    前記視方向変化検出部は、前記基準観察相対角と前記回転角に基づいて、前記検査光学系が前記第1撮影位置に存在する状態下での前記被検眼の眼軸と前記前眼部観察光学系の光軸がなす理論的な角度を理論相対角として算定すると共に、前記移動後観察相対角と前記理論相対角の比較結果に基づいて前記被検眼の視方向の変化の有無を検出することを特徴とする請求項7〜9のいずれか1項に記載の眼科用検査装置。
  11. 前記観察相対角算定部は、前記基準位置において前記前眼部観察光学系の光軸を前記被検眼の前記視軸と同じ向きにした状態で前記基準観察相対角を算定することを特徴とする請求項10に記載の眼科用検査装置。
  12. 前記観察相対角算定部は、前記検査光学系が直前の撮影位置から前記パノラマ撮影用回転角だけ回転移動した状態下での前記観察相対角をパノラマ移動後観察相対角として算定し、
    前記視方向変化検出部は、前記基準観察相対角、前記回転角、及び前記パノラマ撮影用回転角に基づいて、前記検査光学系が前記第2撮影位置に存在するときの前記被検眼の眼軸と前記前眼部観察光学系の光軸がなす理論的な角度をパノラマ理論相対角として算定すると共に、前記パノラマ移動後観察相対角と前記パノラマ理論相対角の比較結果に基づいて前記被検眼の視方向の変化の有無を検出することを特徴とする請求項10又は11に記載の眼科用検査装置。
  13. 前記検査光学系の補正変位角度を算定して前記光学系移動機構に与える補正条件設定部を備え、
    前記視方向変化検出部は、前記移動後観察相対角が前記理論相対角から所定値以上離れている場合には、前記補正条件設定部に補正指示を与え、
    前記補正条件設定部は、前記移動後観察相対角を前記理論相対角に等しくするために必要な前記補正変位角度を算定することを特徴とする請求項10〜12のいずれか1項に記載の眼科用検査装置。
JP2012032980A 2012-02-17 2012-02-17 眼科用検査装置 Active JP5982616B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032980A JP5982616B2 (ja) 2012-02-17 2012-02-17 眼科用検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032980A JP5982616B2 (ja) 2012-02-17 2012-02-17 眼科用検査装置

Publications (2)

Publication Number Publication Date
JP2013169233A JP2013169233A (ja) 2013-09-02
JP5982616B2 true JP5982616B2 (ja) 2016-08-31

Family

ID=49263613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032980A Active JP5982616B2 (ja) 2012-02-17 2012-02-17 眼科用検査装置

Country Status (1)

Country Link
JP (1) JP5982616B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403235B2 (ja) * 2009-05-20 2014-01-29 株式会社コーナン・メディカル 角膜内皮検査装置
JP5386759B2 (ja) * 2009-10-07 2014-01-15 株式会社コーナン・メディカル 角膜内皮検査装置

Also Published As

Publication number Publication date
JP2013169233A (ja) 2013-09-02

Similar Documents

Publication Publication Date Title
JP2942321B2 (ja) 徹照像撮影装置
JP4843242B2 (ja) 眼底カメラ
JP4937792B2 (ja) 眼底カメラ
JP3660118B2 (ja) 前眼部撮影装置
JP6003292B2 (ja) 眼底撮影装置
JP5403235B2 (ja) 角膜内皮検査装置
JP5987477B2 (ja) 眼科撮影装置
JP2006325936A (ja) 眼科装置
JP2000287934A (ja) 眼底カメラ
JP5386759B2 (ja) 角膜内皮検査装置
JP2004361891A (ja) 観察装置
JP6090977B2 (ja) 眼科用検査装置
JP5097966B2 (ja) 眼科用検査装置
JP5772101B2 (ja) 眼底撮影装置
JP6061287B2 (ja) 角膜検査装置
JP2000189387A (ja) 眼科撮影装置
JPH07121255B2 (ja) 角膜内皮細胞観察撮影装置
JP5982616B2 (ja) 眼科用検査装置
JP5994070B2 (ja) 眼科用検査装置及びこれを用いた検査方法
JP5927689B2 (ja) 眼科用検査装置
JP2831546B2 (ja) 角膜撮影位置表示方法およびその装置
JP2003079579A (ja) 眼科装置
JP3708694B2 (ja) 眼科装置用の作動位置決定装置および眼底撮影装置用の作動位置決定装置
JP5787060B2 (ja) 眼底撮影装置
JPH1043137A (ja) 眼科装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160629

R150 Certificate of patent or registration of utility model

Ref document number: 5982616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250