JP5956099B1 - 電子機器の冷却システム - Google Patents

電子機器の冷却システム Download PDF

Info

Publication number
JP5956099B1
JP5956099B1 JP2016507718A JP2016507718A JP5956099B1 JP 5956099 B1 JP5956099 B1 JP 5956099B1 JP 2016507718 A JP2016507718 A JP 2016507718A JP 2016507718 A JP2016507718 A JP 2016507718A JP 5956099 B1 JP5956099 B1 JP 5956099B1
Authority
JP
Japan
Prior art keywords
cooling
coolant
boiling
boiling point
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016507718A
Other languages
English (en)
Other versions
JPWO2016157396A1 (ja
Inventor
齊藤 元章
元章 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exascaler Inc
Original Assignee
Exascaler Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exascaler Inc filed Critical Exascaler Inc
Application granted granted Critical
Publication of JP5956099B1 publication Critical patent/JP5956099B1/ja
Publication of JPWO2016157396A1 publication Critical patent/JPWO2016157396A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20236Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures by immersion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20263Heat dissipaters releasing heat from coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/20772Liquid cooling without phase change within server blades for removing heat from heat source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20809Liquid cooling with phase change within server blades for removing heat from heat source
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

電子機器の冷却性能を向上させた、簡単かつ効率的な冷却システムを提供する。冷却システム10は冷却槽12を有し、冷却槽12の開放空間内には沸点T2を有する第2の冷却液13が入れられている。冷却槽12の開放空間内には、プロセッサ110を発熱体としてボード120上に搭載した電子機器100が収納され、第2の冷却液13に浸漬されている。沸騰冷却装置200は、プロセッサ110に熱的に接続されている冷却装置であって、沸点T1(ただし、T1=T2又はT1<T2)を有する第1の冷却液11が封入されている。冷却槽12内の第2の冷却液中の表層部には、第1の熱交換器22が浸漬されている。第1の熱交換器22内には、沸点T3(ただし、T1=T3又はT1>T3)を有する第3の冷媒が封入されている。

Description

本発明は電子機器の冷却システムに係り、特に、スーパーコンピュータやデータセンター等の超高性能動作や安定動作が要求され、かつそれ自体からの発熱量が大きな電子機器を、効率的に冷却するための電子機器の冷却システムに関するものである。
近年のスーパーコンピュータの性能の限界を決定する最大の課題の一つは消費電力であり、スーパーコンピュータの省電力性に関する研究の重要性は、既に広く認識されている。すなわち、消費電力当たりの速度性能(Flops/W)が、スーパーコンピュータを評価する一つの指標となっている。また、データセンターにおいては、データセンター全体の消費電力の45%程度を冷却に費やしているとされ、冷却効率の向上による消費電力の削減の要請が大きくなっている。
スーパーコンピュータやデータセンターの冷却には、従来から空冷式と液冷式が用いられている。液冷式は、空気より格段に熱伝達性能の優れる液体を用いるため、一般的に冷却効率がよいとされている。例えば、東京工業大学が構築した「TSUBAME−KFC」では、合成油を用いた液浸冷却システムにより、4.50GFlops/Wを達成し、2013年11月、及び2014年6月発表の「Supercomputer Green500 List」において1位を獲得している。しかし、冷却液に粘性の高い合成油を用いているため、油浸ラックから取り出した電子機器から、そこに付着した油を完全に除去することが困難であり、電子機器のメンテナンス(具体的には、例えば調整、点検、修理、交換、増設。以下同様)が極めて困難であるという問題がある。更には、使用する合成油が、冷却系を構成するパッキン等を短期間に腐食させて漏えいするなどし、運用に支障を来す問題の発生も報告されている。
他方、上記のような問題を生ずる合成油ではなく、フッ化炭素系冷却液を用いる液浸冷却システムが提案されている。具体的には、フッ化炭素系の冷却液(3M社の商品名「Novec(3M社の商標。以下同様)7100」、「Novec7200」、「Novec7300」で知られる、ハイドロフルオロエーテル(HFE)化合物)を用いる例である(例えば、特許文献1、特許文献2)。
ところで、CPUなど特に大量の熱を発生する発熱体を局所的に冷却するために、冷却液の気化と凝縮のサイクルによって熱の輸送・放熱を行う沸騰冷却方式を用いる冷却装置の例が、いくつか提案されている。一つは、プロセッサの発熱表面に接続した蒸発部と、空冷ファンもしくは水冷配管に接続した凝縮部とを、2本の配管で接続して、気液平衡を利用した冷媒循環を行う、冷却モジュールの例である(非特許文献1)。もう一つは、特別な流路壁を内部に形成した平板状容器に、冷却液を封入し、平板状容器の受熱領域を発熱体と熱的に接続し、平板状容器の放熱領域を放熱フィンなどの放熱部と接続し、放熱領域は、放熱領域における冷却液の流路を形成する例である(例えば、特許文献3)。
特開2013−187251号公報 特表2012−527109号公報 特開2013−69740号公報 グリーンネットワーク・システム技術研究開発プロジェクト 「集熱沸騰冷却システムの研究開発(2008年度〜2012年度 5年間)」 8−9、11頁、2013年7月17日 URL:http://www.nedo.go.jp/content/100532511.pdf
特許文献1が開示する冷却システムは、電子機器の冷却に気化熱(潜熱)を使用するため、沸点が100℃以下のフッ化炭素系冷却液を用いている。そして、電子機器に搭載された素子の発熱で冷却液が蒸発するときの気化熱(潜熱)により素子の熱を奪い取り、当該素子を冷却している。従って、高温の素子表面で、局所的にフッ化炭素系冷却液が沸騰して気泡が断熱膜を形成することがあるため、冷却液が本来有している高い熱伝導能力が損なわれてしまうという問題がある。また、最近のスーパーコンピュータやデータセンター等で使用される電子機器には、冷却すべき対象がCPU(Central Processing Unit)以外にも、GPU(Graphics Processing Unit)、高速メモリ、チップセット、ネットワークユニット、PCI Expressバスや、バススイッチユニット、SSD(Solid State Drive)、パワーユニット(交流−直流変換器、直流−直流電圧変換器等)等、多数存在しており、気化する温度が異なるこれらの対象物全てを等しく冷却することは困難であり、表面の冷媒が気化しない対象物では冷却効率が極めて低くなってしまう。
また、特許文献2が開示する冷却システムは、1つ又はそれ以上の発熱する電子機器を収容する密封型モジュールの構成を採用している。このため、個々の密封型モジュールに冷却液を流通させるための機構全体が複雑となり、また、密封型モジュールから電子機器全体を簡単に取り出すことができないため、電子機器のメンテナンス性に劣るという問題がある。
グリーンネットワーク・システム技術研究開発プロジェクトが提案する冷却モジュールは、プロセッサ上の蒸発部とそこから離れたところに設置される凝縮部とを接続する2本の配管を別途設けることが必要となるため、冷却モジュール全体の構成が大型かつ複雑となるという問題がある。加えて、これら配管の存在が、空冷に頼らなければならない周辺の電子部品の冷却の妨げになるため、また、冷却ファンもしくは配管を使用した二次冷却では、特に配管を使用する場合には配管内の流量の制約から冷却効率が低く制約されてしまうため、電子機器全体としての冷却性能が制限されてしまうという問題がある。他方、特許文献3が開示する冷却装置は、局所的な一次冷却用の、小型の沸騰冷却装置を提供できるので有利であるものの、従来の、冷却効率の低い二次冷却技術を適用することによっては、電子機器全体の冷却性能の向上を図ることができないという問題がある。
以上のように、従来の液浸冷却方式においては、密封型モジュールに冷却液を流通させるための機構全体が複雑となり、電子機器のメンテナンス性に劣るという問題がある。また、従来の沸騰冷却方式は、電子機器の局所的冷却に適しているものの、機構全体が大型かつ複雑となるおそれがあり、また二次冷却の冷却効率が低いため電子機器全体の冷却性能の向上を図ることができないという問題がある。
従って、本発明の目的は、上記した従来技術の問題点を解決し、電子機器の冷却性能を向上させた、簡単かつ効率的な冷却システムを提供することにある。
上記の課題を解決するために、本発明の一局面によれば、電子機器を冷却液中に浸漬して直接冷却する、冷却システムであって、少なくとも1つの発熱体を有する電子機器の前記発熱体に熱的に接続される沸騰冷却装置であって、沸点Tを有する第1の冷却液が封入されている沸騰冷却装置と、前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも高い沸点T(T=T又はT>T)を有する第2の冷却液が入れられた冷却槽であって、前記沸騰冷却装置及び前記電子機器が前記第2の冷却液中に浸漬されて直接冷却される冷却槽と、前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも低い沸点T(T=T又はT<T)を有する第3の冷媒が封入されている第1の熱交換器であって、前記冷却槽内の前記第2の冷却液中の表層部に浸漬される第1の熱交換器と、を含む冷却システムが提供される。
本発明に係る冷却システムの好ましい実施の形態において、前記沸騰冷却装置は、受熱側と放熱側を有する密閉容器と、前記放熱側に設けられた放熱部材とを有し、前記沸騰冷却装置及び前記電子機器が前記第2の冷却液中に浸漬されるとき、前記放熱側が前記受熱側より上に位置するように前記発熱体に熱的に接続されているよう構成してよい。
また、本発明に係る冷却システムの好ましい実施の形態において、前記第1の冷却液の沸点が100℃以下であり、前記第2の冷却液の沸点が150℃以上であり、前記第3の冷媒の沸点が50℃以下であるよう構成してよい。
さらに、本発明に係る冷却システムの好ましい実施の形態において、前記第1の冷却液及び/又は前記第3の冷媒が、主成分としてフッ化炭素化合物を含むよう構成してよい。
また、本発明に係る冷却システムの好ましい実施の形態において、前記第2の冷却液が、主成分として完全フッ素化物を含むよう構成してよい。
さらに、本発明に係る冷却システムの好ましい実施の形態において、前記冷却システムが前記冷却槽の外部に置かれた、前記第3の冷媒を冷やす第2の熱交換器をさらに有し、前記第1の熱交換器と前記第2の熱交換器は第1の流通路により連結されていてよい。
また、本発明に係る冷却システムの好ましい実施の形態において、前記冷却槽が、前記冷却槽の上部開口に対して着脱可能又は開閉可能に取り付けられた天板を有し、該天板が前記第1の熱交換器を保持していてよい。
さらに、本発明に係る冷却システムの好ましい実施の形態において、前記冷却槽は、前記第2の冷却液の入口と出口を有し、前記出口と前記入口が、前記冷却槽の外部にある第2の流通路により連結されており、前記流通路中に、前記第2の冷却液を移動させる少なくとも1つのポンプと、前記第2の冷却液を冷やす第3の熱交換器が設けられていてよい。
加えて、本発明のもう一つの局面によれば、複数の電子機器を冷却液中に浸漬して直接冷却する冷却システムであって、底壁及び側壁によって形成される開放空間を有する冷却槽と、前記冷却槽内に複数の内部隔壁を設けることにより前記開放空間を分割して形成される、配列された複数の収納部であって、各収納部に少なくとも1つの電子機器を収納するための収納部と、前記複数の収納部の各々に形成される、冷却液の流入開口及び流出開口と、を有し、前記流入開口は、各収納部の底部又は側面に形成され、前記流出開口は、各収納部を流通する前記冷却液の液面近傍に形成されており、前記冷却システムはさらに、前記少なくとも1つの電子機器が有する少なくとも1つの発熱体に熱的に接続される沸騰冷却装置であって、沸点Tを有する第1の冷却液が封入されている沸騰冷却装置と、前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも低い沸点T(T=T又はT<T)を有する第3の冷媒が封入されている第1の熱交換器とを有し、前記複数の収納部の各々には、前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも高い沸点T(T=T又はT>T)を有する第2の冷却液が入れられ、前記沸騰冷却装置及び前記少なくとも1つの電子機器が各収納部内の前記第2の冷却液中に浸漬されて直接冷却され、前記第1の熱交換器が各収納部内の前記第2の冷却液中の表層部に浸漬されている、冷却システムが提供される。
本発明に係る冷却システムによれば、発熱体に熱的に接続されている沸騰冷却装置に封入された第1の冷却液が気化することにより、沸騰冷却装置が、発熱体から局所的にかつ強力に熱を奪い取ると同時に、第1の冷却液の沸点Tと同じ又は第1の冷却液の沸点Tよりも高い沸点Tを有する第2の冷却液が、その熱を沸騰冷却装置から完全に奪い取ることにより、電子機器を全体的に冷却する。このとき、第1の冷却液と沸点が同じ又は第1の冷却液より沸点が高い第2の冷却液が、電子機器に搭載される周辺の電子部品を、有効かつ強力に冷却する。すなわち、主要な発熱源であるプロセッサの沸騰冷却に対する二次冷却用の冷媒(第2の冷却液)が、周辺の電子部品に対して、有効な一次冷却用の冷媒としても機能する。また、第1の冷却液の沸点Tと同じ又は第1の冷却液の沸点Tよりも低い沸点T(T=T又はT<T)を有する第3の冷媒が封入されている第1の熱交換器が、冷却槽内の第2の冷却液中の表層部に浸漬されているので、第2の冷却液中の表層部の熱を奪い、冷却槽の外部に取り出す。このようにして、沸騰冷却装置による主要な発熱源の局所冷却、二次冷却用の冷媒(第2の冷却液)による沸騰冷却装置と周辺の電子部品全体の液浸冷却、及び第1の熱交換器による二次冷却用の冷媒の表層部からの奪熱を含む三重の冷却が行われることにより、電子機器の冷却性能を、著しく向上させることができる。また、第2の冷却液として沸点が比較的高い冷却液を使用できるので、第2の冷却液が蒸発しにくく、第2の冷却液を入れる冷却槽が非密閉の開放空間になっていてもよく、複雑で高価な密封構造を採る必要がない。加えて、第1の熱交換器を第2の冷却液中の表層部に浸漬するだけでよいため、冷却槽内で構成部品が占める体積が小さくて済む。従って、冷却システムの簡素化及び小型化が実現される。さらに、従来の沸騰冷却方式では、主要な発熱源であるプロセッサを冷却するために、複雑な配管や大型のヒートシンクなどの機構を要し、これらの存在が、空冷に頼らなくてはならない周辺の電子部品の冷却を妨げる結果にもなっていた。このような従来技術に対して、本発明によれば、複雑な配管や大型のヒートシンクが不要となって周辺の電子部品の冷却に有利であることに加えて、二次冷却用の冷媒(第2の冷却液)が、遍く電子機器のボード全体に行き渡ることによって、高い効率で周辺の電子部品を冷却することが可能となる。なお、本明細書における「開放空間」を有する冷却槽には、電子機器の保守性を損なわない程度の簡素な密閉構造を有する冷却槽も含まれるものである。例えば、冷却槽の開口部に、パッキン等を介して天板を着脱可能又は開閉可能に取り付ける構造は、簡素な密閉構造といえる。特に、第1の熱交換器を第2の冷却液中の表層部に浸漬するだけでよいため、第1の熱交換器を当該天板に機械的に保持させることが可能である。
上記した本発明の目的及び利点並びに他の目的及び利点は、以下の実施の形態の説明を通じてより明確に理解される。もっとも、以下に記述する実施の形態は例示であって、本発明はこれに限定されるものではない。
本発明の一実施形態に係る冷却システムの要部の構成を示す、部分拡大縦断面図である。 沸騰冷却装置の一例を示す斜視図である。 沸騰冷却装置の他の例を示す斜視図である。 沸騰冷却装置の他の例を示す斜視図である。 本発明の一実施形態に係る冷却システムの模式図である。 本発明の他の実施形態に係る高密度冷却システムの構成を示す、部分断面を示す斜視図である。 本発明の他の実施形態に係る高密度冷却システムにおける要部を示す斜視図である。 本発明の他の実施形態に係る高密度冷却システムにおける、第1の熱交換器の設置例を示す模式図である。
以下、本発明に係る冷却システムの好ましい実施の形態を、図面に基づいて詳細に説明する。本実施形態の説明では、最初に、好ましい一実施形態について、図1、図2A、図2B及び図2Cを参照して、ダイ(半導体チップ)とダイを取り囲むヒートスプレッダとからなるプロセッサを、発熱体としてボード上に搭載した電子機器を、冷却槽内に収納して冷却する、冷却システムの要部の構成を説明する。続いて、図3を参照して、電子機器として、複数個のプロセッサを搭載したボードを含む1ユニットのみを簡略的に示しながら、当該電子機器を冷却槽内に収納して冷却する冷却システムの全体構成を説明する。次に、他の好ましい実施形態について、図4から図6を参照して、冷却槽内に形成された複数の収納部の各々に電子機器を収納して冷却する、高密度冷却システムの構成を説明する。なお、これは例示であって、ボード当たりのプロセッサの数や種類(CPU又はGPU)は任意であり、また、冷却システムにおける電子機器のユニット数も任意であり、本発明における電子機器の構成を限定するものではない。
図1を参照して、一実施形態に係る冷却システム10は冷却槽12を有し、冷却槽12の開放空間内には沸点Tを有する第2の冷却液13が入れられている。冷却槽12の開放空間内には、プロセッサ110を発熱体としてボード120上に搭載した電子機器100が収納され、第2の冷却液13に浸漬されている。プロセッサ110は、ダイ111とダイを取り囲むヒートスプレッダ112とを含む。なお、ヒートスプレッダの使用は任意であり、省略してよい。電子機器100のボード120上には、プロセッサ110以外に、他の複数のプロセッサ及び周辺の電子部品が当然に搭載されているが、これら他の複数のプロセッサ及び電子部品については図示を省略している。沸騰冷却装置200は、発熱体としてのプロセッサ110に熱的に接続されている冷却装置であって、沸点T(ただし、T=T又はT>T)を有する第1の冷却液11が封入されている。
図1及び図2Aに示すように、沸騰冷却装置200は、受熱側211と放熱側212を有する密閉容器210と、放熱側212に設けられた放熱部材220とを有している。図示する例では、密閉容器210は、6つの平板によって構成された薄い箱形を有しており、これにより断面矩形状の空間が形成されている。なお、密閉容器210の外形及び内部構造については任意であり、冷却する対象の放熱表面の面積や発生する熱量を考慮して、寸法及び形状を適宜に決定してよい。本実施形態では、便宜上、箱形の密閉容器210の下半分を受熱側211、上半分を放熱側212と呼ぶこととする。もっとも、後述するように、プロセッサ110の発熱表面に接続されるのは、密閉容器210の下半分の一つの面に過ぎないことに留意されたい。密閉容器210の材料としては、アルミニウム、銅、銀などの熱伝導性のよい金属を使用できるが、これらに限定されるものではない。
密閉容器210内には、受熱側211の空間を充たす程度の量の第1の冷却液11が封入されている。第1の冷却液としては、3M社の商品名「Novec(3M社の商標。以下同様)7000」(沸点34℃)、「Novec7100」(沸点61℃)、「Novec7200」(沸点76℃)、「Novec7300」(沸点98℃)として知られるハイドロフルオロエーテル(HFE)化合物を、好適に使用することができるが、これらに限定されるものではない。通常、プロセッサの動作温度を100℃以下に管理することが望ましいと考えられることから、沸騰冷却装置200の沸騰冷却機能が失われないよう、100℃以下の沸点を有する冷却液を使用することが好ましい。なお、密閉容器210内に第1の冷却液を封入する方法には、公知の方法を適用できるので、ここでの詳しい説明を省略する。
密閉容器210の受熱側211において、箱形の密閉容器210の背面が、プロセッサ110の発熱表面に熱的に接続されている。この接続には、熱伝導性の優れた金属グリスなどの接着剤を用いることができるが、これに限定されるものではない。なお、沸騰冷却装置200をプロセッサ110の発熱表面に接続するときの向きについては、沸騰冷却装置200及び電子機器100が第2の冷却液13中に浸漬されるとき、放熱側212が受熱側211より上に位置するような向きとするとよい。
密閉容器210の放熱側212において、箱形の密閉容器210の正面と背面には、それぞれ放熱部材(放熱フィン)220が設けられている。放熱部材220は、放熱側212の表面積を増減することで、第2の冷却液が奪い取る熱量を管理することができる。放熱部材220の材料としては、密閉容器210と同様の材料でよく、密閉容器への固定方法も、ろう付けなどの公知の方法を使用してよい。
図2Bは、沸騰冷却装置の他の例を示しており、図2Aと同様の部分には同様の符号を用いている。図2Bに示す例において、沸騰冷却装置300は、放熱部材220のサイズを幅方向に拡大し、フィンの数を増やすことで、図2Aに示す沸騰冷却装置200よりも放出される熱量を増やしている。逆に、将来の密閉容器210の素材技術の進歩により、放熱部材220の付設による表面積の増大をしなくても、所望の冷却性能を得られるときには、放熱部材220の付設を省略してよい。すなわち、図2Cに示す他の例のように、沸騰冷却装置400を、放熱部材が付設されていない密閉容器210のみで構成してもよい。
図1に戻って、冷却槽12には、沸騰冷却装置200及び電子機器100の全体を浸漬するのに十分な量の第2の冷却液13が、液面19まで入れられている。第2の冷却液としては、3M社の商品名「フロリナート(3M社の商標、以下同様)FC−72」(沸点56℃)、「フロリナートFC−770」(沸点95℃)、「フロリナートFC−3283」(沸点128℃)、「フロリナートFC−40」(沸点155℃)、「フロリナートFC−43」(沸点174℃)として知られる、完全フッ素化物(パーフルオロカーボン化合物)からなるフッ素系不活性液体を好適に使用することができるが、これらに限定されるものではない。ただし、本発明に従い、第2の冷却液13には、第1の冷却液11の沸点Tと同じ又は第1の冷却液11の沸点Tよりも高い沸点Tを有する冷媒を選択することが重要である。一例として、第1の冷却液11に、「Novec7000」(沸点34℃)又は「Novec7100」(沸点61℃)を使用する場合、第2の冷却液13に、「フロリナートFC−43」(沸点174℃)を好適に使用することができる。
本発明者は、完全フッ素化物が、高い電気絶縁性と、高い熱伝達能力を有し、不活性で熱的・化学的に安定性が高く、不燃性で、かつ酸素を含まない化合物であるためオゾン破壊係数がゼロである等の優れた特性を有している点に着目し、そのような完全フッ素化物を主成分として含む冷却液を、高密度の電子機器の浸漬冷却用の冷媒として使用する冷却システムの発明を完成し、特許出願している(特願2014−170616)。この先行出願において開示しているように、特に、フロリナートFC−43又はFC−40を第2の冷却液に用いると、開放空間を有する冷却槽からの、第2の冷却液13の蒸発による損失を大幅に低減しながら、小さい体積の冷却槽内に高密度に設置された複数の電子機器を効率よく冷却することができ、極めて有利である。ただし、既に述べたように、本発明に従い、第2の冷却液13には、第1の冷却液11の沸点Tと同じ又は第1の冷却液11の沸点Tよりも高い沸点Tを有する冷却液として、フロリナートFC−72、FC−770、FC−3283のいずれかを選択することを制限するものではないことは勿論である。
なお、フロリナートFC−43又はFC−40は、その沸点が150℃以上であり、極めて蒸発しにくい性質を有するため、冷却槽12の上部開口に設けられる天板20は、電子機器100のメンテナンスを容易に行えるよう、上部開口に対して着脱可能又は開閉可能に取り付けられていてよい。例えば、天板20は、冷却槽12の上部開口の一方縁部に設けられた図示しないヒンジ部により、開閉自在に支持されていてよい。また、冷却槽12の側部の下方には、第2の冷却液が流入する入口16が設けられており、冷却槽12の側部の上方には、第2の冷却液が流出する出口18が設けられている。これにより冷却槽12の開放空間内に収容された電子機器100が、冷却槽12の開放空間内を流通する第2の冷却液13中に浸漬されて直接冷却されるよう構成されている。
図1を参照して、一実施形態に係る冷却システム10は、天板20に機械的に保持されている第1の熱交換器22をさらに有し、第1の熱交換器22が第2の冷却液13中の表層部に浸漬されている。第1の熱交換器22の機械的な保持方法は、例えば天板20に固定された懸垂支持部材(図示せず)を使用することでよいが、これに限定されるものではない。第1の熱交換器22には、第1の冷却液の沸点Tと同じ又は第1の冷却液の沸点Tよりも低い沸点T(T=T又はT<T)を有する第3の冷媒(図示せず)が封入されている。ここで、「封入」されているとは、第3の冷媒が外気中に漏れないことを意味し、第3の冷媒が、第1の熱交換器から他の構成部分(例えば、後述する第2の熱交換器)へ移動すること、又は第1の熱交換器と他の構成部分との間を循環することを制限するものではない。第3の冷却液としては、第1の冷却液と同様、3M社の商品名「Novec7000」(沸点34℃)、「Novec7100」(沸点61℃)、「Novec7200」(沸点76℃)、「Novec7300」(沸点98℃)として知られるハイドロフルオロエーテル(HFE)化合物を好適に使用することができるが、これらに限定されるものではない。ただし、本発明に従い、第3の冷媒には、第1の冷却液11の沸点Tと同じ又は第1の冷却液11の沸点Tよりも低い沸点Tを有する冷媒を選択することが重要である。一例として、第1の冷却液11に「Novec7000」(沸点34℃)を使用する場合、第3の冷媒に「Novec7000」(沸点34℃)を好適に使用することができ、第1の冷却液11に「Novec7100」(沸点61℃)を使用する場合、第3の冷媒に「Novec7000」(沸点34℃)又は「Novec7100」(沸点61℃)を好適に使用することができる。
図1及び図3に示すように、一実施形態に係る冷却システム10は、冷却槽12の外部に置かれた第2の熱交換器24をさらに有するとよい。第1の熱交換器22と前記第2の熱交換器24は、第1の流通路26により連結されており、第3の冷媒が、第1の流通路26を通って第1の熱交換器22と第2の熱交換器24の間を移動可能又は循環可能に構成されている。第1の熱交換器には、第2の冷却液13中の表層部に浸漬されるよう、薄型な熱交換器を使用するのが好ましく、例えば、図1に示すようなコイル状、渦巻状、又は蛇行状に成形した管からなる熱交換器でよいが、熱交換器の構造(プレート形熱交換器、プレートアンドフィン形熱交換器等)を制限するものではない。第2の熱交換器24は、第1の熱交換器22から第2の熱交換器24に移動する第3の冷媒を冷やす熱交換器であればよく、例えば、循環式の各種の熱交換器(ラジエータ又はチラー)や冷却器でよい。
図3を参照して、冷却槽12の出口18と入口16が第2の流通路30により連結されており、第2の流通路30中に、第2の冷却液13を移動させるポンプ40と、第2の冷却液13を冷やす第3の熱交換器90が設けられている。なお、第2の流通路30を流れる第2の冷却液13の流量を調整するための流量調整バルブ50と流量計70も、第2の流通路30中に設けられている。
ポンプ40は、動粘度が比較的大きい(室温25℃における動粘度が3cStを超える)液体を移動させる性能を備えていることが好ましい。例えば、第2の冷却液13として、フロリナートFC−43又はFC−40を使用する場合、FC−43の動粘度は2.5〜2.8cSt程度であり、FC−40の動粘度は1.8〜2.2cSt程度だからである。流量調整バルブ50は、手動で動作させるものでよく、また、流量計70の計測値に基づき流量を一定に保つような調整機構を備えたものでもよい。加えて、第3の熱交換器90は、循環式の各種の熱交換器(ラジエータ又はチラー)や冷却器でよい。
次に、一実施形態に係る冷却システム10の動作について説明する。電子機器100の運用が開始された後、プロセッサ110の表面温度が上昇して第1の冷却液11の沸点(例えば、Novec7000において34℃)よりも高い温度に達すると、沸騰冷却装置200の密閉容器210内に封入された第1の冷却液11が、密閉容器210の受熱側211の内壁表面から気泡となって蒸発し始める。気化した第1の冷却液11は、密閉容器210の放熱側212の空間を上昇する。しかし、沸騰冷却装置200及び電子機器100の周囲にある第2の冷却液13(例えば、フロリナートFC−43)は、その温度が、例えば17℃−23℃と低く保たれているため、気化した第1の冷却液11は、密閉容器210の放熱側212の内壁表面において凝縮され、第1の冷却液11が液相状態にある受熱側211に向かって、内壁表面上を伝わって、重力で落下する。このような、沸騰冷却装置200における気相及び液相の冷媒循環により、沸騰冷却装置200が、プロセッサ110から局所的にかつ強力に熱を奪い取ると同時に、その周囲にある第2の冷却液13が、その熱を沸騰冷却装置200から(主に、放熱部材220を通して)完全に奪い取ることにより、電子機器を全体的に冷却する。このとき、沸点が高い第2の冷却液13が、電子機器100のボード120上に搭載される周辺の電子部品(図示せず)を、有効かつ強力に冷却する。すなわち、主要な発熱源であるプロセッサ110の沸騰冷却に対する二次冷却用の冷媒(第2の冷却液13)が、周辺の電子部品(図示せず)に対して、有効な一次冷却用の冷媒としても機能する。第1の冷却液11の沸点Tと同じ又は第1の冷却液の沸点Tよりも低い沸点Tを有する第3の冷媒が封入されている第1の熱交換器22が、冷却槽12内の第2の冷却液13中の表層部に浸漬されているので、第2の冷却液13中の表層部の熱を奪い、冷却槽12の外部に取り出す。このようにして、沸騰冷却装置200による主要な発熱源の局所冷却、二次冷却用の冷媒(第2の冷却液13)による沸騰冷却装置200と周辺の電子部品(図示せず)全体の液浸冷却、及び第1の熱交換器22による二次冷却用の冷媒の表層部からの奪熱を含む三重の冷却が行われることにより、電子機器100の冷却性能を、著しく向上させることができる。
また、第2の冷却液13として沸点が比較的高い冷却液(例えば、フロリナートFC−43又はFC−40は、その沸点が150℃以上である)を使用できるので、第2の冷却液13が蒸発しにくく、第2の冷却液13を入れる冷却槽12が非密閉の開放空間になっていてもよく、複雑で高価な密封構造を採る必要がない。加えて、第1の熱交換器22を第2の冷却液13中の表層部に浸漬するだけでよいため、冷却槽12内で構成部品が占める体積が小さくて済む。従って、冷却システムの簡素化及び小型化が実現される。さらに、従来の沸騰冷却方式では、主要な発熱源であるプロセッサを冷却するために、複雑な配管や大型のヒートシンクなどの機構を要し、これらの存在が、空冷に頼らなくてはならない周辺の電子部品の冷却を妨げる結果にもなっていた。このような従来技術に対して、本発明によれば、複雑な配管や大型のヒートシンクが不要となって周辺の電子部品(図示せず)の冷却に有利であることに加えて、二次冷却用の冷媒(第2の冷却液13)が、遍く電子機器100のボード120全体に行き渡ることによって、高い効率で周辺の電子部品(図示せず)を冷却することが可能となる。なお、本実施形態において、沸騰冷却装置200に使用する第1の冷却液11として、その沸点Tが、冷却槽12に入れられた第2の冷却液13の沸点Tと同じ冷却液を使用し、及び/又は第1の熱交換器22に使用する第3の冷媒として、その沸点が第2の冷却液13の沸点Tと同じ冷却液を使用しても、従来の冷却システムにおける冷却効率を大幅に改善するという目的を達成することができることは勿論である。
以上、一実施形態に係る冷却システムについて、図1から図3を参照しつつ、1ユニットの電子機器を冷却槽に収納する例を説明したが、これは本発明の要部を説明するために簡略化したものであり、本発明はこれに限定されるものではない。本発明が、複数のユニットの電子機器を冷却槽に高密度に収納して冷却する、高密度冷却システムに適用することができることは勿論である。以下、図4から図6を参照して、本発明の他の実施形態に係る高密度冷却システムの構成を説明する。なお、図1及び図3に示した冷却システムと同様の部分には同様の符号を用い、詳しい説明を省略する。
他の実施形態の説明では、電子機器として、プロセッサを複数搭載したボードを含む1ユニットを、合計16ユニット、冷却槽の各収納部に収納して冷却する、高密度冷却システムの構成を説明する。なお、これは例示であって、ボード当たりのプロセッサの数や種類(CPU又はGPU)は任意であり、また、高密度冷却システムにおける電子機器のユニット数も任意であり、本発明における電子機器の構成を限定するものではない。
図4〜図6を参照して、他の実施形態に係る冷却システム500は冷却槽12を有し、冷却槽12の底壁12a及び側壁12bによって開放空間10aが形成されている。冷却槽12内に、縦方向の内部隔壁13a、13b、13c、13d、13eと、横方向の内部隔壁14a、14b、14c、14d、14eを設けることにより、開放空間10aを均等に16分割して、配列された16個の収納部15aa、15ab、15ac、15ad、15ba、15bb、15bc、15bd、15ca、15cb、15cc、15cd、15da、15db、15dc、15dd(以下、まとめて「収納部15aa〜15dd」と記載することがある。)が形成されている。そして、各収納部に少なくとも1つの電子機器100が収納される。冷却槽12の開放空間10a内には、第2の冷却液13が液面19まで入れられている。収納部15aa、15ab、15ac、15ad、15ba、15bb、15bc、15bd、15ca、15cb、15cc、15cd、15da、15db、15dc、15ddの底部には、第2の冷却液13の流入開口16aa、16ab、16ac、16ad、16ba、16bb、16bc、16bd、16ca、16cb、16cc、16cd、16da、16db、16dc、16dd(以下、まとめて「流入開口16aa〜16dd」と記載することがある。)が形成されている。
また、収納部15aa〜15ddを流通する第2の冷却液13の液面19近傍には、流出開口17aa、17ab、17ac、17ad、17ae、17ba、17bb、17bc、17bd、17be、17ca、17cb、17cc、17cd、17ce、17da、17db、17dc、17dd、17de、17ea、17eb、17ec、17ed、17ee(以下、まとめて「流出開口17aa〜17ee」と記載することがある。)が形成されている。
他の実施形態に係る冷却システム500において、流出開口は、各収納部を形成している複数の内部隔壁が互いに交差する位置もしくはその近傍に形成されている。例えば、図4を参照すると、収納部15aaは、縦方向の内部隔壁13a、13bと、横方向の内部隔壁14a、14bによって形成されており、内部隔壁13aと内部隔壁14aが交差する点、内部隔壁13aと内部隔壁14bが交差する点、内部隔壁13bと内部隔壁14aが交差する点、及び内部隔壁13bと内部隔壁14bが交差する点にそれぞれ位置するように、流出開口17aa、17ba、17ab、17bbが形成されている。同様にして、図5を参照すると、収納部15bbは、縦方向の内部隔壁13b、13cと、横方向の内部隔壁14b、14cによって形成されており、内部隔壁13bと内部隔壁14bが交差する点、内部隔壁13bと内部隔壁14cが交差する点、内部隔壁13cと内部隔壁14bが交差する点、及び内部隔壁13cと内部隔壁14cが交差する点にそれぞれ位置するように、流出開口17bb、17cb、17bc、17ccが形成されている。
他の実施形態に係る冷却システム500において、流出開口は、冷却槽12の底壁12aを貫通し液面19近傍まで延びる流出管170の一端に形成されている。例えば、図5を参照すると、収納部15bbに関し、流出開口17bb、17cb、17bc、17ccは、縦方向の内部隔壁13b、13cと、横方向の内部隔壁14b、14cによって形成されており、内部隔壁13bと内部隔壁14bが交差する点、内部隔壁13bと内部隔壁14cが交差する点、内部隔壁13cと内部隔壁14bが交差する点、及び内部隔壁13cと内部隔壁14cが交差する点にそれぞれ位置する流出管170の一端に形成されている。なお、流出管の他端には、底部開口18aa、18ab、18ac、18ad、18ae、18ba、18bb、18bc、18bd、18be、18ca、18cb、18cc、18cd、18ce、18da、18db、18dc、18dd、18de、18ea、18eb、18ec、18ed、18ee(以下、まとめて「底部開口18aa〜18ee」という場合がある。)が形成されている。
流出開口が、各収納部を形成している複数の内部隔壁が互いに交差する位置に形成されている場合、各収納部に設けられる流出開口を、各収納部の四隅に分散して確保できるので有利である。例えば、収納部15bbでは、その四隅に配置される流出管170によって、流出開口17bb、17bc、17cb、及び17ccが形成されている。なお、このように流出開口が形成されている場合、1つの流出開口が複数の収納部にとっての共通の流出開口となりうる。例えば、流出開口17bbは、収納部15aaにとっての流出開口の一部であると同時に、収納部15ab、15ba、及び15bbにとっての流出開口の一部でもある。同様のことが、流出開口17bc、17cb、及び17ccについても当てはまる。ただし、各収納部について、流出管を設ける位置及び本数は任意であり、各収納部を形成している複数の内部隔壁が互いに交差する位置の近傍に流出管を1本又は複数本設けてよいことは勿論である。また、流出管は、内部隔壁と一体化されている必要はなく、内部隔壁から離れて配置された管であってもよい。
また、流出管170には、図5に示すように、流出管170の長手方向に1つ以上の小孔171が形成されていてよい。これら小孔171は、収納部の深さ方向の途中における第2の冷却液13の流通を促進する。一方、流入開口16aa〜16ddは、図示のように円筒状の開口であることは必要でなく、例えば、複数のノズルを有するヘッダを円筒の一端に連結して、多数のノズルによって流入開口を形成してもよい。
各収納部15aa〜15ddには、電子機器100が収納され、第2の冷却液13に浸漬されている。電子機器100は、先の一実施形態における電子機器と同様であり、ここでの詳しい説明を省略する。
冷却槽12には、電子機器100の全体を浸漬するのに十分な量の第2の冷却液13が、液面19まで入れられている。第2の冷却液13は、先の一実施形態における第2の冷却液と同様であり、ここでの詳しい説明を省略する。
冷却槽12には、各収納部15aa〜15ddに設けられた流入開口16aa〜16ddに向けて、分配管(図示せず)を介して第2の冷却液13を分配するための入口16と、各収納部15aa〜15ddの流出開口17aa〜17eeを通った第2の冷却液13を、集合管(図示せず)を介して集めるための出口18とが設けられている。
各収納部15aa〜15ddに収納された電子機器100が、動作中に所定の温度以下に保たれるよう、所望の温度に冷やされた第2の冷却液13が連続的に各収納部15aa〜15dd内を流通するようにするために、冷却槽12の出口18から出た第2の冷却液13を、第3の熱交換器で冷やし、冷えた冷却液を冷却槽12の入口16に戻す第2の流通路を構成するとよい。かかる流通路及び付随する設備の一例は、既に図3を参照して詳しく説明したので、ここでの説明を省略する。
図6を参照して、他の実施形態に係る冷却システム500は、第1の冷却液11の沸点Tと同じ又は第1の冷却液11の沸点Tよりも低い沸点T(T=T又はT>T)を有する第3の冷媒が封入されている、分散型の第1の熱交換器22aa、22ab、22ac、22ad、22ba、22bb、22bc、22bd、22ca、22cb、22cc、22cd、22da、22db、22dc、22dd(以下、まとめて「分散型の第1の熱交換器22aa〜22dd」と記載することがある。)を有している。分散型の第1の熱交換器22aa〜22ddの各々が、各収納部15aa〜15dd内の第2の冷却液13中の表層部に浸漬されている。分散型の第1の熱交換器22aa〜22ddの各々は、一実施形態における第1の熱交換器と同様に、天板(図示せず)に機械的に保持されていてよい。また、分散型の第1の熱交換器22aa〜22ddの各々は、図1に示す例と同様に、冷却槽12の外部に置かれた第2の熱交換器と、第1の流通路(図示せず)により連結されていてよい。この連結は、分散型の第1の熱交換器22aa〜22ddと同数の第2の熱交換器を用意して個別に連結する方法、分散型の第1の熱交換器22aa〜22ddを、1つのグループがいくつか(例えば4つ)の熱交換器からなる複数(例えば4つ)のグループに分け、当該グループの数だけ第2の熱交換器を用意して個別に連結する方法、又は、分散型の第1の熱交換器22aa〜22dd全部に対して1つの第2の熱交換器を連結する方法のいずれでもよい。
次に、他の実施形態に係る冷却システム500の動作について説明する。入口16から入った第2の冷却液13は、図示しない分配管を介して、収納部15aa〜15ddの底部に形成された流入開口16aa〜16ddに向けて分配される。第2の冷却液13は、流入開口16aa〜16ddから上方に吹き上がり、電子機器100のボード120上に搭載された、プロセッサに熱的に接続された沸騰冷却装置200及び周辺の電子部品(図示せず)を直接冷却する。例えば、第2の冷却液13は、流入開口16bbから吹き上がると、プロセッサに熱的に接続された沸騰冷却装置200並びに周辺の電子部品(図示せず)の表面から熱を奪い取りながら液面19に向けて上昇し、さらには流出開口17bb、17bc、17cb、17ccに向けて移動する。このとき、収納部15aa〜15ddの体積は、冷却槽12の開放空間10aの体積の約1/16の体積と小さく、そこに収納される電子機器100も、冷却槽12の幅の約1/4の幅と小さいため、第2の冷却液13による電子機器100の冷却効率が極めてよく、また、電子機器100の周囲で第2の冷却液13が滞留するのを有効に防ぐことができる。
加えて、各収納部15aa〜15ddにおいて、分散型の第1の熱交換器22aa〜22ddの各々は、第2の冷却液13中の表層部の熱を奪い、冷却槽12の外部に取り出す。このようにして、沸騰冷却装置200による主要な発熱源の局所冷却、二次冷却用の冷媒(第2の冷却液13)による沸騰冷却装置200と周辺の電子部品(図示せず)全体の液浸冷却、及び分散型の第1の熱交換器22aa〜22ddによる二次冷却用の冷媒の表層部からの奪熱を含む三重の冷却が行われる。第2の冷却液13は、冷却槽12上の液面19の近傍に位置する流出開口17aa〜17eeを通り、流出管170内を下降し、底部開口18aa〜18eeを通り、集合管(図示せず)を介して出口18に集められる。
上記の他の実施形態では、流入開口を各収納部の底部に形成する例を説明したが、流入開口を各収納部の側面に形成してもよい。
上記した他の実施形態に係る高密度冷却システムによれば、冷却槽の開放空間の体積の約1/4の体積か、約1/4よりも小さい体積(例えば、開放空間の体積の約1/9(縦3×横3に分割する場合)、1/12(縦3×横4に分割する場合)、1/16(縦4×横4に分割する場合))の収納部に、従来よりも小さい幅(例えば、約1/2、1/3、1/4)の電子機器を収納して、冷却液を個別に流通させることにより、複数の電子機器を、個別に効率よく冷却することができる。換言すると、他の実施形態に係る高密度冷却システムにおいては、温められた冷却液を冷却槽の中央部からも流出させることができるので、温められた冷却液を冷却槽の側面から流出させる従来技術におけるように、冷却液が冷却槽の中央付近に滞留して、冷却槽内の電子機器の収納位置によって冷却性能に差が生じるのを避けることができる。従って、複数の電子機器の冷却性能を向上させ、かつ冷却性能のばらつきを無くして安定化させることができる。また、収納部に収納する電子機器のサイズを小さくできるので、電子機器の取り扱い性及びメンテナンス性を向上させることができる。
上記の一実施形態及び他の実施形態では、冷却槽12が、第2の冷却液13の入口16と出口18を有することにより、第2の冷却液13が冷却槽12内を流通できるよう構成したが、入口と出口を省略してもよい。これは、入口と出口がない冷却システムにおいても、沸騰冷却装置200による主要な発熱源の局所冷却、二次冷却用の冷媒(第2の冷却液13)による沸騰冷却装置200と周辺の電子部品全体の液浸冷却、及び第1の熱交換器22又は分散型の第1の熱交換器22aa〜22ddによる二次冷却用の冷媒の表層部からの奪熱を含む三重の冷却が行われるためである。従って、一実施形態に係る冷却システムを、他の実施形態に示した冷却システムにおける冷却槽のように、冷却槽内に複数の内部隔壁を設けることにより開放空間を分割して、配列された複数の収納部を形成する一方、流入開口及び流出開口を省略する構成に変更してもよい。
上記の一実施形態及び他の実施形態において、電子機器100のボード上に搭載されるプロセッサはCPU又はGPUのいずれか又は両方を含んでよく、また、図示しない高速メモリ、チップセット、ネットワークユニット、PCI Expressバスや、バススイッチユニット、SSD、パワーユニット(交流−直流変換器、直流−直流電圧変換器等)を含んでよい。また、電子機器100は、ブレードサーバを含むサーバ、ルータ、SSD等の記憶装置等の電子機器であってもよい。ただし、既に述べたように、他の実施形態においては、従来の一般的な幅よりも小さい幅(例えば、約1/2、1/3、1/4)の電子機器でよいことは勿論である。
また、上記の一実施形態及び他の実施形態において、沸騰冷却装置200における密閉容器210として、縦長の薄い箱形を有する例を図示しているが、これを横置きに、横長の箱形を有するものとして使用してもよい。また、密閉容器210の受熱側と放熱側とを、便宜上、縦長の箱形の密閉容器210の上半分と下半分に分けて説明したが、受熱側と放熱側が上下方向で共通化されていてもよい(ただし、プロセッサ110の発熱表面と熱的に接続される面側が受熱側となる)。
また、上記の一実施形態及び他の実施形態において、沸騰冷却装置200が、電子機器100に含まれる主要な発熱体であるプロセッサに熱的に接続される例を説明したが、本発明は、電子機器に含まれるすべての発熱体に対して、個別に沸騰冷却装置が熱的に接続されることを要求するものではなく、また、電子機器が例えばサーバ、ルータ、SSD等の記憶装置等の機器である場合に、当該電子機器全体を1つの発熱体として、1つ又は複数の沸騰冷却装置が熱的に接続されることを要求するものでもない。電子機器に含まれる複数の発熱体のうちどの発熱体に対して、沸騰冷却装置をどのように熱的に接続するか、また、電子機器全体を1つの発熱体として1つ又は複数の沸騰冷却装置を熱的に接続するかは、電子機器の構造、特性、使用状態等に応じて当業者が任意に決定してよい。
本発明は、電子機器を効率よく冷却する、冷却システムに広く適用することができる。
10、500 冷却システム
100 電子機器
110 プロセッサ
111 ダイ(チップ)
112 ヒートスプレッダ
120 ボード
200、300、400 沸騰冷却装置
210 密閉容器
211 受熱側
212 放熱側
220 放熱部材(放熱フィン)
10a 開放空間
11 第1の冷却液
12 冷却槽
12a 底壁
12b 側壁
13 第2の冷却液
13a、13b、13c、13d、13e 内部隔壁
14a、14b、14c、14d、14e 内部隔壁
15aa、15ab、15ac、15ad、15ba、15bb、15bc、15bd、15ca、15cb、15cc、15cd、15da、15db、15dc、15dd 収納部
16 入口
16aa、16ab、16ac、16ad、16ba、16bb、16bc、16bd、16ca、16cb、16cc、16cd、16da、16db、16dc、16dd 流入開口
17aa、17ab、17ac、17ad、17ae、17ba、17bb、17bc、17bd、17be、17ca、17cb、17cc、17cd、17ce、17da、17db、17dc、17dd、17de、17ea、17eb、17ec、17ed、17ee 流出開口
170 流出管
171 小孔
18 出口
18aa、18ab、18ac、18ad、18ae、18ba、18bb、18bc、18bd、18be、18ca、18cb、18cc、18cd、18ce、18da、18db、18dc、18dd、18de、18ea、18eb、18ec、18ed、18ee 底部開口
19 液面
20 天板
22 第1の熱交換器
22aa、22ab、22ac、22ad、22ba、22bb、22bc、22bd、22ca、22cb、22cc、22cd、22da、22db、22dc、22dd 分散型の第1の熱交換器
24 第2の熱交換器
26 第1の流通路
30 第2の流通路
40 ポンプ
50 流量調整バルブ
70 流量計
90 第3の熱交換器

Claims (9)

  1. 電子機器を冷却液中に浸漬して直接冷却する、冷却システムであって、
    少なくとも1つの発熱体を有する電子機器の前記発熱体に熱的に接続される沸騰冷却装置であって、沸点Tを有する第1の冷却液が封入されている沸騰冷却装置と、
    前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも高い沸点T(T=T又はT>T)を有する第2の冷却液が入れられた冷却槽であって、前記沸騰冷却装置及び前記電子機器が前記第2の冷却液中に浸漬されて直接冷却される冷却槽と、
    前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも低い沸点T(T=T又はT<T)を有する第3の冷媒が封入されている第1の熱交換器であって、前記冷却槽内の前記第2の冷却液中の表層部に浸漬される第1の熱交換器と、
    を含む冷却システム。
  2. 前記沸騰冷却装置は、受熱側と放熱側を有する密閉容器と、前記放熱側に設けられた放熱部材とを有し、前記沸騰冷却装置及び前記電子機器が前記第2の冷却液中に浸漬されるとき、前記放熱側が前記受熱側より上に位置するように前記発熱体に熱的に接続されている、請求項1に記載の冷却システム。
  3. 前記第1の冷却液の沸点が100℃以下であり、前記第2の冷却液の沸点が150℃以上であり、前記第3の冷媒の沸点が50℃以下である、請求項1又は2に記載の冷却システム。
  4. 前記第1の冷却液及び/又は前記第3の冷媒が、主成分としてフッ化炭素化合物を含む、請求項3に記載の冷却システム。
  5. 前記第2の冷却液が、主成分として完全フッ素化物を含む、請求項3に記載の冷却システム。
  6. 前記冷却槽の外部に置かれた、前記第3の冷媒を冷やす第2の熱交換器をさらに有し、前記第1の熱交換器と前記第2の熱交換器は第1の流通路により連結されている、請求項1に記載の冷却システム。
  7. 前記冷却槽が、前記冷却槽の上部開口に対して着脱可能又は開閉可能に取り付けられた天板を有し、該天板が前記第1の熱交換器を保持している、請求項1に記載の冷却システム。
  8. 前記冷却槽は、前記第2の冷却液の入口と出口を有し、
    前記出口と前記入口が、前記冷却槽の外部にある第2の流通路により連結されており、
    前記流通路中に、前記第2の冷却液を移動させる少なくとも1つのポンプと、前記第2の冷却液を冷やす第3の熱交換器が設けられている、請求項1に記載の冷却システム。
  9. 複数の電子機器を冷却液中に浸漬して直接冷却する冷却システムであって、
    底壁及び側壁によって形成される開放空間を有する冷却槽と、
    前記冷却槽内に複数の内部隔壁を設けることにより前記開放空間を分割して形成される、配列された複数の収納部であって、各収納部に少なくとも1つの電子機器を収納するための収納部と、
    前記複数の収納部の各々に形成される、冷却液の流入開口及び流出開口と、
    を有し、
    前記流入開口は、各収納部の底部又は側面に形成され、前記流出開口は、各収納部を流通する前記冷却液の液面近傍に形成されており、
    前記冷却システムはさらに、
    前記少なくとも1つの電子機器が有する少なくとも1つの発熱体に熱的に接続される沸騰冷却装置であって、沸点Tを有する第1の冷却液が封入されている沸騰冷却装置と、
    前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも低い沸点T(T=T又はT<T)を有する第3の冷媒が封入されている第1の熱交換器とを有し、
    前記複数の収納部の各々には、前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも高い沸点T(T=T又はT>T)を有する第2の冷却液が入れられ、前記沸騰冷却装置及び前記少なくとも1つの電子機器が各収納部内の前記第2の冷却液中に浸漬されて直接冷却され、
    前記第1の熱交換器が各収納部内の前記第2の冷却液中の表層部に浸漬されている、
    冷却システム。
JP2016507718A 2015-03-30 2015-03-30 電子機器の冷却システム Expired - Fee Related JP5956099B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060031 WO2016157396A1 (ja) 2015-03-30 2015-03-30 電子機器の冷却システム

Publications (2)

Publication Number Publication Date
JP5956099B1 true JP5956099B1 (ja) 2016-07-20
JPWO2016157396A1 JPWO2016157396A1 (ja) 2017-04-27

Family

ID=56418690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016507718A Expired - Fee Related JP5956099B1 (ja) 2015-03-30 2015-03-30 電子機器の冷却システム

Country Status (4)

Country Link
US (1) US10123454B2 (ja)
EP (1) EP3279764A4 (ja)
JP (1) JP5956099B1 (ja)
WO (1) WO2016157396A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6790855B2 (ja) * 2017-01-18 2020-11-25 富士通株式会社 液浸冷却装置、液浸冷却システム及び電子装置の冷却方法
JP6939034B2 (ja) * 2017-04-05 2021-09-22 富士通株式会社 冷却システム、冷却装置、及び電子システム
JP7019981B2 (ja) * 2017-06-30 2022-02-16 富士通株式会社 冷却装置、冷却システム及び電子装置の冷却方法
CN111615291B (zh) * 2019-02-25 2023-04-11 富联精密电子(天津)有限公司 浸没式冷却装置
US10925180B2 (en) * 2019-03-04 2021-02-16 Baidu Usa Llc IT container system design approach for fast deployment and high compatibility application scenarios
CN109922643B (zh) * 2019-04-02 2020-11-27 苏州佳世达光电有限公司 水冷系统及应用该系统的电子装置
US11116113B2 (en) * 2019-04-08 2021-09-07 Google Llc Cooling electronic devices in a data center
CN112020265B (zh) * 2019-05-31 2022-06-28 华为技术有限公司 一种散热装置及处理器
US11495519B2 (en) * 2019-06-07 2022-11-08 Dana Canada Corporation Apparatus for thermal management of electronic components
GB202001872D0 (en) * 2020-02-11 2020-03-25 Iceotope Group Ltd Housing for immersive liquid cooling of multiple electronic devices
US20220187023A1 (en) * 2020-12-14 2022-06-16 Aavid Thermalloy, Llc Shrouded powder patch
US11729950B2 (en) 2021-04-01 2023-08-15 Ovh Immersion cooling system with dual dielectric cooling liquid circulation
US11924998B2 (en) * 2021-04-01 2024-03-05 Ovh Hybrid immersion cooling system for rack-mounted electronic assemblies
TWI807318B (zh) * 2021-05-07 2023-07-01 緯穎科技服務股份有限公司 具有浸沒式冷卻系統的電子設備及其操作方法
US11606879B2 (en) * 2021-06-23 2023-03-14 Baidu Usa Llc Multi-phase change thermal management systems for servers
WO2023081401A1 (en) * 2021-11-05 2023-05-11 Rochester Institute Of Technology Cooling device having a boiling chamber with submerged condensation and method
TWI833311B (zh) * 2022-08-02 2024-02-21 緯創資通股份有限公司 浸沒式冷卻單元及電子設備
US20240074120A1 (en) * 2022-08-28 2024-02-29 Cooler Master Co., Ltd. Two-phase immersion cooling apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207098A (ja) * 1990-11-30 1992-07-29 Fujitsu Ltd プリント基板ユニットの冷却方法
JP2002181427A (ja) * 2000-12-13 2002-06-26 Smc Corp 自動回収機構付き冷却液循環装置
JP2002295983A (ja) * 2001-03-28 2002-10-09 Maruyasu Industries Co Ltd 熱交換器および熱交換器の熱交換能力を高める方法
JP2007109695A (ja) * 2005-10-11 2007-04-26 Sumitomo Precision Prod Co Ltd 起動特性に優れる素子冷却器
JP2008025858A (ja) * 2006-07-18 2008-02-07 Toshiba Corp サブクール低温装置
JP2013007501A (ja) * 2011-06-22 2013-01-10 Nec Corp 冷却装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3406244A (en) * 1966-06-07 1968-10-15 Ibm Multi-liquid heat transfer
US4590538A (en) * 1982-11-18 1986-05-20 Cray Research, Inc. Immersion cooled high density electronic assembly
JPS6154654A (ja) * 1984-08-27 1986-03-18 Fujitsu Ltd 液冷装置
EP0456508A3 (en) * 1990-05-11 1993-01-20 Fujitsu Limited Immersion cooling coolant and electronic device using this coolant
JPH06177297A (ja) * 1992-12-10 1994-06-24 Toyota Motor Corp 電子部品の冷却構造
FR2713405B1 (fr) * 1993-12-03 1996-01-19 Gec Alsthom Electromec Module d'amenée de courant pour l'alimentation d'une charge électrique supraconductrice à basse température critique.
JPH11288809A (ja) * 1998-03-31 1999-10-19 Toshiba Corp 超電導マグネット装置
DE19826733A1 (de) * 1998-06-16 1999-12-23 Isad Electronic Sys Gmbh & Co Kühlsystem für eine Leistungselektronik zum Betreiben wenigstens eines elektrischen Aggregats eines Kraftfahrzeugs
US6758593B1 (en) * 2000-10-09 2004-07-06 Levtech, Inc. Pumping or mixing system using a levitating magnetic element, related system components, and related methods
US7547385B2 (en) * 2005-11-14 2009-06-16 Eden Innovations Ltd. Method and system for producing a supercritical cryogenic fuel (SCCF)
EP3846601A1 (en) 2009-05-12 2021-07-07 Iceotope Group Limited Cooled electronic system
US8369090B2 (en) * 2009-05-12 2013-02-05 Iceotope Limited Cooled electronic system
US8014150B2 (en) * 2009-06-25 2011-09-06 International Business Machines Corporation Cooled electronic module with pump-enhanced, dielectric fluid immersion-cooling
JP2013069740A (ja) 2011-09-21 2013-04-18 Nec Corp 平板型冷却装置及びその使用方法
JP2013187251A (ja) 2012-03-06 2013-09-19 Sohki:Kk 電子装置の冷却システムおよび方法
EP3132209A4 (en) * 2014-04-17 2017-12-13 Victoria Link Ltd Cryogenic fluid circuit design for effective cooling of an elongated thermally conductive structure extending from a component to be cooled to a cryogenic temperature
EP3236726B1 (en) * 2016-04-20 2020-10-14 CGG Services SAS Methods and system for oil immersion cooling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207098A (ja) * 1990-11-30 1992-07-29 Fujitsu Ltd プリント基板ユニットの冷却方法
JP2002181427A (ja) * 2000-12-13 2002-06-26 Smc Corp 自動回収機構付き冷却液循環装置
JP2002295983A (ja) * 2001-03-28 2002-10-09 Maruyasu Industries Co Ltd 熱交換器および熱交換器の熱交換能力を高める方法
JP2007109695A (ja) * 2005-10-11 2007-04-26 Sumitomo Precision Prod Co Ltd 起動特性に優れる素子冷却器
JP2008025858A (ja) * 2006-07-18 2008-02-07 Toshiba Corp サブクール低温装置
JP2013007501A (ja) * 2011-06-22 2013-01-10 Nec Corp 冷却装置

Also Published As

Publication number Publication date
US10123454B2 (en) 2018-11-06
EP3279764A4 (en) 2018-12-05
JPWO2016157396A1 (ja) 2017-04-27
EP3279764A1 (en) 2018-02-07
WO2016157396A1 (ja) 2016-10-06
US20180092243A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP5956099B1 (ja) 電子機器の冷却システム
JP6064083B1 (ja) 電子機器の冷却システム
WO2016157397A1 (ja) 電子機器の冷却システム
WO2016075838A1 (ja) 電子機器の冷却システム、及び冷却方法
JP5956097B1 (ja) 電子機器の冷却装置
JP5956098B1 (ja) 電子機器、及び電子機器の冷却装置
JP2017050548A (ja) 電子機器の冷却システム
US10321609B2 (en) Cooling system and method of cooling electronic device
US10888032B2 (en) Apparatus for liquid immersion cooling, system for liquid immersion cooling, and method of cooling electronic device
US8619425B2 (en) Multi-fluid, two-phase immersion-cooling of electronic component(s)
US7231961B2 (en) Low-profile thermosyphon-based cooling system for computers and other electronic devices
US9210830B2 (en) Immersion-cooled and conduction-cooled method for electronic system
US7958935B2 (en) Low-profile thermosyphon-based cooling system for computers and other electronic devices
JP2016046431A (ja) 電子機器の冷却システム
JP7126279B2 (ja) 気泡放出装置を備えた電子機器
Kulkarni et al. Enabling Thermal Management of High-Powered Server Processors Using Passive Thermosiphon Heat Sink
Guo et al. Advanced Single-phase Passive Immersion Cooling Solution with Natural Convection for Outdoor Edge Servers
WO2024065847A1 (en) Immersion cooling systems, apparatus, and related methods
JP6244066B1 (ja) 冷却システム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160615

R150 Certificate of patent or registration of utility model

Ref document number: 5956099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees