JP5864799B1 - 音源探査装置および音源探査方法 - Google Patents
音源探査装置および音源探査方法 Download PDFInfo
- Publication number
- JP5864799B1 JP5864799B1 JP2015068567A JP2015068567A JP5864799B1 JP 5864799 B1 JP5864799 B1 JP 5864799B1 JP 2015068567 A JP2015068567 A JP 2015068567A JP 2015068567 A JP2015068567 A JP 2015068567A JP 5864799 B1 JP5864799 B1 JP 5864799B1
- Authority
- JP
- Japan
- Prior art keywords
- sound pressure
- pressure map
- integer
- sound
- phase difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
【課題】低周波音を発生する音源の位置特定の精度向上を図る。【解決手段】本発明に係る音源探査装置の情報処理装置50は、マイクロホン11の位置情報と仮想スクリーン上の格子点の位置情報とマイクロホン11によって取得された音響信号に基づき、仮想スクリーン上の格子点における音響信号の遅延信号を算出する遅延信号計算部53と、前記算出された遅延信号の位相を2以上の整数NによりN倍して位相差強調信号を算出する位相差強調信号算出部54と、仮想スクリーン上の各点における音圧レベルを計算する音圧レベル計算部55と、仮想スクリーン上の各格子点における音圧レベルに基づき、音圧マップを生成する音圧マップ生成部56と、前記生成した音圧マップを撮像装置20で撮像した音源探査の対象物の撮像画像上に重ね合わせて表示装置59に表示する音圧マップ表示部57と、を備える。【選択図】図6
Description
本発明は、音の発生箇所を探査する音源探査装置および音源探査方法に関する。
特許文献1には、機械などの異音の発生源を特定する異音診断装置である音源探査装置の例が開示されている。特許文献1に開示されているような音源探査装置では、音響センサアレイが用いられ、また、その音響信号の処理技術としていわゆる遅延和法が用いられている。これは、音響センサアレイから得られる音響信号に遅延和法を適用することにより、良好な指向性が実現されるからである。すなわち、遅延和法を用いた従来の一般的な音源探査装置では、様々な方向からの音圧強度を計算することにより、音圧強度マップを作成し、その音圧強度マップを可視化することによって音の発生箇所の探査が可能なようにされている。
しかしながら、遅延和法を用いた従来の一般的な音源探査装置の指向性は、とくに音源から発せられる音が低周波に偏っているような場合、必ずしも良好とはいえない。指向性が良好でないとすれば、音源探査装置は、音源の位置を精度良く特定することが困難になる。すなわち、本発明の発明者らは、音源が低周波に偏った音を発する場合、従来の一般的な音源探査装置では、その音源の位置を精度良く特定することができないという課題があることを見出した。なお、この従来技術の課題については、本発明の実施形態の説明の中で詳しく説明する。
そこで、本発明の目的は、低周波に偏った音を発する音源の位置特定の精度向上を図ることが可能な音源探査装置および音源探査方法を提供することにある。
本発明に係る音源探査装置は、音源探査の対象物を撮像する撮像装置と、互いに離間した位置に配置され、それぞれ配置された位置の音響信号を取得する複数の音響センサと、前記複数の音響センサにより取得された音響信号を処理する情報処理装置と、を含んで構成される。
そして、前記情報処理装置は、前記複数の音響センサの前面側から前記音源探査の対象物の後面側に到るいずれかの位置に、前記撮像装置の視線の中心軸に略垂直で複数の格子点を有する仮想スクリーンを設定する仮想スクリーン設定手段と、前記複数の音響センサそれぞれが配置された位置情報、前記設定された仮想スクリーン上の一の格子点の位置情報および前記複数の音響センサそれぞれによって取得された音響信号に基づき、前記複数の音響センサそれぞれによって取得された音響信号の、前記一の格子点における遅延信号を、前記複数の音響センサそれぞれについて算出する遅延信号算出手段と、前記複数の音響センサそれぞれについて算出された前記遅延信号の位相を、それぞれ、2以上の整数NによりN倍して位相差強調信号を算出し、さらに、前記算出した前記複数の音響センサそれぞれについての位相差強調信号を平均して前記一の格子点におけるアレイ出力信号を算出する位相差強調信号算出手段と、を備えることを特徴とする。
そして、前記情報処理装置は、前記複数の音響センサの前面側から前記音源探査の対象物の後面側に到るいずれかの位置に、前記撮像装置の視線の中心軸に略垂直で複数の格子点を有する仮想スクリーンを設定する仮想スクリーン設定手段と、前記複数の音響センサそれぞれが配置された位置情報、前記設定された仮想スクリーン上の一の格子点の位置情報および前記複数の音響センサそれぞれによって取得された音響信号に基づき、前記複数の音響センサそれぞれによって取得された音響信号の、前記一の格子点における遅延信号を、前記複数の音響センサそれぞれについて算出する遅延信号算出手段と、前記複数の音響センサそれぞれについて算出された前記遅延信号の位相を、それぞれ、2以上の整数NによりN倍して位相差強調信号を算出し、さらに、前記算出した前記複数の音響センサそれぞれについての位相差強調信号を平均して前記一の格子点におけるアレイ出力信号を算出する位相差強調信号算出手段と、を備えることを特徴とする。
本発明によれば、低周波音を発生する音源の位置特定の精度向上を図ることが可能な音源探査装置および音源探査方法が提供される。
以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図面において、共通する構成要素には同一の符号を付し、重複した説明を省略する。
図1は、本発明の実施形態に係る音源探査装置の全体構成の例、および、その音源探査装置による音源探査に際して設定される仮想スクリーンの例を示した図である。図1では、紙面の左の奥側に、音源探査装置100が描かれ、また、紙面の右の前側に、音源探査の対象となる対象物70が描かれ、さらに、対象物70の位置には、対象物70を上下方向に切断するような仮想スクリーン80が描かれている。
音源探査装置100は、対象物70およびその周囲から発せられる音響信号を集音する集音装置10、対象物70の外観画像を撮像する撮像装置20、集音装置10で集音された音響信号を増幅する増幅回路装置30、増幅回路装置30で増幅された音響信号をディジタル信号に変換するA/D(アナログ/ディジタル)変換装置40、ディジタル化された音響信号に基づき、音源探査処理を実行する情報処理装置50、などを含んで構成される。
集音装置10は、三脚13の上部に円環状のフレーム12が設けられ、さらに、音響センサとして複数のマイクロホン11が、その円環状のフレーム12上の互いに等間隔となる位置に取り付けられて構成される。ここで、複数のマイクロホン11は、いずれも同じ音響特性を有し、無指向性であるものとする。なお、図1の例では、フレーム12には、16個のマイクロホン11が取り付けられているが、その数は、16個に限定されない。また、この例のように、複数ないし多数のマイクロホン11が配列された構成は、マイクロホンアレイ、さらに一般的には音響センサアレイと呼ばれている。
撮像装置20は、対象物70の外観を撮像するカメラであり、図1の例では、複数のマイクロホン11が取り付けられたフレーム12の中心の位置、すなわち、複数のマイクロホン11が取り付けられた円環を含む平面(以下、マイクロホンアレイ面という)上で、その円環の中心の位置に設けられる。このとき、撮像装置20の視線の中心軸(以下、光軸という)は、当該マイクロホンアレイ面に略垂直であるとし、その光軸は、対象物70の中心部を向いているものとする。
仮想スクリーン80は、撮像装置20の光軸に略垂直な平面であり、対象物70の位置に、仮想的に設けられる。なお、仮想スクリーン80の横幅は、撮像装置20の水平画角81で定められ、また、縦幅は、垂直画角82によって定められる。
以上のように、本実施形態では、撮像装置20を、マイクロホンアレイ面と同じ平面上に配置したことにより、撮像装置20によって撮像される撮像画像にマイクロホン11が写り込むのを避けることができる。また、撮像装置20や他のマイクロホン11によって反射または回折した音響信号の影響を低減することができるので、マイクロホン11によって集音される音響信号の信号対雑音比(S/N比)を向上させることができる。さらに、複数のマイクロホン11が円環上に等間隔に配置されていることから、その信号対雑音比(S/N比)を、到来する音響信号の方向に依存することなく、等しく向上させることができる。
続いて、本実施形態に係る音源探査装置100の詳細について説明する前に、音源探査装置100で採用されている音圧の計算方法を従来の計算方法と比較する形で説明する。
図2は、従来の遅延和法に基づく音圧計算方法の例を模式的に示した図であり、(a)は、音源Sから発せられた音波が複数のマイクロホン11で検出される様子を示した図、(b)は、仮想スクリーン80上の各格子点Pにおける音圧を複数のマイクロホン11で検出された信号をもとに計算する方法の例を示した図である。なお、図2では、マイクロホン11は、説明の便宜のために5つしか描かれていないが、5つに限定されない。通常、その数は、集音装置10に設けられているマイクロホン11の数と同じである。
図2(a)に示すように、音源Sから単一周波数fの音が発せられたとすると、その音波は、sin(2πft)と表される。そして、その音源Sから伝搬遅延時間Ts1, Ts2,・・・, Ts5の距離で離れた位置に、マイクロホン11(#1,#2,・・・,#5)が設けられているとすると、マイクロホン11(#1,#2,・・・,#5)で検出される音響信号は、それぞれsin(2πf(t-Ts1)), sin(2πf(t-Ts2)), ・・・, sin(2πf(t-Ts5))と表される。これらの信号は、マイクロホン11(#1,#2,・・・,#5)で実際に検出される信号である。
また、図2(b)に示すように、仮想スクリーン80上の格子点Pのうち1つを選んで仮想音源Siとし、仮想音源Siとマイクロホン11(#1,#2,・・・,#5)の距離を伝搬遅延時間で表し、それぞれTc1, Tc2,・・・, Tc5とする。この場合、マイクロホン11(#1,#2,・・・,#5)で検出される仮想の音響信号は、振幅の減衰を無視すれば、それぞれsin(2πf(t-Tc1)), sin(2πf(t-Tc2)), ・・・, sin(2πf(t-Tc5))と表される。
そこで、遅延和法では、マイクロホン11(#1,#2,・・・,#5)で実際に検出された音響信号sin(2πf(t-Ts1)), sin(2πf(t-Ts2)), ・・・, sin(2πf(t-Ts5))それぞれに対し、仮想音源Siからの伝搬遅延時間Tc1, Tc2,・・・, Tc5分の遅延処理を施す。そうすると、その遅延処理により、sin(2πf(t-Ts1+Tc1)), sin(2πf(t-Ts2+Tc2)), ・・・, sin(2πf(t-Ts5+Tc2))という音響信号が得られる。なお、ここでも振幅の減衰を無視しているが、実際には、この遅延処理の中では、ビームフォーミング処理など振幅の減衰を考慮した処理が施される。
さらに、遅延和法では、遅延処理により得られた各マイクロホン11(#1,#2,・・・,#5)の音響信号sin(2πf(t-Ts1+Tc1)), sin(2πf(t-Ts2+Tc2)), ・・・, sin(2πf(t-Ts5+Tc5))を平均する処理を行い、その平均する処理により得られた信号に基づき、仮想音源Siの音圧を求める。
ここで、仮想音源Siが音源Sと一致した場合には、Ts1=Tc1,Ts2=Tc2,・・・,Ts5=Tc5となるので、前記遅延処理によって得られる音響信号は、音源から発せられる音波を表す信号sin(2πft)と同じになる。従って、これらの音響信号を平均して得られる信号は、音源から発せられる音波を表す信号sin(2πft)と同じになる。
一方、仮想音源Siが音源Sと一致しない場合には、遅延処理により得られる音響信号は、音源から発せられる音波を表す信号sin(2πft)と位相がそれぞれ異なったものとなっている。すなわち、遅延処理で得られる音響信号は、音源から発せられる音波を表す信号sin(2πft)と伝搬遅延時間の差Ts1-Tc1, Ts2-Tc2, ・・・, Ts5-Tc5の分だけ位相がずれたものとなっている。従って、これらを平均して得られる信号は、それぞれの位相差により互いに打ち消し合うため、その信号の平均の振幅すなわち音圧は、仮想音源Siが音源Sと一致する場合に比べ小さくなる。
遅延和法では、以上のようにして、仮想スクリーン80上の格子点Pそれぞれを仮想音源Siとしたとき、それぞれの格子点Pにおける音圧が算出され、音圧マップが作成される。そして、その音圧マップにおいて、音圧が最大となる格子点Pが音源Sとして特定される。
ところで、遅延和法には、音源Sから発せられる音波が低周波の場合、すなわち、その波長λが長い場合には、音源Sを特定する精度が低下するという課題がある。これは、波長λが長い場合、音源Sと音源Sに隣接する格子点Pとでは、両者のマイクロホン11までの伝搬遅延時間の相違に基づく位相差がほとんど生じないため、遅延和法で得られる音圧に大きな差が現れないことによる。
同様に、音源Sから発せられる音波が高周波の場合、すなわち、その波長λが短い場合には、音圧マップに音源Sの虚像が現れるという課題がある。これは、音源Sからマイクロホン11までの距離と格子点Pから同じマイクロホン11までの距離との差が波長λと同程度になった場合、仮想音源Siからの音響信号がマイクロホン11で実際に検出される信号とほとんど同じになることがあり得るからである。
図3は、従来の遅延和法によって得られる集音装置10の指向性利得の例を示した図で、(a)は、音源Sが低周波音を発する場合の例、(b)は、音源Sが高周波音を発する場合の例である。なお、図3(a)、(b)のグラフにおいて、横軸は、仮想スクリーン80上における位置を音源Sからの距離で表したときの値、また、縦軸は、指向性利得を、音源Sの音圧を基準(0dB)としたときの相対音圧をdB単位で表した値である。なお、このような指向性利得の値は、コンピュータシミュレーションにより求めることができる。
音源Sが低周波音を発する場合、図3(a)に示すように、その指向性利得を表す曲線は、音源Sを頂点とした緩やかな凸状の曲線となる。そのため、この例では、指向性利得の値は、音源Sの近傍±2mの範囲でほとんど0dBとなっている。これは、音源Sの位置が±2mの範囲で不明確になることを意味し、このことが、音源Sを特定する位置精度が低下する大きな原因となっている。
一方、音源Sが高周波音を発する場合、図3(b)に示すように、音源S近傍における指向性利得を表す曲線は、音源Sを頂点とした急峻な曲線で表されるため、音源Sを特定する位置精度は向上する。しかしながら、この場合の指向性利得を表す曲線には、音源Sの位置を頂点とするメインローブとは別に、サイドローブが現れる。サイドローブは、音源Sからマイクロホン11までの距離と格子点Pからマイクロホン11からまでの距離との差が波長λと同程度になった場合に現れる。このとき、音圧マップを作成すると、サイドローブは、音源Sの虚像として現れる。
ところで、一般には、音源Sから発せられる音波は、複数の周波数成分を有している。遅延和法では、それぞれの周波数成分ごとに仮想スクリーン80上の各格子点Pについての音圧が計算され、その音圧マップが作成される。従って、サイドローブの位置は、それぞれの周波数f(波長λ)に応じて、その位置が変わることになる。従って、複数の周波数成分それぞれについて作成された音圧マップを比較すれば、その位置が変わるか否かを判定することにより、音源Sと虚像とを識別することができる。
また、音源Sから発せられる音波が低周波音と高周波音とを同時に含むような場合には、高周波音の音圧マップを用いることにより、音源Sの位置を高精度に特定することができる。それに対し、音源Sから発せられる音波が、例えば100Hz以下の低周波しか含まない場合には、少なくとも、従来の遅延和法を用いる限り、その音源Sを特定する位置精度は、100Hzの周波数で決まる位置精度以上に良くなることはない。
そこで、以下では、音源Sから発せられる音波が低周波音しか含まない場合であっても、音源Sを特定する位置精度を向上させることが可能な改良遅延和法の例について説明する。図4は、本発明の実施形態に係る改良遅延和法に基づき、仮想スクリーン80上の各格子点Pにおける音圧を複数のマイクロホン11で検出された信号をもとに計算する方法の例を模式的に示した図である。図4では、マイクロホン11の後にバンドパスフィルタ(BPF)F1〜F5を挿入し、周波数fの音を切り出している。現実の音源探査では、音源Sが発する音響信号にはいろいろな周波数の音が混ざっているので、ここでは、バンドパスフィルタF1〜F5を挿入し、音源探査に利用する音響信号を周波数f近傍の周波数に限定している。これにより、音源Sを特定する位置精度を向上させることができる。
図4に示した改良遅延和法を図2(b)に示した従来の遅延和法と比較すると分かるように、図4に示した改良遅延和法では、従来同様の遅延処理によって得られる音響信号sin(2πf(t-Ts1+Tc1)), sin(2πf(t-Ts2+Tc2)), ・・・, sin(2πf(t-Ts5+Tc5))をそのまま平均処理するのではなく、位相N倍処理を施したのちに平均処理をする点で相違している。
ここで、位相N倍処理とは、sin波などの位相を表す数をN倍する処理をいう。ここで、Nは2以上の整数とする。従って、sin(2πf(t-Ts1+Tc1)), sin(2πf(t-Ts2+Tc2)), ・・・, sin(2πf(t-Ts5+Tc5))という信号が入力されると、位相N倍処理により、sin(2πf(t-Ts1+Tc1)・N), sin(2πf(t-Ts2+Tc2)・N), ・・・, sin(2πf(t-Ts5+Tc5)・N)という信号が生成される。つまり、位相N倍処理は、位相の進行をN倍速める処理ということができるので、その周波数もN倍になる。
なお、本実施形態に係る改良遅延和法では、以上のようにして生成した信号sin(2πf(t-Ts1+Tc1)・N), sin(2πf(t-Ts2+Tc2)・N), ・・・, sin(2πf(t-Ts5+Tc5)・N)を、さらに、平均処理することにより、仮想スクリーン80上の各格子点P(仮想音源Si)の音圧を求めることができる。
図5は、本発明の実施形態に係る改良遅延和法によって得られる集音装置10の指向性利得の例を示した図であり、(a)は、N=2の位相N倍処理をした場合の例、(b)は、N=4の位相N倍処理をした場合の例、(c)は、N=6の位相N倍処理をした場合の例、(d)は、N=8の位相N倍処理をした場合の例である。なお、図5(a)〜(d)において、太い実線は、位相N倍処理したときの指向性利得を表し、破線は、従来の位相N倍処理をしないときの指向性利得を表している。
図5(a)〜(d)からは、位相N倍処理を施し、かつ、位相の倍率Nの値が大きいほど、音源Sを特定する位置精度が向上していることが分かる。一方で、位相N倍処理を施すことにより、サイドプローブが現れている。これは、位相N倍処理により、音源Sの周波数が仮想的にN倍されている事情に基づく。
ところで、サイドローブの指向性利得は、位相の倍率N=2〜6の程度では、メインローブの指向性利得に比べ十分に小さいが、位相の倍率N=8になると、メインローブの指向性利得と同程度までに大きくなっている。従って、位相の倍率Nの値は、単に大きいばかりがいいのではなく、適切な値があることが分かる。ここで、メインローブの指向性利得の最大値とサイドローブの指向性利得の最大値の差は、サイドローブ抑圧比Rsと呼ばれるが(図5参照)、位相N倍処理では、好ましくはサイドローブ抑圧比Rsが最大となり、できるだけ大きい倍率Nを採用するのがよい。
なお、コンピュータ(情報処理装置50:図6参照)を用いれば、遅延処理で生成される信号sin(2πf(t-Ts1+Tc1)), sin(2πf(t-Ts2+Tc2)), ・・・, sin(2πf(t-Ts5+Tc5))を用いて位相N倍処理を行うことができる。従って、コンピュータは、位相の倍率Nの値を様々に変化させて、繰り返し位相N倍処理を行うことにより、様々な位相の倍率Nの値に対応するサイドローブ抑圧比Rsを計算することができるので、その中から、サイドローブ抑圧比Rsが最大となる倍率Nの値を得ることができる。
なお、前記したように、音源Sの周波数は低いほど、音源特定の位置精度は低下するが、サイドローブは現れにくくなる。そのため、本実施形態に係る改良遅延和法でいう適切な位相の倍率Nは、音源Sの周波数が低いほど大きくすることができる。これは、音源Sの周波数が低いほど、音源特定の位置精度向上の効果が大きくなることを意味する。従って、従来の遅延和法に対して改良遅延和法による位置精度向上の効果をより大きく得るためには、音源Sの周波数は、100Hz以下であるのが好ましい。さらに、音源Sの周波数は、50Hz以下、さらに好ましくは、20Hz以下であることが好ましい。
図6は、本実施形態に係る改良遅延和法に基づき音源探査をする音源探査装置100の情報処理装置50の機能ブロックの構成の例を示した図である。情報処理装置50は、図示しないCPU(Central Processing Unit)と、半導体メモリやハードディスク装置などからなる記憶装置と、を含んで構成された、例えば、ノートパソコンなどのパーソナルコンピュータによって構成される。
図6に示すように、情報処理装置50は、音圧信号取得部51、仮想スクリーン設定部52、遅延信号計算部53、位相差強調信号算出部54、音圧レベル計算部55、音圧マップ生成部56、音圧マップ表示部57、撮像画像取得部58などの処理機能ブロックを備える。情報処理装置50は、また、音圧信号記憶部61、仮想スクリーン位置データ記憶部62、マイクロホン配置データ記憶部63、遅延信号記憶部64、アレイ出力信号記憶部65、音圧レベル記憶部66、音圧マップ記憶部67、撮像画像記憶部68などの記憶機能ブロックを備える。なお、処理機能ブロックとは、図示しないCPUが、予め、記憶装置に記憶されたプログラムを実行することによって実現される機能ブロックをいう。以下、各処理機能ブロックの機能について説明する。
音圧信号取得部51は、集音装置10に設けられた各マイクロホン11で集音され、増幅回路装置30で増幅され、A/D変換装置40でディジタル信号化された音響信号(以下、音圧信号という)を取得し、その取得した音圧信号を、集音したマイクロホン11に対応させて音圧信号記憶部61に格納する。また、撮像画像取得部58は、撮像装置20によって撮像された対象物70の外観画像を、撮像装置20から取得して、撮像画像記憶部68に格納する。
仮想スクリーン設定部52は、図1を用いて説明したように、対象物70の位置またはその前後の位置に、撮像装置20の光軸に略垂直な仮想スクリーン80を仮想的に設定する。このとき、仮想スクリーン80を設定する位置(例えば、撮像装置20からの距離)、撮像装置20の水平画角81、垂直画角82などのデータは、予め、仮想スクリーンデータ記憶部62に記憶されているものとする。なお、仮想スクリーン位置データ記憶部62に記憶されているこれらのデータは、オペレータがキーボードなどを用いて、適宜、変更できるものとする。
遅延信号計算部53は、仮想スクリーン設定部52によって設定された仮想スクリーン80について、そのスクリーン面を格子状に分割し、各格子点Pの座標を計算する。さらに、遅延信号計算部53は、仮想スクリーン80上の各格子点Pについて、各マイクロホン11で集音された音圧信号の遅延信号を計算し、得られた遅延信号を仮想スクリーン80上の各格子点Pと各マイクロホン11に対応付けて遅延信号記憶部64に格納する。
ここで、仮想スクリーン80上の各格子点Pの座標は、例えば、撮像装置20の位置を原点とし、撮像装置20の光軸をz軸とし、前記原点を通り、マイクロホンアレイ面に含まれる水平方向の直線をx軸とし、前記原点を通り、x軸およびz軸に垂直な直線をy軸とする座標系に基づき計算される。
このとき、仮想スクリーン80上の各格子点Pにおける、各マイクロホン11で集音された音圧信号の遅延信号は、音圧信号記憶部61に格納されている音圧信号に対し、ビームフォーミング処理を施すことによって計算される。ビームフォーミング処理は、公知技術(例えば、日本音響学会誌、第63巻、第7号、341頁−352頁、2007年などを参照)であるので、ここでは、その説明を省略するが、その計算処理では、各マイクロホン11からの音圧信号のほかに、撮像装置20(マイクロホンアレイ面)と仮想スクリーン80との距離、各マイクロホン11の配置位置の座標情報、仮想スクリーン80上の各格子点Pの座標情報などが用いられる。このうち、各マイクロホン11の配置位置の座標情報は、予めマイクロホン配置データ記憶部63に格納されているものとする。
ただし、通常のビームフォーミング処理は、各マイクロホン11で集音された音圧信号の遅延信号を計算して、それらの遅延信号の平均値、または加重平均値を求めるが、遅延信号計算部53は遅延信号の平均処理を含まない。
なお、遅延信号計算部53でビームフォーミング処理をするに当たっては、集音装置10から集音された生の音圧信号(すなわち、音圧信号記憶部61に記憶されている音圧信号)に対し、周波数分析する処理、任意の周波数帯域を選択するフィルタ処理などを施すことがあるが、これらの処理も遅延信号計算部53での処理に含まれるものとする。
以上に説明した遅延信号計算部53の処理は、図4の遅延処理に相当する。
位相差強調信号算出部54は、遅延信号計算部53で得られた各遅延信号の位相をN倍(Nは2以上の整数)して、各遅延信号の相互の位相差を強調させた位相差強調信号を計算する(図4の位相N倍処理に相当)。さらに、位相差強調信号算出部54は、各位相差強調信号の平均値(以下、アレイ出力信号という)を求めて、位相の倍率Nと仮想スクリーン80上の各格子点Pに対応付けてアレイ出力信号記憶部65に格納する(図4の平均処理に相当)。
このとき、位相の倍率Nの値は、予め、アレイ出力信号記憶部65に記憶されているものとする。なお、アレイ出力信号記憶部65に記憶されている位相の倍率Nの値は、オペレータがキーボードなどを用いて、適宜、変更できるものとする。
また、アレイ出力信号をスピーカなどから再生する場合には、アレイ出力信号の位相を1/N倍する処理を施すことがあるが、この処理も位相差強調信号算出部54での処理に含まれるものとする。
音圧レベル計算部55は、アレイ出力信号記憶部65から仮想スクリーン80上の各格子点Pについて、位相の倍率Nのアレイ出力信号を読み出し、デシベル値に換算して、その格子点Pにおける音圧レベルを計算し、得られた音圧レベルを位相の倍率Nと仮想スクリーン80上の各格子点Pに対応付けて音圧レベル記憶部66に格納する。
音圧マップ生成部56は、音圧レベル記憶部66から仮想スクリーン80上の各格子点Pの、位相の倍率Nの音圧レベルを読み出し、仮想スクリーン80上に、例えば、5デシベルごとの等音圧レベル線を生成し、等音圧レベル線による音圧マップを生成する。そして、その生成した音圧マップを位相の倍率Nに対応付けて、音圧マップ記憶部67に格納する。
音圧マップ表示部57は、情報処理装置50に付属する液晶ディスプレイなどの表示装置59に、撮像装置20によって撮像され、撮像画像記憶部68に格納されている対象物70の外観画像を表示するとともに、その対象物70の外観画像の上に重ね合わせて、音圧マップ記憶部67に格納されている位相の倍率Nの音圧マップを表示する。
図7は、位相の倍率Nを変化させたときのそれぞれの音圧マップを並べて表示した表示画面110の例を示した図である。この表示画面110には、位相の倍率Nを1,2,4,8と変化させたときに、それぞれの位相の倍率Nで得られる音圧マップ111,112,113,114が、対象物70の外観画像に重ね合わせて表示される。なお、これらの音圧マップ111,112,113,114は、同じ仮想スクリーン80上の各格子点Pの音圧から作成されたものである。
これらの音圧マップ111,112,113,114は、例えば、10デシベルごとの等音圧レベル線が太い実線で、対象物70の外観画像の上に重ね合わせて描かれたものである。なお、等音圧レベル線で囲まれた領域が、適宜、網掛け表示または着色表示されてもよい。その場合、網掛け表示や着色表示着色を半透明に行い、下地の対象物70の外観画像が透けて見えるようにしてもよい。
図7に示すように、位相の倍率Nが1の場合の音圧マップ111では、最大の等音圧レベル線で囲まれた領域が広いため、音源Sの位置を高精度に特定することが困難である。そして、位相の倍率Nが2、4、8と大きくなるにつれて、それらの音圧マップ112,113,114では、最大の等音圧レベル線で囲まれた領域が狭くなるため、オペレータは、音源Sの位置を視覚的に容易に特定することが可能になる。
また、位相の倍率Nが8の場合の音圧マップ114には、最大の音圧レベルの領域が複数現れている。このような場合、その一方は、集音装置10の指向性利得のサイドローブによって生じる虚像であり、音源Sではない。ただし、図7の表示画面110では、複数の位相の倍率Nについての音圧マップ111,112,113,114が同じ画面に並べて表示されているので、オペレータは、音源Sと虚像とを容易に見分けることができる。
図8は、オペレータが設定可能な位相の倍率Nに対する音圧マップ121を表示する表示画面120の例を示した図である。この表示画面120には、位相の倍率Nを設定するための数値ボックス122が表示される。そこで、オペレータがその数値ボックス122に位相の倍率Nの値を設定し、手動ボタン125を押すと、その設定された位相の倍率Nに対応する音圧マップ121が表示される。併せて、そのときの位相の倍率Nに対するサイドローブ抑圧比Rsが計算され、そのサイドローブ抑圧比Rsは、数値ボックス124に表示される。
従って、オペレータは、数値ボックス122を用いて位相の倍率Nの値を適宜設定し、手動ボタン125を押すことにより、その位相の倍率Nに対応する音圧マップ121およびサイドローブ抑圧比Rsを得ることができる。すなわち、オペレータは、適宜位相の倍率Nを設定しながら、その設定した位相の倍率Nに対する音圧マップ121およびサイドローブ抑圧比Rsを確認することができる。そのため、オペレータは、位相の倍率Nのより適切な値を決定することができる。
なお、表示画面120には、数値ボックス122に設定されている位相の倍率Nの値を1つずつ上げ下げするアップダウンボタン123が設けられていてもよい。アップダウンボタン123は、2つの三角ボタンで構成され、オペレータが上向きの三角ボタン(△)を押すと、数値ボックス122に設定されている位相の倍率Nの値は、+1加算される。また、オペレータが下向きの三角ボタン(▽)を押すと、数値ボックス122に設定されている位相の倍率Nの値は、−1減じられる。
また、図8の表示画面120には、自動ボタン126が設けられていてもよい。その場合、オペレータが自動ボタン126を押すと、情報処理装置50は、位相の倍率Nを、例えば2,3,4,・・・,10と順次変化させながら、そのサイドローブ抑圧比Rsを計算し、その中から、サイドローブ抑圧比Rsが最大、かつ、位相の倍率Nが最大となるような位相の倍率Nの値を求める。
こうして求められた位相の倍率Nの値およびサイドローブ抑圧比Rsは、それぞれ数値ボックス122,124に表示されるとともに、このときの位相の倍率Nの値に対応する音圧マップ121が表示される。従って、オペレータは、位相の倍率Nの値を設定しなくても、適切な位相の倍率Nの値およびそれに対応する音圧マップ121を得ることができるので、音源Sを特定する作業が効率化される。
以上、本発明の実施形態によれば、改良遅延和法を用いることにより、低周波音を発生する音源Sの位置特定の高精度化が可能になる。また、サイドローブ抑圧比Rsが最大、かつ、位相の倍率Nが最大となるような位相の倍率Nの値を視覚的または自動的に求めることが可能になるので、音源Sを特定する作業が効率化される。
本発明は、以上に説明した実施形態および変形例に限定されるものではなく、さらに、様々な変形例が含まれる。例えば、前記した実施形態および変形例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態や変形例の構成の一部を、他の実施形態や変形例の構成に置き換えることが可能であり、また、ある実施形態や変形例の構成に他の実施形態や変形例の構成を加えることも可能である。また、各実施形態や変形例の構成の一部について、他の実施形態や変形例に含まれる構成を追加・削除・置換することも可能である。
10 集音装置
11 マイクロホン(音響センサ)
12 フレーム
13 三脚
20 撮像装置
30 増幅回路装置
40 A/D変換装置
50 情報処理装置
51 音圧信号取得部
52 仮想スクリーン設定部(仮想スクリーン設定手段)
53 遅延信号計算部(遅延信号手段)
54 位相差強調信号算出部(位相差強調信号算出手段)
55 音圧レベル計算部(音圧レベル計算手段)
56 音圧マップ生成部(音圧マップ生成手段)
57 音圧マップ表示部(音圧マップ表示手段)
58 撮像画像取得部
59 表示装置
61 音圧信号記憶部
62 仮想スクリーン位置データ記憶部
63 マイクロホン配置データ記憶部
64 遅延信号記憶部
65 アレイ出力信号記憶部
66 音圧レベル記憶部
67 音圧マップ記憶部
68 撮像画像記憶部
70 対象物
80 仮想スクリーン
81 水平画角
82 垂直画角
100 音源探査装置
11 マイクロホン(音響センサ)
12 フレーム
13 三脚
20 撮像装置
30 増幅回路装置
40 A/D変換装置
50 情報処理装置
51 音圧信号取得部
52 仮想スクリーン設定部(仮想スクリーン設定手段)
53 遅延信号計算部(遅延信号手段)
54 位相差強調信号算出部(位相差強調信号算出手段)
55 音圧レベル計算部(音圧レベル計算手段)
56 音圧マップ生成部(音圧マップ生成手段)
57 音圧マップ表示部(音圧マップ表示手段)
58 撮像画像取得部
59 表示装置
61 音圧信号記憶部
62 仮想スクリーン位置データ記憶部
63 マイクロホン配置データ記憶部
64 遅延信号記憶部
65 アレイ出力信号記憶部
66 音圧レベル記憶部
67 音圧マップ記憶部
68 撮像画像記憶部
70 対象物
80 仮想スクリーン
81 水平画角
82 垂直画角
100 音源探査装置
Claims (9)
- 音源探査の対象物を撮像する撮像装置と、互いに離間した位置に配置され、それぞれ配置された位置の音響信号を取得する複数の音響センサと、前記複数の音響センサにより取得された音響信号を処理する情報処理装置と、を含んで構成され、
前記情報処理装置は、
前記複数の音響センサの前面側から前記音源探査の対象物の後面側に到るいずれかの位置に、前記撮像装置の視線の中心軸に略垂直で複数の格子点を有する仮想スクリーンを設定する仮想スクリーン設定手段と、
前記複数の音響センサそれぞれが配置された位置情報と、前記設定された仮想スクリーン上の一の格子点の位置情報と、前記複数の音響センサそれぞれによって取得された音響信号とに基づき、前記複数の音響センサそれぞれによって取得された音響信号の、前記一の格子点における遅延信号を、前記複数の音響センサそれぞれについて算出する遅延信号算出手段と、
前記複数の音響センサそれぞれについて算出された前記遅延信号の位相を、それぞれ、2以上の整数NによりN倍して位相差強調信号を算出し、さらに、前記算出した前記複数の音響センサそれぞれについての位相差強調信号を平均して前記一の格子点におけるアレイ出力信号を算出する位相差強調信号算出手段と、
を備えること
を特徴とする音源探査装置。 - 請求項1において、
前記情報処理装置は、
前記遅延信号算出手段および前記位相差強調信号算出手段を介して算出される前記仮想スクリーン上の各格子点における前記アレイ出力信号に基づき、前記仮想スクリーン上の音圧マップを生成する音圧マップ生成手段と、
前記生成した音圧マップを前記撮像装置で撮像した前記音源探査の対象物の撮像画像上に重ね合わせて表示装置に表示する音圧マップ表示手段と、をさらに備え、
前記位相差強調信号算出手段により、予め設定された複数の整数Nの値それぞれについての位相差強調信号を算出するとともに、前記音圧マップ生成手段により、前記複数の整数Nの値それぞれに対する前記音圧マップを生成し、
前記音圧マップ表示手段により、前記複数の整数Nの値それぞれに対する音圧マップを前記表示装置の同じ画面上に表示すること
を特徴とする音源探査装置。 - 請求項1において、
前記情報処理装置は、
前記遅延信号算出手段および前記位相差強調信号算出手段を介して算出される前記仮想スクリーン上の各格子点における前記アレイ出力信号に基づき、前記仮想スクリーン上の音圧マップを生成する音圧マップ生成手段と、
前記生成した音圧マップを前記撮像装置で撮像した前記音源探査の対象物の撮像画像上に重ね合わせて表示装置に表示する音圧マップ表示手段と、
前記整数Nの値を設定するための数値入力欄を前記表示装置に表示するとともに、前記数値入力欄を介して入力される値に基づき、前記整数Nの値を設定する整数N設定手段と、
前記位相差強調信号算出手段で算出された前記アレイ出力信号に基づき、指向性利得を算出し、その指向性利得のメインローブおよびサイドローブの利得からサイドローブ抑圧比を算出する抑圧比算出手段と、をさらに備え、
前記位相差強調信号算出手段により、前記整数N設定手段で設定された整数Nの値についての位相差強調信号を算出するとともに、前記音圧マップ生成手段により、前記整数Nの値に対する前記音圧マップを生成し、
前記音圧マップ表示手段により、前記音圧マップを表示するときには、前記整数Nの値および前記抑圧比算出手段により算出された前記整数Nの値に対するサイドローブ抑圧比を併せて表示すること
を特徴とする音源探査装置。 - 請求項1において、
前記情報処理装置は、
前記遅延信号算出手段および前記位相差強調信号算出手段を介して算出される前記仮想スクリーン上の各格子点における前記アレイ出力信号に基づき、前記仮想スクリーン上の音圧マップを生成する音圧マップ生成手段と、
前記生成した音圧マップを前記撮像装置で撮像した前記音源探査の対象物の撮像画像上に重ね合わせて表示装置に表示する音圧マップ表示手段と、
前記位相差強調信号算出手段で算出された前記位相差強調信号に基づき、指向性利得を算出し、その指向性利得のメインローブおよびサイドローブの利得からサイドローブ抑圧比を算出する抑圧比算出手段と、をさらに備え、
前記位相差強調信号算出手段により、前記整数Nを様々な値に変化させて、前記様々に変化させた整数Nの値それぞれについての位相差強調信号を算出するとともに、前記音圧マップ生成手段により、前記様々に変化させた整数Nの値それぞれに対する前記音圧マップを生成し、
前記抑圧比算出手段により、前記様々に変化させた整数Nの値それぞれに対するサイドローブ抑圧比を算出し、
前記算出された前記様々に変化させた整数Nの値それぞれに対するサイドローブ抑圧比の中から、前記サイドローブ抑圧比が最大となる最大の整数Nの値を抽出し、
前記音圧マップ表示手段により、前記抽出した整数Nの値に対する前記音圧マップを表示すること
を特徴とする音源探査装置。 - 請求項1から4の何れか一項において、
前記複数の音響センサは、円環上に等間隔で配置され、
前記遅延信号算出手段は、前記複数の音響センサそれぞれによって取得された前記音響信号を音源探査に利用する特定の周波数およびその近傍の周波数に限定するバンドパスフィルタと、前記バンドパスフィルタにより限定された周波数の音響信号に対してそれぞれ遅延処理を施す手段と、を有すること
ことを特徴とする音源探査装置。 - 音源探査の対象物を撮像する撮像装置と、互いに離間した位置に配置され、それぞれ配置された位置の音響信号を取得する複数の音響センサと、前記複数の音響センサにより取得された音響信号を処理する情報処理装置と、を含んで構成される音源探査装置による音源探査方法であって、
前記情報処理装置は、
前記複数の音響センサの前面側から前記音源探査の対象物の後面側に到るいずれかの位置に、前記撮像装置の視線の中心軸に略垂直で複数の格子点を有する仮想スクリーンを設定する仮想スクリーン設定ステップと、
前記複数の音響センサそれぞれが配置された位置情報、前記設定された仮想スクリーン上の一の格子点の位置情報および前記複数の音響センサそれぞれによって取得された音響信号に基づき、前記複数の音響センサそれぞれによって取得された音響信号の、前記一の格子点における遅延信号を、前記複数の音響センサそれぞれについて算出する遅延信号算出ステップと、
前記複数の音響センサそれぞれについて算出された前記遅延信号の位相を、それぞれ、2以上の整数NによりN倍して位相差強調信号を算出し、さらに、前記算出した前記複数の音響センサそれぞれについての位相差強調信号を平均して前記一の格子点におけるアレイ出力信号を算出する位相差強調信号算出ステップと、
を実行すること
を特徴とする音源探査方法。 - 請求項6において、
前記情報処理装置は、
前記遅延信号算出ステップおよび前記位相差強調信号算出ステップを介して算出される前記仮想スクリーン上の各格子点における前記アレイ出力信号に基づき、前記仮想スクリーン上の音圧マップを生成する音圧マップ生成ステップと、
前記生成した音圧マップを前記撮像装置で撮像した前記音源探査の対象物の撮像画像上に重ね合わせて表示装置に表示する音圧マップ表示ステップと、をさらに実行し、
前記位相差強調信号算出ステップにおいて、予め設定された複数の整数Nの値それぞれについての位相差強調信号を算出するとともに、前記音圧マップ生成ステップにおいて、前記複数の整数Nの値それぞれに対する前記音圧マップを生成し、
前記音圧マップ表示ステップにおいて、前記複数の整数Nの値それぞれに対する音圧マップを前記表示装置の同じ画面上に表示すること
を特徴とする音源探査方法。 - 請求項6において、
前記情報処理装置は、
前記遅延信号算出ステップおよび前記位相差強調信号算出ステップを介して算出される前記仮想スクリーン上の各格子点における前記アレイ出力信号に基づき、前記仮想スクリーン上の音圧マップを生成する音圧マップ生成ステップと、
前記生成した音圧マップを前記撮像装置で撮像した前記音源探査の対象物の撮像画像上に重ね合わせて表示装置に表示する音圧マップ表示ステップと、
前記整数Nの値を設定するための数値入力欄を前記表示装置に表示するとともに、前記数値入力欄を介して入力される値に基づき、前記整数Nの値を設定する整数N設定ステップと、
前記位相差強調信号算出ステップで算出された前記アレイ出力信号に基づき、指向性利得を算出し、その指向性利得のメインローブおよびサイドローブの利得からサイドローブ抑圧比を算出する抑圧比算出ステップと、をさらに実行し、
前記位相差強調信号算出ステップにおいて、前記整数N設定ステップで設定された整数Nの値についての位相差強調信号を算出するとともに、前記音圧マップ生成ステップにおいて、前記整数Nの値に対する前記音圧マップを生成し、
前記音圧マップ表示ステップにおいて、前記音圧マップを表示するときには、前記整数Nの値および前記抑圧比算出ステップで算出された前記整数Nの値に対するサイドローブ抑圧比を併せて表示すること
を特徴とする音源探査方法。 - 請求項6において、
前記情報処理装置は、
前記遅延信号算出ステップおよび前記位相差強調信号算出ステップを介して算出される前記仮想スクリーン上の各格子点における前記アレイ出力信号に基づき、前記仮想スクリーン上の音圧マップを生成する音圧マップ生成ステップと、
前記生成した音圧マップを前記撮像装置で撮像した前記音源探査の対象物の撮像画像上に重ね合わせて表示装置に表示する音圧マップ表示ステップと、
前記位相差強調信号算出ステップで算出された前記位相差強調信号に基づき、指向性利得を算出し、その指向性利得のメインローブおよびサイドローブの利得からサイドローブ抑圧比を算出する抑圧比算出ステップと、をさらに実行し、
前記位相差強調信号算出ステップにおいて、前記整数Nを様々な値に変化させて、前記様々に変化させた整数Nの値それぞれについての位相差強調信号を算出するとともに、前記音圧マップ生成ステップにおいて、前記様々に変化させた整数Nの値それぞれに対する前記音圧マップを生成し、
前記抑圧比算出ステップにおいて、前記様々に変化させた整数Nの値それぞれに対するサイドローブ抑圧比を算出し、
前記算出された前記様々に変化させた整数Nの値それぞれに対するサイドローブ抑圧比の中から、前記サイドローブ抑圧比が最大となる最大の整数Nの値を抽出し、
前記音圧マップ表示ステップにおいて、前記抽出した整数Nの値に対する前記音圧マップを表示すること
を特徴とする音源探査方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015068567A JP5864799B1 (ja) | 2015-03-30 | 2015-03-30 | 音源探査装置および音源探査方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015068567A JP5864799B1 (ja) | 2015-03-30 | 2015-03-30 | 音源探査装置および音源探査方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5864799B1 true JP5864799B1 (ja) | 2016-02-17 |
JP2016188791A JP2016188791A (ja) | 2016-11-04 |
Family
ID=55346960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015068567A Active JP5864799B1 (ja) | 2015-03-30 | 2015-03-30 | 音源探査装置および音源探査方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5864799B1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111243615A (zh) * | 2020-01-08 | 2020-06-05 | 环鸿电子(昆山)有限公司 | 麦克风阵列信号处理方法及手持式装置 |
CN114397008A (zh) * | 2021-12-07 | 2022-04-26 | 中国空气动力研究与发展中心低速空气动力研究所 | 低空飞行器噪声源识别的解多普勒方法 |
CN115683323A (zh) * | 2022-12-29 | 2023-02-03 | 杭州兆华电子股份有限公司 | 一种发声设备的声功率测量系统及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1152988A (ja) * | 1997-08-01 | 1999-02-26 | Nec Corp | 適応アレイの制御方法および適応アレイ装置 |
JP2005321270A (ja) * | 2004-05-07 | 2005-11-17 | Toshiba Corp | 電波方探装置とその方探処理方法 |
JP2006279740A (ja) * | 2005-03-30 | 2006-10-12 | Public Works Research Institute | 音源別音強度測定装置及び音源位置分析方法 |
JP2013015468A (ja) * | 2011-07-06 | 2013-01-24 | Hitachi Engineering & Services Co Ltd | 異音診断装置および異音診断方法 |
-
2015
- 2015-03-30 JP JP2015068567A patent/JP5864799B1/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1152988A (ja) * | 1997-08-01 | 1999-02-26 | Nec Corp | 適応アレイの制御方法および適応アレイ装置 |
JP2005321270A (ja) * | 2004-05-07 | 2005-11-17 | Toshiba Corp | 電波方探装置とその方探処理方法 |
JP2006279740A (ja) * | 2005-03-30 | 2006-10-12 | Public Works Research Institute | 音源別音強度測定装置及び音源位置分析方法 |
JP2013015468A (ja) * | 2011-07-06 | 2013-01-24 | Hitachi Engineering & Services Co Ltd | 異音診断装置および異音診断方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111243615A (zh) * | 2020-01-08 | 2020-06-05 | 环鸿电子(昆山)有限公司 | 麦克风阵列信号处理方法及手持式装置 |
CN114397008A (zh) * | 2021-12-07 | 2022-04-26 | 中国空气动力研究与发展中心低速空气动力研究所 | 低空飞行器噪声源识别的解多普勒方法 |
CN115683323A (zh) * | 2022-12-29 | 2023-02-03 | 杭州兆华电子股份有限公司 | 一种发声设备的声功率测量系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2016188791A (ja) | 2016-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5642027B2 (ja) | 異音診断装置および異音診断方法 | |
JP6904963B2 (ja) | 拡張現実システムにおいてオーディオを指向させるための技法 | |
JP5693201B2 (ja) | 指定領域からの伝播音の再生方法とその装置 | |
US10353198B2 (en) | Head-mounted display with sound source detection | |
JP4523966B2 (ja) | 音質表示装置、音質表示方法、音質表示プログラムを記録したコンピューターで読める媒体及び音響カメラ | |
JP6061693B2 (ja) | 異常診断装置およびこれを用いた異常診断方法 | |
RU2018119087A (ru) | Устройство и способ для формирования отфильтрованного звукового сигнала, реализующего рендеризацию угла места | |
US8094828B2 (en) | Sound source separating apparatus and sound source separating method | |
JP2002181913A (ja) | 音源探査システム | |
Quaegebeur et al. | Enhancement of time-domain acoustic imaging based on generalized cross-correlation and spatial weighting | |
JP6414459B2 (ja) | スピーカアレイ装置 | |
JP5864799B1 (ja) | 音源探査装置および音源探査方法 | |
JP2008236077A (ja) | 目的音抽出装置,目的音抽出プログラム | |
CN107404684A (zh) | 一种采集声音信号的方法和装置 | |
Padois et al. | On the use of modified phase transform weighting functions for acoustic imaging with the generalized cross correlation | |
JP2018019294A5 (ja) | ||
EP2478715B1 (en) | Method for acquiring audio signals, and audio acquisition system thereof | |
US8189806B2 (en) | Sound collection apparatus | |
WO2020166324A1 (ja) | 情報処理装置および方法、並びにプログラム | |
KR102706386B1 (ko) | 시각화된 객체에서 특정영역의 소리를 추출하는 감시 카메라 시스템 및 그 동작 방법 | |
CN111739554A (zh) | 声学成像频率确定方法、装置、设备及存储介质 | |
JP4912612B2 (ja) | 音響計測装置 | |
JP5160878B2 (ja) | 試料同定装置および試料同定方法 | |
JP2015161659A (ja) | 音源方向推定装置、及び、音源推定用画像の表示装置 | |
CN112763054A (zh) | 一种三维声场可视化系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5864799 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |