JP2017200983A - 共役ジエン系共重合体及びその製造方法、ゴム組成物、架橋ゴム組成物、並びにタイヤ - Google Patents

共役ジエン系共重合体及びその製造方法、ゴム組成物、架橋ゴム組成物、並びにタイヤ Download PDF

Info

Publication number
JP2017200983A
JP2017200983A JP2016093348A JP2016093348A JP2017200983A JP 2017200983 A JP2017200983 A JP 2017200983A JP 2016093348 A JP2016093348 A JP 2016093348A JP 2016093348 A JP2016093348 A JP 2016093348A JP 2017200983 A JP2017200983 A JP 2017200983A
Authority
JP
Japan
Prior art keywords
group
conjugated diene
compound
myrcene
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016093348A
Other languages
English (en)
Other versions
JP6729891B2 (ja
Inventor
紗彩 塩野
Saya Shiono
紗彩 塩野
会田 昭二郎
Shojiro Aida
昭二郎 会田
岳史 塩野
Takeshi Shiono
岳史 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2016093348A priority Critical patent/JP6729891B2/ja
Publication of JP2017200983A publication Critical patent/JP2017200983A/ja
Application granted granted Critical
Publication of JP6729891B2 publication Critical patent/JP6729891B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】動的貯蔵弾性率(E’)が高くかつ損失正接(tanδ)が小さいゴム組成物が得られる共役ジエン系共重合体及びその製造方法を提供すること。また、前記共役ジエン系共重合体を含有するゴム組成物、該ゴム組成物を架橋した架橋ゴム組成物、並びに、該ゴム組成物又は架橋ゴム組成物を用いたタイヤを提供すること。【解決手段】ミルセンに由来する構成単位と、共役ジエン化合物に由来する構成単位とを有し、1,4−シス含有量が90%以上であり、ミルセンに由来する構成単位の含有量が10質量%未満であることを特徴とする共役ジエン系共重合体。【選択図】なし

Description

本発明は、共役ジエン系共重合体及びその製造方法、ゴム組成物、架橋ゴム組成物、並びにタイヤに関する。
近年の環境問題への関心の高まりに伴う世界的な二酸化炭素排出規制の動きに関連して、自動車の低燃費化に対する要求が強まりつつある。このような要求に対応するため、タイヤ性能についても転がり抵抗の低減が求められている。ここで、タイヤの転がり抵抗を減少させる手法としては、タイヤのトレッド部に適用するゴム組成物として損失正接(tanδ)が低い低発熱性のゴム組成物を用いることが有効である。
一方、タイヤのトレッド部、サイドウォール部及びビードフィラー等に適用するゴム組成物としては、動的貯蔵弾性率(E’)が高いゴム組成物が好適であるため、損失正接(tanδ)が低くかつ動的貯蔵弾性率(E’)が高いゴム組成物が求められている。これに対し、ゴム組成物の動的貯蔵弾性率(E’)を向上させる手段としては、ゴム組成物に配合するカーボンブラックの配合量を増量する手法や、特許文献1に記載のようなN,N’−(4,4’−ジフェニルメタン)−ビスマレイミド等の特定構造のビスマレイミド(BMI)を配合する技術や、特許文献2に記載のようなポリエチレングリコールジマレエート等のゴム成分に対する反応基と充填剤に対する吸着基とを併せ持つ化合物を配合する技術が知られている。更に、特許文献3には、低燃費性等を改善するために、ミルセン重合体を含有するクリンチエイペックス用ゴム組成物が開示されている。
しかしながら、ゴム組成物中のカーボンブラックの配合量を増量した場合、ゴム組成物の動的貯蔵弾性率(E’)を向上させることができるものの、同時にゴム組成物の損失正接(tanδ)が上昇して、ゴム組成物の低発熱性が低下してしまい、更には、ゴム組成物のムーニー粘度が上昇して、加工性が低下する問題がある。
特開2002−121326号公報 特開2003−176378号公報 特開2014−145064号公報
本発明の目的は、動的貯蔵弾性率(E’)が高くかつ損失正接(tanδ)が小さいゴム組成物が得られる共役ジエン系共重合体及びその製造方法を提供することにある。また、本発明の他の目的は、前記共役ジエン系共重合体を含有するゴム組成物、該ゴム組成物を架橋した架橋ゴム組成物、並びに、該ゴム組成物又は架橋ゴム組成物を用いたタイヤを提供することにある。
本発明者らは鋭意検討した結果、ゴム組成物に、ミルセンに由来する構成単位と、共役ジエンに由来する構成単位とを有し、特定の1,4−シス含有量を有し、かつ、ミルセンに由来する構成単位の含有量が特定の範囲である共役ジエン系共重合体を配合することにより、上記の課題を解決し得ることを見出した。
すなわち、本発明は、以下の<1>〜<12>に関する。
<1> ミルセンに由来する構成単位と、共役ジエン化合物に由来する構成単位とを有し、1,4−シス含有量が90%以上であり、ミルセンに由来する構成単位の含有量が10質量%未満であることを特徴とする共役ジエン系共重合体。
<2> ミルセンに由来する構成単位の含有量が1質量%以下である、<1>に記載の共役ジエン系共重合体。
<3> 共役ジエン系共重合体の1,4−シス含有量が95%以上である、<1>又は<2>に記載の共役ジエン系共重合体。
<4> 共役ジエン化合物に由来する構成単位が、ブタジエンに由来する構成単位を含む、<1>〜<3>のいずれか1つに記載の共役ジエン系共重合体。
<5> 共役ジエン化合物に由来する構成単位が、イソプレンに由来する構成単位を含む、<1>〜<3>のいずれか1つに記載の共役ジエン系共重合体。
<6> ミルセンと、共役ジエン化合物とを同時に反応させる工程を有する、<1>〜<5>のいずれか1つに記載の共役ジエン系共重合体の製造方法。
<7> ミルセンを重合し、ミルセン重合体を得る工程、及び、得られたミルセン重合体と、共役ジエン化合物とを反応させる工程をこの順で有する、<1>〜<5>のいずれか1つに記載の共役ジエン系共重合体の製造方法。
<8> ミルセンを重合してミルセン重合体を得る工程、得られたミルセン重合体と、共役ジエン化合物とを反応させて共重合体を得る工程、及び、得られた共重合体と、ミルセンとを反応させる工程をこの順で有する、<1>〜<5>のいずれか1つに記載の共役ジエン系共重合体の製造方法。
<9> <1>〜<4>のいずれか1つに記載の共役ジエン系共重合体及びジエン系ゴムを含有することを特徴とする、ゴム組成物。
<10> 共役ジエン系共重合体及びジエン系ゴムを含むゴム成分100質量部に対して共役ジエン系重合体を30質量部以上含有する、<9>に記載のゴム組成物。
<11> <9>又は<10>に記載のゴム組成物を架橋したことを特徴とする、架橋ゴム組成物。
<12> <9>又は<10>に記載のゴム組成物又は<11>に記載の架橋ゴム組成物を用いたことを特徴とする、タイヤ。
本発明によれば、動的貯蔵弾性率(E’)が高くかつ損失正接(tanδ)が小さいゴム組成物が得られる共役ジエン系共重合体及びその製造方法を提供することができる。また、本発明によれば、前記共役ジエン系共重合体を含有するゴム組成物、該ゴム組成物を架橋した架橋ゴム組成物、並びに、該ゴム組成物又は架橋ゴム組成物を用いたタイヤを提供することができる。
以下に、本発明をその実施形態に基づき詳細に例示説明する。なお、以下の説明において、数値範囲を示す「A〜B」の記載は、端点であるA及びBを含む数値範囲を表し、「A以上B以下」(A<Bの場合)、又は、「A以下B以上」(A>Bの場合)を表す。
また、質量%は、重量%と同義である。
[共役ジエン系共重合体]
本発明の共役ジエン系共重合体は、ミルセンに由来する構成単位と、共役ジエン化合物に由来する構成単位(以下、「共役ジエン単位」ともいう。)とを有し、1,4−シス含有量が90%以上であり、ミルセンに由来する構成単位の含有量が10質量%未満であることを特徴とする。
ここで、本明細書において、「共役ジエン単位」とは、共役ジエン系共重合体における、共役ジエン化合物に由来する構成単位に相当する単位を意味する。
また、本明細書において、「共役ジエン化合物」とは、ミルセンを除く、共役系のジエン化合物を意味する。
そして、本明細書において、「共重合体」とは、2種類以上の単量体を重合してなる重合体を意味する。
ミルセンは、自然に多く存在することで、工業生産に応用するために多くの研究がなされている。ミルセンは、ラジカル重合を行うと、重合体中に分岐構造が導入されるため、本発明者らは、重合体の改質を目的として検討を行った。
その結果、共役ジエン系化合物に、少量のミルセンを共重合させることで、貯蔵弾性率と損失正接とのバランスに優れたゴム組成物を提供できる共役ジエン系共重合体が得られることを見出し、本発明を完成するに至った。
詳細な作用機構は不明であるが、一部は以下のように推察される。すなわち、ミルセンを原料モノマーとして使用することにより、得られる重合体に分岐構造、及び、架橋構造が導入されると考えられるが、分岐度及び架橋度の制御は困難であり、従来のようにミルセンの含有量が10質量%以上の場合、得られる重合体に多量のゲルが発生しやすく、このような重合体はマクロ分散性に劣り、十分な性能が得られない。一方、本発明のように、少量のミルセンを共重合すると、マクロ分散性が維持されると共に、適度な分岐構造及び架橋構造が導入される結果、ミルセンを共重合成分として有しない共役ジエン系重合体に比べ、強度に優れることを見出した。
更に、1,4−シス含有量を90%以上とすることにより、動的貯蔵弾性率(E’)を効果的に向上させることができる。
また、上記の共役ジエン系共重合体を含有するゴム組成物は、動的貯蔵弾性率(E’)(以下、単に貯蔵弾性率ともいう。)が高くかつ損失正接(tanδ)が小さいゴム組成物となることを見出したものである。
<ミルセンに由来する構成単位>
本発明の共役ジエン系共重合体は、ミルセンに由来する構成単位を有する。ミルセンには、α−ミルセン(2−メチル−6−メチレンオクタ−1,7−ジエン、2−methyl−6−methyleneocta−1,7−diene)と、β−ミルセン(7−メチル−3−メチレンオクタ−1,6−ジエン、7−methyl−3−methyleneocta−1,6−diene)の2種の異性体が存在するが、天然に存在するβ−ミルセンであることが好ましい。
ミルセンに由来する構成単位の含有量は、共役ジエン系共重合体の10質量%未満である。ミルセンに由来する構成単位の含有量が10質量%以上であると、架橋構造が多量に導入される結果、ゲル量が多くなり、マクロ分散性に劣る。また、ミルセンに由来する構成単位の含有量は0.01質量%以上であることが好ましい。ミルセンに由来する構成単位の含有量が0.01質量%以上であると、分岐構造が導入されるため、直鎖のみからなるジエン系重合体と比較して、貯蔵弾性率が高く、かつ損失正接が小さいゴム組成物が得られる。
ミルセンに由来する構成単位の含有量は、共役ジエン系共重合体の0.01〜5質量%であることが好ましく、0.03〜3質量%であることがより好ましく、0.1〜1質量%であることが更に好ましい。ミルセンに由来する構成単位の含有量が上記範囲内であると、十分な量の架橋構造及び分岐構造が導入されて、損失正接が小さくなるとともに、高い貯蔵弾性率が得られる。また、よりマクロ分散性に優れるので好ましい。
なお、ミルセンに由来する構成単位の含有量は、全ての単量体が消費される条件であれば、共役ジエン系共重合体を作製時の単量体の合計量に対するミルセンの含有量により求めることができる。
<共役ジエン化合物由来する構成単位>
本発明の共役ジエン系共重合体は、共役ジエン化合物に由来する構成単位を含有する。
共役ジエン化合物は、炭素数が4〜8であることが好ましい。共役ジエン化合物として、具体的には、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチル−1,3−ブタジエン等が挙げられる。
本発明において、共役ジエン化合物は、得られる共役ジエン系共重合体の貯蔵弾性率を効果的に向上させる観点から、1,3−ブタジエン及びイソプレンよりなる群から選択される少なくとも1つを含むことが好ましく、1,3−ブタジエン及びイソプレンよりなる群から選択される少なくとも1つの単量体のみからなることがより好ましく、1,3−ブタジエンのみからなることが更に好ましい。換言すれば、本発明の共役ジエン系共重合体における共役ジエン単位は、1,3−ブタジエン単位及びイソプレン単位よりなる群から選択される少なくとも1つの構成単位を含むことが好ましく、1,3−ブタジエン単位及びイソプレン単位よりなる群から選択される少なくとも1つの構成単位のみからなることがより好ましく、1,3−ブタジエン単位のみからなることが更に好ましい。
前記共役ジエン化合物は、1種単独で使用してもよく、2種以上を併用してもよい。すなわち、本発明の共役ジエン系共重合体は、共役ジエン単位を1種単独で含有してもよく、2種以上を含有してもよい。
共役ジエン単位の含有量は、共役ジエン系共重合体全体の50質量%以上であることが好ましい。70質量%以上であることがより好ましく、90質量%以上であることが更に好ましく、95質量%以上であることがより更に好ましく、98質量%以上であることがより更に好ましく、99質量%以上であることがより更に好ましい。また、共役ジエン単位の含有量は、共役ジエン系共重合体全体の99.9質量%以下であることが好ましい。
共役ジエン単位の含有量が、上記範囲内であると、貯蔵弾性率に優れる共役ジエン系共重合体が得られるので好ましい。
<その他の構成単位>
本発明の共役ジエン系共重合体は、ミルセンに由来する構成単位、及び共役ジエン化合物に由来する構成単位に加え、その他の構成単位を有していてもよい。その他の構成単位としては、非共役オレフィン化合物に由来する構成単位、及び芳香族ビニル化合物に由来する構成単位が例示される。
前記非共役オレフィン化合物は、炭素数が2〜10であることが好ましい。非共役オレフィン化合物として、具体的には、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、若しくは1−オクテン等のα−オレフィン、ピバリン酸ビニル、1−フェニルチオエテン、若しくはN−ビニルピロリドン等のヘテロ原子置換アルケン化合物等が挙げられる。
本発明において、非共役オレフィン化合物は、かかる共役ジエン系共重合体の透明性をより向上させる観点から、非環状の非共役オレフィン化合物であることが好ましく、また、当該非環状の非共役オレフィン化合物は、α−オレフィンであることがより好ましく、エチレンを含むα−オレフィンであることが更に好ましく、エチレンのみからなることが特に好ましい。換言すれば、本発明の共役ジエン系共重合体が、非共役オレフィンに由来する構成単位を有する場合、非環状の非共役オレフィンに由来する構成単位であることが好ましく、また、当該非環状の非共役オレフィンに由来する単位は、α−オレフィンに由来する構成単位であることがより好ましく、エチレン単位を含むα−オレフィン単位であることが更に好ましく、エチレン単位のみからなることが特に好ましい。
前記非共役オレフィン化合物は、1種単独で使用してもよく、2種以上を併用してもよい。すなわち、本発明の共役ジエン系共重合体は、非共役オレフィン単位を1種単独で含有してもよく、2種以上を含有してもよい。
本発明の共役ジエン系共重合体は、その他の構成単位として、芳香族ビニル化合物に由来する構成単位(以下、「芳香族ビニル単位」ともいう。)を含有してもよい。芳香族ビニル単位は、単量体としての芳香族ビニル化合物に由来する構成単位である。前記芳香族ビニル化合物は、炭素数が8〜10であることが好ましい。芳香族ビニル化合物として、具体的には、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、o,p−ジメチルスチレン、o−エチルスチレン、m−エチルスチレン、p−エチルスチレン等が挙げられる。
そして、本発明の共役ジエン系共重合体が芳香族ビニル化合物に由来する構成単位を含有する場合、得られる共役ジエン系共重合体の耐熱性を向上させる観点から、スチレンに由来する構成単位を含むことが好ましく、該構成単位がスチレンのみに由来するものであることがより好ましい。換言すれば、本発明の共役ジエン系共重合体が芳香族ビニル単位を有する場合、該芳香族ビニル単位は、スチレン単位を含むことが好ましく、スチレン単位のみからなることがより好ましい。
なお、芳香族ビニル単位における芳香環は、隣接する単位と結合しない限り、共重合体の主鎖には含まれない。
前記芳香族ビニル化合物は、1種単独で使用してもよく、2種以上を併用してもよい。すなわち、本発明の共役ジエン系共重合体は、芳香族ビニル単位を1種単独で含有してもよく、2種以上を含有してもよい。
その他の構成単位の含有量は、共役ジエン系共重合体全体の49.9質量%以下であることが好ましく、39.9質量%以下であることがより好ましく、29.9質量%以下であることが更に好ましく、19.9質量%以下であることがより更に好ましく、9.9質量%以下であることがより更に好ましく、5質量%以下であることがより更に好ましく、1質量%以下であることがより更に好ましく、0.1質量%以下であることがより更に好ましく、その他の構成単位を含有しないことがより更に好ましい。
また、本発明の共役ジエン系共重合体は、ミルセン及び共役ジエン化合物に由来する構成単位全体におけるシス−1,4含有量が90%以上である。本発明の共役ジエン系共重合体は、ミルセンに由来する構成単位を有していても、高いシス−1,4含有量を有する。シス−1,4含有量が90%以上であると、ガラス転移温度が低くなるため、得られる共役ジエン系共重合体を用いた樹脂組成物や製品の貯蔵弾性率を効果的に向上させることができる。同様の観点から、本発明の共役ジエン系共重合体は、シス−1,4結合含有量が95%以上であることが好ましく、98%以上であることがより好ましい。
一方、前記共役ジエン系共重合体全体におけるビニル(1,2−ビニル結合、3,4−ビニル結合など)含有量は、10%以下であり、5%以下であることが好ましい。また、前記トランス−1,4含有量は、10%以下である。
なお、シス−1,4、トランス1,4−、ビニルのそれぞれの含有量は、H−NMR及び13C−NMRの測定結果から、積分比によって求めることができる。
本発明の共役ジエン系共重合体は、ポリスチレン換算重量平均分子量(Mw)が10,000〜10,000,000であることが好ましく、100,000〜5,000,000であることがより好ましく、150,000〜2,500,000であることが更に好ましい。前記共役ジエン系共重合体のMwが10,000以上であることにより、機械的強度を十分に確保することができ、また、Mwが10,000,000以下であることにより、高い作業性を保持することができる。
本発明の共役ジエン系重合体が、ミルセンに由来する構成単位と、ブタジエンに由来する構成単位とを有する場合、共役ジエン系重合体のポリスチレン換算重量平均分子量は、300,000〜1,000,000であることが一層好ましく、400,000〜800,000であることがより一層好ましい。
また、本発明の共役ジエン系重合体が、ミルセンに由来する構成単位と、イソプレンに由来する構成単位とを有する場合、共役ジエン系重合体のポリスチレン換算重量平均分子量は、700,000〜1,500,000であることが一層好ましく、900,000〜1,300,000であることがより一層好ましい。
更に、本発明の共役ジエン系共重合体は、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn、MWD)が、10.0以下であることが好ましく、7.0以下であることがより好ましく、4.0以下であることが更に好ましく、2.5以下であることが特に好ましい。前記共役ジエン系共重合体の分子量分布が10.0以下であることにより、前記共役ジエン系共重合体の物性に十分な均質性をもたらすことができる。
なお、上述した重量平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準物質として求める。
本発明の共役ジエン系共重合体は、分岐インデックスが、0.98以下であることが好ましく、0.95以下であることがより好ましく、0.92以下であることが更に好ましい。分岐インデックスの下限は特に限定されないが、製造上の観点から、0.40以上であることが好ましく、0.50以上であることがより好ましく、0.70以上であることがより好ましい。分岐インデックスが上記範囲内であると、これを配合したゴム組成物は、動的貯蔵弾性率(E’)が高くかつ損失正接(tanδ)が小さいので、好ましい。
分岐インデックスは、共役ジエン系共重合体中のミルセンの含有量により適宜設定することができる。
なお、分岐インデックスは、共役ジエン系共重合体の回転半径をRgとし、同分子量におけるリニアな重合体の回転半径をRgとしたとき、以下の式で表される。
分岐インデックス=Rg/Rg
上記分岐インデックスは、値が小さいほど分岐構造が発達していることを示す。
具体的には、実施例に記載の方法により測定される。
本発明の共役ジエン系共重合体の連鎖構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ミルセンに由来する構成単位をA、共役ジエンに由来する構成単位をBとした場合において、A−B(x、yは1以上の整数である)等の構成をとるブロック共重合体、A及びBがランダムに配列する構成をとるランダム共重合体、前記ランダム共重合体とブロック共重合体とが混在してなるテーパー共重合体、(A−B)(wは1以上の整数である)等の構成をとる交互共重合体、Ax1−B−Ax2(x1、x2、yは1以上の整数である)等の構成をとるトリブロック共重合体等とすることができる。
後述する共役ジエン系共重合体の製造方法を適宜選択することによって、所望の共役ジエン系共重合体の構造とすることができる。例えば、ミルセンと共役ジエン化合物とを同時に重合させれば、ランダム共重合体が得られる。一方、共役ジエン化合物のみを重合させた後、ミルセン添加して更に重合を行えば、共役ジエン化合物からなるポリマー部分と、ミルセンからなるポリマー部分を有するジブロック共重合体となる。また、共役ジエン化合物のみを重合させ、共役ジエン化合物(単量体)が残存している状態でミルセンを添加して重合させれば、共役ジエン化合物からなるポリマー部分と、ミルセンと共役ジエン化合物がランダムに重合した部分を有するポリマーとすることができる。また、共役ジエン化合物のみを重合させた後、ミルセンを添加して重合を行い、更に、共役ジエン化合物を添加して重合を行えば、共役ジエン系化合物からなるポリマー部分と、ミルセンに由来するポリマー部分と、共役ジエン系化合物からなるポリマー部分とを有するトリブロックポリマーとすることもできる。
なお、本発明の共役ジエン系共重合体は、ミルセンに由来する構成単位を有する結果、分岐鎖を形成して連鎖した構造(分岐構造)を有する。
[共役ジエン系共重合体の製造方法]
<重合工程>
次に、本発明の共役ジエン系共重合体の製造方法の例を詳細に説明する。本発明の共役ジエン系共重合体の製造方法の一例は、ミルセンと、共役ジエン化合物とを単量体として用いることを前提とするものであり、少なくとも重合工程を含み、更に、必要に応じ、洗浄工程、その他の工程を適宜含むことができる。
重合工程は、一段階で行ってもよく、二段階以上の多段階で行ってもよい。一段階の重合工程とは、重合させる全ての種類の単量体、すなわち、ミルセン、共役ジエン化合物、及びその他の単量体を一斉に反応させて重合させる工程である。多段階の重合工程とは、1種類又は2種類の単量体の一部又は全部を最初に反応させて重合体を形成し(第1重合段階)、次いで、残る種類の単量体や前記1種類又は2種類の単量体の残部を添加して重合させる1以上の段階(第2重合段階〜最終重合段階)を行って重合させる工程である。
ここで、本発明の共役ジエン系共重合体の製造においては、(1)ミルセンと共役ジエン化合物とを同時に反応させる方法、(2)ミルセンを重合してミルセン重合体を得た後、得られたミルセン重合体と共役ジエン化合物を反応させる方法、(3)ミルセンを重合してミルセン重合体を得た後、得られたミルセン重合体と、共役ジエン化合物とを反応させて共重合体を得、更に、得られた共重合体と、ミルセンとを反応させる方法、等の、いずれの方法を選択してもよい。上記の重合反応は、後述する重合触媒組成物の存在下で行うことが好ましい。
重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン等が挙げられる。
重合工程において、重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば、−100℃〜200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応のシス−1,4結合選択性が低下することがある。また、上記重合反応の圧力は、共役ジエン化合物を十分に重合反応系中に取り込むため、0.1〜10.0MPaの範囲が好ましい。また、上記重合反応の反応時間も特に制限がなく、例えば、1秒〜10日の範囲が好ましいが、触媒の種類、重合温度等の条件によって適宜選択することができる。
また、前記共役ジエン化合物の重合工程においては、メタノール、エタノール、2−プロパノール等の重合停止剤を用いて、重合を停止させてもよい。
ここで、上記のミルセン、共役ジエン化合物及び、その他の単量体の重合工程は、下記に示す第一の重合触媒組成物、第二の重合触媒組成物、第三の重合触媒組成物、又は、第四の重合触媒組成物の存在下で各種モノマーを重合させる工程を含むことが好ましい。
重合工程で好適に使用される、第一の重合触媒組成物、第二の重合触媒組成物、第三の重合触媒組成物、及び、第四の重合触媒組成物について、以下に説明する。
(第一の重合触媒組成物)
第一の重合触媒組成物(以下、「第一重合触媒組成物」ともいう)について説明する。
第一重合触媒組成物としては、
(A1)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であって、希土類元素と炭素との結合を有さない、該希土類元素化合物又は反応物と、
(B1)成分:非配位性アニオンとカチオンとからなるイオン性化合物(B1−1)、アルミノキサン(B1−2)、並びに、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも1種のハロゲン化合物(B1−3)よりなる群から選択される少なくとも1種と、を含む重合触媒組成物が挙げられる。
第一重合触媒組成物が、イオン性化合物(B1−1)及びハロゲン化合物(B1−3)よりなる群から選択される少なくとも1種を含む場合、該重合触媒組成物は、更に、
(C1)成分:下記式(I):
YR ・・・ (I)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R及びRは炭素数1〜10の炭化水素基又は水素原子であり、Rは炭素数1〜10の炭化水素基であり、R、R、Rはそれぞれ互いに同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1でかつb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1でかつcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である)で表される有機金属化合物を含む。
上記イオン性化合物(B1−1)及び上記ハロゲン化合物(B1−3)は、(A1)成分へ供給するための炭素原子が存在しないため、該(A1)成分への炭素供給源として、上記(C1)成分が必要となる。なお、上記重合触媒組成物が上記アルミノキサン(B1−2)を含む場合であっても、該重合触媒組成物は、上記(C1)成分を含むことができる。また、上記第一重合触媒組成物は、通常の希土類元素化合物系の重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。
なお、重合反応系において、第一重合触媒組成物に含まれる(A1)成分の濃度は0.1〜0.0001mol/lの範囲であることが好ましい。
更に、該重合触媒組成物は、アニオン性配位子となり得る添加剤(D1)を含有することが好ましい。
上記第一重合触媒組成物に用いる(A1)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、ここで、希土類元素化合物及び該希土類元素化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有さない。該希土類元素化合物及び反応物が希土類元素−炭素結合を有さない場合、化合物が安定であり、取り扱いやすい。ここで、希土類元素化合物とは、希土類元素(M)、すなわち、周期律表中の原子番号57〜71の元素から構成されるランタノイド元素又はスカンジウムもしくはイットリウムを含有する化合物である。
なお、ランタノイド元素の具体例としては、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(A1)成分は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、上記希土類元素化合物は、希土類金属が2価もしくは3価の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることがより好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記式(II)又は式(III):
1111 ・L11w ・・・ (II)
1111 ・L11w ・・・ (III)
(それぞれの式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0〜3を示す)で表される。
上記希土類元素化合物の希土類元素に結合する基(配位子)として、水素原子、ハロゲン原子、アルコキシ基(アルコールの水酸基の水素を除いた基であり、金属アルコキシドを形成する。)、チオラート基(チオール化合物のチオール基の水素を除いた基であり、金属チオラートを形成する。)、アミノ基(アンモニア、第一級アミン、又は第二級アミンの窒素原子に結合する水素原子を1つ除いた基であり、金属アミドを形成する。)、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基が挙げられる。具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等の芳香族アルコキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6−ジ−tert−ブチルフェニルアミノ基、2,6−ジイソプロピルフェニルアミノ基、2,6−ジネオペンチルフェニルアミノ基、2−tert−ブチル−6−イソプロピルフェニルアミノ基、2−tert−ブチル−6−ネオペンチルフェニルアミノ基、2−イソプロピル−6−ネオペンチルフェニルアミノ基、2,4,6−tert−ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。更には、サリチルアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、2−ヒドロキシ−3−ナフトアルデヒド等のアルデヒドの残基;2’−ヒドロキシアセトフェノン、2’−ヒドロキシブチロフェノン、2’−ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ピバル酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2−ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2−ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基;リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p−ノニルフェニル)、リン酸ビス(ポリエチレングリコール−p−ノニルフェニル)、リン酸(ブチル)(2−エチルヘキシル)、リン酸(1−メチルヘプチル)(2−エチルヘキシル)、リン酸(2−エチルヘキシル)(p−ノニルフェニル)等のリン酸エステルの残基;2−エチルヘキシルホスホン酸モノブチル、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、フェニルホスホン酸モノ−2−エチルヘキシル、2−エチルヘキシルホスホン酸モノ−p−ノニルフェニル、ホスホン酸モノ−2−エチルヘキシル、ホスホン酸モノ−1−メチルヘプチル、ホスホン酸モノ−p−ノニルフェニル等のホスホン酸エステルの残基;ジブチルホスフィン酸、ビス(2−エチルヘキシル)ホスフィン酸、ビス(1−メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p−ノニルフェニル)ホスフィン酸、ブチル(2−エチルヘキシル)ホスフィン酸、(2−エチルヘキシル)(1−メチルヘプチル)ホスフィン酸、(2−エチルヘキシル)(p−ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2−エチルヘキシルホスフィン酸、1−メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p−ノニルフェニルホスフィン酸等のホスフィン酸の残基を挙げることもできる。なお、これらの配位子は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
上記第一重合触媒組成物に用いる(A1)成分において、上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(式(II)及び(III)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。
好適には、上記希土類元素化合物は、下記式(IV)で表される化合物を含有することが好ましい。
M−(NQ)(NQ)(NQ) ・・・(IV)
(式中、Mはランタノイド元素、スカンジウム、イットリウムから選択される少なくとも1種であり、NQ、NQ及びNQはアミノ基であり、同一であっても異なっていてもよく、ただし、M−N結合を有する)
すなわち、上記式(IV)で表される化合物は、M−N結合を3つ有することを特徴とする。M−N結合を3つ有することにより、各結合が化学的に等価となるため構造が安定的であり、それゆえに取り扱いが容易である、という利点を有する。
上記式(IV)において、NQ(NQ、NQ、及びNQ)が表すアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基などの脂肪族アミノ基;フェニルアミノ基、2,6−ジ−tert−ブチルフェニルアミノ基、2,6−ジイソプロピルフェニルアミノ基、2,6−ジネオペンチルフェニルアミノ基、2−tert−ブチル−6−イソプロピルフェニルアミノ基、2−tert−ブチル−6−ネオペンチルフェニルアミノ基、2−イソプロピル−6−ネオペンチルフェニルアミノ基、2,4,6−tert−ブチルフェニルアミノ基などのアリールアミノ基;ビストリメチルシリルアミノ基などのビストリアルキルシリルアミノ基のいずれでもよいが、ビストリメチルシリルアミノ基が好ましい。
上記第一重合触媒組成物に用いる(B1)成分は、イオン性化合物(B1−1)、アルミノキサン(B1−2)及びハロゲン化合物(B1−3)よりなる群から選択される少なくとも1種である。なお、上記第一重合触媒組成物における(B1)成分の合計の含有量は、(A1)成分に対して0.1〜50倍molであることが好ましい。
上記イオン性化合物(B1−1)は、非配位性アニオンとカチオンとからなり、上記(A1)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。ここで、非配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられる。一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n−ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N,2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。従って、イオン性化合物としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第一重合触媒組成物におけるイオン性化合物(B1−1)の含有量は、(A1)成分に対して0.1〜10倍molであることが好ましく、約1倍molであることがより好ましい。
上記アルミノキサン(B1−2)は、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物であり、例えば、式:(−Al(R’)O−)で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R’は炭素数1〜10の炭化水素基であり、一部の炭化水素基はハロゲン原子及びアルコキシ基よりなる群から選択される少なくとも1つで置換されてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上がより好ましい)を挙げることができる。ここで、R’として、具体的には、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好ましい。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリブチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが特に好ましい。例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を原料として用いたアルミノキサンを好適に用いることができる。なお、上記第一重合触媒組成物におけるアルミノキサン(B1−2)の含有量は、(A1)成分を構成する希土類元素Mに対する、アルミノキサンのアルミニウム元素Alの元素比率Al/Mが、10〜1,000程度となるようにすることが好ましい。
上記ハロゲン化合物(B1−3)は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも1種からなり、例えば、上記(A1)成分である希土類元素化合物又はそのルイス塩基との反応物と反応して、カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。なお、上記第一重合触媒組成物におけるハロゲン化合物(B1−3)の合計の含有量は、(A1)成分に対して1〜5倍molであることが好ましい。
上記ルイス酸としては、B(C等のホウ素含有ハロゲン化合物、Al(C等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第3族、第4族、第5族、第6族又は第8族に属する元素を含有するハロゲン化合物を用いることもできる。好ましくは、アルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。上記ルイス酸として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。
上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。
また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2−エチルヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2−エチルヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1−デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ−2−エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2−エチルヘキサン酸、バーサチック酸、2−エチルヘキシルアルコール、1−デカノール、ラウリルアルコールが好ましい。
上記ルイス塩基は、上記金属ハロゲン化物1mol当り、好ましくは0.01〜30mol、より好ましくは0.5〜10molの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。
上記第一重合触媒組成物に用いる(C1)成分は、下記式(I):
YR ・・・ (I)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R及びRは炭素数1〜10の炭化水素基又は水素原子であり、Rは炭素数1〜10の炭化水素基であり、R、R、Rはそれぞれ互いに同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1でかつb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1でかつcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である)で表される有機金属化合物であり、下記式(V):
AlR ・・・ (V)
(式中、R及びRは炭素数1〜10の炭化水素基又は水素原子であり、Rは炭素数1〜10の炭化水素基であり、R、R、Rはそれぞれ互いに同一又は異なっていてもよい)で表される有機アルミニウム化合物であることが好ましい。
式(V)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C1)成分としての有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第一重合触媒組成物における有機アルミニウム化合物の含有量は、(A1)成分に対して1〜50倍molであることが好ましく、約10倍molであることがより好ましい。
アニオン性配位子となり得る添加剤(D1)の添加は、より高いシス−1,4結合含有量の共役ジエン系共重合体を高収率で合成することが可能となる、という効果を奏するため好ましい。
上記添加剤(D1)としては、(A1)成分のアミノ基と交換可能なものであれば特に限定されないが、OH基、NH基、SH基のいずれかを有することが好ましい。
具体的な化合物として、OH基を有するものとしては、脂肪族アルコール、芳香族アルコール等が挙げられる。具体的には2−エチル−1−ヘキサノール、ジブチルヒドロキシトルエン、アルキル化フェノール、4,4’−チオビス(6−t−ブチル−3−メチルフェノール)、4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、2,6−ジ−t−4−エチルフェノール、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、n−オクタデシル−3−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)プロピオネート、テトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジミリスチリルチオプロピオネート等を挙げることができるが、これに限定されるものではない。例えばヒンダードフェノール系のものとして、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、ペンタエリスリル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、3,5−t−ブチル−4−ヒドロキシベンジルフォソフォネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレート、オクチル化ジフェニルアミン、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール等を挙げることができる。また、ヒドラジン系として、N,N’−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジンを挙げることができる。
NH基を有するものとしては、アルキルアミン、アリールアミン等の第1級アミン又は第2級アミンを挙げることができる。具体的には、ジメチルアミン、ジエチルアミン、ピロール、エタノールアミン、ジエタノールアミン、ジシクロヘキシルアミン、N,N’−ジベンジルエチレンジアミン、ビス(2−ジフェニルフォスフィノフェニル)アミン等が挙げられる。
SH基を有するものとしては、脂肪族チオール、芳香族チオール等のほか、下記式(VI)、(VII)で示される化合物が挙げられる。

(式中、R、R及びRはそれぞれ独立して−O−C2j+1、−(O−C2k−)−O−C2m+1又は−C2n+1で表され、j、m及びnはそれぞれ独立して0〜12の整数であり、k及びaはそれぞれ独立して1〜12の整数であり、Rは炭素数1〜12であって、直鎖、分岐、もしくは環状の、飽和もしくは不飽和の、アルキレン基、シクロアルキレン基、シクロアルキルアルキレン基、シクロアルケニルアルキレン基、アルケニレン基、シクロアルケニレン基、シクロアルキルアルケニレン基、シクロアルケニルアルケニレン基、アリーレン基又はアラルキレン基である。)
式(VI)で示されるものの具体例として、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、(メルカプトメチル)ジメチルエトキシシラン、メルカプトメチルトリメトキシシラン等が挙げられる。

(式中、Wは−NR−、−O−又は−CR10−(ここで、R及びRは−C2p+1であり、R10は−C2q+1であり、p及びqはそれぞれ独立して0〜20の整数である。)で表され、R及びRはそれぞれ独立して−M−C2r−(ここで、Mは−O−又は−CH−であり、rは1〜20の整数である。)で表され、Rは−O−C2j+1、−(O−C2k−)−O−C2m+1又は−C2n+1 で表され、j、m及びnはそれぞれ独立して0〜12の整数であり、k及びaはそれぞれ独立して1〜12の整数であり、Rは炭素数1〜12であって、直鎖、分岐、もしくは環状の、飽和もしくは不飽和の、アルキレン基、シクロアルキレン基、シクロアルキルアルキレン基、シクロアルケニルアルキレン基、アルケニレン基、シクロアルケニレン基、シクロアルキルアルケニレン基、シクロアルケニルアルケニレン基、アリーレン基又はアラルキレン基である。)
式(VII)で示されるものの具体例として、3−メルカプトプロピル(エトキシ)−1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、3−メルカプトプロピル(エトキシ)−1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、3−メルカプトプロピル(エトキシ)−1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタンなどが挙げられる。
また、添加剤(D1)としては、好適には下記式(VIII)で表されるアニオン性三座配位子前駆体を使用できる。
−T−X−T−E ・・・(VIII)
(Xは、周期律表第15族原子から選択される配位原子を含むアニオン性電子供与基を示し、E及びEはそれぞれ独立して、周期律表第15族及び16族原子から選択される配位原子を含む中性電子供与基を示し、T及びTはそれぞれ、XとE及びEを架橋する架橋基を示す)
添加剤(D1)は、前記希土類元素化合物1molに対して、0.01〜10mol添加することが好ましく、0.1〜1.2mol添加することがより好ましい。添加量が0.1mol以上であると、モノマーの重合が進行し、本発明の目的を達成しうる。また、添加量は、希土類元素化合物と当量(1.0mol)とすることが好ましいが、過剰量添加されていてもよい。添加量が1.2mol以下であると、試薬のロスが少ないので好ましい。
上記式(VIII)中、中性の電子供与基E及びEは、周期律表第15族及び第16族から選択される配位原子を含む基である。また、E及びEは同一の基であってもよく、異なる基であってもよい。該配位原子としては、窒素N、リンP、酸素O、硫黄Sなどが例示されるが、好ましくはPである。
前記E及びEに含まれる配位原子がPである場合には、中性の電子供与基E又はEとしては、ジフェニルホスフィノ基やジトリルホスフィノ基などのジアリールホスフィノ基;ジメチルホスフィノ基やジエチルホスフィノ基などのジアルキルホスフィノ基;メチルフェニルホスフィノ基などのアルキルアリールホスフィノ基が例示され、好ましくはジアリールホスフィノ基が例示される。
前記E及びEに含まれる配位原子がNである場合には、中性の電子供与基E又はEとしては、ジメチルアミノ基、ジエチルアミノ基やビス(トリメチルシリル)アミノ基などのジアルキルアミノ基;ジフェニルアミノ基などのジアリールアミノ基;メチルフェニル基などのアルキルアリールアミノ基などが例示される。
前記E及びEに含まれる配位原子がOである場合には、中性の電子供与基E又はEとしては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基;フェノキシ基、2,6−ジメチルフェノキシ基などのアリールオキシ基などが例示される。
前記E及びEに含まれる配位原子がSである場合には、中性の電子供与基E又はEとしては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基などのアルキルチオ基;フェニルチオ基、トリルチオ基などのアリールチオ基などが例示される。
アニオン性の電子供与基Xは、周期律表第15族から選択される配位原子を含む基である。該配位原子として好ましくはリンP又は窒素Nが挙げられ、より好ましくはNが挙げられる。
架橋基T及びTは、XとE及びEを架橋することができる基であればよく、アリール環上に置換基を有していてもよいアリーレン基が例示される。また、T及びTは同一の基でも異なる基であってもよい。
前記アリーレン基としては、フェニレン基、ナフチレン基、ピリジレン基、チエニレン基が例示され、好ましくはフェニレン基、ナフチレン基である。また、前記アリーレン基のアリール環上には任意の基が置換されていてもよい。該置換基としてはメチル基、エチル基などのアルキル基;フェニル基、トリル基などのアリール基;フルオロ、クロロ、ブロモなどのハロゲン基;トリメチルシリル基などのシリル基などが例示される。
前記アリーレン基として、更に好ましくは1,2−フェニレン基が例示される。
(第二の重合触媒組成物)
次に、第二の重合触媒組成物(以下、「第二重合触媒組成物」ともいう)について説明する。第二重合触媒組成物としては、下記式(IX):

(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、R〜Rは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す。)で表されるメタロセン錯体、及び下記式(X):

(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、X’は、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す。)で表されるメタロセン錯体、並びに下記式(XI):

(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR’は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示し、[B]は、非配位性アニオンを示す。)で表されるハーフメタロセンカチオン錯体よりなる群から選択される少なくとも1種類の錯体を含む重合触媒組成物が挙げられる。
第二重合触媒組成物は、更に、通常のメタロセン錯体を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。ここで、メタロセン錯体は、1つ又は2つ以上のシクロペンタジエニル又はその誘導体が中心金属に結合した錯体化合物であり、特に、中心金属に結合したシクロペンタジエニル又はその誘導体が1つであるメタロセン錯体を、ハーフメタロセン錯体と称することがある。
なお、重合反応系において、第二重合触媒組成物に含まれる錯体の濃度は0.1〜0.0001mol/Lの範囲であることが好ましい。
上記式(IX)及び(X)で表されるメタロセン錯体において、式中のCpは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpは、C7−x又はC11−xで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることがより好ましく、1〜8であることが更に好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、式(IX)及び(X)における2つのCpは、それぞれ互いに同一でも異なっていてもよい。
上記式(XI)で表されるハーフメタロセンカチオン錯体において、式中のCpR’は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。シクロペンタジエニル環を基本骨格とするCpR’は、C5−xで示される。ここで、Xは0〜5の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることがより好ましく、1〜8であることが更に好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCpR’として、具体的には、以下のものが例示される。

(式中、Rは水素原子、メチル基又はエチル基を示す。)
式(XI)において、上記インデニル環を基本骨格とするCpR’は、一般式(IX)のCpと同様に定義され、好ましい例も同様である。
式(XI)において、上記フルオレニル環を基本骨格とするCpR’は、C139−x又はC1317−xで示され得る。ここで、Xは0〜9又は0〜17の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることがより好ましく、1〜8であることが更に好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
式(IX)、(X)及び(XI)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
式(IX)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR]を含む。シリルアミド配位子に含まれるR基(式(IX)におけるR〜R)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、R〜Rのうち少なくとも1つが水素原子であることが好ましい。R〜Rのうち少なくとも1つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりのかさ高さが低くなるため、非共役オレフィン化合物や芳香族ビニル化合物が導入され易くなる。同様の観点から、R〜Rのうち少なくとも1つが水素原子であり、R〜Rのうち少なくとも1つが水素原子であることがより好ましい。更に、アルキル基としては、メチル基が好ましい。
式(X)で表されるメタロセン錯体は、シリル配位子[−SiX’]を含む。シリル配位子[−SiX’]に含まれるX’は、下記で説明される式(XI)のXと同様に定義される基であり、好ましい基も同様である。
式(XI)において、Xは水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基及び炭素数1〜20の炭化水素基からなる群より選択される基である。ここで、上記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等のアリールオキシ基が挙げられ、これらの中でも、2,6−ジ−tert−ブチルフェノキシ基が好ましい。
式(XI)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6−トリイソプロピルチオフェノキシ基が好ましい。
式(XI)において、Xが表すアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6−ジ−tert−ブチルフェニルアミノ基、2,6−ジイソプロピルフェニルアミノ基、2,6−ジネオペンチルフェニルアミノ基、2−tert−ブチル−6−イソプロピルフェニルアミノ基、2−tert−ブチル−6−ネオペンチルフェニルアミノ基、2−イソプロピル−6−ネオペンチルフェニルアミノ基、2,4,6−トリ−tert−ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基が挙げられ、これらの中でも、ビストリメチルシリルアミノ基が好ましい。
式(XI)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。
式(XI)において、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。また、Xが表す炭素数1〜20の炭化水素基として、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分岐鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。
式(XI)において、Xとしては、ビストリメチルシリルアミノ基又は炭素数1〜20の炭化水素基が好ましい。
式(XI)において、[B]で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
上記式(IX)及び(X)で表されるメタロセン錯体、並びに上記式(XI)で表されるハーフメタロセンカチオン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
また、上記式(IX)及び(X)で表されるメタロセン錯体、並びに上記式(XI)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
上記式(IX)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミンの塩(例えば、カリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、式(IX)で表されるメタロセン錯体を得るための反応例を示す。

(式中、X’’はハライドを示す。)
上記式(X)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、式(X)で表されるメタロセン錯体を得るための反応例を示す。

(式中、X’’はハライドを示す。)
上記式(XI)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。
ここで、式(XII)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR’は、それぞれ独立して無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す。また、一般式[A][B]で表されるイオン性化合物において、[A]は、カチオンを示し、[B]は、非配位性アニオンを示す。
[A]で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N,2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。
上記反応に用いる一般式[A][B]で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、式[A][B]で表されるイオン性化合物は、メタロセン錯体に対して0.1〜10倍mol加えることが好ましく、約1倍mol加えることが更に好ましい。なお、式(XI)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、式(XI)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる式(XII)で表される化合物と式[A][B]で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で式(XI)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、式(IX)又は(X)で表されるメタロセン錯体と式[A][B]で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で式(XI)で表されるハーフメタロセンカチオン錯体を形成させることもできる。
上記式(IX)及び(X)で表されるメタロセン錯体、並びに上記式(XI)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。
上記第二重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む重合触媒組成物の助触媒として用いられる成分から任意に選択され得る。該助触媒としては、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適に挙げられる。これら助触媒は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、上記第二重合触媒組成物におけるアルミノキサンの含有量は、メタロセン錯体の中心金属Mに対する、アルミノキサンのアルミニウム元素Alの元素比率Al/Mが、10〜1,000程度、好ましくは100程度となるようにすることが好ましい。
一方、上記有機アルミニウム化合物としては、一般式AlRR’R’’(式中、R及びR'はそれぞれ独立して炭素数1〜10の炭化水素基、ハロゲン原子、又は水素原子であり、R’’は炭素数1〜10の炭化水素基である)で表される有機アルミニウム化合物が好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示され、塩素原子が好ましい。上記有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。また、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含有量は、メタロセン錯体に対して1〜50倍molであることが好ましく、約10倍molであることが更に好ましい。
更に、上記重合触媒組成物においては、上記式(IX)及び(X)で表されるメタロセン錯体、並びに上記式(XI)で表されるハーフメタロセンカチオン錯体をそれぞれ、適切な助触媒と組み合わせることで、シス−1,4結合含有量や得られる重合体の分子量を増大できる。
(第三の重合触媒組成物)
次に、第三の重合触媒組成物(以下、「第三重合触媒組成物」ともいう)について説明する。
第三の重合触媒組成物としては、希土類元素含有化合物として、下記式(XIII):
MXQY・・・(XIII)
(式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である)で表されるメタロセン系複合触媒を含む重合触媒組成物が挙げられる。
上記メタロセン系複合触媒の好適例においては、下記式(XIV):

(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、R及びRは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該R及びRは、M及びAlにμ配位しており、R及びRは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示す)で表されるメタロセン系複合触媒が挙げられる。
上記メタロセン系重合触媒を用いることで、重合体を製造することができる。また、上記メタロセン系複合触媒、例えば予めアルミニウム触媒と複合させてなる触媒を用いることで、共役ジエン系共重合体合成時に使用されるアルキルアルミニウムの量を低減したり、無くしたりすることが可能となる。なお、従来の触媒系を用いると、共役ジエン系共重合体合成時に大量のアルキルアルミニウムを用いる必要がある。例えば、従来の触媒系では、金属触媒に対して10モル当量以上のアルキルアルミニウムを用いる必要があるところ、上記メタロセン系複合触媒であれば、5モル当量程度のアルキルアルミニウムを加えることで、優れた触媒作用が発揮される。
上記メタロセン系複合触媒において、上記式(XIII)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
上記式(XIII)において、Rは、それぞれ独立して無置換インデニル又は置換インデニルであり、該Rは上記金属Mに配位している。なお、置換インデニルの具体例としては、例えば、1,2,3−トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7−ヘキサメチルインデニル基等が挙げられる。
上記式(XIII)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。
上記式(XIII)において、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
上記式(XIII)において、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
上記式(XIV)において、金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
上記式(XIV)において、Cpは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpは、C7−X又はC11−Xで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることがより好ましく、1〜8であることが更に好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、式(XIV)における二つのCpは、それぞれ互いに同一でも異なっていてもよい。
上記式(XIV)において、R及びRは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該R及びRは、M及びAlにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
上記式(XIV)において、R及びRは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子である。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
なお、上記メタロセン系複合触媒は、例えば、溶媒中で、下記式(XV):

(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、R〜Rは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体を、AlRで表される有機アルミニウム化合物と反応させることで得られる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンやヘキサンを用いればよい。なお、上記メタロセン系複合触媒の構造は、H−NMRやX線構造解析により決定することが好ましい。
上記式(XV)で表されるメタロセン錯体において、Cpは、無置換インデニル又は置換インデニルであり、上記式(XIV)中のCpと同義である。また、上記式(XV)において、金属Mは、ランタノイド元素、スカンジウム又はイットリウムであり、上記式(XIV)中の金属Mと同義である。
上記式(XV)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR]を含む。シリルアミド配位子に含まれるR基(R〜R基)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、R〜Rのうち少なくとも一つが水素原子であることが好ましい。R〜Rのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。
上記式(XV)で表されるメタロセン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
また、上記式(XV)で表されるメタロセン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
一方、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物は、AlRで表され、ここで、R及びRは、それぞれ独立して炭素数1〜20の1価の炭化水素基又は水素原子で、Rは炭素数1〜20の1価の炭化水素基であり、但し、Rは上記R又はRと同一でも異なっていてもよい。炭素数1〜20の1価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。また、これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物の量は、メタロセン錯体に対して1〜50倍molであることが好ましく、約10倍molであることが更に好ましい。
前記第三重合触媒組成物は、上記メタロセン系複合触媒と、ホウ素アニオンとを含んでもよく、更に、通常のメタロセン系触媒を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含むことが好ましい。なお、上記メタロセン系複合触媒とホウ素アニオンとを合わせて2成分触媒ともいう。前記第三重合触媒組成物によれば、上記メタロセン系複合触媒と同様に、更にホウ素アニオンを含有するため、各単量体成分の重合体中での含有量を任意に制御することが可能となる。
上記第三重合触媒組成物において、2成分触媒を構成するホウ素アニオンとして、具体的には、4価のホウ素アニオンが挙げられる。例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
なお、上記ホウ素アニオンは、カチオンと組み合わされたイオン性化合物として使用することができる。上記カチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N,2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。従って、上記イオン性化合物としては、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。なお、ホウ素アニオンとカチオンとからなるイオン性化合物は、上記メタロセン系複合触媒に対して0.1〜10倍mol加えることが好ましく、約1倍mol加えることが更に好ましい。
なお、上記式(XV)で表されるメタロセン錯体と有機アルミニウム化合物を反応させる反応系に、ホウ素アニオンが存在していると、上記式(XIV)のメタロセン系複合触媒を合成することができない。従って、上記第三重合触媒組成物の調製には、該メタロセン系複合触媒を予め合成し、該メタロセン系複合触媒を単離精製してからホウ素アニオンと組み合わせる必要がある。
上記第三重合触媒組成物に用いることができる助触媒としては、例えば、上述のAlRで表される有機アルミニウム化合物の他、アルミノキサン等が好適に挙げられる。上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、これらアルミノキサンは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(第四の重合触媒組成物)
第四の重合触媒組成物は、希土類元素化合物と、シクロペンタジエン骨格を有する化合物を含む。
第四の重合触媒組成物は、
・希土類元素化合物(以下、「(A2)成分」ともいう)と、
・置換又は無置換のシクロペンタジエン、置換又は無置換のインデン(インデニル基を有する化合物)、及び、置換又は無置換のフルオレンよりなる群から選択される化合物(以下、「(B2)成分」ともいう)と、
を含むことを必要とする。
この第四の重合触媒組成物は、
・有機金属化合物(以下、「(C2)成分」ともいう)
・アルミノキサン化合物(以下、「(D2)成分」ともいう)
・ハロゲン化合物(以下、「(E2)成分」ともいう)
を更に含んでもよい。
第四の重合触媒組成物は、脂肪族炭化水素に高い溶解性を有することが好ましく、脂肪族炭化水素中で均一系溶液となることが好ましい。ここで、脂肪族炭化水素としては、例えば、ヘキサン、シクロヘキサン、ペンタン等が挙げられる。
そして、第四の重合触媒組成物は、芳香族炭化水素を含まないことが好ましい。ここで、芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。
なお、「芳香族炭化水素を含まない」とは、重合触媒組成物に含まれる芳香族炭化水素の割合が0.1質量%未満であることを意味する。
(A2)成分は、金属−窒素結合(M−N結合)を有する、希土類元素含有化合物又は該希土類元素含有化合物とルイス塩基との反応物とすることができる。
なお、希土類元素含有化合物としては、例えば、スカンジウム、イットリウム、又は原子番号57〜71の元素から構成されるランタノイド元素を含有する化合物等が挙げられる。ランタノイド元素とは、具体的には、ランタニウム、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムである。
また、ルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。
ここで、希土類元素含有化合物又は該希土類元素含有化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有しないことが好ましい。希土類元素含有化合物とルイス塩基との反応物が希土類元素−炭素結合を有さない場合、反応物が安定であり、取り扱いが容易である。
なお、上記(A2)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
ここで、(A2)成分は、式(1)
M−(AQ)(AQ)(AQ) ・・・(1)
(式中、Mは、スカンジウム、イットリウム、ランタノイド元素からなる群から選択される少なくとも1種の元素を表し;AQ、AQ及びAQは、それぞれ同一であっても異なっていてもよい官能基であり、ここで、Aは、窒素、酸素又は硫黄からなる群から選択される少なくとも1種を表し;但し、少なくとも1つのM−A結合を有する)
で表される化合物であることが好ましい。
なお、ランタノイド元素とは、具体的には、ランタニウム、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムである。
上記化合物によれば、反応系における触媒活性を向上させることができ、反応時間を短くし、反応温度を高くすることが可能となる。
上記式(1)中のMとしては、特に、触媒活性及び反応制御性を高める観点から、ガドリニウムが好ましい。
上記式(1)中のAが窒素である場合、AQ、AQ、及びAQ(すなわち、NQ、NQ、及びNQ)で表される官能基としては、アミノ基等が挙げられる。そして、この場合、3つのM−N結合を有する。
アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6−ジ−tert−ブチルフェニルアミノ基、2,6−ジイソプロピルフェニルアミノ基、2,6−ジネオベンチルフェニルアミノ基、2−tert−ブチル−6−イソプロピルフェニルアミノ基、2−tert−ブチル−6−ネオベンチルフェニルアミノ基、2−イソプロピル−6−ネオベンチルフェニルアミノ基、2,4,6−tert−ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基が挙げられ、特に、脂肪族炭化水素及び芳香族炭化水素に対する溶解性の観点から、ビストリメチルシリルアミノ基が好ましい。上記アミノ基は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記構成によれば、(A2)成分を3つのM−N結合を有する化合物とすることができ、各結合が化学的に等価となり、化合物の構造が安定となるため、取り扱いが容易となる。
また、上記構成とすれば、反応系における触媒活性を更に向上させることができる。そのため、反応時間を更に短くし、反応温度を更に高くすることができる。
Aが酸素である場合、式(1)で表される(A2)成分としては、特に制限されないが、例えば、下記式(1a)
(RO)M・・・(1a)
で表される希土類アルコラート、
下記式(1b)
(R−COM・・・(1b)
で表される希土類カルボキシレート等が挙げられる。ここで、上記式(1a)及び(1b)の各式中、Rは、同一であっても異なっていてもよく、炭素数1〜10のアルキル基である。
なお、(A2)成分としては、希土類元素と炭素との結合を有しないことが好ましいため、上述した化合物(I)又は化合物(II)を好適に使用できる。
Aが硫黄である場合、式(1)で表される(A2)成分としては、特に制限されないが、例えば、下記式(1c)
(RS)M・・・(1c)
で表される希土類アルキルチオラート、
下記式(1d)
(R−CSM・・・(1d)
で表される化合物等が挙げられる。ここで、上記式(1c)及び(1d)の各式中、Rは、同一であっても異なっていてもよく、炭素数1〜10のアルキル基を表す。
なお、(A2)成分としては、希土類元素と炭素との結合を有しないことが好ましいため、上述した化合物(1c)又は化合物(1d)を好適に使用できる。
(B2)成分は、置換又は無置換のシクロペンタジエン、置換又は無置換のインデン(インデニル基を有する化合物)、及び、置換又は無置換のフルオレンよりなる群から選択される化合物である。
上記(B2)成分の化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
置換シクロペンタジエンとしては、例えば、ペンタメチルシクロペンタジエン、テトラメチルシクロペンタジエン、イソプロピルシクロペンタジエン、トリメチルシリル−テトラメチルシクロペンタジエン等が挙げられる。
置換又は無置換のインデンとしては、例えば、インデン、2−フェニル−1H−インデン、3−ベンジル−1H−インデン、3−メチル−2−フェニル−1H−インデン、3−ベンジル−2−フェニル−1H−インデン、1−ベンジル−1H−インデン等が挙げられ、特に、分子量分布を小さくする観点から、3−ベンジル−1H−インデン、1−ベンジル−1H−インデンが好ましい。
置換フルオレンとしては、例えば、トリメチルシリルフルオレン、イソプロピルフルオレン等が挙げられる。
上記構成によれば、シクロペンタジエン骨格を有する化合物が具える共役電子を増加させることができ、反応系における触媒活性を更に向上させることができる。そのため、反応時間を更に短くし、反応温度を更に高くすることができる。
有機金属化合物((C2)成分)は、式(2)
YR ・・・(2)
(式中、Yは、周期律表の第1族、第2族、第12族及び第13族の元素からなる群から選択される金属元素であり、R及びRは炭素数1〜10の炭化水素基又は水素原子であり、Rは炭素数1〜10の炭化水素基であり、但し、R、R及びRはそれぞれ互いに同一又は異なっていてもよく、また、Yが第1族の金属元素である場合には、aは1でありかつb及びcは0であり、Yが第2族又は第12族の金属元素である場合には、a及びbは1でありかつcは0であり、Yが第13族の金属元素である場合には、a,b及びcは1である)
で表される化合物である。
ここで、触媒活性を高める観点から、式(2)において、R、R及びRは少なくとも1つが異なっていることが好ましい。
詳細には、(C2)成分は、式(3)
AlR ・・・(3)
(式中、R及びRは、炭素数1〜10の炭化水素基又は水素原子であり、Rは、炭素数1〜10の炭化水素基であり、R、R及びRは、同一であっても異なっていてもよい)
で表される有機アルミニウム化合物であることが好ましい。
上記有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、特に、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましく、更に特に、水素化ジイソブチルアルミニウムが好ましい。
上記有機アルミニウム化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
アルミノキサン化合物((D2)成分)は、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物である。
(D2)成分を用いることによって、重合反応系における触媒活性を更に向上させることができる。そのため、反応時間を更に短くし、反応温度を更に高くすることができる。
ここで、有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム、及びその混合物等が挙げられ、特に、トリメチルアルミニウム、トリメチルアルミニウムとトリブチルアルミニウムとの混合物が好ましい。
縮合剤としては、例えば、水等が挙げられる。
(D2)成分としては、例えば、式(4)
−(Al(R10)O)− ・・・(4)
(式中、R10は、炭素数1〜10の炭化水素基であり、ここで、炭化水素基の一部はハロゲン及び/又はアルコキシ基で置換されてもよく;R10は、繰り返し単位間で同一であっても異なっていてもよく;nは5以上である)
で表されるアルミノキサンを挙げることができる。
上記アルミノキサンの分子構造は、直鎖状であっても環状であってもよい。
nは10以上であることが好ましい。
10の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、特に、メチル基が好ましい。上記炭化水素基は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。Rの炭化水素基としては、メチル基とイソブチル基との組み合わせが好ましい。
上記アルミノキサンは、脂肪族炭化水素に高い溶解性を有することが好ましく、芳香族炭化水素に低い溶解性を有することが好ましい。例えば、ヘキサン溶液として市販されているアルミノキサンが好ましい。
ここで、脂肪族炭化水素とは、ヘキサン、シクロヘキサン等が挙げられる。
(D2)成分は、特に、式(5)
−(Al(CH(i−CO)− ・・・(5)
(式中、x+yは1であり;mは5以上である)
で表される修飾アルミノキサン(以下、「TMAO」ともいう)としてよい。TMAOとしては、例えば、東ソー・ファインケミカル社製の製品名:TMAO341が挙げられる。
また、(D2)成分は、特に、式(6)
−(Al(CH0.7(i−C0.3O)− ・・・(6)
(式中、kは5以上である)
で表される修飾アルミノキサン(以下、「MMAO」ともいう)としてよい。MMAOとしては、例えば、東ソー・ファインケミカル社製の製品名:MMAO−3Aが挙げられる。
更に、(D2)成分は、特に、式(7)
−[(CH)AlO]− ・・・(7)
(式中、iは5以上である)
で表される修飾アルミノキサン(以下、「PMAO」ともいう)としてよい。PMAOとしては、例えば、東ソー・ファインケミカル社製の製品名:TMAO−211が挙げられる。
(D2)成分は、触媒活性を向上させる効果を高める観点から、上記MMAO、TMAO、PMAOのうち、MMAO又はTMAOであることが好ましく、触媒活性を向上させる効果を更に高める観点から、TMAOであることがより好ましい。
ハロゲン化合物((E2)成分)は、ルイス酸であるハロゲン含有化合物(以下、「(E2−1)成分」ともいう)、金属ハロゲン化物とルイス塩基との錯化合物(以下、「(E2−2)成分」ともいう)、及び活性ハロゲンを含む有機化合物(以下、「(E2−3)成分」ともいう)からなる群から選択される少なくとも1種の化合物である。
これらの化合物は、(A2)成分、すなわち、M−N結合を有する、希土類元素含有化合物又は該希土類元素含有化合物とルイス塩基との反応物と反応して、カチオン性遷移金属化合物、ハロゲン化遷移金属化合物、及び/又は遷移金属中心において電子が不足した状態の遷移金属化合物を生成する。
(E2)成分を用いることによって、共役ジエン系共重合体のシス−1,4−結合含有量を向上させることができる。
(E2−1)成分としては、例えば、第3族、第4族、第5族、第6族、第8族、第13族、第14族又は第15族の元素を含むハロゲン含有化合物等が挙げられ、特に、アルミニウムのハロゲン化物又は有機金属のハロゲン化物が好ましい。
ルイス酸であるハロゲン含有化合物としては、例えば、四塩化チタン、六塩化タングステン、トリ(ペンタフルオロフェニル)ボレート、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、アルミニウムトリブロマイド、トリ(ペンタフルオロフェニル)アルミニウム、ジブチル錫ジクロライド、四塩化錫、三塩化リン、五塩化リン、三塩化アンチモン、五塩化アンチモン等が挙げられ、特に、エチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、ジエチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイドが好ましい。
ハロゲンとしては、塩素又は臭素が好ましい。
上記ルイス酸であるハロゲン含有化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(E2−2)成分に用いられる金属ハロゲン化物としては、例えば、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、特に、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化亜鉛、塩化マンガン、塩化銅が好ましく、更に特に、塩化マグネシウム、塩化亜鉛、塩化マンガン、塩化銅が好ましい。
(E2−2)成分に用いられるルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコールが好ましい。
例えば、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2−エチルヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2−エチルヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1−デカノール、ラウリルアルコール等が挙げられ、特に、リン酸トリ−2−エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2−エチルヘキサン酸、バーサチック酸、2−エチルヘキシルアルコール、1−デカノール、ラウリルアルコールが好ましい。
上記ルイス塩基のモル数は、上記金属ハロゲン化物1モル当たり、0.01〜30モル、好ましくは0.5〜10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
(E2−3)成分としては、例えば、ベンジルクロライド等が挙げられる。
以下、第四の重合触媒組成物の各成分間の質量割合について記載する。
(B2)成分(置換又は無置換のシクロペンタジエン、置換又は無置換のインデン、及び、置換又は無置換のフルオレンよりなる群から選択される化合物)の(A2)成分(希土類元素化合物)に対するモルにおける割合は、触媒活性を十分に得る観点から、0超であることが好ましく、0.5以上であることがより好ましく、1以上であることが更に好ましく、触媒活性の低下を抑制する観点から、3以下であることが好ましく、2.5以下であることがより好ましく、2.2以下であることが更に好ましい。
(C2)成分(有機金属化合物)の(A2)成分に対するモルにおける割合は、反応系における触媒活性を向上させる観点から、1以上であることが好ましく、5以上であることがより好ましく、反応系における触媒活性の低下を抑制する観点から、50以下であることが好ましく、30以下であることがより好ましく、具体的には、約10であることが更に好ましい。
(D2)成分(アルミノキサン)中のアルミニウムの、(A2)成分中の希土類元素に対するモルにおける割合は、反応系における触媒活性を向上させる観点から、10以上であることが好ましく、100以上であることがより好ましく、反応系における触媒活性の低下を抑制する観点から、1,000以下であることが好ましく、800以下であることがより好ましい。
(E2)成分(ハロゲン化合物)の(A2)成分に対するモルにおける割合は、触媒活性を向上させる観点から、0以上であることが好ましく、0.5以上であることがより好ましく、1.0以上であることが更に好ましく、(E2)成分の溶解性を保持し、触媒活性の低下を抑制する観点から、20以下であることが好ましく、10以下であることがより好ましい。
そのため、上記範囲によれば、共役ジエン系共重合体のシス−1,4−結合含有量を向上させる効果を高めることができる。
なお、第四の重合触媒組成物は、非配位性アニオン(例えば、4価のホウ素アニオン等)とカチオン(例えば、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等)とからなるイオン性化合物を含まないことが好ましい。ここで、イオン性化合物は、芳香族炭化水素に高い溶解性を有し、炭化水素に低い溶解性を有する。そのため、イオン性化合物を含まない重合触媒組成物とすれば、環境負荷及び製造コストを更に低減させつつ、共役ジエン系共重合体を製造することができる。
なお、「イオン性化合物を含まない」とは、重合触媒組成物に含まれるイオン性化合物の割合が0.01質量%未満であることを意味する。
<洗浄工程>
洗浄工程は、前記重合工程において得られた共役ジエン系共重合体を洗浄する工程である。なお、洗浄に用いる媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、2−プロパノールなどが挙げられるが、重合触媒としてルイス酸由来の触媒を使用する際は、特にこれらの溶媒に対して酸(例えば塩酸、硫酸、硝酸)を加えて使用することができる。添加する酸の量は溶媒に対して15mol%以下が好ましい。これ以上では酸が共役ジエン系共重合体中に残存してしまうことで混練及び加硫時の反応に悪影響を及ぼす可能性がある。
この洗浄工程により、共役ジエン系共重合体中の触媒残渣量を好適に低下させることができる。
[ゴム組成物]
本発明のゴム組成物は、少なくとも本発明の共役ジエン系共重合体を含み、更に必要に応じて、充填剤、架橋剤、その他のゴム成分等を含むことができる。
その他のゴム成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、天然ゴム(NR)、ポリイソプレン(IR)、ブタジエンゴム(ポリブタジエン、BR)、アクリロニトリル−ブタジエンゴム(NBR)、スチレン−ブタジエンゴム(SBR)、クロロプレンゴム、エチレン−プロピレンゴム(EPM)、エチレン−プロピレン−非共役ジエンゴム(EPDM)、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。
これらの中でも、その他のゴム成分としては、NR、IR、BR、及びSBRよりなる群から選択される少なくとも1種のゴム成分を含有することが好ましく、NR、IR、及びBRよりなる群から選択される少なくとも1種のゴム成分を含有することがより好ましく、BRを含有することが更に好ましい。
本発明において、共役ジエン系共重合体及びジエン系ゴムを含むゴム成分100質量部に対して、本発明の共役ジエン系重合体を10〜100質量部含有することが好ましく、30〜90質量部含有することがより好ましく、40〜80質量部含有することが更に好ましい。本発明の共役ジエン系共重合体の含有量が上記範囲内であると、貯蔵弾性率及び損失正接のバランスに優れたゴム組成物が得られる。
また、前記ゴム組成物には、その補強性を向上させること等を目的として、必要に応じて、充填剤を用いることができる。前記充填剤の配合量としては、特に制限はなく、目的に応じて適宜選択することができるが、本発明の共役ジエン系共重合体を含むゴム成分100質量部に対し、10〜100質量部が好ましく、20〜80質量部がより好ましく、30〜60質量部が特に好ましい。前記充填剤の配合量が10質量部以上であることにより、充填剤を配合したことによる補強性向上の効果が得られ、また、100質量以下であることにより、損失正接(tanδ)を小さくすることができる。
なお、前記充填剤としては、特に制限はなく、カーボンブラック、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム等が挙げられるが、これらの中でも、カーボンブラックを用いることが好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
また、前記カーボンブラックとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、FEF、GPF、SRF、HAF、N339、IISAF、ISAF、SAF、などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
また、前記カーボンブラックの窒素吸着比表面積(NSA、JIS K 6217−2:2001に準拠して測定する)としては、特に制限はなく、目的に応じて適宜選択することができるが、20〜100m/gが好ましく、35〜80m/gがより好ましい。前記カーボンブラックの窒素吸着比表面積(NSA)が20m/g以上であることにより、得られるゴム組成物の耐久性が向上し、十分な耐亀裂成長性が得られ、また、100m/g以下であることにより、低ロス性の大幅な低下を回避しつつ、良好な作業性を保持することができる。
前記ゴム組成物には、必要に応じて、架橋剤を用いることができる。前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム−ニトロソアミン系架橋剤等が挙げられる。なお、タイヤ用ゴム組成物としては、これらの中でも硫黄系架橋剤(加硫剤)がより好ましい。
前記架橋剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、0.1〜20質量部が好ましい。架橋剤の含有量が0.1質量部以上であると、好適に架橋が進行し、一方、20質量部以下であると、混練り中の架橋の進行が抑制され、良好な架橋物の物性が得られるので好ましい。
前記加硫剤を用いる場合には、更に加硫促進剤を併用することもできる。前記加硫促進剤としては、グアジニン系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が挙げられる。また、本発明のゴム組成物には、必要に応じて、軟化剤、加硫助剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、加工助剤、酸化防止剤、老化防止剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤など公知のものをその使用目的に応じて使用することができる。
[架橋ゴム組成物]
また、本発明のゴム組成物を架橋することにより、架橋ゴム組成物を得ることができる。前記架橋の条件としては、特に制限はなく、目的に応じて適宜選択することができるが、温度120〜200℃、加温時間1分間〜900分間とすることが好ましい。かかる架橋ゴム組成物は、貯蔵弾性率及び損失正接のバランスに優れる。
[タイヤ]
本発明のタイヤは、本発明のゴム組成物又は本発明の架橋ゴム組成物を用いたものである限り、特に制限はなく、目的に応じて適宜選択することができる。かかるタイヤは、本発明の共役ジエン系共重合体を含むゴム組成物を用いているため、低燃費であるとともに、貯蔵弾性率が高い。タイヤにおける本発明のゴム組成物の適用部位としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トレッド、ベーストレッド、サイドウォール、サイド補強ゴム及びビードフィラーなどが挙げられる。これらの中でも、本発明のゴム組成物をトレッド部に用いることが、低燃費性の観点で有利である。
前記タイヤを製造する方法としては、慣用の方法を用いることができる。例えば、タイヤ成形用ドラム上に未加硫ゴム組成物及びコードよりなる群から選択される少なくとも1つからなるカーカス層、ベルト層、トレッド層等の通常タイヤ製造に用いられる部材を順次貼り重ね、ドラムを抜き去ってグリーンタイヤとする。次いで、このグリーンタイヤを常法に従って加熱加硫することにより、所望のタイヤ(例えば、空気入りタイヤ)を製造することができる。
[タイヤ以外の用途]
本発明のゴム組成物は、タイヤ用途以外にも、防振ゴム、免震ゴム、コンベアベルト等のベルト、ゴムクローラ、各種ホースなどに用いることができる。
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
(実施例1−1:重合体Aの合成)
窒素雰囲気下のグローブボックス中で、ガラス製容器に、トリスビストリメチルシリルアミドガドリニウム(Gd[N(SiMe)((A2)成分)300μmoL、1−ベンジルインデン((B2)成分)600μmoL、水素化ジイソブチルアルミニウム((C2)成分)7.5mmoL、更にMMAO(東ソー・ファインケム社製、製品名:MMAO−3A)((D2)成分))を、MMAO中のアルミニウムのガドリニウムに対するモルにおける割合を250として加えたのち、ヘキサン150mLに溶解させた。その後、ジエチルアルミニウムクロライド((E2−1)成分)600μmoLを加えて重合触媒組成物とした。
一方、十分に乾燥させた1L耐圧ガラス反応器に、イソプレン99.9g及びミルセン0.1gを含むヘキサン溶液480gを加えモノマー溶液とした。
その後、重合触媒組成物をグローブボックスから取り出し、ガドリニウム16μmoLが含まれる量の重合触媒組成物をモノマー溶液に加えた。この反応系を50℃で240分間維持し重合反応を行った。その後、2,2’−メチレン−ビス(6−t−ブチル−4−エチルフェノール)(大内新興化学工業社製、製品名:ノクラック NS−5)のイソプロパノール溶液(5質量%)5mLを、反応系に加えることによって、重合反応を停止させた。更に、反応器に大量のメタノールを加えることによって、反応生成物を沈殿・分離し、更に60℃で真空乾燥させて、重合体Aを得た(収量:100.0g)。
(実施例1−2:重合体Bの合成)
実施例1−1において、添加するミルセンの量を0.5g、イソプレンの量を99.5gとすること以外は同様の方法で重合を行ったところ、収量100.0で重合体Bを得た。
(実施例1−3:重合体Cの合成)
実施例1−1において、添加するミルセンの量を1.0g、イソプレンの量を99.9gとすること以外は同様の方法で重合を行ったところ、収量100.0gで重合体Cを得た。
(実施例1−4:重合体Dの合成)
十分に乾燥させた1L耐圧ガラス反応器に、ミルセン1.0gを含むヘキサン溶液80gを加えモノマー溶液とした。その後、ガドリニウム16μmoLが含まれる量の重合触媒組成物をモノマー溶液に加えた。この反応系を室温で30分間維持し重合反応を行った。その後、イソプレン99gを含むヘキサン溶液400gを加え、50℃で240分間維持し重合反応を行った。その後、2,2’−メチレン−ビス(6−t−ブチル−4−エチルフェノール)(大内新興化学工業社製、製品名:ノクラック NS−5)のイソプロパノール溶液(5質量%)5mLを、反応系に加えることによって、重合反応を停止させた。更に、反応器に大量のメタノールを加えることによって、反応生成物を沈殿・分離し、更に60℃で真空乾燥させて、重合体Dを得た(収量:100.0g)。
(実施例1−5:重合体Eの合成)
十分に乾燥させた1L耐圧ガラス反応器に、イソプレン99gを含むヘキサン溶液480gを加えモノマー溶液とした。その後、ガドリニウム16μmoLが含まれる量の重合触媒組成物をモノマー溶液に加えた。この反応系を50℃で240分間維持し重合反応を行った。その後、ミルセン1.0gを加え、50℃で30分間維持し重合反応を行った。その後、2,2’−メチレン−ビス(6−t−ブチル−4−エチルフェノール)(大内新興化学工業社製、製品名:ノクラック NS−5)のイソプロパノール溶液(5質量%)5mLを、反応系に加えることによって、重合反応を停止させた。更に、反応器に大量のメタノールを加えることによって、反応生成物を沈殿・分離し、更に60℃で真空乾燥させて、重合体Eを得た(収量:100.0g)。
(実施例1−6:重合体Fの合成)
十分に乾燥させた1L耐圧ガラス反応器に、ミルセン0.5gを含むヘキサン溶液80gを加えモノマー溶液とした。その後、ガドリニウム16μmoLが含まれる量の重合触媒組成物をモノマー溶液に加えた。この反応系を室温で30分間維持し重合反応を行った。その後、イソプレン99gを含むヘキサン溶液400gを加え、反応系を50℃で240分間維持し重合反応を行った。その後更に、ミルセン0.5gを加え、50℃で30分間維持し重合反応を行った。その後、2,2’−メチレン−ビス(6−t−ブチル−4−エチルフェノール)(大内新興化学工業社製、製品名:ノクラック NS−5)のイソプロパノール溶液(5質量%)5mLを、反応系に加えることによって、重合反応を停止させた。更に、反応器に大量のメタノールを加えることによって、反応生成物を沈殿・分離し、更に60℃で真空乾燥させて、重合体Fを得た(収量:100.0g)。
(実施例1−7:重合体Gの合成)
窒素雰囲気下のグローブボックス中で、ガラス製容器に、トリスビストリメチルシリルアミドガドリニウム(Gd[N(SiMe)((A2)成分)250μmoL、1−ベンジルインデン((B2)成分)500μmoL、水素化ジイソブチルアルミニウム((C2)成分)75mmoL、更にMMAO(東ソー・ファインケム社製、製品名:MMAO−3A)((D2)成分))を、MMAO中のアルミニウムのガドリニウムに対するモルにおける割合を375として加えた後、ヘキサン115mLに溶解させた。その後、ジエチルアルミニウムクロライド((E2−1)成分)500μmoLを加えて重合触媒組成物とした。
一方、十分に乾燥させた1L耐圧ガラス反応器に、ブタジエン99g及びミルセン1.0gを含むシクロヘキサン溶液400gを加えモノマー溶液とした。
その後、重合触媒組成物をグローブボックスから取り出し、ガドリニウム5μmoLが含まれる量の重合触媒組成物をモノマー溶液に加えた。この反応系を50℃で90分間維持し重合反応を行った。その後、2,2’−メチレン−ビス(6−t−ブチル−4−エチルフェノール)(大内新興化学工業社製、製品名:ノクラック NS−5)のイソプロパノール溶液(5質量%)5mLを、反応系に加えることによって、重合反応を停止させた。更に、反応器に大量のメタノールを加えることによって、反応生成物を沈殿・分離し、更に60℃で真空乾燥させて、重合体Gを得た(収量:100.0g)。
(実施例1−8:重合体Hの合成)
実施例1−7において、添加するミルセンの量を0.5gとし、ブタジエンの量を99.5gとすること以外は同様の方法で重合を行ったところ、収量100.0gで重合体Hを得た。
(実施例1−9:重合体Iの合成)
実施例1−7において、添加するミルセンの量を0.1gとし、ブタジエンの量を99.9gとすること以外は同様の方法で重合を行ったところ、収量100.0gで重合体Iを得た。
(実施例1−10:重合体Jの合成)
実施例1−7において、添加するミルセンの量を5.0gとし、ブタジエンの量を95.0gとすること以外は同様の方法で重合を行ったところ、収量100.0gで重合体Jを得た。
(比較例1−1:重合体Kの合成)
実施例1−1において、ミルセンを添加しないこと、及びイソプレンの量を100gに変更したこと以外は同様の方法で重合を行ったところ、収量100.0gで重合体Kを得た。
(比較例1−2:重合体Lの合成)
実施例1−7において、ミルセンを添加しないこと、及びブタジエンの量を100gに変更したこと以外は同様の方法で重合を行ったところ、収量100.0gで重合体Lを得た。
(比較例1−3:重合体Mの合成)
実施例1−7において、添加するミルセンの量を11.0gとし、ブタジエンの量を89.0gとすること以外は同様の方法で重合を行ったところ、収量100.0gで重合体Mを得た。
以上のようにして得られた共重合体A〜Mについて、共重合体のミクロ構造を、下記の方法で測定・評価した。
<ミクロ構造>
共重合体のH−NMRスペクトル(1,2−ビニル結合の結合含有量)及び13C−NMRスペクトル(シス−1,4結合とトランス−1,4結合の含有量比)の積分比等により求めた。表1には、共役ジエン化合物由来の単位全体におけるシス−1,4結合含有量(%)を示す。
<分岐インデックス>
得られた重合体をTHF中に、溶液中の重合体濃度が0.4質量%となるよう添加した。24時間放置した後、この溶液を、ステンレス製の遠沈管を用い遠心加速度約15万Gにて1時間超遠心分離して、溶液中の可溶成分と不溶成分とを分離した。分離された溶液中の可溶成分に対応する上澄み液を採取して、THFにより2倍に希釈し、FFF(フィールド・フロー・フラクション)−MALS(多角度光散乱検出器、Multi−Angle Light Scattering)により分析した。FFF装置としてはPostnova社製のAF2000、MALS検出器としてはWyatt社のDawn Heleos II、RI検出器としては、Postnova社製のPN3140型をそれぞれ用いた。この際、装置の配管の連結方法はFFF装置−MALS検出器−RI検出器の順番で連結した。
また、FFF−MALS測定では、溶出曲線の各点における回転半径が得られるため、回転半径と分子量とのLog−Logプロット(コンフォーメーションプロット)が得られる。ここで、重合体K及びLをリニアな分子であると仮定し、重合体K、Lのコンフォーメーションプロットと、各重合体のコンフォーメーションプロットとを比較することで、分岐の程度を評価することができる。
各重合体(A、B、C、D、E、F)のそれぞれの重量平均分子量における回転半径Rgと、同分子量における重合体Kの回転半径Rgを比較し、分岐インデックス=Rg/Rgとした。同様に、重合体(G、H、I、J、M)のそれぞれの重量平均分子量における回転半径Rgと、同分子量における重合体Lの回転半径Rgを比較し、分岐インデックス=Rg/Rgとした。この分岐インデックスは、値が小さいほど分岐構造が発達していることを示す
<重量平均分子量(Mw)及び分子量分布(MWD(Mw/Mn))>
ゲルパーミエーションクロマトグラフィー[GPC:東ソー製HLC−8220GPC/HT、カラム:東ソー製GMHHR−H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、共重合体A〜Mのポリスチレン換算の重量平均分子量(Mw)及び分子量分布(MWD)を求めた。なお、測定温度は40℃である。
<実施例2−1〜2−4、比較例2−1>
表2に示す配合処方のゴム組成物を調製し、160℃で30分間加硫して得た加硫組成物に対し、下記の方法に従って、動的貯蔵弾性率(E’)、損失正接(tanδ)を測定した。
上記表2で使用した成分は、以下の通りである。
・IR2200:ポリイソプレンゴム、商品名「Nipol IR2200」、日本ゼオン株式会社製
・カーボンブラック:旭カーボン、商品名「#80」
・シリカ:日本シリカ工業株式会社製、商品名「ニップシールAQ」
・WAX:マイクロクリスタリンワックス
・老化防止剤:N−フェニル−N’−(1,3−ジメチルブチル)−p−フェニレンジアミン、大内新興化学工業株式会社製、商品名「ノクラック6C」
・加硫促進剤:N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、大内新興化学工業株式会社製、商品名「ノクセラーCZ−G」
(動的貯蔵弾性率(E’)及び損失正接(tanδ)の測定)
上島製作所製スペクトロメーター(動的粘弾性測定試験機)を用い、周波数52Hz、初期歪10%、測定温度60℃、動歪1%で、加硫ゴム(架橋ゴム組成物)の損失正接(tanδ)及び動的貯蔵弾性率(E’)を測定し、比較例2−1の値を100として指数表示した。指数値が小さい程、損失正接(tanδ)が低く、ゴム組成物が低ロス性であり、動的貯蔵弾性率(E’)は指数が大きいほど操縦安定性が良好になることを示す。
また、JIS K6251:2010に準拠して、モジュラス(M300)を測定した。M300は、伸び率が300%に達した時点の応力によって求められ、比較例2−1の値を100として指数表示した。
表1及び表3より、実施例の共役ジエン系共重合体を使用することにより、動的貯蔵弾性率(E’)及び損失正接(tanδ)のバランスに優れた架橋ゴム組成物が得られることが分かった。
本発明によれば、ゴム組成物や、タイヤ等のゴム製品の動的貯蔵弾性率(E’)と損失正接(tanδ)とのバランスの向上に寄与する共役ジエン系共重合体を提供することができる。また、本発明によれば、貯蔵弾性率及び損失正接のバランスに優れたゴム組成物及びタイヤ等のゴム製品を提供することができる。

Claims (12)

  1. ミルセンに由来する構成単位と、共役ジエン化合物に由来する構成単位とを有し、
    1,4−シス含有量が90%以上であり、
    ミルセンに由来する構成単位の含有量が10質量%未満であることを特徴とする共役ジエン系共重合体。
  2. ミルセンに由来する構成単位の含有量が1質量%以下である、請求項1に記載の共役ジエン系共重合体。
  3. 共役ジエン系共重合体の1,4−シス含有量が95%以上である、請求項1又は2に記載の共役ジエン系共重合体。
  4. 共役ジエン化合物に由来する構成単位が、ブタジエンに由来する構成単位を含む、請求項1〜3のいずれか1項に記載の共役ジエン系共重合体。
  5. 共役ジエン化合物に由来する構成単位が、イソプレンに由来する構成単位を含む、請求項1〜3のいずれか1項に記載の共役ジエン系共重合体。
  6. ミルセンと、共役ジエン化合物とを同時に反応させる工程を有する、請求項1〜5のいずれか1項に記載の共役ジエン系共重合体の製造方法。
  7. ミルセンを重合し、ミルセン重合体を得る工程、及び、
    得られたミルセン重合体と、共役ジエン化合物とを反応させる工程をこの順で有する、請求項1〜5のいずれか1項に記載の共役ジエン系共重合体の製造方法。
  8. ミルセンを重合してミルセン重合体を得る工程、
    得られたミルセン重合体と、共役ジエン化合物とを反応させて共重合体を得る工程、及び、
    得られた共重合体と、ミルセンとを反応させる工程をこの順で有する、請求項1〜5のいずれか1項に記載の共役ジエン系共重合体の製造方法。
  9. 請求項1〜4のいずれか1項に記載の共役ジエン系共重合体及びジエン系ゴムを含有することを特徴とする、ゴム組成物。
  10. 共役ジエン系共重合体及びジエン系ゴムを含むゴム成分100質量部に対して共役ジエン系重合体を30質量部以上含有する、請求項9に記載のゴム組成物。
  11. 請求項9又は10に記載のゴム組成物を架橋したことを特徴とする、架橋ゴム組成物。
  12. 請求項9又は10に記載のゴム組成物又は請求項11に記載の架橋ゴム組成物を用いたことを特徴とする、タイヤ。
JP2016093348A 2016-05-06 2016-05-06 共役ジエン系共重合体及びその製造方法、ゴム組成物、架橋ゴム組成物、並びにタイヤ Active JP6729891B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016093348A JP6729891B2 (ja) 2016-05-06 2016-05-06 共役ジエン系共重合体及びその製造方法、ゴム組成物、架橋ゴム組成物、並びにタイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016093348A JP6729891B2 (ja) 2016-05-06 2016-05-06 共役ジエン系共重合体及びその製造方法、ゴム組成物、架橋ゴム組成物、並びにタイヤ

Publications (2)

Publication Number Publication Date
JP2017200983A true JP2017200983A (ja) 2017-11-09
JP6729891B2 JP6729891B2 (ja) 2020-07-29

Family

ID=60264295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016093348A Active JP6729891B2 (ja) 2016-05-06 2016-05-06 共役ジエン系共重合体及びその製造方法、ゴム組成物、架橋ゴム組成物、並びにタイヤ

Country Status (1)

Country Link
JP (1) JP6729891B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179908A (ja) * 1987-01-22 1988-07-23 Japan Synthetic Rubber Co Ltd ミルセン重合体およびその製造方法
JPH01153739A (ja) * 1987-12-11 1989-06-15 Japan Synthetic Rubber Co Ltd 防振ゴム組成物
JP2000034320A (ja) * 1998-05-13 2000-02-02 Jsr Corp 共役ジエン系重合体の製造方法
WO2007066651A1 (ja) * 2005-12-05 2007-06-14 Jsr Corporation 共役ジエン系重合体の製造方法、共役ジエン系重合体、及びゴム組成物
WO2013115011A1 (ja) * 2012-02-02 2013-08-08 住友ゴム工業株式会社 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ
WO2013115010A1 (ja) * 2012-02-01 2013-08-08 住友ゴム工業株式会社 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179908A (ja) * 1987-01-22 1988-07-23 Japan Synthetic Rubber Co Ltd ミルセン重合体およびその製造方法
JPH01153739A (ja) * 1987-12-11 1989-06-15 Japan Synthetic Rubber Co Ltd 防振ゴム組成物
JP2000034320A (ja) * 1998-05-13 2000-02-02 Jsr Corp 共役ジエン系重合体の製造方法
WO2007066651A1 (ja) * 2005-12-05 2007-06-14 Jsr Corporation 共役ジエン系重合体の製造方法、共役ジエン系重合体、及びゴム組成物
WO2013115010A1 (ja) * 2012-02-01 2013-08-08 住友ゴム工業株式会社 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ
WO2013115011A1 (ja) * 2012-02-02 2013-08-08 住友ゴム工業株式会社 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ

Also Published As

Publication number Publication date
JP6729891B2 (ja) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6780827B2 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物、ゴム製品、及びタイヤ
JP6657082B2 (ja) 多元共重合体、ゴム組成物及びタイヤ
JP7311091B2 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物、ゴム製品、及びタイヤ
JP6602150B2 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物、及びゴム物品
JP6602151B2 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物、及びゴム物品
JP6637716B2 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物及びゴム物品
JP7124899B2 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物、ゴム製品、及びタイヤ
WO2017064860A1 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物及びゴム物品
JP6635369B2 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物、ゴム製品、及びタイヤ
WO2014010248A1 (ja) イソプレン共重合体及びその製造方法
JP5899072B2 (ja) ブタジエン−イソプレン共重合体及びその製造方法
JP6729891B2 (ja) 共役ジエン系共重合体及びその製造方法、ゴム組成物、架橋ゴム組成物、並びにタイヤ
JP5899074B2 (ja) 重合体組成物の製造方法及び重合体組成物
WO2017064858A1 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物及びゴム物品
JP5899073B2 (ja) スチレン−イソプレン共重合体及びその製造方法
JP5934044B2 (ja) 重合体組成物の製造方法及び重合体組成物
WO2019163230A1 (ja) ゴム組成物、タイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホース
WO2018150900A1 (ja) 多元共重合体、ゴム組成物及びゴム物品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200625

R150 Certificate of patent or registration of utility model

Ref document number: 6729891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250