JP5976353B2 - 荷電粒子照射システムおよび照射計画装置 - Google Patents

荷電粒子照射システムおよび照射計画装置 Download PDF

Info

Publication number
JP5976353B2
JP5976353B2 JP2012068047A JP2012068047A JP5976353B2 JP 5976353 B2 JP5976353 B2 JP 5976353B2 JP 2012068047 A JP2012068047 A JP 2012068047A JP 2012068047 A JP2012068047 A JP 2012068047A JP 5976353 B2 JP5976353 B2 JP 5976353B2
Authority
JP
Japan
Prior art keywords
irradiation
target
charged particle
particle beam
permission range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012068047A
Other languages
English (en)
Other versions
JP2013198579A (ja
Inventor
祐介 藤井
祐介 藤井
林太郎 藤本
林太郎 藤本
真澄 梅澤
真澄 梅澤
妙子 松浦
妙子 松浦
宮本 直樹
直樹 宮本
伸一 清水
伸一 清水
千枝 寅松
千枝 寅松
聖心 ▲高▼尾
聖心 ▲高▼尾
英明 二本木
英明 二本木
雄一 平田
雄一 平田
梅垣 菊男
菊男 梅垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012068047A priority Critical patent/JP5976353B2/ja
Priority to PCT/JP2013/051789 priority patent/WO2013140856A1/ja
Publication of JP2013198579A publication Critical patent/JP2013198579A/ja
Application granted granted Critical
Publication of JP5976353B2 publication Critical patent/JP5976353B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1068Gating the beam as a function of a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Radiation-Therapy Devices (AREA)

Description

本発明は、荷電粒子照射システムおよび照射計画装置に係わり、特に、スキャニング照射法を用いる荷電粒子照射システムおよび照射計画装置に関する。
癌などの患者に荷電粒子ビーム(粒子線)を照射する方法が知られている。荷電粒子ビームを照射する荷電粒子照射システムは荷電粒子発生装置とビーム輸送系と治療室を備えている。スキャニング照射法を用いる荷電粒子照射システムでは、荷電粒子ビーム発生装置で加速された荷電粒子ビームはビーム輸送系を経て治療室の照射装置に達し、照射装置の走査電磁石により走査され、患者の体内で患部形状に適した線量分布を形成する。
ところで、患部などの照射標的が呼吸などで移動すると、予め計画した線量分布を形成することが難しくなる。そこで計画通りの線量分布を形成する方法として、特許文献1はゲート照射と呼ばれる方法を開示している。ゲート照射は、標的が予め決めた位置(出射許可範囲)にある場合に粒子線を照射する方法である。特許文献2は追尾照射と呼ばれる方法を開示している。追尾照射は、走査電磁石の励磁量とエネルギー吸収体の厚みの少なくとも一方を変更することにより、標的の移動に合わせて荷電粒子ビームの位置を変更する方法である。
特開2008-154627号公報 特開2004-504121号公報
特許文献1に記載のようなゲート照射では、計画通りの線量分布を形成するためには出射許可範囲を小さくする必要がある。出射許可範囲を小さくするほど出射できる時間は短くなり、照射時間(治療時間)が長くなるという課題がある。
特許文献2に記載のような追尾照射では、走査電磁石の励磁量を変更して走査をする場合、標的が深さ方向へ移動する、或いは標的までの水等価厚が変化すると、計画した位置にブラッグピークを形成できず、計画した線量分布を形成することができないという課題がある。
また、患部の移動に合わせてエネルギー吸収体の厚みを変更するため、エネルギー吸収体により荷電粒子ビームが散乱されて、荷電粒子ビームのサイズが大きくなるという課題がある。荷電粒子ビームのサイズが大きくなるとペナンブラが大きくなり、線量分布の一様度が悪化する。
本発明の目的は、スキャニング照射法による粒子線照射システムにおいて、計画通りの線量分布を形成することができ、かつ従来のゲート照射に比べて照射時間(治療時間)を短縮することができる荷電粒子照射システムおよび照射計画装置を提供することである。
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
その一例として、本発明の荷電粒子照射システムは、荷電粒子ビームを生成して出射する加速器と、前記荷電粒子ビームを走査する走査電磁石を有し、前記荷電粒子ビームを照射標的に照射する照射装置と、前記照射標的の位置を計測する標的監視装置と、前記標的監視装置からの信号に基づき前記走査電磁石の励磁電流値を補正して前記荷電粒子ビームを照射標的に照射する追尾照射と、前記標的監視装置からの信号に基づき前記照射標的が予め定めた出射許可範囲内にあるとき荷電粒子ビームを照射するゲート照射とを行う制御装置とを備え、前記制御装置は、前記標的監視装置によって計測した前記照射標的の位置が前記ゲート照射の出射許可範囲内にあるときに前記追尾照射を行う構成とする。
これによりスキャニング照射法による粒子線照射システムにおいて、従来より広い出射許可範囲に対して計画通りの線量分布を形成することができる。また、出射許可範囲を広げることで照射時間(治療時間)を短くすることができる。
好ましくは、制御装置は、複数の照射位置に対して照射位置毎に出射許可範囲が設定されており、この出射許可範囲の中で追尾照射を行う。
また、本発明の照射計画装置は、照射位置毎に前記出射許可範囲を指定する演算装置を備える。
これにより標的までの水等価厚が変化することで粒子線の飛程が変化する場合でも、出射許可範囲を適切に設定し、計画通りの線量分布を形成することができる。
計画通りの線量分布を形成することができ、かつ従来のゲート照射に比べて照射時間(治療時間)を短縮することができる。
本発明の一実施例である放射線照射システムの全体概略構成を示す図である。 本発明の一実施例である放射線照射システムに備えられる照射制御装置の構成を示すブロック図面である。 照射対象に粒子線を照射した場合に得られる深さ方向の線量分布を示す図である。 照射対象に粒子線を照射した場合に得られる横方向の線量分布を示す図である。 ゲート照射を実施する場合に粒子線の出射を許可するタイミングを示すタイムチャートである。 追尾照射を実施する場合に補正励磁電流が変化する様子を示すタイムチャートである。 本発明の一実施例であるデータベースに記憶される照射パラメータを示す概念図である。 本発明の一実施例である照射計画システムが出射許可範囲を決定する方法を示す図面である。 本発明の一実施例である粒子線照射システムが粒子線を照射する手順を示したフローチャートである。 ゲート照射と追尾照射を実施する場合の出射を許可するタイミングと励磁電流値の変化を示すタイムチャートである。 ゲート照射と追尾照射を行う場合の出射を許可するタイミングと励磁電流値の変化を示すタイムチャートである。 ゲート照射と追尾照射を行う場合の出射を許可するタイミングと励磁電流値の変化を示すタイムチャートであって、出射許可範囲の大きさを図5の従来のゲート照射の場合よりも広げた場合のものである。 照射計画装置の構成を示す図である。
以下、ゲート照射と走査電磁石による追尾照射とを実施する粒子線治療装置の好適な実施例について説明する。
本実施例の粒子線照射システムは、荷電粒子ビーム発生装置1,ビーム輸送系2,放射線治療室17および制御システム7を備える。
荷電粒子ビーム発生装置1は、イオン源,前段荷電粒子ビーム加速装置であるライナック3および加速器であるシンクロトロン4を有する。シンクロトロン4は、高周波印加装置5,加速装置6を有する。高周波印加装置5はシンクロトロン4の周回軌道に配置された高周波印加電極および高周波印加電源を備える。高周波印加電極と高周波印加電源はスイッチにより接続される。加速装置6は粒子線の周回軌道に配置された高周波加速空洞および高周波加速空洞に高周波電力を印加する高周波電源を備える。出射用デフレクタ11がシンクロトロン4とビーム輸送系2を接続する。
ビーム輸送系2は、ビーム経路12,四極電磁石,偏向電磁石13、14、15、16を有する。ビーム経路12は、治療室17内に設置された照射装置21に接続される。
治療室17内に略筒状のガントリー18が設置されている。ガントリー18には、ビーム輸送系2の一部である偏向電磁石15、16、照射標的26に荷電粒子ビーム(イオンビーム)を照射する照射装置21、X線発生装置35、36、X線検出器37、38が設置されている。ガントリー18の内部には照射対象25を設置するために、カウチ24と呼ばれる治療用ベッドが設置される。
ガントリー18は、モーターにより回転可能な構造をしている。ガントリー18の回転と共に偏向電磁石15、16と照射装置21、X線発生装置35、36、およびX線検出器37、38が回転する。このガントリー18の回転および各機器がこの動きに連動することにより、照射対象25に対してガントリー18の回転軸に垂直な平面内のいずれの方向からも粒子線を照射することができる。
ガントリー18に備えられた照射装置21は、走査電磁石31,走査電磁石32,位置モニタ34,線量モニタ33を内部に有する。本実施の放射線照射システムは、照射装置21が二台の走査電磁石31,32を備え、ビーム進行方向と垂直な面内の二つの方向(X方向,Y方向)にそれぞれ粒子線を偏向し、照射位置を変更する。位置モニタ34は、粒子線の位置と粒子線の広がりを計測する。線量モニタ33は、照射された粒子線の量を計測する。
第一のX線発生装置35と第二のX線発生装置36は、ガントリー18に設置されており、透視用のX線を発生させる。照射装置21の照射口先端部には、フラットパネル型の第一のX線検出器37と第二のX線検出器38が設置されている。X線検出器37はX線発生装置35からのX線の信号を検出し、X線検出器38はX線発生装置36からのX線の信号を検出する。
照射対象25内には照射標的26があり、粒子線を照射することで照射標的26を覆うような線量分布を照射対象25内に形成する。ここで癌などの治療の場合は、照射対象25は人であり照射標的26は腫瘍である。
本実施例の粒子線照射システムが備えている制御システム7について、図1を用いて説明する。制御システム7は、記憶装置であるデータベース42,中央制御装置46,加速器制御装置47、照射制御装置48および動体追跡装置49を備える。データベース42はX線CT装置40に接続された照射計画装置41に接続されている。照射計画装置41が作成する照射に必要なデータはデータベース42に記録される。中央制御装置46は、加速器制御装置47、照射制御装置48、および動体追跡装置49に接続される。また、中央制御装置46は、データベース42に接続される。中央制御装置46は、データベース42からデータを受け取り、加速器制御装置47、照射制御装置48、および動体追跡装置49に必要な情報を送信し制御する。加速器制御装置47は、荷電粒子ビーム発生装置1、ビーム輸送系2およびガントリー18に接続され、これらを制御する。照射制御装置48は、走査電磁石31,32を励磁する走査電磁石電源の制御と照射装置21内の各モニタからの信号を処理する。動体追跡装置49はX線発生装置35、36、X線検出器37、38に接続され、これらを制御する。X線発生装置35、36、X線検出器37、38、動体追跡装置49は照射標的26の位置を計測する標的監視装置を構成する。
図2を用いて照射制御装置48の詳細を説明する。照射制御装置48は照射装置21内の位置モニタ34、線量モニタ33および走査電磁石31,32を励磁する走査電磁石電源51に接続しており、これらを制御する。また、動体追跡装置49および加速器制御装置47と接続しており、これらの機器と通信する。照射制御装置48は出射許可範囲メモリ48a、位置メモリ48b、線量メモリ48c、座標処理回路48d、照射制御回路48eおよび位置監視回路48fを備えている。走査電磁石電源51は追加電流メモリ51aと励磁電流メモリ51bおよび電磁石制御回路51cを備えている。
図3を用いて本実施例による放射線照射システムにおける照射対象25の表面を基準とした場合の照射標的26の深さと粒子線のエネルギーとの関係について説明する。図3は、横軸が照射標的26の深さ、縦軸が粒子線のエネルギーを示す図である。
図3(a)は、単一エネルギーの粒子線が照射対象内に形成する線量分布を深さの関数として示している。図3(a)におけるピークをブラッグピークと称する。ブラッグピークの位置は粒子線のエネルギーに依存する。そのため、粒子線のエネルギーを調整することでブラッグピークの位置を調整でき、照射標的26の所望の深さに適切な線量の粒子線を照射することができる。照射標的26は深さ方向に厚みを持っているが、ブラッグピークは鋭いピークであるので、図3(b)に表すようにいくつかのエネルギーの粒子線を適切な強度の割合で照射し、ブラッグピークを重ね合わせることで深さ方向に照射標的26と同じ厚みを持った一様な高線量領域(SOBP)を形成する。
図4を用いて、ビーム軸に垂直な方向(XY平面の方向)の照射標的26の横方向の広がりと粒子線の関係について説明する。図4は、横軸に照射標的26の横方向の広がりを、縦軸は照射スポットにおける線量を示す。ビーム軸に垂直な方向を横方向と呼ぶ。粒子線は照射装置21に達した後、互いに垂直に設置された二台の走査電磁石31,32を通過することで横方向の所望の位置へと到達する。粒子線の横方向の広がりはガウス分布形状で近似することができる。ガウス分布を等間隔で配置し、その間の距離をガウス分布の標準偏差程度にすることで、足し合わされた分布は一様な領域を有する。このように配置されるガウス分布状の線量分布をスポットと呼ぶ。粒子線を走査し複数のスポットを等間隔に配置することで横方向に一様な線量分布を形成することができる。
以上により、走査電磁石31,32による横方向へのビーム走査と、ビームエネルギー変更による深さ方向へのブラッグピークの移動により均一な照射野を形成することができる。なお、同一のエネルギーで照射され、走査電磁石31,32による粒子線の走査により横方向へ広がりを持つ照射野の単位をスライスと呼ぶ。
次にゲート照射と追尾照射について説明する。
図5を用いてゲート照射について説明する。図5は粒子線を出射するタイミングを示すタイムチャートである。移動信号は照射標的26の位置を表す。照射標的26が出射許可範囲に入ると出射許可状態になる。照射装置21はこの出射許可状態の間に粒子線を照射する。
図6を用いて追尾照射について説明する。図6は従来の追尾照射を実施する場合のタイムチャートである。照射標的26の移動に合わせて走査電磁石31,32の励磁量を補正する。図6に示す補正励磁電流は、走査電磁石31,32の励磁量の補正値を表す。照射標的26の位置に合わせて補正励磁電流の値が変化する。
なお、図5および図6では移動信号を1次元の信号として表したが、実際は空間内の点を表す3次元の信号であり、出射許可範囲も3次元空間を表す立体である。
次に、ゲート照射と追尾照射を行う本発明のスキャニング照射法について説明する。
図11Aは、ゲート照射と追尾照射を行う場合の出射を許可するタイミングと励磁電流値の変化を示すタイムチャートである。この例では、説明を簡単化するため、出射許可範囲を一定とした。また、出射許可範囲の大きさは図5の従来のゲート照射の場合と同じ大きさとした。
照射対象が移動し、出射許可範囲内に標的が来たとき、補正励磁電流を追加電流メモリに設定し照射を実施する。このように出射許可範囲の間走査電磁石による追尾照射を実施することで、出射許可範囲が従来のゲート照射と同じ大きさのままであっても、図5に示す従来のゲート照射より一様な線量分布を形成することができる。また、図6の従来の追尾照射では、標的が深さ方向へ移動した場合、或いは標的までの水等価厚が変化した場合は、計画した位置にブラッグピークを形成できず、計画した線量分布を形成することができなくなるが、図11Aでは、出射許可範囲を設定してゲート照射するため、そのような場合でも、計画した位置にブラッグピークを形成し、計画通りの線量分布を形成することができる。
図11Bは、出射許可範囲は一定であるが、出射許可範囲の大きさを図5の従来のゲート照射の場合よりも広げたものである。上記のように追尾照射を組み合わせることで従来のゲート照射より一様な線量分布を形成することができるが、線量分布一様度向上の効果の一部を出射許可範囲に振り分けることで、図5に示す従来のゲート照射より線量分布の一様度を向上させ、かつ出射許可範囲の大きさを広げて、照射時間(治療時間)を短縮することができる。
ここで、ゲート照射と追尾照射は、いずれも、呼吸等により動く臓器への対応技術であるが、これらは異なる思想に基づいた技術であるため、従来は択一的に選択されるものであった。すなわち、ゲート照射は所定の領域に照射対象部が来るのを待ち伏せて照射するもの、追尾照射は照射対象部を追いかけて照射するものである。本発明は、このような従来の固定観念を打ち破り、ゲート照射と追尾照射を行うことで、それぞれを単独で行った場合には得られなかった効果、具体的には、計画通りの線量分布を形成する、或いは線量分布の一様度を向上させつつ照射時間(治療時間)を短縮するという効果を得るものである。
また、従来のゲート照射の場合、一様な線量分布を形成するために狭い出射許可範囲が必要である。より一様な線量分布を形成するためには出射許可範囲をより狭くする方法が実施されていた。しかし、ゲート範囲を狭くすると照射時間が長くなる。本発明者らは、現実的な時間で照射を完了するためのゲート範囲の最小値が数mmであることを発見した。そこで、ゲート範囲の大きさが数mmであってもさらに一様な線量分布を形成する方法として、出射許可範囲内において走査電磁石により追尾する方法を発明したものである。
以下に、ゲート照射と追尾照射を行う本発明のスキャニング照射法を実施するシステム構成の一実施例を詳しく説明する。以下の実施例は、複数の照射位置に対して照射位置毎に出射許可範囲を設定した場合のものである。また、粒子線の飛程が変化しない範囲に基づいて出射許可範囲を決める場合のものである。
<照射計画>
まず、照射計画装置41の構成を図12を用いて説明する。
照射計画装置41は、照射計画演算装置101、X線CT画像やMR画像および線量分布を表示するモニタ102、キーボードやマウス等の入力装置103から構成される。照射計画演算装置101は、照射計画を立案するための画像データおよび線量分布データの蓄積、線量計算演算の実施を司る部分であり、通信装置108、記憶装置110、主記憶装置111、照射計画演算処理装置109から構成される。通信装置108はネットワークを通してデータベース42、中央制御装置46、X線CT等の他の装置とのデータ交換等に使用する。また、記憶装置110はたとえば磁気記憶装置であり一般に大容量の記憶装置である。長期的なデータおよびプログラムの保存に用いる。主記憶装置111は、たとえばランダムアクセスメモリであり、高速なアクセスが可能であるため、主に一時的なデータの保持および、実行中プログラムの保持に使用する。照射計画演算処理装置109は、照射計画演算装置101の記憶装置110や主記憶装置111に保管されているプログラムを実行し、数値的演算やデータ処理、通信等のプログラムに記述されている手続を実行する装置である。
照射計画装置41は、医師等のオペレータの指示に基づき、主記憶装置111に記憶装置110からロードされたプログラムモジュールを照射計画演算処理装置109が実行することにより、事前に取得済みの照射計画用CT画像データを用いて照射標的への線量分布を計算し、モニタ102上にその結果である線量分布を表示する。
以下の説明では、説明の簡略化のため照射計画装置41が処理を行うものとして説明するが、具体的には、オペレータが入力装置103を用いて必要なデータを入力し、照射計画演算装置101の演算処理装置109がその入力データに基づいて所定の演算処理を行い、その演算結果をモニタ102上に表示し、その表示内容に基づいて更にデータを入力するなどの手順を経て、処理手順が進行するものである。
まず、照射計画装置41は、粒子線を照射標的26に照射する前に、照射に必要な照射パラメータ、ガントリー角度および照射対象位置情報を決定する。図7に照射パラメータの構造を示す。照射パラメータはスライス数NとN個のスライスデータにより構成される。スライスは、同一のエネルギーで照射するスポットの集合を表す。スライスデータはスライス番号i、エネルギーEi、スポット数NiおよびNi個のスポットデータを含む。スポットデータはスポット番号j、照射位置(Xij,Yij)、目標照射量Dij、出射許可範囲Pijを含む。Pijはガントリー18と共に回転する座標系を用いて、X方向、Y方向、およびビーム軸方向(Z方向)の最大値と最小値で定義される直方体である。これらの照射パラメータは次のように決定される。
予め照射対象25をX線CT装置40にて撮影する。X線CT装置40は照射標的26が周期的に動くときその動きの位相毎にCT画像を作成する機能を備える。特に患者を撮影する場合、呼吸位相毎のCT画像を取得できる。X線CT装置40は照射対象を撮影し、n個の位相に対する照射対象25のCT画像を作成する。X線CT装置40は作成したCT画像を照射計画装置41に送信する。照射計画装置41は、受け取った画像データを表示装置の画面上に表示する。オペレータは位相毎のCT画像から基準となる位相のCT画像を選択する。例えば呼吸による患部の移動を考える場合、呼気位相を選択する。オペレータが選択したCT画像上で照射標的26を覆うように照射したい領域を指定する。照射計画装置41は、指定された領域に線量分布を形成できるような照射対象の設置位置、ガントリー角度、照射パラメータを求めて決定する。すなわち、照射計画装置41は、オペレータが入力した照射対象情報に基づいて照射対象設置位置とガントリー照射角度を決定後、照射標的26(患部)を深さ方向の複数のスライスに分割し、必要となるスライス数Nを決定する。照射計画装置41は、照射対象設置位置に照射対象を設置したとき、X線検出器36、37に投影される画像を計算し、それを照射対象位置情報とする。また、照射計画装置41はそれぞれのスライス(スライス番号i)の深さに応じた照射に適したイオンビームのエネルギーEiを求める。照射計画装置41は、さらに、各スライスの形状に応じてイオンビームを照射する照射スポットの数Ni,スポット番号j,各スポットの照射位置(Xij,Yij),各スポットの目標照射量Dijを決定する。照射計画装置41は、決定した各値により照射対象を照射したときの線量分布を求め、求めた線量分布を表示装置に表示する。
次に出射許可範囲Pijを求める。出射許可範囲Pijはガントリー18と共に回転する座標系を用いて表されるXmax、Xmin、Ymax、Ymin、Zmax、Zminを含む。下記の通り決定する。図8の(a)〜(c)に照射対象のCT画像の概念図を示す。3つの図は位相数n=3に対応する。(a)を基準位相のCT画像とする。照射対象25の中に照射標的26と高密度物質27がある。高密度物質は骨などである。矢印はスポットAとスポットBを表している。(b)(c)と進むにつれ照射標的26が左に移動する。照射標的26に合わせてスポットの位置を移動させると、(b)において高密度物質を通過するスポットAのみ到達位置が短くなる。そこで各スポットに対し、到達位置が短くならない位相を抽出する。たとえばスポットAに対する位相は(a)のみ、スポットBに対する位相は(a)と(b)である。基準となる画像(a)に対する画像(b)(c)での照射標的26の位置を求めxb、xcとする。スポットAに対し、Xmax=xbと表すことができる。また、スポットBに対し、Xmax=xcと表すことができる。また、この例では照射標的26が基準画像に対し図8の左方向のみに移動し、右方向に移動しないためCT画像からはXminを決めることができない。走査電磁石により追尾できる最大の距離は予め決められており、その値をLminとLmaxとする。従って、スポットAに対し、Xmin=Lmin、Xmax=xb、スポットBに対し、Xmin=Lmin、Xmax=xc、となる。Ymax、Yminも同様に設定される。また、深さ方向のZmax、Zminには予め設定する固定値を用いる。このようにして決定した出射許可範囲を使用することにより、大きな出射許可範囲で走査電磁石31,32により照射標的26を追尾した場合にも照射標的26に対するブラッグピークの位置を変えることなく照射することができる。なお、スポットは広がりを持つため、広がりをsとすると、Xmax=xb-sとすることが好ましい。
こうして作成するデータはガントリー角度の数だけ作成される。作成された照射パラメータ、ガントリー角度および照射対象位置情報はデータベースへ送信されデータベースに記録される。
なお、n個の位相の間を補間するCT画像を作成し、出射許可範囲を決定してもよい。より精度良くブラッグピークの位置が変わらずに照射できる最大の範囲を出射許可範囲とすることができる。
なお、基準位相のみを撮像したCT画像または基準位相の画像のみから出射許可範囲を決定してもよい。スポットの位置を計画した位置からX方向およびY方向にずらした場合のブラッグピークのZ軸方向の位置を計算し、ブラッグピークの位置が変化しない範囲を出射許可範囲とすることもできる。
<照射手順>
以上の手順により作成した照射パラメータ、照射対象設置情報およびガントリー角度を使用して照射対象25に線量分布を形成する手順を説明する。
オペレータが中央制御装置46に接続されたコンソール上の照射準備開始ボタンを押すと、中央制御装置46はデータベース42から照射対象25の設置位置、ガントリー角度および照射パラメータを受信する。中央制御装置46は、照射パラメータに記載されたエネルギーの情報とガントリー角度を加速器制御装置47に送信し、照射パラメータを照射制御装置48に送信する。加速器制御装置47では中央制御装置46から指定されたエネルギーの荷電粒子ビームを出射するための各電磁石の励磁パターンを準備する。照射制御装置48は中央制御装置46から受信した照射パラメータを各メモリに設定する。照射位置を位置メモリ48bに、目標照射量を線量メモリ48cに、出射許可範囲を出射許可範囲メモリ48aに記録する。また、照射位置とエネルギーから求めた励磁電流値を走査電磁石電源51の励磁電流メモリ51bに記録する。
照射対象25をカウチ24の上に乗せ、カウチ24上に固定する。固定後、計画した位置に設置されていることを確認するため、X線管35、36とX線検出器37、38を用いて透視する。透視した画像と照射対象位置情報の画像とを比較し、計画位置からのずれ量を算出する。そのずれ量に従い、カウチ24を移動して照射対象25の位置を調整する。
照射対象25をカウチ24に設置した後、ガントリー18の角度を設定する。オペレータが中央制御装置46に接続されたコンソール上のガントリー回転ボタンを押すと、加速器制御装置47はガントリー18を照射パラメータに記載されたガントリー角度までガントリー18を回転させる。
ガントリー18の回転完了後、オペレータはコンソール上の照射開始ボタンを押す。照射開始ボタンが押されると図9に示す手順に従って照射が開始される。
<ステップ201>
ステップ201においてエネルギー番号i=1、スポット番号j=1のスポットから照射を開始する。動体追跡装置49はX線発生装置35,36とX線検出器37,38を制御して照射標的26の位置の計測を開始する。加速器制御装置47はシンクロトロン4を制御してエネルギー番号i=1のエネルギーE1に粒子線を加速する。
動体追跡装置49はX線発生装置35,36を制御して一定の間隔(例えば30Hz)でX線を発生させる。動体追跡装置49はX線検出器37,38から取得した画像を用いて照射標的26の位置(標的座標)を算出し、標的座標を座標処理回路48dに送信する。なお、照射標的26の位置を特定し易くするため、予め照射標的26の付近に金属製の球などのマーカーを刺入しておき、照射標的26の位置を計測する代わりにマーカーの位置を計測してもよい。
<ステップ202>
ステップ202において中央制御装置46から加速器制御装置47へ加速信号が送信される。加速器制御装置47はイオン源、ライナック3、シンクロトロン4を制御して粒子線を加速する。イオン源において発生した粒子線はライナック3により加速されシンクロトロン4へ入射される。入射された粒子線は加速装置6から高周波を印加され第一のスライス番号を照射するためのエネルギーE1まで加速される。粒子線の加速が完了すると加速器制御装置47から照射制御装置48へ加速完了信号が送信される。
<ステップ203>
ステップ203において加速完了信号を受信した照射制御装置48はスポットの照射準備を実施する。照射制御装置48内の照射制御回路48eが加速完了信号を受信する。照射制御回路48eは座標処理回路48d、位置監視回路48f、電磁石制御回路51cに向けてスポット設定信号を送信する。
座標処理回路48dは、スポット設定信号を受信し、出射許可範囲メモリ48aからi=1,j=1のスポットの出射許可範囲の値を読み出す。座標処理回路48dは、動体追跡装置49から標的座標を一定の周期で受信しており、受信した最新の標的座標が出射許可範囲の中にあれば、標的座標が出射許可範囲の外に出るまで出射許可信号を照射制御回路48eに送信し続ける。また、座標処理回路48dは、最新の標的座標を位置監視回路48fに送信する。また、座標処理回路48dは、最新の標的座標と照射するエネルギーとから追加電流値を計算し走査電磁石電源51の追加電流メモリ51aに記録する。
座標処理回路48dは追加電流値は以下の式から求める。
励磁電流値I、陽子線の運動量p、走査幅xとするとI=C’pxと近似できる。但し、C’は比例定数とする。比例定数C’は事前に実測から求める。陽子線の質量をm、高速をcとすると、運動量とエネルギーにはpc=√(E(E+2mc2))の関係がある。追加電流値をΔI、照射標的の位置Δxとすれば、C=C’/cとして、
Figure 0005976353
と表すことができる。
位置監視回路48fは、座標処理回路48dから標的座標を受信し、i=1,j=1のスポットの標的座標として記録する。
電磁石制御回路51cは、座標処理回路48dから受信し追加電流メモリ51aに記録された追加電流値と励磁電流メモリ51bに記録されたi=1,j=1のスポットに対応する励磁電流値との和を計算し、その和を励磁電流値(補正励磁電流)とする。電磁石制御回路51cは、走査電磁石電源51を制御して走査電磁石31,32を求めた励磁電流値で励磁する。電磁石制御回路51cは、走査電磁石電源51の電流値の設定が完了すると照射制御装置48の照射制御回路48eに電磁石設定完了信号を送信する。なお、これらの電流値の設定はX軸に対応する走査電磁石32とY軸に対応する走査電磁石31の両方に対して実施される。
照射制御回路48eは、電磁石設定完了信号を受信したとき出射許可信号を受信していれば加速器制御装置47に対し出射開始信号を送信する。照射制御回路48eは、電磁石設定完了信号を受信したとき、出射許可信号を受信していない場合、再び出射許可信号を受信するのを待ち、出射許可信号を受信すると座標処理回路48d、位置監視回路48fおよび電磁石制御回路51cに対しスポット再設定信号を送信する。
座標処理回路48dはスポット再設定信号を受信すると、最新の標的座標を位置監視回路48fに送信し、最新の座標に対応する追加電流値を走査電磁石電源51の追加電流メモリ51aに送信する。
位置監視回路48fはスポット再設定信号を受信すると座標処理回路48dから受信した標的座標をi=1,j=1の標的座標として記録し直す。
電磁石制御回路51cはスポット再設定信号を受信すると、座標処理回路48dが上書きした最新の追加電流値とi=1,j=1の励磁電流値との和を補正励磁電流として走査電磁石31,32に設定する。電磁石制御回路51cは設定が完了すると電磁石設定完了信号を照射制御回路48eに送信する。
照射制御回路48eは電磁石設定完了信号を受信したときに出射許可信号を受信するまで同様の動作を繰り返す。照射制御回路48eは電磁石設定完了信号を受信したときに出射許可信号を受信していると加速器制御装置47へ出射開始信号を送信する。
<ステップ204>
ステップ204において出射開始信号を受信した加速器制御装置47は高周波印加装置5を制御して粒子線に高周波を印加する。高周波を印加された粒子線は出射用デフレクタ1を通過し、ビーム経路12を通過して治療室17内の照射装置21に達する。粒子線は照射装置21内の走査電磁石31,32により走査され、位置モニタ34および線量モニタ33を通過して照射対象25内に到達し照射標的26に線量を付与する。照射標的26に到達した粒子線の量は線量モニタ33で検出され、照射制御回路48eでカウントされる。照射制御回路48eは線量モニタ33からの信号のカウントと線量メモリ48cの値を比較し、カウントが線量メモリ48cに記録されている目標照射量に達すると加速器制御装置47に対し出射停止信号を出力する。出射停止信号を受信した加速器制御装置47は高周波印加装置5を制御して高周波の印加を停止し、出射を停止する。また、照射制御回路48eは位置監視回路47fへスポット完了信号を送信する。位置監視回路47fは座標処理回路48dから受信した標的座標と位置メモリ48bに記録されている照射位置の値を足し合わせ、位置モニタ34により検出した位置との差を算出し、差が閾値以下になっていることを確認する。
<ステップ205>
ステップ205において、同一スライスのスポットに照射が完了していないスポットがある場合、すなわちスポット番号jがj<Niの場合、j+1番目のスポットを照射するためステップ203に戻る。同一スライスのスポットを全て照射した場合、すなわちj=Niの場合、ステップ206に進む。
<ステップ206>
ステップ206において、中央制御装置46から加速器制御装置47に減速信号を送信する。減速信号を受信した加速器制御装置47は粒子線を減速させ、ライナック3から新たな粒子線を入射できる状態になる。
<ステップ207>
ステップ207において照射が完了していないレイヤーがある場合、すなわちi<Nのとき、i+1番目のレイヤーを照射するためステップ202に進む。全てのレイヤーの照射が完了した場合、すなわちi=Nの場合、ステップ208に進み、照射完了となる。
以上の手順により実施される制御について図10を用いて説明する。照射標的26の位置を表す移動信号が出射許可範囲の中にある場合、出射許可信号を出力する出射許可状態となる。出射許可範囲はスポット毎に変更されるためS1〜S6に示すように一定ではない。補正励磁電流の値はC1〜C3に示すように出射許可状態の場合のみ移動信号に合わせて更新される。
<他の実施例>
(1)本実施例ではスポット毎に出射許可範囲を変更する場合について説明したが、患部の状況に応じ、図11を用いて説明したように出射許可範囲を一定にしてもよい。この場合でも、従来のゲート照射に比べて走査電磁石31,32による追尾の分だけより計画通りの線量分布を形成することができる。
(2)本実施例には、出射許可状態になった後(標的の位置が出射許可範囲の中にあるとき)に走査電磁石31,32を走査する方法が記載されている。走査電磁石電源51は出射許可状態に関係なく所定の周期(例えば一定の周期)で励磁量を更新してもよい。励磁量を更新する周期と同等の周期で座標処理回路48dが追加電流メモリ51aを更新する。この周期は動体追跡装置49から座標情報が送られてくる周期と同等でもよい。また、この周期は、動体追跡装置49から送信される座標情報を基に予測した座標を使用することで、動体追跡装置49から座標情報が送信される周期より短い周期でもよい。このように出射許可状態ではないときも追加電流値を走査電磁石電源51に送信し、常に照射標的26の移動に合わせて走査することで、出射許可信号が送信されてから粒子線が出射されるまでの時間を短縮することができる。
(3)本実施例ではスポット毎に粒子線の出射を停止するスポットスキャニングを例に説明したが、粒子線の出射を停止しないラスタースキャニングおよびラインスキャニングにも適用することができる。
(4)本実施例において、ひとつの走査電磁石に対しひとつの走査電磁石電源により走査電磁石の励磁電流値を設定する方法を説明したが、走査電磁石電源はスポット毎に励磁量を変更する電源と標的の動きに照射位置を合わせるための追加電流を発生させる電源を別々に使用してもよい。二つの電源を使用する場合にはそれぞれの電源に対応したコイルが走査電磁石に別々に巻かれていてもよい。電源を別々に用意することで制御システムが簡略化される利点がある。
(5)本実施例において、座標処理回路48dはスポット毎に新しい情報を送信する。これは、ひとつのスポットを照射する時間は数msと短く、その間に照射標的26が動く距離は無視できるためである。なお、ひとつのスポットを照射している最中も追加電流メモリを更新し照射標的26の位置に合わせて励磁電流値を変更してもよい。ひとつのスポットの照射時間が長いような場合、スポット照射中も励磁電流値を変更することが有効である。
(6)本実施例では、座標処理回路48dが動体追跡装置49から受信する標的座標により、出射許可タイミングと追加電流値を制御した。座標処理回路48dは動体追跡装置49から受信した標的座標を用いて標的の位置を予測してもよい。予測することにより、制御システムの処理時間による出射許可タイミングと追加電流値の遅れを回避することができる。また、予測することでX線撮影周期より短い周期で出射許可タイミングと追加電流値を制御することができる。
(7)本実施例では照射標的26の位置を照射中に計測する方法について説明したが、照射標的26の位置と照射対象表面の位置関係を予め求めておき、照射対象表面の信号に基づいてゲート制御と追尾制御を実施してもよい。
(8)上記照射標的26の位置を特定する方法として患部の周辺に金属製のマーカーを刺入する方法がある。マーカーはX線透視画像に写り易いため精度よく照射標的26の位置を計測することができる。また、マーカーなしで直接照射標的26の位置を計測してもよい。マーカーを刺入する手間を省くことができる。また、患部の位置を特定する方法は電磁波を生成するコイルであってもよい。
(9)本実施例では、加速器はシンクロトロン4を例に説明したがサイクロトロンでもよい。サイクロトロンの場合、出射はサイクロトロンから輸送系へ向けてビームが出ることを表す。
(10)本実施例では360度回転するガントリー18を例に説明したが、本発明は180度回転するガントリー18、或いはガントリー18がない粒子線照射装置に対しても同様に実施することができる。
<効果>
最後に、本実施例により得られる効果について整理する。本実施例によれば次の効果が得られる。
走査電磁石31,32による追尾照射を実施することにより、従来より広い出射許可範囲に対して計画通りの線量分布を形成することができる。
出射許可範囲を広げることで照射時間を短くすることができる。
また、エネルギー吸収体を使用しないため、エネルギー吸収体を使用する場合に比べてビームサイズを大きくすることなく線量分布を形成することができる。
また、従来と同程度の出射許可範囲を用いた場合にはより計画通りの線量分布を形成することができる。
また、追尾することによりゲート照射のみの場合より急峻なペナンブラを形成することができる。
また、追尾することにより線量分布が計画通りになるためリペイント数を削減することができる。リペイント数を削減することにより照射時間を短縮することができる。
また、ひとつの照射位置に照射する1回の照射量の最小値が決められている場合には、リペイント数を削減することにより照射するガントリー角度を増加させることができる。
1 荷電粒子ビーム発生装置
2 ビーム輸送系
3 ライナック
4 シンクロトロン
5 高周波印加装置
6 加速装置
7 制御システム(制御装置)
11 出射用デフレクタ
12 ビーム経路
14,15,16 偏向電磁石
17 治療室
21 照射装置
24 カウチ
25 照射対象
26 照射標的
27 高密度物質
31,32 走査電磁石
33 線量モニタ
34 位置モニタ
35,36 X線発生装置(標的監視装置)
37,38 X線検出器(標的監視装置)
40 X線CT装置
41 照射計画装置
42 データベース
46 中央制御装置46
47 加速器制御装置
48 照射制御装置
49 動体追跡装置(標的監視装置)
101 照射計画演算装置
102 モニタ
103 入力装置
109 照射計画演算処理装置

Claims (7)

  1. 荷電粒子ビームを生成して出射する加速器と、
    前記荷電粒子ビームを走査する走査電磁石を有し、前記荷電粒子ビームを照射標的に照射する照射装置と、
    前記照射標的の位置を計測する標的監視装置と、
    前記標的監視装置からの信号に基づき前記走査電磁石の励磁電流値を補正して前記荷電粒子ビームを照射標的に照射する追尾照射と、前記標的監視装置からの信号に基づき前記照射標的が予め定めた出射許可範囲内にあるとき荷電粒子ビームを照射するゲート照射とを行う制御装置とを備え
    前記制御装置は、前記標的監視装置によって計測した前記照射標的の位置が前記ゲート照射の出射許可範囲内にあるときに前記追尾照射を行うことを特徴とする荷電粒子照射システム。
  2. 前記制御装置は、
    前記照射標的に設定した複数の照射位置に対して照射位置毎に前記出射許可範囲が設定されていることを特徴とする請求項1に記載の荷電粒子照射システム。
  3. 前記照射装置を備えた回転可能なガントリーを更に備え、
    前記制御装置に設定される前記出射許可範囲は前記ガントリーと共に回転する座標系を用いて指定されることを特徴とする請求項2に記載の荷電粒子照射システム。
  4. 前記制御装置は、前記走査電磁石の前記励磁電流値を、前記照射標的の位置が前記出射許可範囲の中にあるとき更新することを特徴とする請求項2に記載の荷電粒子照射システム。
  5. 前記制御装置は、前記走査電磁石の前記励磁電流値を、前記照射標的の移動に合わせて所定の周期で更新することを特徴とする請求項2に記載の荷電粒子照射システム。
  6. 照射標的に設定した複数の照射位置のそれぞれに対して、前記照射標的の移動に合わせて荷電粒子ビームの照射位置を変更する追尾照射と、前記照射標的が予め定めた出射許可範囲内にあるとき荷電粒子ビームを照射するゲート照射とを行い、前記照射標的の位置が前記ゲート照射の出射許可範囲内にあるときに前記追尾照射を行う荷電粒子照射システムに用いる照射計画装置において、
    前記照射位置毎に前記ゲート照射の出射許可範囲を指定する演算装置を備えることを特徴とする照射計画装置。
  7. 前記演算装置は、粒子線の飛程が変化しない範囲に基づいて前記出射許可範囲を決定することを特徴とする請求項6に記載の照射計画装置。
JP2012068047A 2012-03-23 2012-03-23 荷電粒子照射システムおよび照射計画装置 Active JP5976353B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012068047A JP5976353B2 (ja) 2012-03-23 2012-03-23 荷電粒子照射システムおよび照射計画装置
PCT/JP2013/051789 WO2013140856A1 (ja) 2012-03-23 2013-01-28 荷電粒子照射システムおよび照射計画装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012068047A JP5976353B2 (ja) 2012-03-23 2012-03-23 荷電粒子照射システムおよび照射計画装置

Publications (2)

Publication Number Publication Date
JP2013198579A JP2013198579A (ja) 2013-10-03
JP5976353B2 true JP5976353B2 (ja) 2016-08-23

Family

ID=49222323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068047A Active JP5976353B2 (ja) 2012-03-23 2012-03-23 荷電粒子照射システムおよび照射計画装置

Country Status (2)

Country Link
JP (1) JP5976353B2 (ja)
WO (1) WO2013140856A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5976474B2 (ja) * 2012-09-18 2016-08-23 株式会社日立製作所 粒子線照射システムおよび治療計画装置
JP6292813B2 (ja) * 2013-10-04 2018-03-14 株式会社日立製作所 放射線計測装置とそれを備えた粒子線治療装置ならびに粒子線の線量分布演算方法
JP6109702B2 (ja) * 2013-10-15 2017-04-05 住友重機械工業株式会社 荷電粒子線照射装置
CN105536154B (zh) * 2015-12-16 2018-03-23 中国科学院上海应用物理研究所 一种基于硬件控制的辐照扫描装置及辐照扫描方法
WO2019064337A1 (ja) * 2017-09-26 2019-04-04 三菱電機株式会社 粒子線治療装置
JP2019141331A (ja) * 2018-02-21 2019-08-29 株式会社日立製作所 粒子線照射システムおよび照射計画装置
JP7166131B2 (ja) * 2018-10-03 2022-11-07 株式会社東芝 放射線治療システム
CN113727650A (zh) * 2019-04-26 2021-11-30 医科达有限公司 利用周期性运动提供质子放射治疗的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4159226B2 (ja) * 2000-03-21 2008-10-01 住友重機械工業株式会社 患部トラッキング方法、装置、及び、これを用いた放射線照射方法、装置、並びに放射線治療装置
JP5397861B2 (ja) * 2007-12-07 2014-01-22 三菱重工業株式会社 放射線治療計画装置および放射線治療計画装置の作動方法
JP4444338B2 (ja) * 2008-01-30 2010-03-31 三菱重工業株式会社 放射線治療装置制御装置および放射線照射方法

Also Published As

Publication number Publication date
JP2013198579A (ja) 2013-10-03
WO2013140856A1 (ja) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5976353B2 (ja) 荷電粒子照射システムおよび照射計画装置
JP7416742B2 (ja) 粒子線治療における自動処置
US10653891B2 (en) Particle beam treatment system, particle beam treatment management system and method
JP5722559B2 (ja) 治療計画装置
US20190299027A1 (en) Particle therapy planning apparatus, particle therapy system, and dose distribution calculation program
JP3874766B2 (ja) 粒子線出射装置及び粒子線出射方法
JP2006145213A (ja) 粒子線照射システム
JP5193132B2 (ja) 荷電粒子ビーム照射システム
JP2017080161A (ja) 中性子捕捉療法システム
JP5976474B2 (ja) 粒子線照射システムおよび治療計画装置
JP2016144573A (ja) 画像処理装置および粒子線治療装置
JP2008178569A (ja) 粒子線治療計画装置
JP2019166098A (ja) 放射線治療装置及びベッド位置決め装置並びにベッドの位置決め方法
WO2020137234A1 (ja) 粒子線治療システムおよび線量分布評価システム、ならびに粒子線治療システムの作動方法
JPH11169469A (ja) 荷電粒子ビーム照射方法および荷電粒子ビーム照射装置
US11883683B2 (en) Particle therapy system
CN108348768B (zh) 治疗计划装置及放射线治疗系统
JP6063982B2 (ja) 粒子線治療システム
WO2019163291A1 (ja) 粒子線照射システムおよび照射計画装置
JP2019180738A (ja) 粒子線治療システム、及び粒子線治療システムの照射位置制御方法
JP2013138774A (ja) 放射線治療システム
JP7220403B2 (ja) 粒子線治療システム、計測粒子線ct画像生成方法、およびct画像生成プログラム
JP6063983B2 (ja) 粒子線治療システム
JPH0999108A (ja) 荷電粒子ビーム装置
CN117771561A (zh) 用于自适应地控制放射治疗设备的装置和方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160720

R150 Certificate of patent or registration of utility model

Ref document number: 5976353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350