JP5899072B2 - ブタジエン−イソプレン共重合体及びその製造方法 - Google Patents

ブタジエン−イソプレン共重合体及びその製造方法 Download PDF

Info

Publication number
JP5899072B2
JP5899072B2 JP2012156910A JP2012156910A JP5899072B2 JP 5899072 B2 JP5899072 B2 JP 5899072B2 JP 2012156910 A JP2012156910 A JP 2012156910A JP 2012156910 A JP2012156910 A JP 2012156910A JP 5899072 B2 JP5899072 B2 JP 5899072B2
Authority
JP
Japan
Prior art keywords
group
butadiene
isoprene
polymerization
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012156910A
Other languages
English (en)
Other versions
JP2014019729A (ja
Inventor
悟 玉木
悟 玉木
純子 松下
純子 松下
会田 昭二郎
昭二郎 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2012156910A priority Critical patent/JP5899072B2/ja
Priority to EP13816418.1A priority patent/EP2873681B1/en
Priority to RU2015104635/04A priority patent/RU2598376C2/ru
Priority to US14/408,812 priority patent/US9777101B2/en
Priority to PCT/JP2013/004298 priority patent/WO2014010248A1/ja
Priority to CN201380037170.0A priority patent/CN104428332B/zh
Publication of JP2014019729A publication Critical patent/JP2014019729A/ja
Application granted granted Critical
Publication of JP5899072B2 publication Critical patent/JP5899072B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ブタジエン−イソプレン共重合体及びその製造方法に関する。
近年、省エネルギー、省資源の社会的要請のもと自動車の燃料消費を節約するために、タイヤの耐久性の要求から、耐破壊特性、耐摩耗性、耐亀裂成長性の優れたゴム材料も多く望まれるようになってきた。また、天然ゴムの値段が高騰しており、天然ゴムと同等の耐久性を有する合成ゴムの開発が必要とされている。天然ゴムの代替として従来より使用されているのが、合成ポリイソプレンであるが、合成ポリイソプレンをゴム組成物として使用した場合、天然ゴムと比して耐久性に劣る、という問題があった。そこで、耐久性を向上させるために、従来より、合成ポリイソプレンの高シス化による伸長結晶性の改良が行われてきた(例えば、特許文献1及び2参照)。
また、合成ポリイソプレンを他のポリマー成分と混練したり、イソプレンと他のモノマーの共重合体を使用したりすることで、所望のゴム特性を向上させる技術が知られる。例えば、特許文献3には、ブタジエン−イソプレンをゴム成分として含むゴム組成物が開示されている。
特開2004−27179号公報 国際公開第2006−078021号パンフレット 特開平2009−191100号公報
本発明の目的は、天然ゴム様の特性(耐久性(耐破壊特性、耐摩耗性、及び耐亀裂成長性))を有するゴム組成物を得ることのできるブタジエン−イソプレン共重合体及びその製造方法を提供することにある。また、本発明の他の目的は、優れた耐久性(耐破壊特性、耐摩耗性、及び耐亀裂成長性)を有するゴム組成物及びタイヤを提供することにある。
上記課題を解決するために、本発明では、末端にブタジエンブロックを有するブタジエン−イソプレン共重合体であって、該共重合体を構成する全モノマー中にブタジエンモノマーが占める割合が2.5〜6.0mol%であり、イソプレン由来部分のシス−1,4結合量が全体で95%以上である、ことを特徴とする共重合体を提供する。共重合体中に含まれるブタジエン量が一定以下であるため、ポリイソプレンの有する天然ゴム様の特性は維持される。また、イソプレン由来部分のシス−1,4結合量を高めることで、より天然ゴム様の特性を有し、耐久性に優れたゴムを得ることが可能である。
上記ブタジエン−イソプレン共重合体は、触媒存在下で、ブタジエンモノマーを重合させて重合体又はオリゴマーを合成し、該重合体又はオリゴマーにイソプレンモノマーを添加して重合させることで、好適に形成可能である。このように、同一系内でブタジエンの重合とイソプレンの重合を行う上で、共重合体の合成過程を二段階に分けることで、ブタジエンの重合工程においては、反応温度や反応時間の増減により形成されるブタジエンブロックの大きさを適宜調整可能であり、イソプレンの重合工程においては、そのミクロ構造の制御が容易となる。当該製造方法により、このような微細な調整が可能であるにも関わらず、ワンポットで簡便に実施することが可能である。
他の実施形態においては、上記ブタジエン−イソプレン共重合体は、触媒存在下で、ブタジエンモノマーとイソプレンモノマーとを、ブタジエンモノマーとイソプレンモノマーの添加モル量の合計のうちブタジエンモノマーの占める割合が2.5〜6.0%となるように添加し、重合させることで好適に形成される。特に、後述の重合触媒組成物を用いる場合、ブタジエンモノマーとイソプレンモノマーとではブタジエンモノマーの方が触媒との反応性が高いため、ブタジエンモノマーから重合反応が生じる。次いで、生成されたブタジエンの重合体またはオリゴマーにイソプレンが重合する。なお、ブタジエン部分の分子量は、添加する全モノマー中のブタジエンモノマーの量を調節することで調可能である。
本発明のブタジエン−イソプレン共重合体の製造方法は、下記式(i):
M−(NQ) 1 (NQ) 2 (NQ) 3 ・・・(i)
(式中、Mはランタノイド、スカンジウム、イットリウムから選択される少なくとも一種であり、NQ 1 、NQ 2 及びNQ 3 はアミド基であり、同一であっても異なっていてもよく、ただし、M−N結合を有する)で表される希土類元素化合物を含む触媒存在下で、ブタジエンモノマーを−100℃〜200℃で重合させて重合体またはオリゴマーを合成し、該重合体またはオリゴマーにイソプレンモノマーを添加して−100℃〜200℃で重合させるブタジエン−イソプレン共重合体の製造方法であって、前記ブタジエン−イソプレン共重合体を構成する全モノマー中にブタジエンモノマーが占める割合が2.5〜6.0mol%であり、イソプレン由来部分のシス−1,4結合量が全体で95%以上である、ことを特徴とする。
本発明のブタジエン−イソプレン共重合体の他の製造方法は、下記式(i):
M−(NQ) 1 (NQ) 2 (NQ) 3 ・・・(i)
(式中、Mはランタノイド、スカンジウム、イットリウムから選択される少なくとも一種であり、NQ 1 、NQ 2 及びNQ 3 はアミド基であり、同一であっても異なっていてもよく、ただし、M−N結合を有する)で表される希土類元素化合物を含む触媒存在下で、ブタジエンモノマーとイソプレンモノマーとを添加し、−100℃〜200℃で重合させるブタジエン−イソプレン共重合体の製造方法であって、
前記ブタジエン−イソプレン共重合体を構成する全モノマー中にブタジエンモノマーが占める割合が2.5〜6.0mol%であり、イソプレン由来部分のシス−1,4結合量が全体で95%以上である、ことを特徴とする。
本発明のブタジエン−イソプレン共重合体の製造方法において、前記触媒は、上記式(i)で表される希土類元素化合物を含む
上記希土類元素化合物を含む触媒を用いることにより、触媒組成物の単離工程を要さず、効率よく重合体組成物を製造することができる。窒素原子を含む希土類元素化合物を触媒とすることで、触媒自体が高い安定性を有し、その高い安定性ゆえに、特殊な反応器や合成プロセスを経ることなくin−situで効果的に触媒組成物を形成することが可能である。これにより、触媒組成物の単離工程を省略できるため、触媒の収率が上がり、効率よく重合体組成物を製造することが可能となる。
なお、本明細書における「希土類元素」とは、ランタノイド元素、スカンジウム、またはイットリウムを指すものとする。
本発明のブタジエン−イソプレン共重合体の製造方法において、さらにアニオン性配位子となり得る添加剤Dを添加することが好ましい。添加剤Dを加えることによって、高いシス−1,4結合量の重合体組成物を高収率で得ることが可能となる。
本発明のゴム組成物は、ゴム成分を含み、前記ゴム成分が、上記のいずれかのブタジエン−イソプレン共重合体を、ゴム成分100重量部に対して50重量部以上含むことが好ましい。上記の共重合体を50重量部以上配合することによって、耐久性(耐破壊特性、耐摩耗性、及び耐亀裂成長性)が向上したゴム組成物を提供することができる。
本発明のタイヤは、前記ゴム組成物を用いたゴム部材を備えることを特徴とする。前記タイヤを、前記ゴム組成物を用いたゴム部材を備えたものとすると、タイヤの天然ゴム様の耐久性(耐破壊特性、耐摩耗性、及び耐亀裂成長性)を維持することができる。
本発明によれば、天然ゴム様の特性(耐久性(耐破壊特性、耐摩耗性、及び耐亀裂成長性))を有するゴム組成物を得ることのできるブタジエン−イソプレン共重合体の製造が可能となる。また、優れた耐久性(耐破壊特性、耐摩耗性、及び耐亀裂成長性)を有するゴム組成物及びタイヤを提供することができる。
(ブタジエン−イソプレン共重合体)
本発明の共重合体は、ブタジエン−イソプレン共重合体である。以下、単に「共重合体」ともいう。
前記共重合体は、末端にブタジエンブロックを有することを特徴とする。ここでいう末端とは、共重合体主鎖の一端または両端のいずれかを指す。即ち、共重合体主鎖の少なくとも一端にブタジエンブロックを有する。
ブタジエン−イソプレン共重合体において、ブタジエン部分(ハードセグメント)の割合が大きすぎれば、耐久性等のポリイソプレンの天然ゴム様の利点を十分に奏することができない。ポリイソプレンは、天然ゴム様の特性を持たせるため、そのミクロ構造において高いシス含有量を呈することが要求されるところ、従来のブタジエン−イソプレン共重合体において、共重合体中のブタジエン含有量を調整しつつ、イソプレン部分を高シス化させる技術については、全く検討されていなかった。
共重合体中のブタジエンの存在は、H−NMRを用いて確認する。ポリイソプレン単体の場合は、5.1ppm付近に1,4結合のプロトンのシグナル、4.7ppm付近に3,4結合のシグナルが観測される。一方で、ブタジエン共重合体の場合には、5.4ppm付近に1,4結合のプロトンのシグナル、4.8ppm付近に3,4結合のシグナルが観測される。
上記ブタジエン−イソプレン共重合体において、ブタジエンブロック1つあたりのブタジエンモノマー単位の数は1〜10であることが好ましい。また、ブタジエンブロック1つあたりの分子量が1000以下であることが好ましい。共重合体中のブタジエンブロックが大きすぎれば、ポリイソプレンの有する特性が損なわれる可能性が高い。ブタジエンブロックの大きさを一定以下とすることで、その耐久性(耐破壊性、耐摩耗性、耐亀裂成長性)の維持を可能とする。なお、ブタジエンブロックのモノマー単位の数及び分子量は、H−NMRを用いてイソプレンブロックとブタジエンブロックのシグナルの比を求めることにより算出する。
−連鎖構造−
共重合体の末端部分以外の連鎖構造としては特に制限はなく、目的に応じて適宜選択することができ、例えば、ブロック共重合体、ランダム共重合体、テーパー共重合体、交互共重合体などが挙げられる。ただし、後述のように、本発明の共重合体は、含有するブタジエンモノマー単位量が少ないため、末端部分以外はポリイソプレン構造の、いわゆるブロック共重合体類似の構造とすることが好ましい。
−−ブロック共重合体−−
前記ブロック共重合体の構造は、(A−B)、A−(B−A)及びB−(A−B)(ここで、Aは、イソプレンの単量体単位からなるブロック部分であり、Bは、イソプレン以外の化合物の単量体単位からなるブロック部分であり、xは1以上の整数である)のいずれかである。なお、(A−B)又は(B−A)の構造を複数備えるブロック共重合体をマルチブロック共重合体と称する。
−−ランダム共重合体−−
前記ランダム共重合体の構造は、イソプレンの単量体単位とイソプレン以外の化合物の単量体単位とがランダムに配列する構造である。
−−テーパー共重合体−−
前記テーパー共重合体とは、ランダム共重合体とブロック共重合体とが混在してなる共重合体であり、イソプレンの単量体単位からなるブロック部分及びイソプレン以外の化合物の単量体単位からなるブロック部分のうち少なくとも一方のブロック部分(ブロック構造ともいう)と、イソプレン及びイソプレン以外の化合物の単量体単位が不規則に配列してなるランダム部分(ランダム構造という)とから構成される共重合体である。
前記テーパー共重合体の構造は、イソプレン成分とイソプレン以外の化合物成分との組成が連続的又は不連続的に分布があることを示す。
−−交互共重合体−−
前記交互共重合体は、イソプレンとイソプレン以外の化合物とが交互に配列する構造(イソプレンの単量体単位をAと、イソプレン以外の化合物の単量体単位をBとした場合の、−ABABABAB−の分子鎖構造)を有する重合体である。
−ブタジエン含有率−
本発明の共重合体において、共重合体を構成する全モノマー単位のうち、ブタジエンが占める割合を2.5〜6.0mol%、好適には2.5〜5mol%とする。ブタジエンを10mol%以下とすることで、イソプレンの特性を失わずに、耐久性(耐破壊性、耐摩耗性、及び耐亀裂成長性)を向上させることができるという利点がある。
−シス−1,4結合量−
前記共重合体中のイソプレン由来部分は、そのシス−1,4結合量を全体で95%以上、好ましくは97%以上、より好ましくは98%以上とする。95%以上であると、十分な伸張結晶性を発現することができる。
一方、前記シス−1,4結合量が、前記より好ましい範囲内、又は、前記特に好ましい範囲内であると、伸張結晶性による耐久性の向上の点で有利である。
なお、前記シス−1,4結合量(後述するトランス−1,4結合量、3,4−ビニル結合量も同様)は、前記イソプレン由来部分中の量であって、イソプレン共重合体全体に対する割合ではない。
−トランス−1,4結合量−
前記共重合体中のイソプレン由来部分のトランス−1,4結合量としては、特に制限はなく、目的に応じて適宜選択することができるが、5%以下が好ましく、3%以下がより好ましい。
前記トランス−1,4結合量が、1%以下であると、より十分な伸張結晶性を発現することができる。
一方、前記トランス−1,4結合量が、前記より好ましい範囲内、または前記特に好ましい範囲内であると、伸張結晶性による耐久性の向上の点でさらに有利である。
−3,4−ビニル結合量−
前記共重合体中のイソプレン由来部分の3,4−ビニル結合量としては、特に制限はなく、目的に応じて適宜選択することができるが、5%以下が好ましく、3%以下がより好ましく、1%以下が特に好ましい。
前記3,4−ビニル結合量が、5%以下であると、より十分な伸張結晶性を発現することができる。
一方、前記3,4−ビニル結合量が、前記より好ましい範囲内または前記特に好ましい範囲内であると、伸張結晶性による耐久性の向上の点でさらに有利である。
−1,2−ビニル結合量−
前記共重合体中のイソプレン由来部分の1,2−ビニル結合量としては、特に制限はなく、目的に応じて適宜選択することができるが、5%以下が好ましく、3%以下がより好ましく、1%以下が特に好ましい。
前記1,2−ビニル結合量が、5%以下であると、十分な伸張結晶性を発現することができる。
一方、前記1,2−ビニル結合量が、前記より好ましい範囲内であると、伸張結晶性による耐久性の向上の点で有利である。
−数平均分子量−
前記共重合体の数平均分子量(Mn)は、特に制限はなく、目的に応じて適宜選択することができるが、40万〜250万、さらに50万〜250万することが好ましい。前記分子量を250万以下とすることで、良好な加工性を維持することが可能である。数平均分子量(Mn)は、、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレンを標準物質として求める。
−分子量分布(Mw/Mn)−
前記共重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)としては、特に制限はなく、目的に応じて適宜選択することができ、1〜5が好ましい。ここで、分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレンを標準物質として求める。
−ブタジエン−イソプレン共重合体の製造方法−
次に、前記ブタジエン−イソプレン共重合体を製造することができる製造方法を詳細に説明する。本発明の共重合体の製造方法は、少なくとも、重合工程を含み、さらに、必要に応じて適宜選択した、カップリング工程、洗浄工程、その他の工程を含む。
−−第1の重合反応方法−−
本発明のブタジエン−イソプレン共重合体の製造方法の重合工程は、第1の重合反応方法または第2の重合反応方法のいずれかの方法で実施される。第1の重合反応方法においては、まず、触媒存在下で、イソプレンを添加せず、少量のブタジエンモノマーのみを添加し、ブタジエンモノマーを重合させることが好ましい。ブタジエンモノマーが重合し、重合体またはオリゴマーが生成されたところへ、多量のイソプレンを添加し、該重合体またはオリゴマーにイソプレンを競合的に重合させる。
−−−重合方法−−−
上記いずれの重合においても、重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン、またそれらの混合物等が挙げられる。
−−−ブタジエン重合工程−−−
第1の重合反応方法においては、まず、触媒存在下で、イソプレンを添加せず、ブタジエンモノマーのみを添加してこれを重合させることが好ましい。このとき、添加するブタジエンモノマーの量、反応時間を適宜選択することで、生成される重合体またはオリゴマーの分子量を調整することが可能である。
前記ブタジエン重合工程において、重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば、−100〜200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応のシス−1,4選択性が低下することがある。上記重合反応の圧力は、ブタジエンを十分に重合反応系中に取り込むため、0.1〜10.0MPaの範囲とすることが好ましい。上記重合反応の反応時間は、ブタジエン単位数10以下のオリゴマーを生成するにあたっては、1〜900分の範囲が好ましいが、触媒の種類、重合温度等の条件によって適宜選択することができる。なお、反応温度を25〜80℃とした場合、反応時間は5〜300分とすることが好ましい。
−−−イソプレン重合工程−−−
次いで、上記のブタジエン重合反応生成物中に、ブタジエンの9倍mol以上のイソプレンモノマーを添加し、イソプレンモノマーをブタジエン重合体またはオリゴマーに付加的に重合させることが好ましい。イソプレンモノマーを多量に添加することで、ブタジエンモノマーと競合して、よりイソプレンモノマーが反応しやすい状態とすることができる。
前記イソプレン重合工程において、重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば、−100〜200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応のシス−1,4選択性が低下することがある。また、上記重合反応の圧力は、イソプレンを十分に重合反応系中に取り込むため、0.1〜10.0MPaの範囲が好ましい。また、上記重合反応の反応時間も特に制限がなく、例えば、1秒〜10日の範囲が好ましいが、触媒の種類、重合温度等の条件によって適宜選択することができる。
また、前記イソプレン重合工程においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。
−−第2の重合反応方法−−
本発明のブタジエン−イソプレン共重合体の製造方法における重合反応方法の他の実施形態として、触媒存在下で、ブタジエンモノマーとイソプレンモノマーとを添加し、重合反応させる方法が挙げられる。特に、後述の重合触媒組成物を用いる場合、ブタジエンモノマーとイソプレンモノマーとでは、ブタジエンモノマーの方が反応性が高いため、反応系にブタジエンモノマーとイソプレンモノマーとが共存する場合、ブタジエンモノマーかが先に重合反応しやすい、という特性がある。重合反応がすすみ、ブタジエンモノマーの残存量が少なくなると、少量のブタジエンモノマーと競合してイソプレンモノマーの重合が生じやすくなる。これにより、末端にブタジエンブロックを有するブタジエン−イソプレン共重合体の製造が可能となる。
−−−重合方法−−−
重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン、またそれらの混合物等が挙げられる。
−−−重合工程−−−
第2の重合反応方法においては、触媒存在下で、ブタジエンモノマーとイソプレンモノマーをほぼ同時に添加し、重合させる。このとき、添加するブタジエンモノマーのmol量は、ブタジエンモノマーとイソプレンモノマーのmol量の合計の2.5〜6.0%とする。ブタジエンモノマーの配合割合により、生成される共重合体中の末端のブタジエンブロックのブタジエンモノマー単位の数、及びブタジエンブロックの分子量を調整することが可能である。
前記重合工程において、重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば、−100〜200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応のシス−1,4選択性が低下することがある。上記重合反応の圧力は、ブタジエンを十分に重合反応系中に取り込むため、0.1〜10.0MPaの範囲とすることが好ましい。上記重合反応の反応時間も特に制限がなく、例えば、1秒〜10日の範囲が好ましいが、触媒の種類、重合温度等の条件によって適宜選択することができる。は、ブタジエン単位数10以下のオリゴマーを生成するにあたっては、1〜900分の範囲が好ましいが、触媒の種類、重合温度等の条件によって適宜選択することができる。なお、反応温度を25〜80℃とした場合、反応時間は5〜300分とすることが好ましい。
また、前記重合工程は、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。
−−重合触媒組成物−−
上記のブタジエン、イソプレンの重合工程は、いずれにおいても、下記に示す重合触媒、または第一の重合触媒組成物、第二の重合触媒組成物若しくは第三の重合触媒組成物の存在下で各種モノマーを重合させる工程を含むことが好ましい。
−−−第一の重合触媒組成物−−−
第一の重合触媒組成物(以下、「第一重合触媒組成物」ともいう)について説明する。
第一重合触媒組成物としては、
(A)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であって、希土類元素と炭素との結合を有さない該希土類元素化合物又は反応物と、
(B)成分:非配位性アニオンとカチオンとからなるイオン性化合物(B−1)、アルミノキサン(B−2)、並びにルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種のハロゲン化合物(B−3)よりなる群から選択される少なくとも一種と、を含む重合触媒組成物が挙げられる。
第一重合触媒組成物が、イオン性化合物(B−1)及びハロゲン化合物(B−3)の少なくとも一種を含む場合、該重合触媒組成物は、更に、
(C)成分:下記一般式(X):
YR1 a2 b3 c ・・・ (X)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である)で表される有機金属化合物を含む。
上記イオン性化合物(B−1)及び上記ハロゲン化合物(B−3)は、(A)成分へ供給するための炭素原子が存在しないため、該(A)成分への炭素供給源として、上記(C)成分が必要となる。なお、上記重合触媒組成物が上記アルミノキサン(B−2)を含む場合であっても、該重合触媒組成物は、上記(C)成分を含むことができる。また、上記第一重合触媒組成物は、通常の希土類元素化合物系の重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。
なお、重合反応系において、第一重合触媒組成物に含まれる(A)成分の濃度は0.1〜0.0001mol/lの範囲であることが好ましい。
さらに、該重合触媒組成物は、アニオン性配位子となり得る添加剤Dを含有することが好ましい。
上記第一重合触媒組成物に用いる(A)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、ここで、希土類元素化合物及び該希土類元素化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有さない。該希土類元素化合物及び反応物が希土類元素−炭素結合を有さない場合、化合物が安定であり、取り扱いやすい。ここで、希土類元素化合物とは、周期律表中の原子番号57〜71の元素から構成されるランタノイド元素又はスカンジウムもしくはイットリウムを含有する化合物である。
なお、ランタノイド元素の具体例としては、ランタニウム、セリウム、プラセオジム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(A)成分は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
また、上記希土類元素化合物は、希土類金属が2価もしくは3価の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることが更に好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(XI)又は(XII):
1111 2・L11w ・・・ (XI)
1111 3・L11w ・・・ (XII)
(式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0〜3を示す)で表されることができる。
上記希土類元素化合物の希土類元素に結合する基(配位子)として、具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。更には、サリチルアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、2−ヒドロキシ−3−ナフトアルデヒド等のアルデヒドの残基;2'−ヒドロキシアセトフェノン、2'−ヒドロキシブチロフェノン、2'−ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ビバール酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2−ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2−ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基;リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p−ノニルフェニル)、リン酸ビス(ポリエチレングリコール−p−ノニルフェニル)、リン酸(ブチル)(2−エチルヘキシル)、リン酸(1−メチルヘプチル)(2−エチルヘキシル)、リン酸(2−エチルヘキシル)(p−ノニルフェニル)等のリン酸エステルの残基;2−エチルヘキシルホスホン酸モノブチル、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、フェニルホスホン酸モノ−2−エチルヘキシル、2−エチルヘキシルホスホン酸モノ−p−ノニルフェニル、ホスホン酸モノ−2−エチルヘキシル、ホスホン酸モノ−1−メチルヘプチル、ホスホン酸モノ−p−ノニルフェニル等のホスホン酸エステルの残基、ジブチルホスフィン酸、ビス(2−エチルヘキシル)ホスフィン酸、ビス(1−メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p−ノニルフェニル)ホスフィン酸、ブチル(2−エチルヘキシル)ホスフィン酸、(2−エチルヘキシル)(1−メチルヘプチル)ホスフィン酸、(2−エチルヘキシル)(p−ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2−エチルヘキシルホスフィン酸、1−メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p−ノニルフェニルホスフィン酸等のホスフィン酸の残基を挙げることもできる。なお、これらの配位子は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
上記第一重合触媒組成物に用いる(A)成分において、上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(式(XI)及び(XII)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。
好適には、上記希土類元素含有化合物は、下式で表される化合物を含有することが好ましい。
M-(NQ)(NQ)(NQ) ・・・(i)
(式中、Mはランタノイド、スカンジウム、イットリウムから選択される少なくとも一種であり、NQ、NQ及びNQはアミド基であり、同一であっても異なっていてもよく、ただし、M−N結合を有する)
即ち、上記式(i)で表される化合物は、M−N結合を3つ有することを特徴とする。M−N結合を3つ有することにより、各結合が化学的に等価となるため構造が安定的であり、それゆえに取り扱いが容易である、という利点を有する。
上記式(i)において、NQが表すアミド基としては、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基などの脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオベンチルフェニルアミド基、2-tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオベンチルフェニルアミド基、2−イソプロピル−6−ネオベンチルフェニルアミド基、2,4,6−tert−ブチルフェニルアミド基などのアリールアミド基;ビストリメチルシリルアミド基などのビストリアルキルシリルアミド基のいずれでもよいが、ビストリメチルシリルアミド基が好ましい。
上記第一重合触媒組成物に用いる(B)成分は、イオン性化合物(B−1)、アルミノキサン(B−2)及びハロゲン化合物(B−3)よりなる群から選択される少なくとも一種の化合物である。なお、上記第一重合触媒組成物における(B)成分の合計の含有量は、(A)成分に対して0.1〜50倍molであることが好ましい。
上記(B−1)で表されるイオン性化合物は、非配位性アニオンとカチオンとからなり、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。ここで、非配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられる。一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n−ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。従って、イオン性化合物としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第一重合触媒組成物におけるイオン性化合物の含有量は、(A)成分に対して0.1〜10倍molであることが好ましく、約1倍molであることが更に好ましい。
上記(B−2)で表されるアルミノキサンは、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物であり、例えば、一般式:(−Al(R')O−)で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R'は炭素数1〜10の炭化水素基であり、一部の炭化水素基はハロゲン原子及び/又はアルコキシ基で置換されてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上が更に好ましい)を挙げることができる。ここで、R'として、具体的には、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好ましい。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが特に好ましい。例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を原料として用いたアルミノキサンを好適に用いることができる。なお、上記第一重合触媒組成物におけるアルミノキサンの含有量は、(A)成分を構成する希土類元素Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度となるようにすることが好ましい。
上記(B−3)で表されるハロゲン化合物は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種からなり、例えば、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応して、カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。なお、上記第一重合触媒組成物におけるハロゲン化合物の合計の含有量は、(A)成分に対して1〜5倍molであることが好ましい。
上記ルイス酸としては、B(C653等のホウ素含有ハロゲン化合物、Al(C653等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第III,IV,V,VI又はVIII族に属する元素を含有するハロゲン化合物を用いることもできる。好ましくはアルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。上記ルイス酸として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。
上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。
また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2−エチル−ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2−エチル−ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1−デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ−2−エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2−エチルヘキサン酸、バーサチック酸、2−エチルヘキシルアルコール、1−デカノール、ラウリルアルコールが好ましい。
上記ルイス塩基は、上記金属ハロゲン化物1mol当り、0.01〜30mol、好ましくは0.5〜10molの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。
上記第一重合触媒組成物に用いる(C)成分は、前記一般式(X):
YR1 a2 b3 c ・・・ (X)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である)で表される有機金属化合物であり、下記一般式(Xa):
AlR123 ・・・ (Xa)
[式中、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよい]で表される有機アルミニウム化合物であることが好ましい。一般式(Xa)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C)成分としての有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第一重合触媒組成物における有機アルミニウム化合物の含有量は、(A)成分に対して1〜50倍molであることが好ましく、約10倍molであることが更に好ましい。
アニオン性配位子となり得る添加剤Dの添加は、より高いシス−1,4結合量の合成ポリイソプレンを高収率で合成することが可能となる、という効果を奏するため好ましい。
上記添加剤Dとしては、(A)成分のアミド基と交換可能なものであれば特に限定されないが、OH基、NH基、SH基のいずれかを有することが好ましい。
具体的な化合物として、OH基を有するものとしては、脂肪族アルコール、芳香族アルコール等が挙げられる。具体的には2−エチル−1−ヘキサノール、ジブチルヒドロキシトルエン、アルキル化フェノール、4,4’−チオビス−(6−t−ブチル−3−メチルフェノール)、4,4’−ブチリデンビス−(6−t−ブチル−3−メチルフェノール)、2,2’−メチレンビス−(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス−(4−エチル−6−t−ブチルフェノール)、2,6−ジ−t−4−エチルフェノール、1,1,3−トリス−(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、n−オクタデシル−3−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)プロピオネート、テトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジミリスチリルチオプロピオネート等を挙げることができるが、これに限定されるものではない。例えばヒンダードフェノール系のものとして、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、ペンタエリスリル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、3,5−t−ブチル−4−ヒドロキシベンジルフォソフォネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレート、オクチル化ジフェニルアミン、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール等を挙げることができる。
また、ヒドラジン系として、N,N’−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジンを挙げることができる。
NH基を有するものとしては、アルキルアミン、アリールアミン等の第1級アミンあるいは第2級アミンを挙げることができる。具体的には、ジメチルアミン、ジエチルアミン、ピロール、エタノールアミン、ジエタノールアミン、ジシクロヘキシルアミン、N,N’−ジベンジルエチレンジアミン、ビス(2−ジフェニルフォスフィノフェニル)アミン等が挙げられる。
SH基を有するものとしては、脂肪族チオール、芳香族チオール等のほか、下記一般式(I)、(II)で示される化合物が挙げられる。
Figure 0005899072
(式中、R1、R2及びR3はそれぞれ独立して−O−Cj2j+1、−(O−Ck2k−)a −O−Cm2m+1又は−Cn2n+1 で表され、R1、R2及びR3の少なくとも1つが−(O−Ck2k−)a −O−Cm2m+1であり、j、m及びnはそれぞれ独立して0〜12であり、k及びaはそれぞれ独立して1〜12であり、R4は炭素数1〜12であって、直鎖、分岐、もしくは環状の、飽和もしくは不飽和の、アルキレン基、シクロアルキレン基、シクロアルキルアルキレン基、シクロアルケニルアルキレン基、アルケニレン基、シクロアルケニレン基、シクロアルキルアルケニレン基、シクロアルケニルアルケニレン基、アリーレン基又はアラルキレン基である。)
一般式(I)で示されるものの具体例として、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、(メルカプトメチル)ジメチルエトキシシラン、(メルカプトメチル)ジメチルエトキシシラン、メルカプトメチルトリメトキシシラン等が挙げられる。
Figure 0005899072

(式中、Wは−NR8−、−O−又は−CR910−(ここで、R8及びR9は−Cp2p+1であり、R10は−Cq2q+1であり、p及びqはそれぞれ独立して0〜20である。)で表され、R5及びR6はそれぞれ独立して−M−Cr2r−(ここで、Mは−O−又は−CH2−であり、rは1〜20である。)で表され、R7は−O−Cj2j+1、−(O−Ck2k−)a −O−Cm2m+1又は−Cn2n+1 で表され、j、m及びnはそれぞれ独立して0〜12であり、k及びaはそれぞれ独立して1〜12であり、R4は炭素数1〜12であって、直鎖、分岐、もしくは環状の、飽和もしくは不飽和の、アルキレン基、シクロアルキレン基、シクロアルキルアルキレン基、シクロアルケニルアルキレン基、アルケニレン基、シクロアルケニレン基、シクロアルキルアルケニレン基、シクロアルケニルアルケニレン基、アリーレン基又はアラルキレン基である。)一般式(II)で示されるものの具体例として、3−メルカプトプロピル(エトキシ)−1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、3−メルカプトプロピル(エトキシ)−1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、3−メルカプトプロピル(エトキシ)−1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタンなどが挙げられる。
添加剤Dとしては、好適には下記一般式(ii)で表されるアニオン性三座配位子前駆体を使用できる。
−T−X−T−E ・・・(ii)
(Xは、第15族原子から選択される配位原子を含むアニオン性電子供与基を示し、E及びEはそれぞれ独立して、第15族及び16族原子から選択される配位原子を含む中性電子供与基を示し、T及びTはそれぞれ、XとE及び~Eを架橋する架橋基を示す)
添加剤Dは、前記希土類元素化合物1molに対して、0.01〜10mol、特に0.1〜1.2mol添加するのが好ましい。添加量が0.1mol未満の場合、モノマーの重合が十分に進まず、本発明の目的を達成することが困難となる。添加量を希土類元素化防物と当量(1.0mol)とすることが好ましいが、過剰量添加されていてもよい。しかし、また、添加量が1.2mol超とすると、試薬のロスが大きいため、好ましくない。
上記一般式(ii)中、中性の電子供与基E及びEは、第15族及び第16族から選択される配位原子を含む基である。また、E及び~Eは同一の基であってもよく、異なる基であってもよい。該配位原子としては、窒素N、リンP、酸素O、硫黄Sなどが例示されるが、好ましくはPである。
前記E及びEに含まれる配位原子がPである場合には、中性の電子供与基EまたはEとしては、1)ジフェニルホスフィノ基やジトリルホスフィノ基などのジアリールホスフィノ基、2)ジメチルホスフィノ基やジエチルホスフィノ基などのジアルキルホスフィノ基、3)メチルフェニルホスフィノ基などのアルキルアリールホスフィノ基が例示され、より好ましくはジアリールホスフィノ基が例示される。
前記E及びEに含まれる配位原子がNである場合には、中性の電子供与基EまたはEとしては、1)ジメチルアミノ基、ジエチルアミノ基やビス(トリメチルシリル)アミノ基などのジアルキルアミノ基、2)ジフェニルアミノ基などのジアリールアミノ基、3)メチルフェニル基などのアルキルアリールアミノ基などが例示される。
前記E及びEに含まれる配位原子がOである場合には、中性の電子供与基EまたはEとしては、1)メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基、2)フェノキシ基、2,6− ジメチルフェノキシ基などのアリールオキシ基などが例示される。
前記E及びEに含まれる配位原子がSである場合には、中性の電子供与基EまたはEとしては、1)メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基などのアルキルチオ基、2)フェニルチオ基、トリルチオ基などのアリールチオ基などが例示される。
アニオン性の電子供与基Xは、第15族から選択される配位原子を含む基である。該配位原子として好ましくはリンPまたは窒素Nが挙げられ、より好ましくはNが挙げられる。
架橋基T及びTは、XとE及びEを架橋することができる基であればよく、アリール環上に置換基を有していてもよいアリーレン基が例示される。また、T及びTは同一の基でも異なる基であってもよい。
前記アリーレン基は、フェニレン基、ナフチレン基、ピリジレン基、チエニレン基(好ましくはフェニレン基、ナフチレン基)などであり得る。また、前記アリーレン基のアリール環上には任意の基が置換されていてもよい。該置換基としてはメチル基、エチル基などのアルキル基、フェニル基、トリル基などのアリール基、フルオロ、クロロ、ブロモなどのハロゲン基、トリメチルシリル基などのシリル基などが例示される。
前記アリーレン基として、さらに好ましくは1,2−フェニレン基が例示される。
重合触媒を構成する金属錯体におけるアニオン性三座配位子前駆体としては、例えば、Organometallics,23,p 4778-4787 (2004)などを参考にして製造され得る。より具体的には、ビス(2−ジフェニルホスフィノフェニル)アミン(PNP)配位子が挙げられる。
−−−第二の重合触媒組成物−−−
次に、第二の重合触媒組成物(以下、「第二重合触媒組成物」ともいう)について説明する。第二重合触媒組成物としては、下記一般式(III):
Figure 0005899072
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、Ra〜Rfは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、及び下記一般式(IV):
Figure 0005899072
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、X'は、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、並びに下記一般式(V):
Figure 0005899072
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR'は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示し、[B]-は、非配位性アニオンを示す)で表されるハーフメタロセンカチオン錯体からなる群より選択される少なくとも1種類の錯体を含む重合触媒組成物が挙げられる。
第二重合触媒組成物は、更に、通常のメタロセン錯体を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。ここで、メタロセン錯体は、一つ又は二つ以上のシクロペンタジエニル又はその誘導体が中心金属に結合した錯体化合物であり、特に、中心金属に結合したシクロペンタジエニル又はその誘導体が一つであるメタロセン錯体を、ハーフメタロセン錯体と称することがある。
なお、重合反応系において、第二重合触媒組成物に含まれる錯体の濃度は0.1〜0.0001mol/Lの範囲であることが好ましい。
上記一般式(III)及び式(IV)で表されるメタロセン錯体において、式中のCpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C97-XX又はC911-XXで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、一般式(III)及び式(IV)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。
上記一般式(V)で表されるハーフメタロセンカチオン錯体において、式中のCpR'は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。シクロペンタジエニル環を基本骨格とするCpR'は、C55-XXで示される。ここで、Xは0〜5の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCpR'として、具体的には、以下のものが例示される。
Figure 0005899072
(式中、Rは水素原子、メチル基又はエチル基を示す。)
一般式(V)において、上記インデニル環を基本骨格とするCpR'は、一般式(III)のCpRと同様に定義され、好ましい例も同様である。
一般式(V)において、上記フルオレニル環を基本骨格とするCpR'は、C139-XX又はC1317-XXで示され得る。ここで、Xは0〜9又は0〜17の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
一般式(III)、式(IV)及び式(V)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
一般式(III)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR32]を含む。シリルアミド配位子に含まれるR基(一般式(III)におけるRa〜Rf)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、Ra〜Rfのうち少なくとも一つが水素原子であることが好ましい。Ra〜Rfのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりのかさ高さが低くなるため、非共役オレフィンが導入され易くなる。同様の観点から、Ra〜Rcのうち少なくとも一つが水素原子であり、Rd〜Rfのうち少なくとも一つが水素原子であることが更に好ましい。更に、アルキル基としては、メチル基が好ましい。
一般式(IV)で表されるメタロセン錯体は、シリル配位子[−SiX'3]を含む。シリル配位子[−SiX'3]に含まれるX'は、下記で説明される一般式(V)のXと同様に定義される基であり、好ましい基も同様である。
一般式(V)において、Xは水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基及び炭素数1〜20の炭化水素基からなる群より選択される基である。ここで、上記アルコキシド基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等のアリールオキシド基が挙げられ、これらの中でも、2,6−ジ−tert−ブチルフェノキシ基が好ましい。
一般式(V)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6−トリイソプロピルチオフェノキシ基が好ましい。
一般式(IV)において、Xが表すアミド基としては、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−トリ−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基が挙げられ、これらの中でも、ビストリメチルシリルアミド基が好ましい。
一般式(V)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。
一般式(V)において、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。また、Xが表す炭素数1〜20の炭化水素基として、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。
一般式(V)において、Xとしては、ビストリメチルシリルアミド基又は炭素数1〜20の炭化水素基が好ましい。
一般式(V)において、[B]-で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
上記一般式(III)及び式(IV)で表されるメタロセン錯体、並びに上記一般式(V)で表されるハーフメタロセンカチオン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
また、上記一般式(III)及び式(IV)で表されるメタロセン錯体、並びに上記一般式(V)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
上記一般式(III)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミドの塩(例えば、カリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(III)で表されるメタロセン錯体を得るための反応例を示す。
Figure 0005899072
(式中、X''はハライドを示す。)
上記一般式(IV)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(IV)で表されるメタロセン錯体を得るための反応例を示す。
Figure 0005899072
(式中、X''はハライドを示す。)
上記一般式(V)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。
Figure 0005899072
ここで、一般式(VI)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR'は、それぞれ独立して無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す。また、一般式[A]+[B]-で表されるイオン性化合物において、[A]+は、カチオンを示し、[B]-は、非配位性アニオンを示す。
[A]+で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。
上記反応に用いる一般式[A]+[B]-で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般式[A]+[B]-で表されるイオン性化合物は、メタロセン錯体に対して0.1〜10倍mol加えることが好ましく、約1倍mol加えることが更に好ましい。なお、一般式(V)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(V)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(IV)で表される化合物と一般式[A]+[B]-で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で一般式(V)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(III)又は式(IV)で表されるメタロセン錯体と一般式[A]+[B]-で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で一般式(V)で表されるハーフメタロセンカチオン錯体を形成させることもできる。
一般式(III)及び式(IV)で表されるメタロセン錯体、並びに上記一般式(V)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。
上記第二重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む重合触媒組成物の助触媒として用いられる成分から任意に選択され得る。該助触媒としては、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適に挙げられる。これら助触媒は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、上記第二重合触媒組成物におけるアルミノキサンの含有量は、メタロセン錯体の中心金属Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度、好ましくは100程度となるようにすることが好ましい。
一方、上記有機アルミニウム化合物としては、一般式AlRR'R''(式中、R及びR'はそれぞれ独立してC1〜C10の炭化水素基又は水素原子であり、R''はC1〜C10の炭化水素基である)で表される有機アルミニウム化合物が好ましい。上記有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。また、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含有量は、メタロセン錯体に対して1〜50倍molであることが好ましく、約10倍molであることが更に好ましい。
更に、上記重合触媒組成物においては、一般式(III)及び式(IV)で表されるメタロセン錯体、並びに上記一般式(V)で表されるハーフメタロセンカチオン錯体をそれぞれ、適切な助触媒と組み合わせることで、シス−1,4結合量や得られる重合体の分子量を増大できる。
−−−第三の重合触媒組成物−−−
次に、第三の重合触媒組成物(以下、「第三重合触媒組成物」ともいう)について説明する。
第三の重合触媒組成物は、希土類元素含有化合物として、下記式(A):
aMXbQYb・・・(A)
(式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である)で表されるメタロセン系複合触媒が挙げられる。
上記メタロセン系複合触媒の好適例においては、下記式(XV):
Figure 0005899072
(式中、M1は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、RA及びRBは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該RA及びRBは、M1及びAlにμ配位しており、RC及びRDは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示す)で表されるメタロセン系複合触媒が挙げられる。
上記メタロセン系重合触媒を用いることで、重合体を製造することができる。また、上記メタロセン系複合触媒、例えば予めアルミニウム触媒と複合させてなる触媒を用いることで、重合体合成時に使用されるアルキルアルミニウムの量を低減したり、無くしたりすることが可能となる。なお、従来の触媒系を用いると、重合体合成時に大量のアルキルアルミニウムを用いる必要がある。例えば、従来の触媒系では、金属触媒に対して10当量以上のアルキルアルミニウムを用いる必要があるところ、上記メタロセン系複合触媒であれば、5当量程度のアルキルアルミニウムを加えることで、優れた触媒作用が発揮される。
上記メタロセン系複合触媒において、上記式(A)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
上記式(A)において、Rは、それぞれ独立して無置換インデニル又は置換インデニルであり、該Rは上記金属Mに配位している。なお、置換インデニル基の具体例としては、例えば、1,2,3−トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7−ヘキサメチルインデニル基等が挙げられる。
上記式(A)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。
上記式(A)において、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
上記式(A)において、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
上記式(XV)において、金属M1は、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属M1としては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
上記式(XV)において、CpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C97XX又はC911XXで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、式(XV)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。
上記式(XV)において、RA及びRBは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該RA及びRBは、M1及Alにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
上記式(XV)において、RC及びRDは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子である。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
なお、上記メタロセン系複合触媒は、例えば、溶媒中で、下記式(XVI):
Figure 0005899072
(式中、M2は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、RE〜RJは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体を、AlRKLMで表される有機アルミニウム化合物と反応させることで得られる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンやヘキサンを用いればよい。なお、上記メタロセン系複合触媒の構造は、1H−NMRやX線構造解析により決定することが好ましい。
上記式(XVI)で表されるメタロセン錯体において、CpRは、無置換インデニル又は置換インデニルであり、上記式(XV)中のCpRと同義である。また、上記式(XVI)において、金属M2は、ランタノイド元素、スカンジウム又はイットリウムであり、上記式(XV)中の金属M1と同義である。
上記式(XVI)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR32]を含む。シリルアミド配位子に含まれるR基(RE〜RJ基)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、RE〜RJのうち少なくとも一つが水素原子であることが好ましい。RE〜RJのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。
上記式(XVI)で表されるメタロセン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
また、上記式(XVI)で表されるメタロセン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
一方、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物は、AlRKLMで表され、ここで、RK及びRLは、それぞれ独立して炭素数1〜20の1価の炭化水素基又は水素原子で、RMは炭素数1〜20の1価の炭化水素基であり、但し、RMは上記RK又はRLと同一でも異なっていてもよい。炭素数1〜20の1価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。また、これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物の量は、メタロセン錯体に対して1〜50倍molであることが好ましく、約10倍molであることが更に好ましい。
前記第三重合触媒組成物は、上記メタロセン系複合触媒と、ホウ素アニオンとを含むことを特徴とし、更に、通常のメタロセン系触媒を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含むことが好ましい。なお、上記メタロセン系複合触媒とホウ素アニオンとを合わせて2成分触媒ともいう。前記第三重合触媒組成物によれば、上記メタロセン系複合触媒と同様に、更にホウ素アニオンを含有するため、各単量体成分の重合体中での含有量を任意に制御することが可能となる。
上記第三重合触媒組成物において、2成分触媒を構成するホウ素アニオンとして、具体的には、4価のホウ素アニオンが挙げられる。例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
なお、上記ホウ素アニオンは、カチオンと組み合わされたイオン性化合物として使用することができる。上記カチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。従って、上記イオン性化合物としては、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。なお、ホウ素アニオンとカチオンとからなるイオン性化合物は、上記メタロセン系複合触媒に対して0.1〜10倍mol加えることが好ましく、約1倍mol加えることが更に好ましい。
なお、上記第三重合触媒組成物においては、上記メタロセン系複合触媒と上記ホウ素アニオンとを用いる必要があるが、上記式(XVI)で表されるメタロセン触媒と有機アルミニウム化合物を反応させる反応系に、ホウ素アニオンが存在していると、上記式(XV)のメタロセン系複合触媒を合成することができない。従って、上記第三重合触媒組成物の調製には、該メタロセン系複合触媒を予め合成し、該メタロセン系複合触媒を単離精製してからホウ素アニオンと組み合わせる必要がある。
上記第三重合触媒組成物に用いることができる助触媒としては、例えば、上述のAlRKLMで表される有機アルミニウム化合物の他、アルミノキサン等が好適に挙げられる。上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、これらアルミノキサンは、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
−−カップリング工程−−
カップリング工程は、前記第1の重合反応方法または第2の重合反応方法において得られた共重合体の高分子鎖の少なくとも一部(例えば、末端)を変性する反応(カップリング反応)を行う工程である。
前記カップリング工程において、重合反応が100%に達した際にカップリング反応を行うことが好ましい。
前記カップリング反応に用いるカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)ビス(マレイン酸−1−オクタデシル)ジオクチルスズ(IV)等のスズ含有化合物、(ii)4,4’−-ジフェニルメタンジイソシアネート等のイソシアネート化合物、(iii)グリシジルプロピルトリメトキシシラン等のアルコキシシラン化合物、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、ビス(マレイン酸−1−オクタデシル)ジオクチルスズ(IV)が、反応効率と低ゲル生成の点で、好ましい。
なお、カップリング反応を行うことにより、数平均分子量(Mn)の増加を行うことができる。
−−洗浄工程−−
洗浄工程は、前記重合工程において得られたブタジエン−イソプレン共重合体を洗浄する工程である。なお、洗浄に用いる媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、イソプロパノールなどが挙げられるが、重合触媒組成物にルイス酸由来の触媒を配合する際は、特にこれらの溶媒に対して酸(たとえば塩酸、硫酸、硝酸)を加えて使用することができる。添加する酸の量は溶媒に対して15mol%以下が好ましい。これ以上では酸がポリマー中に残存してしまうことで混練および加硫時の反応に悪影響を及ぼす可能性がある。
この洗浄工程により、重合体中の触媒残渣量を好適に低下させることができる。
(ゴム組成物)
本発明のゴム組成物は、少なくとも、ゴム成分を含み、さらに必要に応じて、充填剤、架橋剤、その他の成分を含む。
−ゴム成分−
前記ゴム成分は、少なくとも、上記のブタジエン−イソプレン共重合体を含み、さらに必要に応じて、その他のゴム成分を含む。
前記合成ブタジエン−イソプレン共重合体は、前述した通りである。
前記ゴム成分中における前記重合体(前記合成ポリイソプレン、前記イソプレン共重合体、又は前記合成ポリイソプレン及び前記イソプレン共重合体)の合計配合量(合計含有量)としては、特に制限はなく、目的に応じて適宜選択することができるが、15質量%〜100質量%が好ましい。
前記ゴム成分中における前記重合体の合計配合量が、15質量%以上であると、前記重合体の特性を十分に発揮することができる。
−その他のゴム成分−
前記その他のゴムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリイソプレン、ブタジエンゴム(BR)、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)、クロロプレンゴム、エチレン−プロピレンゴム(EPM)、エチレン−プロピレン−非共役ジエンゴム(EPDM)、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
−充填剤−
前記充填剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カーボンブラック、無機充填剤、などを挙げることができ、カーボンブラック及び無機充填剤から選択される少なくとも一種が好ましい。ここで、前記ゴム組成物には、カーボンブラックが含まれることがより好ましい。なお、前記充填剤は、補強性などを向上させるためにゴム組成物に配合するものである。
前記充填剤の配合量(含有量)としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、10〜100質量部が好ましく、20質量部〜80質量部がより好ましく、30質量部〜60質量部が特に好ましい。
前記充填剤の配合量が、10質量部未満であると、充填剤を入れる効果があまりみられないことがあり、100質量部を超えると、前記ゴム成分に充填剤が混ざり込まなくなる傾向があり、ゴム組成物としての性能を低下させることがある。
−−カーボンブラック−−
前記カーボンブラックとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、FEF、GPF、SRF、HAF、N339、IISAF、ISAF、SAF、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記カーボンブラックの窒素吸着比表面積(NSA、JIS K 6217−2:2001に準拠して測定する)としては、特に制限はなく、目的に応じて適宜選択することができるが、20〜100m/gが好ましく、35〜80m/gがより好ましい。
前記カーボンブラックの窒素吸着比表面積(NSA)が20m/g未満であると、得られたゴムの耐久性が低く、十分な耐亀裂成長性が得られないことがあり、100m/gを超えると、低ロス性が低下し、また、作業性が悪いことがある。
前記ゴム成分100質量部に対するカーボンブラックの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、10〜100質量部が好ましく、10〜70質量部がより好ましく、20〜60質量部が特に好ましい。
前記カーボンブラックの含有量が、10質量部未満であると、補強性が不十分で耐破壊性が悪化することがあり、100質量部を超えると、加工性および低ロス性が悪化することがある。
一方、前記カーボンブラックの含有量が、前記より好ましい範囲内であると、各性能のバランスの点で有利である。
−−無機充填剤−−
前記無機充填剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
なお、無機充填剤を用いる時は適宜シランカップリング剤を使用してもよい。
−架橋剤−
前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム−ニトロソアミン系架橋剤、硫黄、などが挙げられるが、これらの中でもタイヤ用ゴム組成物としては硫黄系架橋剤がより好ましい。
前記架橋剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、0.1〜20質量部が好ましい。
前記架橋剤の含有量が0.1質量部未満であると、架橋がほとんど進行しなかったり、20質量部を超えると、一部の架橋剤により混練り中に架橋が進んでしまう傾向があったり、加硫物の物性が損なわれたりすることがある。
−その他の成分−
その他に加硫促進剤を併用することも可能であり、加硫促進剤としては、グアジニン系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が使用できる。
また必要に応じて、軟化剤、加硫助剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、加工助剤、酸化防止剤、老化防止剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤など公知のものをその使用目的に応じて使用することができる。
(架橋ゴム組成物)
本発明のゴム組成物は、架橋ゴム組成物として用いることができる。架橋ゴム組成物は、前記ゴム組成物を架橋して得られたものである限り、特に制限はなく、目的に応じて適宜選択することができる。
前記架橋の条件としては、特に制限はなく、目的に応じて適宜選択することができるが、温度120〜200℃、加温時間1分間〜900分間が好ましい。
(タイヤ)
本発明のタイヤは、本発明のゴム組成物、又は、前記架橋ゴム組成物を用いたものである限り、特に制限はなく、目的に応じて適宜選択することができる。
本発明のゴム組成物、又は、前記架橋ゴム組成物のタイヤにおける適用部位としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トレッド、ベーストレッド、サイドウォール、サイド補強ゴム及びビードフィラーなどが挙げられる。
これらの中でも、前記適用部位をトレッドとすることが、耐久性の点で有利である。
前記タイヤを製造する方法としては、慣用の方法を用いることができる。例えば、タイヤ成形用ドラム上に未加硫ゴム組成物及び/又はコードからなるカーカス層、ベルト層、トレッド層等の通常タイヤ製造に用いられる部材を順次貼り重ね、ドラムを抜き去ってグリーンタイヤとする。次いで、このグリーンタイヤを常法に従って加熱加硫することにより、所望のタイヤ(例えば、空気入りタイヤ)を製造することができる。
(タイヤ以外の用途)
タイヤ用途以外にも、防振ゴム、免震ゴム、ベルト(コンベアベルト)、ゴムクローラ、各種ホースなどに本発明のゴム組成物、又は、前記架橋ゴム組成物を使用することができる。
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
(製造例1:重合体A(合成ポリイソプレン)の製造方法)
窒素雰囲気下のグローブボックス中で1L耐圧ガラス反応器に、トリスビストリメチルシリルアミドガドリニウム[GdN(SiMe7.35μmol、ビス(2−ジフェニルフォスフィノフェニル)アミン7.35μmolとトルエン1.0gをを入れ、30分間熟成させた後、トリイソブチルアルミニウム1.84mmol、トルエン5.0gを仕込んだのち、更に30分間熟成を行った。その後、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)を7.35μmol加え、15分間熟成させた。その後、グローブボックスから反応器を取り出し、シクロヘキサン164.7g、イソプレン65gを添加し、50℃で2時間重合を行った。重合後、2,2’-メチレン−ビス(4-エチル-6-t-ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mLを加えて反応を停止させ、さらに大量のメタノールで重合体を分離し、70℃で真空乾燥し重合体Aを得た。得られた重合体Aの収量は65gであった。
(製造例2:重合体B(ブタジエン−イソプレン共重合体)の製造方法:前記第1の重合反応方法を適用)
窒素雰囲気下のグローブボックス中で1L耐圧ガラス反応器に、トリスビストリメチルシリルアミドガドリニウム[GdN(SiMe9.43μmol、ビス(2−ジフェニルフォスフィノフェニル)アミン9.43μmolとトルエン1.0gを入れて30分間熟成させた後、トリイソブチルアルミニウム1.41mmol、トルエン5.0gを仕込んだのち、更に30分間熟成を行った。その後、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)を7.35μmol加え15分間熟成させた。その後、グローブボックスから反応器を取り出し、1,3−ブタジエン1.7gを添加し、50℃で30分間撹拌した。その後、シクロヘキサン163.0g、、イソプレン65gを添加し、50℃で2時間重合を行った。重合後、2,2’-メチレン−ビス(4-エチル-6-t-ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mLを加えて反応を停止させ、さらに大量のメタノールで重合体を分離し、70℃で真空乾燥し重合体Bを得た。得られた重合体Bの収量は61gであった。
(製造例3:重合体C(ブタジエン−イソプレン共重合体)の製造方法:前記第1の重合反応方法を適用)
窒素雰囲気下のグローブボックス中で1L耐圧ガラス反応器に、トリスビストリメチルシリルアミドガドリニウム[GdN(SiMe9.43μmol、ビス(2−ジフェニルフォスフィノフェニル)アミン9.43μmolとトルエン1.0gを入れ30分間熟成させた後、トリイソブチルアルミニウム1.41mmol、トルエン5.0gを仕込んだのち、更に30分間熟成を行い、その後、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)を7.35μmol加え15分間熟成させた。その後、グローブボックスから反応器を取り出し、1,3−ブタジエン3.4gを添加し、50℃で30分間撹拌した。その後、シクロヘキサン161.4g、イソプレン65gを添加し、50℃で2時間重合を行った。重合後、2,2’-メチレンービス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mLを加えて反応を停止させ、さらに大量のメタノールで重合体を分離し、70℃で真空乾燥し重合体Cを得た。得られた重合体Cの収量は63gであった。
(製造例4:重合体D(ポリイソプレン及びポリブタジエンの混合物)の製造方法:前記第2の重合反応方法を適用)
窒素雰囲気下のグローブボックス中で1L耐圧ガラス反応器に、トリスビストリメチルシリルアミドガドリニウム[GdN(SiMe9.43μmol、ビス(2−ジフェニルフォスフィノフェニル)アミン9.43μmolとトルエン1.0gを入れ30分間熟成させた後、トリイソブチルアルミニウム1.41mmol、トルエン5.0gを仕込んだのち、更に30分間熟成を行い、その後、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)を7.35μmol加え15分間熟成させた。その後、グローブボックスから反応器を取り出し、シクロヘキサン161.4g、1,3−ブタジエン3.4g、イソプレン65gを添加し、50℃で2時間重合を行った。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mLを加えて反応を停止させ、さらに大量のメタノールで重合体を分離し、70℃で真空乾燥し重合体Dを得た。得られた重合体Dの収量は62gであった。
得られた重合体A〜Dについて、そのミクロ構造、イソプレン含有量、数平均分子量(Mn)、分子量分布(Mw/Mn)、及びガラス転移温度(Tg)の分析を行った。重合体A〜Cの各分析結果を表1に示す。
(1)重合体A〜Dのミクロ構造(シス−1,4結合量)
重合体A〜Dのミクロ構造(シス−1,4結合量)を、フーリエ変換赤外分光法(FT−IR)の透過率スペクトルを測定することにより算出した。具体的には、同一セルの二硫化炭素のブランクとして、5mg/mLの濃度に調整した各重合体の二硫化炭素溶液のFT−IRによる透過率スペクトルを測定し、下記行列式(iii):
Figure 0005899072
(式中、aは、フーリエ変換赤外分光法(FT−IR)による透過率スペクトルの1130cm−1付近の山ピーク値であり、bは、967cm−1付近の谷ピーク値であり、cは、911cm−1付近の谷ピーク値であり、dは、736cm−1付近の谷ピーク値である)から導かれるe,f,gの値を用い、下記式(iv)
(シス−1,4結合量の計算値=e/(e+f+g)×100 ・・・(iv)
にしたがって、シス−1,4結合量の計算値を求めた。
(2)数平均分子量(Mn)及び分子量分布(Mw/Mn)
ゲルパーミエーションクロマトグラフィー[GPC:東ソー製HLC−8121GPC/HT、カラム:東ソー製GMHHR−H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、重合体A〜Dのポリスチレン換算の数平均分子量(Mn)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は40℃である。
(3)ガラス転移温度
約60×10×1mmの板状のガラス転移温度測定用重合体を調製し、昇温速度3℃/分、周波数1Hzの条件下で動的粘弾性試験を行い、tanδのピークから接着性樹脂組成物のガラス転移温度を測定した。
Figure 0005899072
<ゴム組成物の評価方法>
表2に示す配合処方のゴム組成物を調製し、160℃で20分間加硫して得た架橋ゴム組成物に対し、下記の方法に従って、(1)耐破壊性、(2)耐摩耗性、(3)耐亀裂成長性(定応力)を測定した。測定結果を表2に示す。
Figure 0005899072
(1)耐破壊性(指数)
JIS K 6301−1995に準拠して室温で引張試験を行い、加硫したゴム組成物の引張り強さ(Tb)を測定し、比較例1の引張り強さを100とした場合の指数を表2に示す。指数値が大きい程、耐破壊性が良好であることを示す。
(2)耐摩耗性(指数)
調製した各加硫ゴムから円板状(直径16.2mm×厚さ6mm)に切り抜いた試験片を用い、JIS−K6264−2:2005に準じて、DIN摩耗試験を行った。室温でDIN摩耗試験を行った際の摩耗量(mm)を測定した。比較例1を100とした場合の指数(摩耗量の逆数)を表2に示す。指数値が大きい程、耐摩耗性が良好であることを示す。
(3)耐亀裂成長性(指数)(定応力)
JIS3号試験片中心部に0.5mmの亀裂を入れ、室温で歪100%(JIS K6251に従った引っ張り試験による測定値)の一定歪にて繰り返し疲労を与え、サンプルが切断するまでの回数を測定した。結果を表2に示す。指数値が大きい程、耐亀裂成長性が良好であることを示す。なお、表中>200は比較例1に対し2倍の回数の繰り返し疲労を与えても、サンプルの切断が起こらなかったことを示す。
表2より、本発明のブタジエン−イソプレン共重合体(重合体B〜D)を用いた加硫ゴム組成物である実施例1〜7において、合成ポリイソプレン(重合体A)、ブタジエンゴムと比して、耐久性(耐破壊特性、耐摩耗性、及び耐亀裂成長性)が向上した架橋ゴム組成物を得ることができた。
本発明の共重合体及び前記共重合体を含むゴム組成物は、例えば、タイヤ部材(特に、タイヤのトレッド部材)に好適に利用可能である。

Claims (6)

  1. 末端にブタジエンブロックを有するブタジエン−イソプレン共重合体であって
    共重合体を構成する全モノマー中にブタジエンモノマーが占める割合が2.5〜6.0mol%であり、
    イソプレン由来部分のシス−1,4結合量が全体で95%以上である、
    ことを特徴とするブタジエン−イソプレン共重合体。
  2. 下記式(i):
    M−(NQ) 1 (NQ) 2 (NQ) 3 ・・・(i)
    (式中、Mはランタノイド、スカンジウム、イットリウムから選択される少なくとも一種であり、NQ 1 、NQ 2 及びNQ 3 はアミド基であり、同一であっても異なっていてもよく、ただし、M−N結合を有する)で表される希土類元素化合物を含む触媒存在下で、ブタジエンモノマーを−100℃〜200℃で重合させて重合体またはオリゴマーを合成し、該重合体またはオリゴマーにイソプレンモノマーを添加して−100℃〜200℃で重合させ、
    前記ブタジエン−イソプレン共重合体を構成する全モノマー中にブタジエンモノマーが占める割合が2.5〜6.0mol%であり、イソプレン由来部分のシス−1,4結合量が全体で95%以上である、ブタジエン−イソプレン共重合体の製造方法。
  3. 下記式(i):
    M−(NQ) 1 (NQ) 2 (NQ) 3 ・・・(i)
    (式中、Mはランタノイド、スカンジウム、イットリウムから選択される少なくとも一種であり、NQ 1 、NQ 2 及びNQ 3 はアミド基であり、同一であっても異なっていてもよく、ただし、M−N結合を有する)で表される希土類元素化合物を含む触媒存在下で、ブタジエンモノマーとイソプレンモノマーとを添加して−100℃〜200℃で重合させ、
    前記ブタジエン−イソプレン共重合体を構成する全モノマー中にブタジエンモノマーが占める割合が2.5〜6.0mol%であり、イソプレン由来部分のシス−1,4結合量が全体で95%以上である、ブタジエン−イソプレン共重合体の製造方法。
  4. さらにアニオン性配位子となり得る添加剤Dを添加する、請求項2又は3に記載のブタジエン−イソプレン共重合体の製造方法。
  5. ゴム成分を含み、前記ゴム成分が、請求項1に記載のブタジエン−イソプレン共重合体を、ゴム成分100重量部に対して50重量部以上含む、ことを特徴とするゴム組成物。
  6. 請求項5に記載のゴム組成物を用いたゴム部材を備えたタイヤ。
JP2012156910A 2012-07-12 2012-07-12 ブタジエン−イソプレン共重合体及びその製造方法 Expired - Fee Related JP5899072B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012156910A JP5899072B2 (ja) 2012-07-12 2012-07-12 ブタジエン−イソプレン共重合体及びその製造方法
EP13816418.1A EP2873681B1 (en) 2012-07-12 2013-07-11 Isoprene copolymer and method of producing the same
RU2015104635/04A RU2598376C2 (ru) 2012-07-12 2013-07-11 Изопреновый сополимер и способ его производства
US14/408,812 US9777101B2 (en) 2012-07-12 2013-07-11 Isoprene copolymer and method of producing the same
PCT/JP2013/004298 WO2014010248A1 (ja) 2012-07-12 2013-07-11 イソプレン共重合体及びその製造方法
CN201380037170.0A CN104428332B (zh) 2012-07-12 2013-07-11 异戊二烯共聚物及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012156910A JP5899072B2 (ja) 2012-07-12 2012-07-12 ブタジエン−イソプレン共重合体及びその製造方法

Publications (2)

Publication Number Publication Date
JP2014019729A JP2014019729A (ja) 2014-02-03
JP5899072B2 true JP5899072B2 (ja) 2016-04-06

Family

ID=50195017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012156910A Expired - Fee Related JP5899072B2 (ja) 2012-07-12 2012-07-12 ブタジエン−イソプレン共重合体及びその製造方法

Country Status (1)

Country Link
JP (1) JP5899072B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658913C1 (ru) * 2014-08-20 2018-06-26 Бриджстоун Корпорейшн Способ изготовления полимера сопряженного диена, полимер сопряженного диена, резиновая смесь и шина
EP3680259B1 (en) 2017-09-04 2023-08-16 Bridgestone Corporation Polymerization catalyst composition, polymer production method, polymer, rubber composition, and tire
FR3104596B1 (fr) * 2019-12-17 2021-11-12 Michelin & Cie Composition de caoutchouc

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612436A (en) * 1995-09-08 1997-03-18 The Goodyear Tire & Rubber Company Isoprene-butadiene diblock rubber
JP2000154221A (ja) * 1998-09-15 2000-06-06 Agency Of Ind Science & Technol 共役ジエン系ブロック共重合体の製造方法、共役ジエン系ブロック共重合体、およびブタジエン系ブロック共重合体
JP2002012702A (ja) * 2000-06-30 2002-01-15 Nippon Zeon Co Ltd ゴム組成物
JP3624290B2 (ja) * 2002-05-08 2005-03-02 独立行政法人理化学研究所 重合用触媒
TWI458747B (zh) * 2008-12-25 2014-11-01 Ube Industries Preparation of conjugated diene polymers

Also Published As

Publication number Publication date
JP2014019729A (ja) 2014-02-03

Similar Documents

Publication Publication Date Title
JP6657082B2 (ja) 多元共重合体、ゴム組成物及びタイヤ
WO2017065299A1 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物、ゴム製品、及びタイヤ
JP6055824B2 (ja) 重合触媒組成物、合成ポリイソプレンの製造方法、及び合成ポリイソプレン
JP6055827B2 (ja) ポリブタジエンの製造方法、ポリブタジエン、ゴム組成物及びタイヤ
JP5899011B2 (ja) 重合体、前記重合体を含むゴム組成物、及び、前記ゴム組成物を有するタイヤ
WO2017065301A1 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物、ゴム製品、及びタイヤ
JP5941302B2 (ja) ゴム組成物、及び、前記ゴム組成物を有するタイヤ
JP2013216850A (ja) 合成ポリイソプレンの製造方法、合成ポリイソプレン、ゴム組成物及びタイヤ
WO2013132848A1 (ja) 重合体及びその製造方法、前記重合体を含むゴム組成物、並びに、前記ゴム組成物を有するタイヤ
JP6635369B2 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物、ゴム製品、及びタイヤ
EP2873681B1 (en) Isoprene copolymer and method of producing the same
JP5899072B2 (ja) ブタジエン−イソプレン共重合体及びその製造方法
WO2017065298A1 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物、ゴム製品、及びタイヤ
RU2607813C2 (ru) Способ производства полимерной композиции и полимерная композиция
JP5899074B2 (ja) 重合体組成物の製造方法及び重合体組成物
JP5917813B2 (ja) ゴム組成物、タイヤトレッド用ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2016113496A (ja) ゴム組成物、及び該ゴム組成物を用いたタイヤ
JP6353710B2 (ja) 分岐イソプレン重合体の製造方法
JP5899073B2 (ja) スチレン−イソプレン共重合体及びその製造方法
JP5934044B2 (ja) 重合体組成物の製造方法及び重合体組成物
WO2019163230A1 (ja) ゴム組成物、タイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホース
WO2019163835A1 (ja) ゴム組成物、タイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホース
JP2017200983A (ja) 共役ジエン系共重合体及びその製造方法、ゴム組成物、架橋ゴム組成物、並びにタイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5899072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees