ところが、出願人が開示している上記の誤差データの取得方法(以下、「誤差データ取得方法」ともいう)には、以下の改善すべき課題が存在する。すなわち、出願人が開示している誤差データ取得方法では、基準となる座標に向けて検査用プローブを移動させるようにX−Y移動機構によって検査用プローブを移動させて打痕シートに打痕を形成する処理(以下、「打痕形成処理」ともいう)、カメラによって打痕シートを撮像する処理(以下、「撮像処理」ともいう)、およびカメラからの画像データを解析して打痕の位置(座標)を特定する処理(以下、「打痕位置特定処理」ともいう)をこの順で実行して、打痕位置特定処理において特定した打痕の座標と、打痕形成処理においてX−Y移動機構を制御した基準の座標との差を誤差データとして取得している。
一方、出願人が開示している上記の基板検査装置では、X−Y移動機構によって検査用プローブを移動させて任意の検査点にプロービングさせるため、検査点の位置が相違する各種の検査対象基板を対象とする検査を実行することができる。しかしながら、検査用プローブが少数本(例えば、3本)のため、多数の検査点を有する検査対象基板については、X−Y移動機構による検査用プローブの移動回数が多数回となり、各検査点についての検査を完了するのに長時間を要することとなる。したがって、出願人は、検査対象基板に存在する多数の検査点に合わせて多数の検査用プローブを配設したテストヘッド(プローブユニット)を使用するタイプの基板検査装置(図示せず)を提案している。
このテストヘッドを使用するタイプの基板検査装置(以下、「テストヘッド型検査装置」ともいう)では、検査対象基板に規定された多数の検査点の位置に応じて複数本の検査用プローブが配設されているため、例えば検査対象基板に向けてテストヘッドを1回移動させるだけで、各検査用プローブを各検査点に対してそれぞれプロービングさせることが可能となっている。これにより、多数の検査点を有する検査対象基板についても、各検査点についての検査を短時間で完了することが可能となっている。この場合、出願人が開示しているX−Y回路基板検査装置と同様にして、テストヘッド型検査装置においても、移動機構の組立て精度や、移動機構に対するテストヘッドの取付け精度が許容範囲内において僅かにばらついている。したがって、テストヘッド型検査装置においても、検査対象基板についての電気的検査(プロービング)を実行するのに先立って、各検査用プローブを本来的な位置にプロービングさせるための補正情報を取得するのが好ましい。
この場合、出願人が開示している誤差データ取得方法に従ってテストヘッド型検査装置用の補正情報(誤差データ)を取得しようとしたときには、打痕形成処理に際して、テストヘッドに配設されているすべての検査用プローブが打痕シートにプロービングされる。また、今日の検査対象基板では、実装される電子部品の小型化や配線パターンの狭ピッチ化に伴い、極く狭い領域内に多数の検査点が存在している。このため、各検査点の位置に応じて検査用プローブが配設されたテストヘッドでは、極く狭い領域内に多数本の検査用プローブが配設されており、このようなテストヘッドを打痕シートにプロービングさせたときには、打痕シートにおける極く狭い領域内に多数の打痕が形成されることとなる。
したがって、テストヘッド型検査装置用の補正情報(誤差データ)の取得に際しては、打痕位置特定処理において、画像処理手段が、まず、カメラからの画像データを解析して多数の打痕のうちから重心を特定すべき打痕を特定し、その後に、特定した打痕についての重心を特定する処理を実行する必要がある。この場合、補正情報(誤差データ)の取得を目的とする打痕の重心の特定に際しては、重心を正確に特定するために、十分に高い解像度の画像データを解析する必要がある。したがって、カメラからの画像データを解析して、複数の打痕のうちから重心を特定すべき打痕を特定する処理(以下、「打痕特定処理」ともいう)、および特定した打痕の重心を特定する処理(以下、「重心特定処理」ともいう)をこの順で実行する場合には、重心特定処理において必要とされる高解像度の画像データを対象として打痕特定処理を実行することとなる。この結果、高解像度の画像データを対象とする打痕特定処理時における画像処理手段の負荷が大きいため、高性能の画像処理手段が必要となる。
また、前述した組立て精度や取付け精度に起因する位置ずれがある程度大きな場合には、打痕特定処理に際して、重心特定処理によって重心を特定すべき打痕を特定すること自体が困難となり、最悪の場合には、基準とすべき打痕(重心を特定すべき打痕)以外の打痕についての重心が特定される可能性もある。このように、出願人が開示している誤差データ取得方法では、テストヘッド型検査装置において使用する補正情報を取得するのに高価な画像処理手段が必要となることに起因して基板検査装置の製造コストが高騰するおそれがあり、また、重心を特定すべき打痕とは相違する打痕についての重心が特定されて、誤った補正情報が取得される可能性もあるため、この点を改善するのが好ましい。
本発明は、かかる改善すべき課題に鑑みてなされたものであり、製造コストの高騰を招くことなく正確な補正情報を取得し得るテストヘッド型の基板検査装置、およびテストヘッド型の基板検査装置における補正情報取得方法を提供することを主目的とする。
上記目的を達成すべく請求項1記載の基板検査装置は、接触型の複数の検査用プローブが配設されたプローブユニットと、検査対象基板を保持する基板保持機構と、前記プローブユニットおよび前記基板保持機構の少なくとも一方を他方に対して移動させて前記検査用プローブを前記検査対象基板にプロービングさせる移動機構と、前記基板保持機構における前記検査対象基板の保持位置を撮像する撮像部と、前記検査対象基板に対するプロービング時に前記少なくとも一方を前記他方に対して移動させる移動量および移動方向を特定可能なプロービング情報、および当該プロービング情報に従って当該少なくとも一方を当該他方に対して移動させたときに複数の前記検査用プローブのうちの基準の当該検査用プローブが当該検査対象基板にプロービングさせられる基準プロービング位置を特定可能な基準位置情報を記憶する記憶部と、前記撮像部による撮像、および前記移動機構による前記移動を制御すると共に、前記検査対象基板に対するプロービング時に使用する前記プロービング情報を補正するための補正情報を取得する補正情報取得処理を実行する処理部とを備えた基板検査装置であって、前記処理部は、前記補正情報取得処理において、前記プロービング情報に従って前記移動機構を制御して前記保持位置に配設されている打痕シートに前記検査用プローブをプロービングさせて当該打痕シートに打痕を形成させる打痕形成処理と、前記撮像部を制御して前記打痕シートを撮像させる撮像処理と、前記撮像部から出力された画像データを解析して前記基準の検査用プローブによって形成された前記打痕の位置を特定する打痕位置特定処理と、当該打痕位置特定処理によって特定した前記打痕の位置の前記基準プロービング位置に対する位置ずれ量および位置ずれ方向を特定する位置ずれ状態特定処理とをこの順で実行して、当該位置ずれ状態特定処理において特定した前記位置ずれ量および前記位置ずれ方向を前記補正情報として取得すると共に、前記撮像処理として、前記基準プロービング位置が予め規定された基準座標と一致し、かつ、前記基準の検査用プローブによって形成された前記打痕、および当該基準の検査用プローブの周囲に配設された前記検査用プローブによって形成された前記打痕が含まれるように規定された第1の撮像範囲を前記撮像部に撮像させる第1の撮像処理と、当該第1の撮像処理によって前記撮像部から出力された前記画像データの画像を表示部に表示させると共に、前記基準の検査用プローブによって形成された前記打痕を含み、かつ、前記第1の撮像範囲よりも狭い第2の撮像範囲を前記打痕位置特定処理において解析する前記画像データの撮像範囲として指定させる撮像範囲指定要求処理と、前記撮像部を制御して前記指定された第2の撮像範囲を撮像させる第2の撮像処理とをこの順で実行する。
また、請求項4記載の補正情報取得方法は、接触型の複数の検査用プローブが配設されたプローブユニットと、検査対象基板を保持する基板保持機構と、前記プローブユニットおよび前記基板保持機構の少なくとも一方を他方に対して移動させて前記検査用プローブを前記検査対象基板にプロービングさせる移動機構と、前記基板保持機構における前記検査対象基板の保持位置を撮像する撮像部とを備えた基板検査装置において、前記検査対象基板に対するプロービング時に前記少なくとも一方を前記他方に対して移動させる移動量および移動方向を特定可能なプロービング情報を補正するための補正情報を取得する補正情報取得方法であって、前記プロービング情報に従って前記移動機構を制御して前記保持位置に配設されている打痕シートに前記検査用プローブをプロービングさせて当該打痕シートに打痕を形成させる打痕形成処理と、前記撮像部を制御して前記打痕シートを撮像させる撮像処理と、前記撮像部から出力された画像データを解析して前記基準の検査用プローブによって形成された前記打痕の位置を特定する打痕位置特定処理と、前記プロービング情報に従って前記少なくとも一方を前記他方に対して移動させたときに複数の前記検査用プローブのうちの基準の当該検査用プローブが前記検査対象基板にプロービングさせられる基準プロービング位置に対する前記打痕位置特定処理によって特定した前記打痕の位置の位置ずれ量および位置ずれ方向を特定する位置ずれ状態特定処理とをこの順で実行して、当該位置ずれ状態特定処理において特定した前記位置ずれ量および前記位置ずれ方向を前記補正情報として取得すると共に、前記撮像処理として、前記基準プロービング位置が予め規定された基準座標と一致し、かつ、前記基準の検査用プローブによって形成された前記打痕、および当該基準の検査用プローブの周囲に配設された前記検査用プローブによって形成された前記打痕が含まれるように規定された第1の撮像範囲を前記撮像部に撮像させる第1の撮像処理と、当該第1の撮像処理によって前記撮像部から出力された前記画像データの画像を表示部に表示させると共に、前記基準の検査用プローブによって形成された前記打痕を含み、かつ、前記第1の撮像範囲よりも狭い第2の撮像範囲を前記打痕位置特定処理において解析する前記画像データの撮像範囲として指定させる撮像範囲指定要求処理と、前記撮像部を制御して前記指定された第2の撮像範囲を撮像させる第2の撮像処理とをこの順で実行する。
なお、「第2の撮像範囲を指定させる撮像範囲指定要求処理」には、「基準の検査用プローブによって形成された打痕を含み、かつ、第1の撮像範囲よりも狭い」との条件を満たす「範囲」を直接的に指定させる処理だけでなく、第1の撮像範囲を撮像した画像データの画像上の任意の1点を指定することで、その1点を基準として上記の条件を満たす「範囲」が自動的に規定される構成の基板検査装置においては、画像上の任意の1点を指定させる処理がこれに含まれる。
また、請求項2記載の基板検査装置は、接触型の複数の検査用プローブが配設されたプローブユニットと、検査対象基板を保持する基板保持機構と、前記プローブユニットおよび前記基板保持機構の少なくとも一方を他方に対して移動させて前記検査用プローブを前記検査対象基板にプロービングさせる移動機構と、前記基板保持機構における前記検査対象基板の保持位置を撮像する撮像部と、前記検査対象基板に対するプロービング時に前記少なくとも一方を前記他方に対して移動させる移動量および移動方向を特定可能なプロービング情報、および当該プロービング情報に従って当該少なくとも一方を当該他方に対して移動させたときに複数の前記検査用プローブのうちの基準の当該検査用プローブが当該検査対象基板にプロービングさせられる基準プロービング位置を特定可能な基準位置情報を記憶する記憶部と、前記撮像部による撮像、および前記移動機構による前記移動を制御すると共に、前記検査対象基板に対するプロービング時に使用する前記プロービング情報を補正するための補正情報を取得する補正情報取得処理を実行する処理部とを備えると共に、前記プローブユニットが、第1の線に沿って配設された複数の前記検査用プローブから構成される第1のプローブ群と、第2の線に沿って配設された複数の前記検査用プローブから構成される第2のプローブ群とを備え、かつ、前記第1の線と前記第2の線とが交差する第1の交点に前記基準の検査用プローブが配設されて構成されている基板検査装置であって、前記処理部は、前記補正情報取得処理において、前記プロービング情報に従って前記移動機構を制御して前記保持位置に配設されている打痕シートに前記検査用プローブをプロービングさせて当該打痕シートに打痕を形成させる打痕形成処理と、前記撮像部を制御して前記打痕シートを撮像させる撮像処理と、前記撮像部から出力された画像データを解析して前記基準の検査用プローブによって形成された前記打痕の位置を特定する打痕位置特定処理と、当該打痕位置特定処理によって特定した前記打痕の位置の前記基準プロービング位置に対する位置ずれ量および位置ずれ方向を特定する位置ずれ状態特定処理とをこの順で実行して、当該位置ずれ状態特定処理において特定した前記位置ずれ量および前記位置ずれ方向を前記補正情報として取得すると共に、前記撮像処理として、前記基準プロービング位置が予め規定された第1の基準座標と一致し、かつ、前記第1のプローブ群を構成する前記検査用プローブによって形成された前記打痕のうちの少なくとも3つの当該打痕、および前記第2のプローブ群を構成する前記検査用プローブによって形成された前記打痕のうちの少なくとも3つの当該打痕が含まれるように規定された第1の撮像範囲を撮像させる第1の撮像処理と、前記第1の撮像処理によって前記撮像部から出力された前記画像データに基づき、前記第1のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕のうちの少なくとも3つの当該打痕を対象とする回帰分析によって推定した第1の近似線と、前記第2のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕のうちの少なくとも3つの当該打痕を対象とする回帰分析によって推定した第2の近似線とが交差する第2の交点の位置を特定すると共に、予め規定された第2の基準座標が前記第2の交点と一致し、かつ、前記基準の検査用プローブによって形成された前記打痕が含まれる撮像範囲であって前記第1の撮像範囲よりも狭い第2の撮像範囲を前記打痕位置特定処理において解析する前記画像データの撮像範囲として規定する撮像範囲規定処理と、前記撮像部を制御して前記規定した第2の撮像範囲を撮像させる第2の撮像処理とをこの順で実行する。
また、請求項5記載の補正情報取得方法は、接触型の複数の検査用プローブが配設されたプローブユニットと、検査対象基板を保持する基板保持機構と、前記プローブユニットおよび前記基板保持機構の少なくとも一方を他方に対して移動させて前記検査用プローブを前記検査対象基板にプロービングさせる移動機構と、前記基板保持機構における前記検査対象基板の保持位置を撮像する撮像部とを備え、前記プローブユニットが、第1の線に沿って配設された複数の前記検査用プローブから構成される第1のプローブ群と、第2の線に沿って配設された複数の前記検査用プローブから構成される第2のプローブ群とを備え、かつ、前記第1の線と前記第2の線とが交差する第1の交点に前記基準の検査用プローブが配設されて構成されている基板検査装置において、前記検査対象基板に対するプロービング時に前記少なくとも一方を前記他方に対して移動させる移動量および移動方向を特定可能なプロービング情報を補正するための補正情報を取得する補正情報取得方法であって、前記プロービング情報に従って前記移動機構を制御して前記保持位置に配設されている打痕シートに前記検査用プローブをプロービングさせて当該打痕シートに打痕を形成させる打痕形成処理と、前記撮像部を制御して前記打痕シートを撮像させる撮像処理と、前記撮像部から出力された画像データを解析して前記基準の検査用プローブによって形成された前記打痕の位置を特定する打痕位置特定処理と、前記プロービング情報に従って前記少なくとも一方を前記他方に対して移動させたときに複数の前記検査用プローブのうちの基準の当該検査用プローブが前記検査対象基板にプロービングさせられる基準プロービング位置に対する前記打痕位置特定処理によって特定した前記打痕の位置の位置ずれ量および位置ずれ方向を特定する位置ずれ状態特定処理とをこの順で実行して、当該位置ずれ状態特定処理において特定した前記位置ずれ量および前記位置ずれ方向を前記補正情報として取得すると共に、前記撮像処理として、前記基準プロービング位置が予め規定された第1の基準座標と一致し、かつ、前記第1のプローブ群を構成する前記検査用プローブによって形成された前記打痕のうちの少なくとも3つの当該打痕、および前記第2のプローブ群を構成する前記検査用プローブによって形成された前記打痕のうちの少なくとも3つの当該打痕が含まれるように規定された第1の撮像範囲を撮像させる第1の撮像処理と、前記第1の撮像処理によって前記撮像部から出力された前記画像データに基づき、前記第1のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕のうちの少なくとも3つの当該打痕を対象とする回帰分析によって推定した第1の近似線と、前記第2のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕のうちの少なくとも3つの当該打痕を対象とする回帰分析によって推定した第2の近似線とが交差する第2の交点の位置を特定すると共に、予め規定された第2の基準座標が前記第2の交点と一致し、かつ、前記基準の検査用プローブによって形成された前記打痕が含まれる撮像範囲であって前記第1の撮像範囲よりも狭い第2の撮像範囲を前記打痕位置特定処理において解析する前記画像データの撮像範囲として規定する撮像範囲規定処理と、前記撮像部を制御して前記規定した第2の撮像範囲を撮像させる第2の撮像処理とをこの順で実行する。
この場合、上記の「第1の線」や「第2の線」との技術用語における「線」には、「直線」および「曲線」の双方が含まれる。また、上記の「第1の近似線」や「第2の近似線」との技術用語における「近似線」は、「線形近似線」、「多項式近似線」および「対数近似線」などの各種の「近似線」を意図するものであり、この「近似線」には、「近似直線」および「近似曲線」が含まれる。具体的には、「第1の線」には、「第1の直線」および「第1の曲線」が含まれると共に、「第2の線」には、「第2の直線」および「第2の曲線」が含まれ、かつ、「第1の近似線」には、「第1の近似直線」および「第1の近似曲線」が含まれると共に、「第2の近似線」には、「第2の近似直線」および「第2の近似曲線」が含まれる。すなわち、請求項2記載の基板検査装置、および請求項5記載の補正情報取得方法における「プローブユニット」は、「第1の直線および第1の曲線のいずれかに沿って配設された複数の前記検査用プローブから構成される第1のプローブ群と、第2の直線および第2の曲線のいずれかに沿って配設された複数の前記検査用プローブから構成される第2のプローブ群とを備え、かつ、前記第1の直線および前記第1の曲線の前記いずれかと前記第2の直線および前記第2の曲線の前記いずれかとが交差する第1の交点に前記基準の検査用プローブが配設されて構成されているプローブユニット」である。また、請求項2記載の基板検査装置、および請求項5記載の補正情報取得方法における「撮像範囲規定処理」は、「前記いずれかが前記第1の直線のときには前記第1のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕のうちの少なくとも3つの当該打痕を直線近似した第1の近似直線を第1の近似線とし、前記いずれかが前記第1の曲線のときには前記第1のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕のうちの少なくとも3つの当該打痕を曲線近似した第1の近似曲線を前記第1の近似線とし、前記いずれかが前記第2の直線のときには前記第2のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕のうちの少なくとも3つの当該打痕を直線近似した第2の近似直線を第2の近似線とし、前記いずれかが前記第2の曲線のときには前記第2のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕のうちの少なくとも3つの当該打痕を曲線近似した第2の近似曲線を前記第2の近似線として、前記第1の撮像処理によって前記撮像部から出力された前記画像データに基づき、前記第1の近似線と前記第2の近似線とが交差する第2の交点の位置を特定すると共に、予め規定された第2の基準座標が前記第2の交点と一致し、かつ、前記基準の検査用プローブによって形成された前記打痕が含まれる撮像範囲であって前記第1の撮像範囲よりも狭い第2の撮像範囲を前記打痕位置特定処理において解析する前記画像データの撮像範囲として規定する処理」である。また、「回帰分析によって推定した近似線」には、「最小二乗法によって求めた近似線」や、「最尤法によって求めた近似線」などがこれに含まれる。
さらに、請求項3記載の基板検査装置は、請求項2記載の基板検査装置において、前記処理部は、前記撮像範囲規定処理において、前記第1のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕を対象とする回帰分析によって推定したA近似線からの離間距離が大きい予め規定された数の当該打痕を除く当該打痕を対象とする回帰分析によって推定した前記第1の近似線と、前記第2のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕を対象とする回帰分析によって推定したB近似線からの離間距離が大きい予め規定された数の当該打痕を除く当該打痕を対象とする回帰分析によって推定した前記第2の近似線との交点を前記第2の交点とする。
さらに、請求項6記載の補正情報取得方法は、請求項5記載の補正情報取得方法において、前記撮像範囲規定処理において、前記第1のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕を対象とする回帰分析によって推定したA近似線からの離間距離が大きい予め規定された数の当該打痕を除く当該打痕を対象とする回帰分析によって推定した前記第1の近似線と、前記第2のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕を対象とする回帰分析によって推定したB近似線からの離間距離が大きい予め規定された数の当該打痕を除く当該打痕を対象とする回帰分析によって推定した前記第2の近似線との交点を前記第2の交点とする。
この場合、上記の「A近似線」や「B近似線」との技術用語における「近似線」には、「近似直線」および「近似曲線」が含まれる。具体的には、「A近似線」には、「A近似直線」および「A近似曲線」が含まれると共に、「B近似線」には、「B近似直線」および「B近似曲線」が含まれる。すなわち、請求項3記載の基板検査装置、および請求項6記載の補正情報取得方法における「撮像範囲規定処理」においては、「前記いずれかが前記第1の直線のときには前記第1のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕を直線近似したA近似直線からの離間距離が大きい予め規定された数の当該打痕を除く当該打痕を直線近似した前記第1の近似直線を前記第1の近似線とし、前記いずれかが前記第1の曲線のときには前記第1のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕を曲線近似したA近似曲線からの離間距離が大きい予め規定された数の当該打痕を除く当該打痕を曲線近似した前記第1の近似曲線を前記第1の近似線とし、前記いずれかが前記第2の直線のときには前記第2のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕を直線近似したB近似直線からの離間距離が大きい予め規定された数の当該打痕を除く当該打痕を直線近似した前記第2の近似直線を前記第2の近似線とし、前記いずれかが前記第2の曲線のときには前記第2のプローブ群を構成する前記検査用プローブによって形成された複数の前記打痕を曲線近似したB近似曲線からの離間距離が大きい予め規定された数の当該打痕を除く当該打痕を曲線近似した前記第2の近似曲線を前記第2の近似線として前記第2の交点の位置を特定する」との処理が実行される。
請求項1記載の基板検査装置、および請求項4記載の補正情報取得方法では、予め規定された第1の撮像範囲を撮像した画像データの画像を表示部に表示させると共に、基準の検査用プローブによって形成された打痕を含み、かつ、第1の撮像範囲よりも狭い第2の撮像範囲を指定させ、指定された第2の撮像範囲を撮像した画像データを解析して基準の検査用プローブによって形成された打痕の位置を特定して補正情報を取得する。
したがって、請求項1記載の基板検査装置、および請求項4記載の補正情報取得方法によれば、打痕形成処理によって形成された複数の打痕のなかから打痕位置特定処理において打痕位置を特定すべき打痕を特定する画像解析処理が不要となるため、打痕位置の特定時に処理部に加わる負担を十分に軽減することができる結果、画像解析能力が高い高価な処理部を不要にできる分だけ、基板検査装置の製造コストを十分に低減することができる。また、撮像範囲指定要求処理を実行することでオペレータが表示部に表示された第1の撮像範囲の画像を見て、基準の検査用プローブによって形成された打痕を含むように第2の撮像範囲を指定するため、打痕位置特定処理に際して、基準の検査用プローブ以外の検査用プローブによって形成された打痕の位置が特定される事態を回避することができる結果、位置ずれ状態特定処理に際して誤った打痕についての位置ずれ状態が特定される事態を回避して、正確な補正情報を取得することができる。
請求項2記載の基板検査装置、および請求項5記載の補正情報取得方法では、プローブユニットが第1の線としての第1の直線に沿って配設された複数の検査用プローブから構成される第1のプローブ群を備えているときには、第1のプローブ群を構成する検査用プローブによって形成された複数の打痕のうちの少なくとも3つの打痕を直線近似した(回帰分析によって推定した)第1の近似直線を第1の近似線とし、プローブユニットが第1の線としての第1の曲線に沿って配設された複数の検査用プローブから構成される第1のプローブ群を備えているときには、第1のプローブ群を構成する検査用プローブによって形成された複数の打痕のうちの少なくとも3つの打痕を曲線近似した(回帰分析によって推定した)第1の近似曲線を第1の近似線とし、プローブユニットが第2の線としての第2の直線に沿って配設された複数の検査用プローブから構成される第2のプローブ群を備えているときには、第2のプローブ群を構成する検査用プローブによって形成された複数の打痕のうちの少なくとも3つの打痕を直線近似した(回帰分析によって推定した)第2の近似直線を第2の近似線とし、プローブユニットが第2の線としての第2の曲線に沿って配設された複数の検査用プローブから構成される第2のプローブ群を備えているときには、第2のプローブ群を構成する検査用プローブによって形成された複数の打痕のうちの少なくとも3つの打痕を曲線近似した(回帰分析によって推定した)第2の近似曲線を第2の近似線として、予め規定された第1の撮像範囲を撮像した画像データを解析することで第1の近似線と第2の近似線とが交差する第2の交点の位置を特定し、特定した第2の交点が予め規定された第2の基準座標と一致し、かつ、基準の検査用プローブによって形成された打痕が含まれる撮像範囲であって第1の撮像範囲よりも狭い第2の撮像範囲を規定し、規定した第2の撮像範囲を撮像した画像データを解析して基準の検査用プローブによって形成された打痕の位置を特定して補正情報を取得する。
したがって、請求項2記載の基板検査装置、および請求項5記載の補正情報取得方法によれば、撮像範囲規定処理において、打痕の1つ当りの画素数が、打痕位置特定処理に際して基準の打痕の位置を特定する際に画像解析する画像データ(第2の撮像範囲を撮像した画像データ)よりも少数の画像データ(第1の撮像処理によって第1の撮像範囲を撮像した画像データ)を対象として画像解析することで第2の撮像範囲を規定することができるため、打痕位置の特定に際して処理部に加わる負担を十分に軽減することができる結果、画像解析能力が高い高価な処理部を不要にできる分だけ、基板検査装置の製造コストを十分に低減することができる。また、撮像範囲規定処理によって基準の検査用プローブによって形成された打痕を含むように第2の撮像範囲が自動的に規定されるため、打痕位置特定処理に際して、基準の検査用プローブ以外の検査用プローブによって形成された打痕の位置が特定される事態を回避することができる結果、位置ずれ状態特定処理に際して誤った打痕についての位置ずれ状態が特定される事態を回避して、正確な補正情報を取得することができる。
請求項3記載の基板検査装置、および請求項6記載の補正情報取得方法では、プローブユニットが第1の線としての第1の直線に沿って配設された複数の検査用プローブから構成される第1のプローブ群を備えているときには、第1の近似線としての第1の近似直線の特定に際してA近似線としてのA近似直線からの離間距離が大きい予め規定された数の打痕を除いて特定し、プローブユニットが第1の線としての第1の曲線に沿って配設された複数の検査用プローブから構成される第1のプローブ群を備えているときには、第1の近似線としての第1の近似曲線の特定に際してA近似線としてのA近似曲線からの離間距離が大きい予め規定された数の打痕を除いて特定し、プローブユニットが第2の線としての第2の直線に沿って配設された複数の検査用プローブから構成される第2のプローブ群を備えているときには、第2の近似線としての第2の近似直線の特定に際してB近似線としてのB近似直線からの離間距離が大きい予め規定された数の打痕を除いて特定し、プローブユニットが第2の線としての第2の曲線に沿って配設された複数の検査用プローブから構成される第2のプローブ群を備えているときには、第2の近似線としての第2の近似曲線の特定に際してB近似線としてのB近似曲線からの離間距離が大きい予め規定された数の打痕を除いて特定する。
したがって、請求項3記載の基板検査装置、および請求項6記載の補正情報取得方法によれば、第2の交点を求めるための第1の近似線や第2の近似線の特定に際して、その位置ずれ量が大きい打痕の影響を十分に小さくすることができる結果、第1の交点に存在すべき検査用プローブによって形成された打痕を第2の撮像範囲内に確実に含ませることができる。
以下、基板検査装置および補正情報取得方法の実施の形態について、添付図面を参照して説明する。
図1に示す基板検査装置1は、検査対象基板20を電気的に検査可能に構成された検査装置であって、基板保持機構2、搬送機構3、カメラ4、テストヘッド5、移動機構6、測定部7、操作部8、表示部9、処理部10および記憶部11を備えて構成されている。基板保持機構2は、処理部10の制御に従って、予め規定された保持位置に載置された検査対象基板20や打痕シート付き基板30を保持する。この場合、打痕シート付き基板30は、一例として、検査対象基板20と同程度の大きさで同程度の厚みの平板(図示せず)で構成されて、その表面に感圧紙(圧力を加えることで黒色変色する白色のシート)で構成された打痕シートが貼付されている。
一方、搬送機構3は、処理部10の制御に従って、カメラ4による撮像処理位置、および移動機構6とテストヘッド5とによるプロービング処理位置(検査処理位置)のいずれかに基板保持機構2を搬送する。カメラ4は、「撮像部」に相当し、処理部10の制御に従って、上記の保持位置に保持された検査対象基板20、または、打痕シート付き基板30の打痕シートを撮像して、撮像データD1(「画像データ」の一例)を出力する。この場合、本例の基板検査装置1では、一例として、カメラ4が、256階調のモノクロ画像の撮像データD1を出力するモノクロカメラで構成されている。なお、モノクロカメラに代えてカラーカメラを採用することができるのは勿論である。
テストヘッド5は、「プローブユニット」の一例であって、図3に示すように、接触型の検査用プローブP1〜P26(以下、区別しないときには「検査用プローブP」ともいう)が、図示しないプローブ支持板によって支持されて構成されている。なお、実際のテストヘッド5は、検査対象基板20に規定された検査ポイントの数に応じて、図3に示すテストヘッド5よりも少数の検査用プローブP、または、図3に示すテストヘッド5よりも多数の検査用プローブPが配設されて構成されている。
この場合、本例のテストヘッド5では、検査用プローブP1〜P9が直線L1(「第1の線」としての「第1の直線」の一例)に沿って配設され、検査用プローブP9〜P14が直線L1に対して直交する直線L4(「第2の線」としての「第2の直線」の一例)に沿って配設され、検査用プローブP14〜P22が直線L4に対して直交し、かつ直線L1と平行な直線L3(「第1の線」としての「第1の直線」の他の一例)に沿って配設され、検査用プローブP22〜P26,P1が直線L1,L3に対して直交し、かつ直線L4と平行な直線L2(「第2の線」としての「第2の直線」の他の一例)に沿って配設されるように設計されている。また、本例のテストヘッド5では、上記の直線L1と直線L2とが交差する交点C1に検査用プローブP1が配設され、上記の直線L3と直線L4とが交差する交点C2に検査用プローブP14が配設され、上記の直線L1と直線L4とが交差する交点C3に検査用プローブP9が配設され、上記の直線L2と直線L3とが交差する交点C4に検査用プローブP22が配設されるように設計されている。
さらに、このテストヘッド5では、検査用プローブPの座屈(検査用プローブPが座屈型の検査用プローブの場合)や、検査用プローブPの伸縮(検査用プローブPが伸縮型の検査用プローブの場合)を許容するために、検査用プローブPと、検査用プローブPを支持する支持部との間に小さな隙間が存在する。また、各検査用プローブPに許容範囲内において極く小さな曲がり等が生じたものも存在する。したがって、このテストヘッド5では、上記の隙間や曲がりの存在に起因して、各検査用プローブP1〜P26の先端部の位置が直線L1〜L4から僅かに位置ずれした状態となっている。なお、同図では、各検査用プローブPの先端部を黒丸でそれぞれ図示すると共に、本願発明についての理解を容易とするために、検査用プローブPの先端部の位置の直線L1〜L4に対する位置ずれ量を誇張して大きく位置ずれさせて図示している。
移動機構6は、処理部10の制御に従って、搬送機構3がプロービング位置に搬送した基板保持機構2上の検査対象基板20や打痕シート付き基板30に向けてテストヘッド5を移動させることで、検査対象基板20や打痕シート付き基板30に対して各検査用プローブPを接触(プロービング)させる(「プローブユニットおよび基板保持機構の少なくとも一方」が「プローブユニット」で、「他方」が「基板保持機構」の構成の例)。この場合、移動機構6は、基板保持機構2に対する接離方向(図1における上下方向)、および基板保持機構2の上面におけるX方向・Y方向にテストヘッド5を移動させると共に、基板保持機構2の上面に沿ってテストヘッド5を回転させることができるように構成されている。
測定部7は、処理部10と相まって検査対象基板20の良否を検査する「検査部」を構成する。この測定部7は、テストヘッド5の各検査用プローブPを介して検査対象基板20に検査用電圧を印加する電源を備え、検査用電圧を印加した状態において検査対象基板20を流れる電流の電流値を測定して測定データとして処理部10に出力する測定処理を実行する。操作部8は、基板検査装置1の動作条件を設定操作するための各種操作スイッチを備え、スイッチ操作に応じた操作信号を処理部10に出力する。表示部9は、処理部10の制御に従い、基板検査装置1の動作条件を設定するための動作条件設定画面(図示せず)、検査対象基板20についての検査結果表示画面(図示せず)、および、後述するように打痕シート付き基板30の打痕シートを撮像した画像データの画像(図5,6参照)などを表示する。
処理部10は、基板検査装置1を総括的に制御する。具体的には、処理部10は、搬送機構3による基板保持機構2(検査対象基板20や打痕シート付き基板30)の搬送、カメラ4による撮像、および移動機構6によるテストヘッド5の移動を制御する。また、処理部10は、検査対象基板20に対するプロービング時に使用するプロービング情報Dpを補正するための補正情報Drを取得する補正情報取得処理を実行する。この場合、プロービング情報Dpは、検査対象基板20に対するプロービング時にテストヘッド5を基板保持機構2(検査対象基板20)に向けて移動させる移動量および移動方向を特定可能な情報が記録されて構成されている。また、補正情報Drは、検査対象基板20に対するプロービング時にテストヘッド5を基板保持機構2(検査対象基板20)に向けて移動させる移動量および移動方向を、どの程度どの方向に補正するかを特定可能な情報が記録されて構成されている。
この場合、補正情報Drは、後述するように、一例として、移動機構6に対してテストヘッド5の脱着する都度「補正情報取得処理」を実行することで、処理部10によって生成されて記憶部11に記憶される。具体的には、この基板検査装置1では、上記の「補正情報取得処理」として、「打痕形成処理」、「撮像処理」、「打痕位置特定処理」および「位置ずれ状態特定処理」をこの順で実行して補正情報Drを取得する。より具体的には、「打痕形成処理」では、プロービング情報Dpに従って移動機構6を制御して、基板保持機構2の保持位置に配設されている打痕シート付き基板30の打痕シートにテストヘッド5の各検査用プローブPをプロービングさせて、打痕シートに打痕Mを形成させる。また、「撮像処理」では、後述するように、「第1の撮像処理」、「撮像範囲指定要求処理」および「第2の撮像処理」をこの順で実行する。
さらに、「打痕位置特定処理」では、「第2の撮像処理」においてカメラ4から出力された撮像データD1の画像を画像解析することで、「打痕形成処理」に際して各検査用プローブPのプロービングによって形成された打痕Mの位置を特定する。また、「位置ずれ状態特定処理」では、「打痕位置特定処理」において特定した打痕Mの位置に基づいて上記の打痕形成処理における各検査用プローブPのプロービング位置の基準プロービング位置(後述する基準位置情報D0に基づいて特定される位置)に対する位置ずれ量および位置ずれ方向を特定する。さらに、処理部10は、上記の「位置ずれ状態特定処理」において特定した位置ずれ量および位置ずれ方向を補正情報Drとして取得する。
また、処理部10は、検査対象基板20に対する電気的検査に際して、測定部7を制御して上記の測定処理を実行させる。さらに、処理部10は、測定部7から出力される測定データと、記憶部11に記憶されている検査用基準データとに基づき、検査対象基板20の良否を検査する。記憶部11は、基準位置情報D0と、上記のプロービング情報Dp、補正情報Dr、および検査対象基板20についての検査用基準データとを記憶すると共に、処理部10の動作プログラムを記憶する。この場合、基準位置情報D0は、プロービング情報Dpに従ってテストヘッド5を基板保持機構2に対して移動させたときにテストヘッド5に配設された各検査用プローブPのうちの基準の検査用プローブP(一例として、検査用プローブP1,P14,P9,P22)が基板保持機構2上の検査対象基板20にプロービングさせられる基準プロービング位置を特定可能な情報で構成されている。
この基板検査装置1によって検査対象基板20を検査する際には、まず、上記の補正情報Drを取得する。具体的には、基板保持機構2の保持位置に打痕シート付き基板30を載置して保持させると共に、操作部8を操作して、補正情報取得処理を開始させる。この際に、処理部10は、搬送機構3を制御して、テストヘッド5によるプロービング位置に基板保持機構2を移動させた後に、プロービング情報Dpに従って移動機構6を制御して、基板保持機構2によって保持されている打痕シート付き基板30に向けてテストヘッド5を下降させる。これにより、打痕シート付き基板30における打痕シートの表面に各検査用プローブP1〜P26がそれぞれ接触して接触部位が黒色に変色し、図4に示すように、打痕シートの各部に、各検査用プローブP1〜P26の接触位置を特定可能な打痕M1〜M26が形成される(打痕形成処理)。
次いで、処理部10は、搬送機構3を制御して、カメラ4による撮像処理位置に基板保持機構2を移動させた後に、カメラ4を制御して、基板保持機構2上の打痕シート付き基板30の打痕シートを撮像させる(撮像処理)。具体的には、この基板検査装置1では、「撮像処理」として、処理部10が、まず、予め規定された撮像範囲A1(「第1の撮像範囲」の一例:一例として、打痕シートの全域)をカメラ4に撮像させる(第1の撮像処理)。この場合、撮像範囲A1は、検査用プローブP1,P14,P9,P22のプロービング位置(「基準プロービング位置」の一例)が予め規定された「基準座標」と一致し、かつ、「打痕形成処理」に際して基準の検査用プローブP1,P14,P9,P22によって形成された打痕M(この例では、打痕M1,M14,M9,M22)、および基準の検査用プローブPの周囲に配設されている検査用プローブP(一例として、すべての検査用プローブP)によって形成された打痕M(この例では、すべての打痕M)が含まれるように規定されている。
なお、打痕シートの全域を「第1の撮像範囲」とする処理に代えて、基準の検査用プローブPによって形成された打痕M(この例では、打痕M1,M14,M9,M22のうちの1つ)を含めた数個から数十個の打痕Mが含まれるように規定された撮像範囲を「第1の撮像範囲」として「第1の撮像処理」を、基準の検査用プローブPの数と同じ回数(本例では、4回)実行する構成および方法を採用することもできる。
次いで、処理部10は、「撮像範囲指定要求処理」を実行する。具体的には、処理部10は、まず、カメラ4から出力された撮像データD1に基づく画像を表示部9に表示させる。この際に、処理部10は、打痕シートにおける上記の撮像範囲A1(この例では、打痕シートの全域)のうちから、図5に示すように、基準プロービング位置(例えば、検査用プローブP1がプロービングされるべき位置:この例では、前述した直線L1と直線L2とが交差する交点C1)を中心とする規定範囲(この例では、図4に示す打痕シート付き基板30の打痕シートにおける左上側の一部)を表示部9に表示させる。なお、同図では、撮像データD1に基づく画像についての理解を容易とするために、打痕形成処理時における検査用プローブPの接触に起因して、打痕シートにおいて黒色、および黒色に近い灰色に変色した部位を網線で塗り潰して図示すると共に、打痕形成処理時に変色が生じなかった部位、または、変色の度合いが小さい部位(白色に近い灰色に変色した部位)を白色で図示している。
また、処理部10は、撮像データD1に基づく画像に重ねて、矩形状の撮像範囲指定用カーソル9aを表示させる。この場合、撮像範囲指定用カーソル9aは、「打痕位置特定処理」において解析する画像の画像データの撮像範囲A2(「第2の撮像範囲」の一例)を指定させるためのカーソルであって、「打痕形成処理」に際して検査用プローブPによって形成された各打痕Mのうちの1つを囲むことができ、かつ、上記の撮像範囲A1よりも十分に狭い範囲を指定することができる大きさに規定されている。さらに、処理部10は、一例として、「打痕位置を特定すべき基準の打痕を囲むようにカーソルを移動させて下さい」とのメッセージ(図示せず)を表示部9に表示させる。以上により、「撮像範囲指定要求処理」が完了する。
この場合、この基板検査装置1では、処理部10が、撮像範囲A1を撮像した撮像データD1に基づく画像、および撮像範囲指定用カーソル9aを上記のように表示部9に表示させる際に、一例として、撮像範囲指定用カーソル9aの中心を基準プロービング位置(この例では、交点C1)に対応する画素に一致させるように表示させる。このため、上記の「打痕形成処理」における検査用プローブP1のプロービング位置の基準プロービング位置(この例では、交点C1)からのずれ量が大きいときには、図5に破線で示すように、撮像範囲指定用カーソル9aが、基準の検査用プローブP1によって形成された打痕M1から大きく位置ずれして表示される。したがって、オペレータは、操作部8のカーソル移動キーを操作して、打痕M1を囲むように撮像範囲指定用カーソル9aを移動させる。この状態において、操作部8の図示しない確定キーを操作することにより、検査用プローブP1によって形成された打痕M1を含み、かつ、撮像範囲A1よりも狭い撮像範囲である撮像範囲A2が「第2の撮像範囲」として指定される。
一方、カーソル移動キーの操作による撮像範囲指定用カーソル9aの移動が完了した時点、または、「打痕形成処理」における検査用プローブP1のプロービング位置の基準プロービング位置(この例では、交点C1)からのずれ量が小さかったときには、図5に実線で示すように、撮像範囲A1を撮像した撮像データD1に基づく画像において、打痕M1を含む撮像範囲A2が撮像範囲指定用カーソル9aによって選択された状態となる。この状態において、操作部8の図示しない確定キーを操作することにより、検査用プローブP1によって形成された打痕M1を含み、かつ、撮像範囲A1よりも狭い撮像範囲である撮像範囲A2が「第2の撮像範囲」として指定される。
なお、図示および説明を省略するが、この処理部10では、検査用プローブP14,P9,P22によって形成された打痕M14,M9,M22を含む撮像範囲A2についても、上記の打痕M1を含む撮像範囲A2と同様の手順でそれぞれ指定される。次いで、処理部10は、搬送機構3を制御して、上記各撮像範囲A2のうちの1つの上方にカメラ4が位置するように基板保持機構2(打痕シート付き基板30)を移動させると共に、カメラ4を制御して、指定された撮像範囲A2を撮像させる(第2の撮像処理)。同様にして、他の3つの撮像範囲A2についても、カメラ4を制御して撮像させる。これにより、カメラ4から4つの撮像範囲A2についての撮像データD1が処理部10に順次出力されて、「撮像処理」が完了する。
次いで、処理部10は、カメラ4から出力された撮像範囲A2についての撮像データD1の画像を画像解析することで、打痕シートに形成された打痕M1,M14,M9,M122の位置をそれぞれ特定する(打痕位置特定処理)。この際に、処理部10は、一例として、撮像範囲A2における上下方向の中央部において左右方向で並ぶ画素(この例では、破線Lx上の画素)を対象として画素値を参照し、黒色、または黒色に近い灰色の画素が左右方向で連続している部位の左端部Xlおよび右端部Xrをそれぞれ特定する。また、処理部10は、撮像範囲A2における左右方向の中央部において上下方向で並ぶ画素(この例では、破線Ly上の画素)を対象として画素値を参照して、黒色、または黒色に近い灰色の画素が上下方向で連続している部位の上端部Yuおよび下端部Ylをそれぞれ特定する。
この場合、256階調のモノクロ画像の各画素が「黒色、または黒色に近い灰色」に属するか「白色、または白色に近い灰色」に属するかを判別するための閾値は、予め規定されて記憶部11に記憶されている。また、カメラ4による撮像条件(例えば、撮像時における基板検査装置1の周囲の明るさ)などに応じて、上記の閾値を任意に変更することもできる。次いで、処理部10は、特定した左端部Xlおよび右端部Xrの左右方向における中央部と重なる中心線Xoと、特定した上端部Yuおよび下端部Ylの上下方向における中央部と重なる中心線Yoとの交点を、打痕M1の中心O1として特定する。これにより、検査用プローブP1のプロ−ビングによって形成された打痕M1についての「打痕位置特定処理」が完了する。
なお、詳細な説明および図示を省略するが、上記の「打痕位置特定処理」については、検査用プローブP14のプロ−ビングによって形成された打痕M14、検査用プローブP9のプロ−ビングによって形成された打痕M9、および検査用プローブP22のプロ−ビングによって形成された打痕M22についても同様に実施される。この場合、本例の基板検査装置1では、上記の「撮像範囲指定要求処理」に応じてオペレータが指定した撮像範囲A2を撮像した撮像データD1を対象として上記の「打痕位置特定処理」が実行される。したがって、打痕シート付き基板30における撮像範囲A1を撮像した撮像データD1に基づく画像中の複数の打痕M1〜M26のなかから、打痕位置を特定すべき打痕M1,M14,M9,M22を特定する画像解析処理が不要となる分だけ、打痕M1,M14,M9,M22の位置(打痕M1,M14,M9,M22のそれぞれの中心の座標)を特定する際に処理部10に加わる負荷が十分に軽減されている。
次いで、処理部10は、「位置ずれ状態特定処理」を実行する。具体的には、処理部10は、上記の「打痕位置特定処理」において特定した中心O1と、検査用プローブP1がプロ−ビングされるべき基準プロ−ビング位置(この例では、交点C1)との左右方向に沿ったずれ量Bxと、中心O1と交点C1との上下方向に沿ったずれ量Byとをそれぞれ特定し、特定したずれ量Bx,Byを記憶部11に記憶させる。なお、このずれ量Bx,Byの特定に関しては、検査用プローブP14,P9,P22についても検査用プローブP1と同様に実行される。
続いて、処理部10は、一例として、各検査用プローブP1,P14,P9,P22についてのずれ量Bx,Byを平均化することにより、プロービング情報Dpに従ってプロービングを実行した際の各検査用プローブPの位置ずれ量および位置ずれの方向を特定すると共に、特定した位置ずれ量および位置ずれの方向を補正情報Drとして記憶部11に記憶させる。以上により、「位置ずれ状態特定処理」が完了し、「補正情報取得処理」が終了する。
この後、検査対象基板20の検査に際しては、検査対象基板20を保持した基板保持機構2が搬送機構3によってプロービング処理位置に搬送された状態において、処理部10が、プロービング情報Dpを補正情報Drに基づいて補正して移動機構6を制御することで検査対象基板20に向けてテストヘッド5を下降させる。これにより、検査対象基板20上に規定された各検査点に各検査用プローブPがそれぞれプロ−ビングされた状態において、測定部7および処理部10による検査対象基板20の電気的検査が実行される。
このように、この基板検査装置1、および基板検査装置1による補正情報Drの取得方法では、予め規定された撮像範囲A1を撮像した撮像データD1の画像を表示部9に表示させると共に、基準の検査用プローブPによって形成された打痕Mを含み、かつ、撮像範囲A1よりも狭い撮像範囲A2を指定させ、指定された撮像範囲A2を撮像した撮像データD1を解析して基準の検査用プローブPによって形成された打痕Mの位置を特定して補正情報Drを取得する。
したがって、この基板検査装置1、および基板検査装置1による補正情報Drの取得方法によれば、「打痕形成処理」によって形成された複数の打痕M1〜M26のなかから「打痕位置特定処理」において打痕位置を特定すべき打痕M(この例では、打痕M1,M14,M9,M22)を特定する画像解析処理が不要となるため、打痕位置の特定時に処理部10に加わる負担を十分に軽減することができる結果、画像解析能力が高い高価な「処理部」を不要にできる分だけ、基板検査装置1の製造コストを十分に低減することができる。また、「撮像範囲指定要求処理」を実行することでオペレータが表示部9に表示された撮像範囲A1の画像を見て、基準の検査用プローブPによって形成された打痕M(例えば、打痕M1)を含むように撮像範囲A2を指定するため、「打痕位置特定処理」に際して、基準の検査用プローブP以外の検査用プローブPによって形成された打痕Mの位置が特定される事態を回避することができる結果、「位置ずれ状態特定処理」に際して誤った打痕Mについての位置ずれ状態が特定される事態を回避して、正確な補正情報Drを取得することができる。
次いで、「基板検査装置」および「補正情報取得方法」の他の実施の形態について、添付図面を参照して説明する。なお、上記の基板検査装置1や打痕シート付き基板30と同様の構成要素については、同一の符号を付して重複する説明を省略する。
上記の基板検査装置1、および基板検査装置1による補正情報Drの取得方法では、撮像範囲A1を撮像した撮像データD1に基づく画像を表示部9に表示させた状態において、「打痕位置特定処理」において解析する画像データの撮像範囲A2をオペレータに指定させる構成・方法を採用しているが、この撮像範囲A2を自動的に規定する構成・方法を採用することができる。具体的には、撮像範囲A2を自動的に規定する構成の基板検査装置1(以下、前述した「基板検査装置1」と区別するために、「基板検査装置1A」ともいう)においては、処理部10が、「第1の撮像処理」、「撮像範囲規定処理」および「第2の撮像処理」を「撮像処理」としてこの順で実行する。この場合、「撮像処理」における「第2の撮像処理」や、「打痕形成処理」、「打痕位置特定処理」および「位置ずれ状態特定処理」については、前述した基板検査装置1における各処理と同様のため、詳細な説明を省略する。
なお、この基板検査装置1Aのテストヘッド5では、交点C1を「第1の交点」としたときに、直線L1に沿って配設された検査用プローブP1〜P9が「第1のプローブ群」を構成する検査用プローブPに相当すると共に(「第1の線」としての「第1の直線および第1の曲線のいずれか」が「第1の直線」の構成の一例)、直線L2に沿って配設された検査用プローブP22〜P26,P1が「第2のプローブ群」を構成する検査用プローブPに相当する(「第2の線」としての「第2の直線および第2の曲線のいずれか」が「第2の直線」の構成の例)。また、この基板検査装置1Aのテストヘッド5では、交点C2を「第1の交点」としたときに、直線L3に沿って配設された検査用プローブP14〜P22が「第1のプローブ群」を構成する検査用プローブPに相当すると共に(「第1の線」としての「第1の直線および第1の曲線のいずれか」が「第1の直線」の構成の一例)、直線L4に沿って配設された検査用プローブP9〜P14が「第2のプローブ群」を構成する検査用プローブPに相当する(「第2の線」としての「第2の直線および第2の曲線のいずれか」が「第2の直線」の構成の例)。
さらに、この基板検査装置1Aのテストヘッド5では、交点C3を「第1の交点」としたときに、直線L1に沿って配設された検査用プローブP1〜P9が「第1のプローブ群」を構成する検査用プローブPに相当すると共に(「第1の直線および第1の曲線のいずれか」が「第1の直線」の構成の例)、直線L4に沿って配設された検査用プローブP9〜P14が「第2のプローブ群」を構成する検査用プローブPに相当する(「第2の直線および第2の曲線のいずれか」が「第2の直線」の構成の例)。また、この基板検査装置1Aのテストヘッド5では、交点C4を「第1の交点」としたときに、直線L3に沿って配設された検査用プローブP14〜P22が「第1のプローブ群」を構成する検査用プローブPに相当すると共に(「第1の直線および第1の曲線のいずれか」が「第1の直線」の構成の一例)、直線L2に沿って配設された検査用プローブP22〜P26,P1が「第2のプローブ群」を構成する検査用プローブPに相当する(「第2の直線および第2の曲線のいずれか」が「第2の直線」の構成の一例)。
この基板検査装置1Aでは、「撮像処理」における「第1の撮像処理」に際して、処理部10が、カメラ4を制御して、予め規定された撮像範囲A1(「第1の撮像範囲」の一例:本例では、打痕シートの全域)を撮像させる。この場合、本例では、上記の撮像範囲A1として、「基準プロービング位置」としての交点C1,C2および交点C3,C4が予め規定された「第1の基準座標」とそれぞれ一致し、かつ、「第1のプローブ群」の1つを構成する検査用プローブP1〜P9によって形成された打痕M1〜M9のうちの少なくとも3つの打痕M(一例として、打痕M1〜M9のすべて)、および「第2のプローブ群」の1つを構成する検査用プローブP22〜P26,P1によって形成された打痕M22〜M26,M1のうちの少なくとも3つの打痕M(一例として、打痕M22〜M26,M1のすべて)が含まれ、かつ「第1のプローブ群」の他の1つを構成する検査用プローブP14〜P22によって形成された打痕M14〜M22のうちの少なくとも3つの打痕M(一例として、打痕M14〜M22のすべて)、および「第2のプローブ群」の他の1つを構成する検査用プローブP9〜P14によって形成された打痕M9〜M14のうちの少なくとも3つの打痕M(一例として、打痕M9〜M14のすべて)が含まれるように規定されている。
次いで、処理部10は、撮像範囲A1を撮像した撮像データD1がカメラ4から出力されたときに「撮像範囲規定処理」を開始する。この「撮像範囲規定処理」では、処理部10は、直線L1に沿って配列されているべき9本の検査用プローブP1〜P9(「第1のプローブ群」を構成する検査用プローブP)によって形成された9つの打痕M1〜M9のうちの8つを直線近似した(回帰分析によって推定した)近似直線La1(「第1の近似直線」の一例:図4,7参照)を「第1の近似線」として特定すると共に(「第1の線」が「第1の直線」である例)、直線L2に沿って配列されているべき6本の検査用プローブP22〜P26,P1(「第2のプローブ群」を構成する検査用プローブP)によって形成された6つの打痕M22〜M26,M1のうちの5つを直線近似した(回帰分析によって推定した)近似直線La2(「第2の近似直線」の一例:図4,7参照)を「第2の近似線」として特定する(「第2の線」が「第2の直線」である例)。
また、処理部10は、直線L3に沿って配列されているべき9本の検査用プローブP14〜P22(「第1のプローブ群」を構成する検査用プローブP)によって形成された9つの打痕M14〜M22のうちの8つを直線近似した(回帰分析によって推定した)近似直線La3(「第1の近似直線」の一例:図4参照)を「第1の近似線」として特定すると共に(「第1の線」が「第1の直線」である例)、直線L4に沿って配列されているべき6本の検査用プローブP9〜P14(「第2のプローブ群」を構成する検査用プローブP)によって形成された6つの打痕M9〜M14のうちの5つを直線近似した(回帰分析によって推定した)近似直線La4(「第2の近似直線」の一例:図4参照)を「第2の近似線」として特定する(「第2の線」が「第2の直線」である例)。
この場合、図2に示すように、直線Lに沿って配列されているべき6本の検査用プローブPa〜Pfのうち、検査用プローブPcに許容範囲内において大きな曲がりが生じていたときには、各検査用プローブPa〜Pfのプロービングによって形成された6つの打痕Ma〜Mfを直線近似したときに、直線Lから大きく離間している検査用プローブPcによって形成された打痕Mcの存在に起因して、直線Lから大きく離間した近似直線Lbが「第1の近似線」または「第2の近似線」として特定されることとなる。したがって、この基板検査装置1では、図2の例において、まず、直線Lに沿って配列されているべき検査用プローブPa〜Pfによって形成された6つの打痕Ma〜Mfのすべてを対象として、一例として、最小二乗法に従って直線近似する(回帰分析によって推定する)ことで近似直線Lbを求める。次いで、各打痕Ma〜Mfのうちで、近似直線Lbからの離間距離が最も大きい1つ(この例では、打痕Mc)を除いた打痕Ma,Mb,Md〜Mfを対象として最小二乗法に従って直線近似する(回帰分析によって推定する)ことで、後に、「第2の交点」を特定するのに使用する近似直線Laを求める。
具体的には、「第1の近似線」としての近似直線La1の特定に際しては、まず、打痕M1〜M9の全てを対象として直線近似することで、「A近似線」としての「A近似直線」に相当する近似直線(上記の例における近似直線Lbに対応する直線:図示せず)を特定する。次いで、打痕M1〜M9のうちで、特定した近似直線からの離間距離が最も大きい1つ(一例として、打痕M5:「予め規定された数」が「1」の例)を除いた打痕M1〜M4,M6〜M9を対象として直線近似することで、図4に示すように、近似直線La1を「第1の近似線」として特定する。また、「第2の近似線」としての近似直線La2の特定に際しては、まず、打痕M22〜M26,M1の全てを対象として直線近似することで、「B近似線」としての「B近似直線」に相当する近似直線(上記の例における近似直線Lbに対応する直線:図示せず)を特定する。次いで、打痕M22〜M26,M1のうちで、特定した近似直線からの離間距離が最も大きい1つ(一例として、打痕M24:「予め規定された数」が「1」の例)を除いた打痕M22,M23,M25,M26,M1を対象として直線近似することで、近似直線La2を「第2の近似線」として特定する。
さらに、「第1の近似線」としての近似直線La3の特定に際しては、まず、打痕M14〜M22の全てを対象として直線近似することで近似直線(「C近似直線(C近似線)」:上記の例における近似直線Lbに対応する直線:図示せず)を特定する。次いで、打痕M14〜M22のうちで、特定した近似直線からの離間距離が最も大きい1つ(一例として、打痕M20:「予め規定された数」が「1」の例)を除いた打痕M14〜M19,M21,M22を対象として直線近似することで、近似直線La3を「第1の近似線」として特定する。また、「第2の近似線」としての近似直線La4の特定に際しては、まず、打痕M9〜M14の全てを対象として直線近似することで近似直線(「D近似直線(D近似線)」:上記の例における近似直線Lbに対応する直線:図示せず)を特定する。次いで、打痕M9〜M14のうちで、特定した近似直線からの離間距離が最も大きい1つ(一例として、打痕M11:「予め規定された数」が「1」の例)を除いた打痕M9,M10,M12〜M14を対象として直線近似することで、近似直線La4を「第2の近似線」として特定する。
この場合、「第1の撮像処理」において撮像した撮像範囲A1が広いため、この撮像範囲A1を撮像した撮像データD1の画像では、後述するように、撮像範囲A1を撮像したカメラ4によって撮像範囲A2を撮像した撮像データD1の画像と比較して、1つの打痕Mを構成する画素の数が少数となる。したがって、近似直線La1〜La4を特定するにあたって各打痕Mの位置を特定する際の画像解析処理の対象の画素数が少数のため、近似直線La1〜La4の特定時に処理部10に加わる負担が十分に小さくなっている。なお、「A近似直線(A近似線)」、「B近似直線(B近似線)」、「C近似直線(C近似線)」および「D近似直線(D近似線)」からの離間距離が大きい「予め規定された数の打痕」は、「離間距離が大きい1つの打痕」に限定されず、「複数の打痕」に規定することができ、その際には、「離間距離が大きい複数の打痕」を除いて直線近似することで、「第1の近似線」としての「第1の近似直線」や、「第2の近似線」としての「第2の近似直線」を求める構成(方法)を採用することもできる。
次いで、処理部10は、「第1の近似線」としての近似直線La1と、「第2の近似線」としての近似直線La2とが交差する交点Ca1(「第2の交点」の一例)、および「第1の近似線」としての近似直線La3と、「第2の近似線」としての近似直線La4とが交差する交点Ca2(「第2の交点」の他の一例)とをそれぞれ特定すると共に(図4参照)、「第1の近似線」としての近似直線La1と、「第2の近似線」としての近似直線La4とが交差する交点Ca3(「第2の交点」のさらに他の一例)、および「第1の近似線」としての近似直線La3と、「第2の近似線」としての近似直線La2とが交差する交点Ca4(「第2の交点」のさらに他の一例)とをそれぞれ特定する(図4参照)。
また、処理部10は、「予め規定された第2の基準座標(一例として、撮像範囲の中心座標)」が交点Ca1,Ca2,Ca3,Ca4と一致するように、「第2の撮像範囲」に相当する撮像範囲A2をそれぞれ規定する。具体的には、処理部10は、図7に示すように、例えば、交点C1を基準とする「第2の撮像範囲」の規定に際して、直線L1に沿って配設されているべき検査用プローブP(「第1のプローブ群」を構成する検査用プローブP)のプロ−ビングによって形成された打痕Mを直線近似した「第1の近似線」としての近似直線La1と、直線L2に沿って配設されているべき検査用プローブP(「第2のプローブ群」を構成する検査用プローブP)のプロ−ビングによって形成された打痕Mを直線近似した「第2の近似線」としての近似直線La2とが交差する交点Ca1を中心として撮像範囲A2を規定する。
したがって、この基板検査装置1Aでは、「第1のプローブ群」を構成する検査用プローブP1〜P9が配列されるべき基準の直線L1と、「第2のプローブ群」を構成する検査用プローブP22〜P26,P1が配列されるべき基準の直線L2とが交差する交点C1に配設されているべき検査用プローブP1のプロ−ビングによって形成された打痕M1が含まれるように、撮像範囲A1よりも狭い撮像範囲である撮像範囲A2(4つの撮像範囲A2のうちの1つ)が規定されることとなる。なお、図7、および後に参照する図8では、撮像データD1に基づく画像についての理解を容易とするために、打痕形成処理時における検査用プローブPの接触に起因して、打痕シートにおいて黒色、および黒色に近い灰色に変色した部位を網線で塗り潰して図示すると共に、打痕形成処理時に変色が生じなかった部位、または、変色の度合いが小さい部位(白色に近い灰色に変色した部位)を白色で図示している。
また、処理部10は、交点C2を基準とする「第2の撮像範囲」、交点C3を基準とする「第2の撮像範囲」、および交点C4を基準とする「第2の撮像範囲」についても、上記の交点C1を基準とする「第2の撮像範囲」の規定と同様の手順に従って撮像範囲A2をそれぞれ規定する(図示せず)。これにより、打痕M14が含まれ、かつ撮像範囲A1よりも狭い撮像範囲である撮像範囲A2(交点Ca2を中心とする撮像範囲A2)と、打痕M9が含まれ、かつ撮像範囲A1よりも狭い撮像範囲である撮像範囲A2(交点Ca3を中心とする撮像範囲A2)と、打痕M22が含まれ、かつ撮像範囲A1よりも狭い撮像範囲である撮像範囲A2(交点Ca4を中心とする撮像範囲A2)とがそれぞれ規定される。
次いで、処理部10は、搬送機構3を制御して、上記各撮像範囲A2のうちの1つの上方にカメラ4が位置するように基板保持機構2(打痕シート付き基板30)を移動させると共に、カメラ4を制御して、指定された撮像範囲A2を撮像させる。また、処理部10は、他の3つの撮像範囲A2についても、カメラ4を制御して撮像させる(第2の撮像処理)。これにより、「第2の撮像処理」が完了し、カメラ4から4つの撮像範囲A2についての撮像データD1が処理部10に順次出力されて、「撮像処理」が終了する。
この後、「打痕位置特定処理」および「位置ずれ状態特定処理」をこの順で実行することによって「補正情報取得処理」が完了し、補正情報Drが記憶部11に記憶された状態となる。したがって、前述した基板検査装置1と同様にして、検査対象基板20の検査に際しては、処理部10が、プロービング情報Dpを補正情報Drに基づいて補正して移動機構6を制御することで検査対象基板20に向けてテストヘッド5を下降させる。これにより、検査対象基板20上に規定された各検査点に各検査用プローブPがそれぞれプロ−ビングされた状態において、測定部7および処理部10による検査対象基板20の電気的検査が実行される。
このように、この基板検査装置1A、および基板検査装置1Aによる補正情報Drの取得方法では、「第1のプローブ群」を構成する検査用プローブPによって形成された複数の打痕Mのうちの少なくとも3つの打痕Mを直線近似した近似直線La1,La3を「第1の近似線」とし、「第2のプローブ群」を構成する検査用プローブPによって形成された複数の打痕Mのうちの少なくとも3つの打痕Mを直線近似した近似直線La2,La4を「第2の近似線」として、予め規定された撮像範囲A1を撮像した撮像データD1を解析することで「第1の近似線」と「第2の近似線」とが交差する「第2の交点」としての交点Ca1〜Ca4の位置をそれぞれ特定し、予め規定された「第2の基準座標」が、特定した交点Ca1〜Ca4と一致し、かつ、基準の検査用プローブPによって形成された打痕Mが含まれる撮像範囲であって撮像範囲A1よりも狭い撮像範囲A2を規定し、規定した撮像範囲A2を撮像した撮像データD1を解析して基準の検査用プローブPによって形成された打痕Mの位置を特定して補正情報Drを取得する。
したがって、この基板検査装置1A、および基板検査装置1Aによる補正情報Drの取得方法によれば、「撮像範囲規定処理」において、打痕Mの1つ当りの画素数が、「打痕位置特定処理」に際して打痕M1,M14,M9,M22の位置を特定する際に画像解析する撮像データD1(撮像範囲A2を撮像した撮像データD1)よりも少数の撮像データD1(「第1の撮像処理」によって撮像範囲A1を撮像した撮像データD1)を対象として画像解析することで撮像範囲A2を規定することができるため、打痕位置の特定に際して処理部10に加わる負担を十分に軽減することができる結果、画像解析能力が高い高価な「処理部」を不要にできる分だけ、基板検査装置1Aの製造コストを十分に低減することができる。また、「撮像範囲規定処理」によって基準の検査用プローブPによって形成された打痕M(例えば、打痕M1)を含むように撮像範囲A2が自動的に規定されるため、「打痕位置特定処理」に際して、基準の検査用プローブP以外の検査用プローブPによって形成された打痕Mの位置が特定される事態を回避することができる結果、「位置ずれ状態特定処理」に際して誤った打痕Mについての位置ずれ状態が特定される事態を回避して、正確な補正情報Drを取得することができる。
また、この基板検査装置1A、および基板検査装置1Aによる補正情報Drの取得方法によれば、近似直線La1の特定に際して「A近似直線(A近似線)」からの離間距離が大きい予め規定された数の打痕Mを除いて特定し、近似直線La2の特定に際して「B近似直線(B近似線)」からの離間距離が大きい予め規定された数の打痕Mを除いて特定することにより、交点Ca1を求めるための近似直線La1,La2の特定に際して、その位置ずれ量が大きい打痕Mの影響を十分に小さくすることができる結果、交点C1に存在すべき検査用プローブP1によって形成された打痕M1を撮像範囲A2内に確実に含ませることができる。
なお、「基板検査装置」の構成、および「補正情報取得方法」の具体的な方法については、上記の基板検査装置1の構成、および基板検査装置1における補正情報Drの取得方法に限定されない。例えば、打痕M1,M14,M9,M22の4つの位置に基づいて補正情報Drを生成する構成・方法に代えて、打痕M1,M14,M9,M22のうちの1つ、または、2つの位置に基づいて補正情報Drを生成する構成・方法を採用することもできる。このような構成を採用した場合においても、上記の基板検査装置1と同様の効果を奏することができる。
また、基板検査装置1Aにおける補正情報Drの取得に際して、「第1の近似直線」に代えて「第1の線としての第1の曲線に沿って配設された複数の検査用プローブによって形成された複数の打痕のうちの少なくとも3つの打痕を曲線近似した(回帰分析によって推定した)第1の近似曲線」を「第1の近似線」として利用したり、「第2の近似直線」に代えて「第2の線としての第2の曲線に沿って配設された複数の検査用プローブによって形成された複数の打痕のうちの少なくとも3つの打痕を曲線近似した(回帰分析によって推定した)第2の近似曲線」を「第2の近似線」として利用したりすることもできる。このような構成(方法)を採用する際には、前述した「各打痕Mの直線近似」に代えて「各打痕Mの曲線近似」を実施して「近似曲線(近似線)」を特定すればよい。したがって、このような構成を採用した場合においても、上記の基板検査装置1Aと同様の効果を奏することができる。
さらに、「第1の近似線」としての「第1の近似直線」と、「第2の近似線」としての「第2の近似曲線」とが交差する交点を「第2の交点」としたり、「第1の近似線」としての「第1の近似曲線」と、「第2の近似線」としての「第2の近似直線」とが交差する交点を「第2の交点」としたりすることもできる。このような構成(方法)を採用した場合においても、前述した基板検査装置1A、および基板検査装置1Aにおける補正情報Drの取得方法と同様の効果を奏することができる。
加えて、検査対象基板20や打痕シート付き基板30の打痕シートに対するプロービングに際して、固定的に配設されたテストヘッド5に向けて基板保持機構2を移動させる「移動機構」や、基板保持機構2に向けてテストヘッド5を移動させると共にテストヘッド5に向けて基板保持機構2を移動させる「移動機構」を備えて「基板検査装置」を構成することもできる。