JP5850363B2 - Method for producing amino acid-containing liquid - Google Patents

Method for producing amino acid-containing liquid Download PDF

Info

Publication number
JP5850363B2
JP5850363B2 JP2011244071A JP2011244071A JP5850363B2 JP 5850363 B2 JP5850363 B2 JP 5850363B2 JP 2011244071 A JP2011244071 A JP 2011244071A JP 2011244071 A JP2011244071 A JP 2011244071A JP 5850363 B2 JP5850363 B2 JP 5850363B2
Authority
JP
Japan
Prior art keywords
liquid
amino acid
fermentation
acetic acid
food processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011244071A
Other languages
Japanese (ja)
Other versions
JP2013100192A (en
Inventor
博英 長▲浜▼
博英 長▲浜▼
Original Assignee
木野 幸▲徳▼
木野 幸▲徳▼
長▲浜▼ 直子
長▲浜▼ 直子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 木野 幸▲徳▼, 木野 幸▲徳▼, 長▲浜▼ 直子, 長▲浜▼ 直子 filed Critical 木野 幸▲徳▼
Priority to JP2011244071A priority Critical patent/JP5850363B2/en
Publication of JP2013100192A publication Critical patent/JP2013100192A/en
Application granted granted Critical
Publication of JP5850363B2 publication Critical patent/JP5850363B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fertilizers (AREA)

Description

本発明は、植物細胞又は繊維質を含む食品加工廃液を処理して得られるアミノ酸含有液、及び該アミノ酸含有液の製造方法に関する。また、当該アミノ酸含有液を含む肥料及び害虫忌避剤に関する。   The present invention relates to an amino acid-containing liquid obtained by treating a food processing waste liquid containing plant cells or fibers, and a method for producing the amino acid-containing liquid. Moreover, it is related with the fertilizer and pest repellent containing the said amino acid containing liquid.

多量の廃棄物の処分が問題となっており、産業界においてもゼロ・エミッションを志向した製造プラントが造られるなど、廃棄物の問題に対する取り組みが進んでいる。かかる取り組みは食品加工業界においても行われており、食品加工廃液の再資源化も進められているものの、廃液の量が多くその処理が間に合わない現状がある。特に、植物を原材料とする食品の加工廃液は、セルロースを主成分とする難分解性の繊維質や、硬い細胞壁を持つ植物細胞を浮遊物質(SS)として含むことが多く、それが処理の妨げとなることが多い。焼酎及び泡盛の蒸留粕、並びに清酒,食酢,醤油等の醸造粕が、その端的な例である。   Disposal of a large amount of waste has become a problem, and efforts to deal with the problem of waste are progressing, such as the construction of a manufacturing plant that aims for zero emissions in the industrial world. Such efforts are also being carried out in the food processing industry, and although recycling of food processing waste liquid is being promoted, the amount of waste liquid is so large that the processing is not in time. In particular, food processing waste liquids made from plants often contain refractory fibers based on cellulose and plant cells with hard cell walls as suspended matter (SS), which hinders treatment. Often. Shochu and awamori distillers and brewers such as sake, vinegar and soy sauce are just some examples.

とりわけ、蒸留粕は、環境汚染防止の観点から海洋投棄が禁止されたため、その処分が重大な問題となっている。蒸留粕は、含水率90%以上の粘稠な固液混合物であって取り扱いが難しいため、固液分離を行い固体分と液体分を別々に処理するのが通例である。しかし、相対的に少量の固体分には飼料や肥料としての再利用方法があるものの、相対的に多量の液体分を処理する有効な方法は数少なかった。その要因の一つは、液体分が、腐敗し易く、多量の浮遊物質を含み取り扱いが難しい性質を有していることにある。   In particular, the disposal of distillers is a serious problem because dumping in the ocean is prohibited from the viewpoint of preventing environmental pollution. Distillers are viscous solid-liquid mixtures having a water content of 90% or more and are difficult to handle, so it is customary to separate the solid and liquid components by solid-liquid separation. However, although there is a method for reusing as a feed or fertilizer for a relatively small amount of solid, there are few effective methods for treating a relatively large amount of liquid. One of the factors is that the liquid component is easily rotted and contains a large amount of suspended solids and is difficult to handle.

蒸留粕に代表される多量の食品加工廃液を処理できる、新しい再資源化方法が望まれており、例えば、泡盛蒸留粕を使用した食酢の製造方法が開示されている(例えば、特許文献1参照)。   There is a demand for a new recycling method capable of treating a large amount of food processing waste liquid typified by distillers. For example, a method for producing vinegar using awamori distillers is disclosed (see, for example, Patent Document 1). ).

特開2003−33170号公報JP 2003-33170 A

しかしながら、特許文献1に記載の泡盛蒸留粕を使用した食酢の製造方法は、酢酸発酵だけで2〜3週間、貯蔵熟成を含む全工程で半年以上もの時間を要するため、蒸留粕を速やかに処理することができない。   However, the method for producing vinegar using the Awamori distiller described in Patent Document 1 requires 2-3 weeks only for acetic acid fermentation, and more than half a year in all processes including storage ripening. Can not do it.

また、上記食酢の製造方法は、植物細胞の細胞壁の透過性を増す工程を含まない。したがって、植物細胞の外でしか酢酸発酵が起こらず、植物細胞の内部の成分を有効利用できない。また、繊維質は、分解されず複数回の濾過によって除去されるのみであって、それが新たな廃棄物となってしまう。   Moreover, the manufacturing method of the said vinegar does not include the process of increasing the permeability of the cell wall of a plant cell. Therefore, acetic acid fermentation occurs only outside the plant cells, and the components inside the plant cells cannot be used effectively. Further, the fibrous material is not decomposed and is only removed by a plurality of times of filtration, which becomes a new waste.

これらの問題点に鑑み、本発明は、植物細胞又は繊維質を有効利用して、食品加工廃液を速やかに処理し再資源化することを課題とする。また、それによって得られる、多用途のアミノ酸含有液を提供することを課題とする。   In view of these problems, it is an object of the present invention to quickly process and recycle food processing waste liquid by using plant cells or fibers effectively. Another object of the present invention is to provide a versatile amino acid-containing liquid obtained thereby.

上記課題を解決するために、本発明の発明者は、鋭意検討を重ね、酢酸発酵と乳酸発酵を交互に行う方法を見出した。酢酸菌は、酢酸発酵の際にタンパク質を分解しアミノ酸を産生する性質を持つが、植物細胞の透過性を増し又は繊維質を分解する能力には乏しい。しかし、驚くべきことに、酢酸発酵と乳酸発酵とを交互に繰り返すことで、浮遊物質が減少し、液中アミノ酸濃度が上昇することが判明した。これは、乳酸発酵によって、細胞壁の透過性が増すと共に繊維質が分解され、それが酢酸発酵を助けるためと解される。   In order to solve the above problems, the inventor of the present invention has made extensive studies and found a method of alternately performing acetic acid fermentation and lactic acid fermentation. Acetic acid bacteria have the property of degrading proteins and producing amino acids during acetic acid fermentation, but they have poor ability to increase the permeability of plant cells or degrade fiber. Surprisingly, however, it has been found that by alternately repeating acetic acid fermentation and lactic acid fermentation, suspended solids are reduced and the amino acid concentration in the liquid is increased. This is understood to be because lactate fermentation increases the permeability of the cell wall and degrades the fiber, which aids acetic acid fermentation.

即ち、第1の発明は、
(A)植物細胞又は繊維質を含む食品加工廃液を処理槽に投入する工程
(C)前記処理槽に酢酸菌及び乳酸菌を投入し、間歇曝気により酢酸発酵と乳酸発酵とを交互に行い、発酵物を得る工程
(D)前記発酵物を固液分離してアミノ酸含有液を得る工程
順に行われる上記工程(A),(C),及び(D)を含むアミノ酸含有液の製造方法である。
That is, the first invention is
(A) A step of introducing a food processing waste liquid containing plant cells or fiber into a processing tank (C) Acetic acid bacteria and lactic acid bacteria are charged into the processing tank, and acetic acid fermentation and lactic acid fermentation are alternately performed by intermittent aeration, and fermentation (D) A method for producing an amino acid-containing liquid comprising the steps (A), (C), and (D) performed in the order of steps for obtaining an amino acid-containing liquid by solid-liquid separation of the fermented product.

の発明は、
(B)食品加工廃液に気液二相流を噴射する工程
上記工程(B)が前記工程(C)の前に行われる、第1の発明のアミノ酸含有液の製造方法である。
The second invention is
(B) Step of injecting gas-liquid two-phase flow into food processing waste liquid The method for producing an amino acid-containing liquid according to the first invention, wherein the step (B) is performed before the step (C).

の発明は、液温を30℃以上37℃以下に維持して工程(C)が行われる、第又は第の発明のアミノ酸含有液の製造方法である。 3rd invention is a manufacturing method of the amino acid containing liquid of 1st or 2nd invention with which liquid temperature is maintained at 30 degreeC or more and 37 degrees C or less, and a process (C) is performed.

の発明は、食品加工廃液が、焼酎若しくは泡盛の蒸留粕又は該蒸留粕を固液分離して得た液体分である、第乃至第の発明の何れかのアミノ酸含有液の製造方法である。 The fourth invention is the production of the amino acid-containing liquid according to any one of the first to third inventions, wherein the food processing waste liquid is a shochu or awamori distiller or a liquid obtained by solid-liquid separation of the distiller. Is the method.

の発明は、食品加工廃液が、工程(D)でアミノ酸含有液と分離された粘稠物に水を加えた懸濁液である、第乃至第の発明の何れかのアミノ酸含有液の製造方法である。 5th invention contains the amino acid content in any one of 1st thru | or 3rd invention whose food processing waste liquid is suspension which added water to the viscous material isolate | separated from the amino acid containing liquid at the process (D). It is a manufacturing method of a liquid.

なお、第1乃至第5の発明の何れかの方法で得られたアミノ酸含有液を含む物は害虫忌避剤として使用できる
In addition, the thing containing the amino acid containing liquid obtained by the method in any one of 1st thru | or 5th invention can be used as a pest repellent.

本発明のアミノ酸含有液の製造方法によれば、酢酸発酵と乳酸発酵とを交互に繰り返すことにより、従来困難であった、植物細胞又は繊維質を含む食品加工廃液の処理が可能である。それによって、浮遊物質が減少し、アミノ酸を豊富に含むアミノ酸含有液が得られる。酢酸発酵と乳酸発酵とを交互に繰り返すためには、同一槽内で間歇曝気する簡便な操作を行うのみで良い。短期間で処理が完遂するから、腐敗の虞が少ない。
それによって得られるアミノ酸含有液は、高濃度のアミノ酸を含み、多様な用途を有する。例えば、肥料,害虫忌避剤,健康飲料,又はそれらの原料、水質浄化能を有するコンクリート二次製品の原料として用いることができる。
According to the method for producing an amino acid-containing liquid of the present invention, by alternately repeating acetic acid fermentation and lactic acid fermentation, it is possible to treat food processing waste liquid containing plant cells or fibers, which has been difficult in the past. Thereby, suspended solids are reduced, and an amino acid-containing liquid rich in amino acids is obtained. In order to repeat acetic acid fermentation and lactic acid fermentation alternately, it is only necessary to perform a simple operation of intermittent aeration in the same tank. Since processing is completed in a short period of time, there is little risk of corruption.
The amino acid-containing liquid obtained thereby contains a high concentration of amino acids and has various uses. For example, it can be used as a raw material for a fertilizer, a pest repellent, a health drink, or a raw material thereof, or a concrete secondary product having water purification ability.

酢酸菌及び乳酸菌を添加する前に、食品加工廃液に気液二相流を噴射すると、該気液二相流によって破砕され又は強制酸化されることにより、植物細胞の細胞壁及び細胞膜の透過性が増す。工程(C)において、細胞内外で発酵が進行するから、植物細胞内部の成分を有効利用できるし、より速やかに処理が完遂する。繊維質も、気液二相流により破砕され、分解され易くなるから、浮遊物質がより高効率で分解され減少する。
それによって得られるアミノ酸含有液は、植物細胞内部の成分までもが発酵することにより、より高濃度のアミノ酸を含む。
Before the addition of acetic acid bacteria and lactic acid bacteria, when a gas-liquid two-phase flow is injected into the food processing waste liquid, the cell walls and cell membranes of the plant cells are made permeable by being crushed or forcedly oxidized by the gas-liquid two-phase flow. Increase. In the step (C), since fermentation proceeds inside and outside the cell, components inside the plant cell can be used effectively, and the treatment is completed more quickly. Since the fiber is also crushed and easily decomposed by the gas-liquid two-phase flow, the suspended matter is decomposed and reduced more efficiently.
The amino acid-containing liquid obtained thereby contains a higher concentration of amino acid by fermenting even the components inside the plant cell.

液温を30℃以上37℃以下に維持して工程(C)を行うと、発酵に適した発酵に適した液温に維持されることにより、発酵がより効率的に行われ、より短期間での処理が可能となる。
それによって得られるアミノ酸含有液は、効率的な発酵のために、更に高濃度のアミノ酸を含む。
When the liquid temperature is maintained at 30 ° C. or higher and 37 ° C. or lower and the step (C) is performed, the liquid temperature is maintained at a liquid temperature suitable for fermentation, so that fermentation is performed more efficiently and for a shorter period of time. Can be processed.
The amino acid-containing liquid obtained thereby contains a higher concentration of amino acids for efficient fermentation.

本発明のアミノ酸含有液の製造方法は、蒸留粕の新たな再資源化方法である。従来困難であった、焼酎若しくは泡盛の蒸留粕又は該蒸留粕を固液分離して得た液体分の、速やかで効率的な処理が可能となる。   The method for producing an amino acid-containing liquid of the present invention is a new method for recycling distillers. This makes it possible to quickly and efficiently treat a shochu or awamori distiller or a liquid obtained by solid-liquid separation of the distiller, which has heretofore been difficult.

食品加工廃液として、工程(D)で副生する粘稠物に水を加えた懸濁液を用いると、前記粘稠物の量を更に低減でき廃棄物量が減少し、更に多量のアミノ酸含有液を得ることができる。   When a suspension obtained by adding water to the viscous product by-produced in step (D) is used as a food processing waste liquid, the amount of the viscous product can be further reduced, and the amount of waste is reduced. Can be obtained.

本発明の肥料を用いると、農作物の収量が向上し、糖,ビタミン等の栄養素に富む農作物を得ることができる。   When the fertilizer of the present invention is used, the yield of crops can be improved, and crops rich in nutrients such as sugar and vitamins can be obtained.

また、本発明の害虫忌避剤を用いると、虫害が抑制され、農作物の収穫量が向上し、高品質で外観の良い農作物が得られる。忌避剤としての有効成分は酢酸及び乳酸であり、土壌微生物や植物の代謝によって容易に分解され、土壌及び農作物を汚染しない。   Moreover, when the pest repellent of the present invention is used, insect damage is suppressed, the crop yield is improved, and a high-quality and good-looking crop can be obtained. Active ingredients as repellents are acetic acid and lactic acid, which are easily decomposed by the metabolism of soil microorganisms and plants and do not contaminate the soil and crops.

本発明に係る処理装置を示す配管図である。It is a piping diagram which shows the processing apparatus which concerns on this invention. 本発明に係る噴射ノズルを示す斜視図である。It is a perspective view which shows the injection nozzle which concerns on this invention. 本発明に係る噴射ノズルを示す側方視断面図である。It is side view sectional drawing which shows the injection nozzle which concerns on this invention.

以下、本発明の実施の形態を、図面を参照しつつ詳しく説明するが、本発明はこれに限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.

まず、本発明のアミノ酸含有液の製造方法について、説明する。   First, the manufacturing method of the amino acid containing liquid of this invention is demonstrated.

本発明に係る食品加工廃液は、植物を原材料とする加工食品の製造過程や、それに伴って排出される廃棄物を処理する過程で排出される廃液であって、植物細胞又は繊維質を含む。当該植物細胞又は繊維質は、食品の原材料たる植物に由来するものであって、通常、浮遊物質として含まれる。長尺の繊維質を初め処理不能な程度に大きい固形分は、予め固液分離により取り除かれることが好ましい。食品加工廃液としては、例えば、米焼酎,芋焼酎,麦焼酎その他の焼酎若しくは泡盛の蒸留粕、清酒,食酢,醤油等の醸造粕、又はそれらを固液分離して得られた液体分が挙げられる。液体分を得る固液分離手段は特に限定されず、回転篩,濾過機,遠心分離機,圧搾機,エクストルーダー等に例示される任意のものを用いることができる。尚、液体分と分離された固体分は、例えば、堆肥化し又は廃棄される。   The food processing waste liquid according to the present invention is a waste liquid discharged in the process of manufacturing processed foods using plants as raw materials and in the process of treating waste discharged along with it, and contains plant cells or fibers. The plant cell or fiber is derived from a plant as a raw material of food and is usually contained as a suspended substance. It is preferable that the solid content which is long enough to be unprocessable at the beginning of the long fiber is removed in advance by solid-liquid separation. Examples of the food processing waste liquid include rice shochu, shochu shochu, barley shochu and other shochu or awamori distillers, sake brewers such as vinegar, soy sauce, and liquids obtained by solid-liquid separation thereof. It is done. The solid-liquid separation means for obtaining the liquid component is not particularly limited, and any one exemplified by a rotary sieve, a filter, a centrifuge, a press, an extruder, etc. can be used. The solid component separated from the liquid component is composted or discarded, for example.

(食品加工廃液投入工程)
前記食品加工廃液を、一次処理槽4に投入する。食品加工廃液が高粘性であり又は浮遊物を多量に含む場合には、以降の操作を行い易くするため、水を加え希釈したものを被処理液とすることもできる。一次処理槽4は、開閉可能な蓋を有し(図示せず)、食品加工廃液,細菌類等を投入し又は曝気する際には蓋を開け、乳酸発酵時には蓋を閉めて嫌気状態にすることができる。
(Food processing waste liquid input process)
The food processing waste liquid is charged into the primary treatment tank 4. When the food processing waste liquid is highly viscous or contains a large amount of suspended solids, a liquid to be treated may be diluted with water in order to facilitate the subsequent operation. The primary treatment tank 4 has an openable / closable lid (not shown). When the food processing waste liquid, bacteria, or the like is introduced or aerated, the lid is opened, and during lactic acid fermentation, the lid is closed to an anaerobic state. be able to.

(気液二相流噴射工程)
一次処理槽4内に、高速の気液二相流を噴射する。本工程は必須ではないが、以降の処理を効率良く行うために、気液二相流の噴射が行われることが好ましい。
(Gas-liquid two-phase flow injection process)
A high-speed gas-liquid two-phase flow is injected into the primary treatment tank 4. Although this step is not essential, it is preferable to perform gas-liquid two-phase flow injection in order to efficiently perform the subsequent processing.

気液二相流は、空気を含む微細な気泡が混入した高速の液流であって、例えば、噴射ノズル9内で高速の液流を発生させ、別途供給される空気を前記噴射ノズル9内で液流に混合させることにより得られる。かかる目的を達成できれば、噴射ノズル9の形状,構造等は特に限定されない。図示される噴射ノズル9は、一次処理槽4の下部から上部にポンプ10送液する送液管15の先端に外嵌され溶接されていて、曝気ブロワ8から送気される空気を吸入して気液二相流を発生させる構成である。噴射ノズル9は、送液管15と同軸の略円柱形の外観を有し、やや大径の円筒状に形成された後部は送液管15に外嵌可能とされている。   The gas-liquid two-phase flow is a high-speed liquid flow in which fine bubbles including air are mixed. For example, a high-speed liquid flow is generated in the injection nozzle 9, and separately supplied air is supplied into the injection nozzle 9. Obtained by mixing in a liquid stream. If such an object can be achieved, the shape, structure and the like of the injection nozzle 9 are not particularly limited. The illustrated injection nozzle 9 is externally fitted and welded to the tip of a liquid feeding pipe 15 that feeds the pump 10 from the lower part to the upper part of the primary treatment tank 4, and sucks air fed from the aeration blower 8. In this configuration, a gas-liquid two-phase flow is generated. The injection nozzle 9 has a substantially columnar appearance coaxial with the liquid feeding pipe 15, and a rear portion formed in a slightly large cylindrical shape can be externally fitted to the liquid feeding pipe 15.

噴射ノズル9には、その上流側及び下流側の両端を連通する複数の送液孔12,…が穿設されており、送液管15から噴射ノズル9内に導かれた液流は、断面積の小さな送液孔12,…を通ることにより流速を増す。送液孔12,…は、局部的な負荷が掛らない様に、噴射ノズル9の断面に対して略均等に穿設される。送液孔12,…の形状,断面積,数,配置等は特に限定されないが、例えば、図2及び図3に示される様に、噴射ノズル9の軸と直交する直線上に円形断面を有する3個の大径の送液孔12,…を設けると共に、前記直線で2分割される領域に各2個ずつ、円形断面を有する小径の送液孔12,12を穿設することができる。噴射ノズル9の直径が50mmであるのに対して大径の送液孔12の直径は約7.1mm,小径の送液孔12の直径は5mmであり、これら送液孔12,…が噴射ノズル9断面積の約11%を占めるから、液流の流速は、送液孔12,…内では送液管15内の約9.1倍となる。送液管15内の流速は、気液二相流を噴射可能であれば特に限定されないが、通常、300L/分程度とされる。その場合、送液孔12,…内の液流は、約2.7×10L/分もの高速となる。 The injection nozzle 9 is provided with a plurality of liquid supply holes 12, which communicate with both upstream and downstream ends, and the liquid flow introduced into the injection nozzle 9 from the liquid supply pipe 15 is interrupted. The flow velocity is increased by passing through the liquid feeding holes 12,. The liquid feeding holes 12,... Are formed substantially evenly with respect to the cross section of the injection nozzle 9 so as not to apply a local load. The shape, cross-sectional area, number, arrangement, and the like of the liquid feed holes 12 are not particularly limited. For example, as shown in FIGS. 2 and 3, the liquid-feed holes 12 have a circular cross section on a straight line orthogonal to the axis of the injection nozzle 9. Three large-diameter liquid supply holes 12,... Can be provided, and two small-diameter liquid supply holes 12, 12 each having a circular cross section can be formed in each of the two regions divided by the straight line. Whereas the diameter of the injection nozzle 9 is 50 mm, the diameter of the large-diameter liquid supply hole 12 is about 7.1 mm, and the diameter of the small-diameter liquid supply hole 12 is 5 mm. Since it occupies about 11% of the cross-sectional area of the nozzle 9, the flow velocity of the liquid flow is about 9.1 times that in the liquid supply pipe 15 in the liquid supply holes 12,. The flow rate in the liquid feeding pipe 15 is not particularly limited as long as a gas-liquid two-phase flow can be injected, but is usually about 300 L / min. In that case, the liquid flow in the liquid feed holes 12,... Becomes as high as about 2.7 × 10 3 L / min.

噴射ノズル9内部には、全ての送液孔12,…の中間部を連通する混合室13が設けられ、該混合室13は噴射ノズル9の外周面に穿設された吸気口14と連通している。吸気口14には送気管16が内嵌され溶接されていて、曝気ブロワ8から供給された空気は、吸気口14を通って混合室13に導かれる。高速の液流は送液孔12の上流部分から下流部分に流入するが、混合室13でそれに空気が混入し、多量の気泡を含んだ気液二相流が生じる。   Inside the injection nozzle 9 is provided a mixing chamber 13 that communicates with an intermediate portion of all the liquid feed holes 12,..., And the mixing chamber 13 communicates with an intake port 14 formed in the outer peripheral surface of the injection nozzle 9. ing. An air supply pipe 16 is fitted and welded to the intake port 14, and the air supplied from the aeration blower 8 is guided to the mixing chamber 13 through the intake port 14. A high-speed liquid flow flows from the upstream portion to the downstream portion of the liquid feeding hole 12, but air is mixed in the mixing chamber 13 to generate a gas-liquid two-phase flow containing a large amount of bubbles.

送液管15の下端が一次処理槽4の底部付近と連通し、噴射ノズル9の下流端が液面下に配置されるから、一次処理槽4内の被処理液は、送液管15及び噴射ノズル9を通って循環する。気液二相流は、被処理液中の溶存酸素濃度を高めるほか、気液二相流中又は一次処理槽4内において、浮遊物質内に含まれる植物細胞の細胞壁及び細胞膜を、破砕し又は気泡により強制酸化する働きを持つ。これにより細胞壁及び細胞膜の透過性が増し次工程の発酵が細胞内外で進行するから、発酵に要する時間を短縮できるし、意図しない腐敗を防ぐことができる。気液二相流の噴射時間は特に限定されないが、充分な効果を得るためには、通常、一次処理槽4内の被処理液が5回程度循環することが目安とされる。   Since the lower end of the liquid feed pipe 15 communicates with the vicinity of the bottom of the primary treatment tank 4 and the downstream end of the spray nozzle 9 is disposed below the liquid surface, the liquid to be treated in the primary treatment tank 4 It circulates through the injection nozzle 9. In addition to increasing the dissolved oxygen concentration in the liquid to be treated, the gas-liquid two-phase flow crushes the cell walls and cell membranes of plant cells contained in the suspended matter in the gas-liquid two-phase flow or in the primary treatment tank 4 or Has the function of forced oxidation by bubbles. As a result, the permeability of the cell wall and the cell membrane is increased and the fermentation in the next step proceeds inside and outside the cell, so that the time required for fermentation can be shortened and unintentional decay can be prevented. The jetting time of the gas-liquid two-phase flow is not particularly limited, but in order to obtain a sufficient effect, it is generally considered that the liquid to be treated in the primary treatment tank 4 circulates about 5 times.

(発酵工程)
その後、一次処理槽4に、酢酸菌及び乳酸菌を投入して発酵を行う。酢酸菌及び乳酸菌は、通常、それら細菌類を液体培地で培養して得た懸濁液として投入される。上記の通り、気液二相流には細胞壁及び細胞膜を破砕し又は強制酸化する働きがあるから、これら細菌類に悪影響を与えない様、気液二相流の噴射が完了した後に投入されることが好ましい。
(Fermentation process)
Thereafter, the primary treatment tank 4 is fermented with acetic acid bacteria and lactic acid bacteria. Acetic acid bacteria and lactic acid bacteria are usually added as a suspension obtained by culturing these bacteria in a liquid medium. As described above, the gas-liquid two-phase flow has a function of crushing or forcibly oxidizing the cell wall and cell membrane, so that it is injected after the injection of the gas-liquid two-phase flow is completed so as not to adversely affect these bacteria. It is preferable.

酢酸菌若しくは乳酸菌の増殖又は発酵を助ける添加物を添加することもできる。かかる添加物として、例えば、フルボ酸,エタノール,糖蜜,ブドウ糖,及びショ糖が挙げられる。フルボ酸には微生物を活性化する働きがあるから、酢酸菌及び乳酸菌の増殖、並びに酢酸発酵及び乳酸発酵が促進される。フルボ酸に替えて、フミン酸を用いることもできる。エタノールは、酢酸発酵の開始剤として作用するほか、耐性を持たない雑菌を殺し、酢酸菌及び乳酸菌の選択的増殖を助ける働きを持つ。エタノールとして、焼酎,泡盛,清酒その他の市販のアルコール飲料を用いることもできる。糖蜜,ブドウ糖,又はショ糖を添加すると、それらは乳酸発酵の開始剤として作用する。また、酵母が混在している場合には、エタノール発酵の原料となり、それによって産生されるエタノールが酢酸発酵の原料となる。   Additives that aid in the growth or fermentation of acetic acid bacteria or lactic acid bacteria can also be added. Examples of such additives include fulvic acid, ethanol, molasses, glucose, and sucrose. Since fulvic acid has a function of activating microorganisms, growth of acetic acid bacteria and lactic acid bacteria, and acetic acid fermentation and lactic acid fermentation are promoted. Humic acid can also be used in place of fulvic acid. In addition to acting as an initiator for acetic acid fermentation, ethanol has a function of killing non-resistant bacteria and assisting the selective growth of acetic acid bacteria and lactic acid bacteria. As ethanol, shochu, awamori, sake and other commercially available alcoholic beverages can also be used. When molasses, glucose, or sucrose is added, they act as initiators for lactic acid fermentation. Moreover, when yeast is mixed, it becomes a raw material for ethanol fermentation, and ethanol produced thereby becomes a raw material for acetic acid fermentation.

その後、間歇曝気により、酢酸発酵(好気発酵)と乳酸発酵(嫌気発酵)とを交互に行い、発酵物を得る。曝気手段は特に限定されないが、例えば、図1に示される様に、曝気ブロワ8と一次処理槽4の底部とを送気管16で連結することができる。曝気の時間や回数は特に限定されないが、通常、1日の曝気時間の合計を約1時間程度とすれば良い。通常、細菌類及び添加物を投入した直後に初回の曝気を行うが、気液二相流の噴射を行った場合には、それを省略することもできる。また、溶存酸素量によって曝気の開始又は停止を判断しても良く、この場合には、例えば、一次処理槽4内の液中溶存酸素量が9ppm未満とならない様に維持する。発酵時の液温は、25℃以上37℃以下に維持されることが好ましく、より好ましくは30℃以上37℃以下、更に好ましくは35℃以上37℃以下とされる。これは、酢酸発酵及び乳酸発酵に適した液温に維持することにより、発酵を効率的に行うためである。   Then, acetic acid fermentation (aerobic fermentation) and lactic acid fermentation (anaerobic fermentation) are alternately performed by intermittent aeration to obtain a fermented product. The aeration means is not particularly limited. For example, as shown in FIG. 1, the aeration blower 8 and the bottom of the primary treatment tank 4 can be connected by an air supply pipe 16. The time and number of times of aeration are not particularly limited, but the total daily aeration time may normally be about 1 hour. Normally, the first aeration is performed immediately after the bacteria and additives are added, but this can be omitted when the gas-liquid two-phase flow is injected. The start or stop of aeration may be determined based on the amount of dissolved oxygen. In this case, for example, the amount of dissolved oxygen in the liquid in the primary treatment tank 4 is maintained so as not to be less than 9 ppm. The liquid temperature during fermentation is preferably maintained at 25 ° C. or higher and 37 ° C. or lower, more preferably 30 ° C. or higher and 37 ° C. or lower, and further preferably 35 ° C. or higher and 37 ° C. or lower. This is for efficiently performing fermentation by maintaining a liquid temperature suitable for acetic acid fermentation and lactic acid fermentation.

斯様にして酢酸発酵と乳酸発酵を交互に行うことにより、被処理液中に含まれていた糖,エタノール,繊維質,及び植物細胞の細胞壁は乳酸又は酢酸となり、タンパク質は加水分解されてアミノ酸を生じる。しかも、発酵は速やかに進行し、3〜14日程度で処理が完遂する。アミノ酸濃度の上昇は、主に酢酸菌の働きによるものと解される。また、副次的には、酢酸と乳酸の産生によりpHが低下し、加水分解が進行することによると解される。ただし、酢酸発酵のみでは同程度のアミノ酸濃度上昇が認められないことから、乳酸発酵の際に植物細胞の細胞壁の透過性が増すと共に繊維質,タンパク質等の分解が進み、それによって酢酸菌の働きが促進されるものと解される。本工程においては視認可能な程度に浮遊物質が減少するが、これは、浮遊物質の主成分たる繊維質の分解が進行していることを支持するものである。本工程でpHが低下することは、意図しない雑菌の増殖を防ぎ腐敗を防止する効果を奏する。   By alternately performing acetic acid fermentation and lactic acid fermentation in this manner, the cell walls of sugar, ethanol, fiber, and plant cells contained in the liquid to be treated are converted to lactic acid or acetic acid, and the protein is hydrolyzed to amino acids. Produce. Moreover, the fermentation proceeds rapidly and the treatment is completed in about 3 to 14 days. It is understood that the increase in amino acid concentration is mainly due to the action of acetic acid bacteria. As a secondary matter, it is understood that the pH decreases due to production of acetic acid and lactic acid, and hydrolysis proceeds. However, since acetic acid fermentation alone does not show the same level of increase in amino acid concentration, the permeability of plant cell walls increases during lactic acid fermentation and the degradation of fibers, proteins, etc. progresses. Is understood to be promoted. In this step, the suspended matter is reduced to a visible level, which supports the progress of the decomposition of the fiber that is the main component of the suspended matter. Lowering the pH in this step has an effect of preventing unintended bacteria growth and preventing spoilage.

細菌の放出する二酸化炭素の気泡の減少等により発酵の完遂を知った後、発酵物を固液分離して、アミノ酸含有液(一次処理液)と粘稠物を得る。一次処理液は、浮遊物質を殆ど含まない略澄明な液体である。一方、粘稠物は、浮遊物質に含まれていた微細な繊維質及びその分解物のほか、酢酸菌及び乳酸菌並びにそれらの死骸を含み、約65〜70%の含水量を示す。当該粘稠物は、当初の固液分離で得られる固体分と同様に堆肥化し又は廃棄することも可能であるが、本発明の処理に供される別の食品加工廃液に混合し、又は、一次処理槽4と略同様の構造を有する二次処理槽5に投入して水に懸濁し、再度本発明のアミノ酸含有液の製造に供することもできる。二次処理槽5で発酵して得た発酵物は、アミノ酸含有液(二次処理液)と粘稠物に固液分離され、該粘稠物は、堆肥化され、廃棄され、又は本発明の処理に供される別の食品加工廃液に混合される。   After knowing the completion of fermentation by reducing the bubbles of carbon dioxide released by bacteria, etc., the fermented product is subjected to solid-liquid separation to obtain an amino acid-containing solution (primary treatment solution) and a viscous product. The primary treatment liquid is a substantially clear liquid containing almost no suspended substances. On the other hand, the viscous material contains acetic acid bacteria and lactic acid bacteria and their dead bodies in addition to the fine fibers contained in the suspended solids and their decomposition products, and exhibits a water content of about 65 to 70%. The viscous material can be composted or discarded in the same manner as the solid content obtained by the initial solid-liquid separation, but is mixed with another food processing waste liquid used for the treatment of the present invention, or It can also be put into a secondary treatment tank 5 having a structure substantially similar to that of the primary treatment tank 4, suspended in water, and used again for the production of the amino acid-containing liquid of the present invention. The fermented material obtained by fermentation in the secondary treatment tank 5 is solid-liquid separated into an amino acid-containing liquid (secondary treatment liquid) and a viscous material, and the viscous material is composted and discarded, or the present invention. Mixed with another food processing effluent to be processed.

(熟成工程)
上記一次処理液及び二次処理液は、所望に応じて熟成槽に移し保存される。一次処理液と二次処理液とを同一の熟成槽で保存することもできるが、それぞれ一次熟成槽6と二次熟成槽6’とに、別々に保存することもできる。熟成槽においては、アミノ酸含有液を単に貯留することもできるが、発酵工程と同様の間歇曝気を行うこともできる。間歇曝気を行うと、残留する酢酸菌が生存し易い環境が維持され、酢酸菌の死骸によるスカムの発生を抑制できるし、pHの上昇やそれに伴う腐敗も抑制される。また、アミノ酸含有液に浮遊物質が僅かに含まれていたとしても、該浮遊物質は発酵によって減少する。
(Aging process)
The primary treatment liquid and the secondary treatment liquid are transferred to an aging tank and stored as desired. The primary treatment liquid and the secondary treatment liquid can be stored in the same aging tank, but can also be stored separately in the primary aging tank 6 and the secondary aging tank 6 ', respectively. In the aging tank, the amino acid-containing liquid can be simply stored, but intermittent aeration can be performed as in the fermentation process. When intermittent aeration is performed, an environment in which the remaining acetic acid bacteria can easily survive is maintained, generation of scum by dead bodies of acetic acid bacteria can be suppressed, and an increase in pH and accompanying decay are also suppressed. Even if the amino acid-containing liquid contains a small amount of suspended solids, the suspended solids are reduced by fermentation.

次に、本発明のアミノ酸含有液について説明する。   Next, the amino acid-containing liquid of the present invention will be described.

アミノ酸含有液は酢酸,乳酸,及び高濃度のアミノ酸を含み、当該アミノ酸濃度は、一次処理液の方が二次処理液よりも高値を示す。アミノ酸含有液は、例えば、肥料や健康飲料として若しくはそれらの原料として用いられ、又は、水質浄化能を有するコンクリート二次製品を製造するためにコンクリートに混入して用いられる。酢酸及び乳酸を含む酸性の液体であることから、害虫忌避剤又はその原料として用いることもできる。前記肥料又は前記害虫忌避剤は、通常、アミノ酸含有液を上水,井戸水等の水で希釈して製造される。一次処理液を水で希釈して肥料を製造する場合の希釈倍率は、元肥では100倍〜250倍が好適であり、追肥では好ましくは250倍〜1000倍、より好ましくは500倍〜1000倍である。二次処理液を水で希釈して害虫忌避剤を製造する場合の希釈倍率は通常100倍程度とされる。   The amino acid-containing liquid contains acetic acid, lactic acid, and a high concentration of amino acid, and the amino acid concentration of the primary treatment liquid is higher than that of the secondary treatment liquid. The amino acid-containing liquid is used, for example, as a fertilizer or health drink, or as a raw material thereof, or mixed with concrete to produce a concrete secondary product having water purification ability. Since it is an acidic liquid containing acetic acid and lactic acid, it can also be used as a pest repellent or a raw material thereof. The fertilizer or the pest repellent is usually produced by diluting an amino acid-containing liquid with water such as clean water or well water. When the primary treatment liquid is diluted with water to produce a fertilizer, the dilution ratio is preferably 100 to 250 times for the original fertilizer, preferably 250 to 1000 times, more preferably 500 to 1000 times for the additional fertilization. is there. When the secondary treatment solution is diluted with water to produce a pest repellent, the dilution factor is usually about 100 times.

アミノ酸含有液を含む肥料を用いると、農作物の収量が向上し、糖,ビタミン等の栄養素に富む農作物が得られる。これは、主に、アミノ酸含有液に高濃度で含まれるアミノ酸の働きによると解される。一般的に、土壌に多く含まれるケイ酸やアルミニウム化合物による吸着のため、栄養素の農作物への吸収は阻害され易く、特に陽イオン性の栄養素において顕著である。しかし、本発明の肥料を用いると、等電点を異にする多種のアミノ酸分子が対イオンとして機能することにより、アンモニウムイオン,硝酸イオン,リン酸イオン,カリウムイオン等の栄養素の吸収が促進される。また、アミノ酸自体が農作物に吸収され、タンパク質の原料となり、良好な発育を促進する。   When fertilizers containing amino acid-containing liquids are used, the yield of crops is improved, and crops rich in nutrients such as sugar and vitamins can be obtained. It is understood that this is mainly due to the action of amino acids contained in the amino acid-containing liquid at a high concentration. In general, due to adsorption by silicic acid and aluminum compounds contained in a large amount of soil, absorption of nutrients into agricultural products is likely to be hindered, particularly in the case of cationic nutrients. However, when the fertilizer of the present invention is used, absorption of nutrients such as ammonium ion, nitrate ion, phosphate ion, and potassium ion is promoted because various amino acid molecules having different isoelectric points function as counter ions. The In addition, amino acids themselves are absorbed by agricultural crops and become a raw material for proteins, which promotes good growth.

以下、実施例を記載するが、本発明はこれに限定されるものではない。   Hereinafter, although an Example is described, this invention is not limited to this.

(食品加工廃液投入工程)
原料タンク1に受け入れた米焼酎の蒸留粕約1mを、20メッシュの回転篩7で固液分離し、長尺の繊維質を主成分とする固体分と、多量の浮遊物質を含む液体分約700Lを得、それぞれ固体分貯留槽2と液体分貯留槽3に一旦保存した。該液体分を一次処理槽4に入れ、水300Lを加え混合して、被処理液を得た。一方、固体分は、堆肥化の用に供した。
(Food processing waste liquid input process)
About 1 m 3 of rice shochu distilled spirit received in the raw material tank 1 is solid-liquid separated with a 20-mesh rotary sieve 7 to obtain a solid content mainly composed of long fibers and a liquid content containing a large amount of suspended solids. About 700 L was obtained and temporarily stored in the solid content storage tank 2 and the liquid content storage tank 3, respectively. The liquid was put into the primary treatment tank 4 and 300 L of water was added and mixed to obtain a liquid to be treated. On the other hand, the solid content was used for composting.

(気液二相流噴射工程)
送液管15を介して前記被処理液を循環させ、一次処理槽4内の被処理液に向けて、噴射ノズル9から気液二相流を噴射した。送液管15内の流速を300L/分とし、気液二相流を約17分間に亘って噴射した。これにより、一次処理槽4内の被処理液は、約5回循環したこととなる。
(Gas-liquid two-phase flow injection process)
The liquid to be treated was circulated through the liquid feeding pipe 15, and a gas-liquid two-phase flow was jetted from the jet nozzle 9 toward the liquid to be treated in the primary treatment tank 4. The flow rate in the liquid feeding pipe 15 was set to 300 L / min, and a gas-liquid two-phase flow was injected for about 17 minutes. Thereby, the to-be-processed liquid in the primary processing tank 4 was circulated about 5 times.

(一次発酵工程)
被処理液に、フルボ酸(インターマン株式会社製) 5L,焼酎(アルコール度数:35度) 1L,及び廃糖蜜 5Lを投入し、曝気ブロワ8を約5分間運転して、それら添加物を被処理液と混合した。次いで、酢酸菌液 1L及び乳酸菌液 1Lを加えた。ここで、酢酸菌液には市販の酢酸菌を液体培地で培養して得た懸濁液を用い、乳酸菌液には市販の乳酸菌を液体培地で培養して得た懸濁液を用いた。当初の液温は25℃であり、本実施例においては、これ以降特に温度制御しなかった。
(Primary fermentation process)
Into the liquid to be treated, 5 L of fulvic acid (manufactured by Interman Co., Ltd.), 1 L of shochu (alcohol content: 35 degrees), and 5 L of molasses are added, and the aeration blower 8 is operated for about 5 minutes to cover these additives Mixed with treatment solution. Subsequently, 1 L of acetic acid bacteria liquid and 1 L of lactic acid bacteria liquid were added. Here, a suspension obtained by culturing commercially available acetic acid bacteria in a liquid medium was used for the acetic acid bacteria solution, and a suspension obtained by culturing commercially available lactic acid bacteria in a liquid medium was used for the lactic acid bacteria solution. The initial liquid temperature was 25 ° C., and no particular temperature control was performed thereafter in this example.

その後、間歇曝気を行いながら、被処理液を発酵させた。間歇曝気は、1日の曝気時間の合計が約1時間となる様に、1日に1〜2回行った。この操作を初日から毎日繰り返し、12日目には、気泡の発生が殆ど認められなくなり発酵完遂と判断した。上記と同規格の回転篩7を用いて発酵物を固液分離し、約800Lの一次処理液と約200Lの粘稠物を得た。発酵は、温度制御しなかった場合には12〜14日で完遂するが、液温を30℃〜37℃に維持すると6〜7日で、液温を35〜37℃に維持すると通常3日で完遂する。   Thereafter, the liquid to be treated was fermented while performing intermittent aeration. Intermittent aeration was performed once or twice a day so that the total aeration time per day was about 1 hour. This operation was repeated every day from the first day, and on the 12th day, almost no bubbles were observed, and it was judged that the fermentation was completed. The fermented product was subjected to solid-liquid separation using the rotary sieve 7 of the same standard as above to obtain about 800 L of a primary treatment solution and about 200 L of a viscous product. Fermentation is completed in 12 to 14 days if the temperature is not controlled, but it is 6 to 7 days if the liquid temperature is maintained at 30 ° C. to 37 ° C., and usually 3 days if the liquid temperature is maintained at 35 to 37 ° C. Complete with.

(二次発酵工程)
上記で得た粘稠物を、再度、発酵に供した。まず、前記粘稠物の全量(約200L)を二次処理槽5に投入し、次いで水800Lを投入して混合し、被処理液を得た。更に、フルボ酸 2L,焼酎(アルコール度数:35度) 1L,廃糖蜜 4L,及びブドウ糖 2kgを投入し、曝気ブロワ8を約5分間運転して、これら添加物を被処理液に混合した。次いで、酢酸菌液 0.5L及び乳酸菌液 0.5Lを加えた。酢酸菌液,乳酸菌液,及び各添加物の投入量を一次発酵工程より少なめにしているのは、粘稠物に残存する繊維質,タンパク質等の量が少なく、粘稠物が酢酸菌及び乳酸菌の生菌を含むため、それらの投入量を減じても充分に発酵が進むからである。
(Secondary fermentation process)
The viscous material obtained above was again subjected to fermentation. First, the entire amount (about 200 L) of the viscous material was charged into the secondary treatment tank 5, and then 800 L of water was charged and mixed to obtain a liquid to be treated. Furthermore, 2 L of fulvic acid, 1 L of shochu (alcohol content: 35 degrees), 4 L of molasses, and 2 kg of glucose were added, and the aeration blower 8 was operated for about 5 minutes to mix these additives with the liquid to be treated. Next, 0.5 L of acetic acid bacteria solution and 0.5 L of lactic acid bacteria solution were added. The amount of acetic acid bacteria liquid, lactic acid bacteria liquid, and each additive added is smaller than that of the primary fermentation process because the amount of fibers, proteins, etc. remaining in the viscous material is small, and the viscous material is acetic acid bacteria and lactic acid bacteria. This is because the fermentation proceeds sufficiently even if the input amount is reduced.

その後、間歇曝気を行いながら、被処理液を発酵させた。間歇曝気は、1日の曝気時間の合計が約1時間となる様に、1日に1〜2回行った。この操作を初日から毎日繰り返し、10日目には、気泡の発生が殆ど認められなくなり発酵完遂と判断した。上記と同規格の回転篩7を用いて発酵物を固液分離し、約900Lの二次処理液と約100Lの粘稠物を得た。発酵は、温度制御しなかった場合には10〜12日で完遂するが、液温を30℃〜37℃に維持すると約5日で完遂する。二次粘稠物は、本発明の処理方法による処理が予定される、別の蒸留粕に混合した。   Thereafter, the liquid to be treated was fermented while performing intermittent aeration. Intermittent aeration was performed once or twice a day so that the total aeration time per day was about 1 hour. This operation was repeated every day from the first day, and on the 10th day, the generation of bubbles was hardly recognized and it was judged that the fermentation was completed. The fermented product was subjected to solid-liquid separation using the rotary sieve 7 of the same standard as above to obtain about 900 L of the secondary treatment liquid and about 100 L of viscous material. Fermentation is completed in 10 to 12 days if the temperature is not controlled, but is completed in about 5 days if the liquid temperature is maintained at 30 to 37 ° C. The secondary viscous material was mixed in another distiller which is scheduled to be processed by the processing method of the present invention.

(熟成工程)
一次処理液を一次熟成槽6に、二次処理液を二次熟成槽6’に、それぞれ入れて保存した。何れも、保存期間中、1日の曝気時間の合計が約1時間となる様に、1日に1〜2回曝気を行った。
(Aging process)
The primary treatment liquid was stored in the primary aging tank 6 and the secondary treatment liquid was stored in the secondary aging tank 6 ′. In each case, aeration was performed once or twice a day so that the total aeration time per day was about 1 hour during the storage period.

本実施例で得たアミノ酸含有液のアミノ酸分析を行い、原料の蒸留粕を固液分離して得た液体分と比較した。アミノ酸含有液としては、粘稠物と分離された後、一切熟成保存されていない一次処理液及び二次処理液を用いた。各サンプルを除タンパクした後に希塩酸で希釈し(サンプル原液に対する希釈倍率は20倍であった)、それを全自動アミノ酸分析機JLC−500(日本電子株式会社製)で分析した。希釈後のアミノ酸含量実測値を、表1に示す。尚、約40種以上の化学種の分析が可能であったが、何れのサンプルでも検出されなかった化学種は表中に示していない。また、空欄は、定量限界以下であったことを示す。   The amino acid analysis of the amino acid-containing liquid obtained in this example was performed and compared with the liquid content obtained by solid-liquid separation of the raw material distiller. As the amino acid-containing liquid, a primary treatment liquid and a secondary treatment liquid which were separated from a viscous material and were not stored at any age were used. Each sample was deproteinized and then diluted with dilute hydrochloric acid (dilution ratio with respect to the sample stock solution was 20 times), and analyzed with a fully automatic amino acid analyzer JLC-500 (manufactured by JEOL Ltd.). Table 1 shows the actually measured amino acid content after dilution. In addition, although analysis of about 40 or more chemical species was possible, chemical species that were not detected in any sample are not shown in the table. A blank indicates that it was below the limit of quantification.

Figure 0005850363
Figure 0005850363

表1に示される様に、一次処理液中のアミノ酸含量は、一部を除いて液体分より高く、概ね2倍又はそれ以上である。二次処理液には、液体分と概ね同等のアミノ酸が含まれるが、本発明に係る処理の過程で希釈されていることを考慮すると、アミノ酸が有意に増加していることが分かる。   As shown in Table 1, the amino acid content in the primary treatment liquid is higher than that of the liquid except for a part, and is approximately twice or more. The secondary treatment liquid contains amino acids substantially equivalent to the liquid content, but it can be seen that the amino acids are significantly increased in view of dilution in the course of the treatment according to the present invention.

実施例1で得た一次処理液を100倍希釈して元肥として用い、マルチシートを用いて畑で甘薯を栽培した。10a当りの収穫量は3088kgであり、堆肥を元肥として用いた場合の収穫量2451kgに比べ、約26%増加した。   The primary treatment liquid obtained in Example 1 was diluted 100 times and used as the original fertilizer, and sweet potatoes were cultivated in the field using a multi-sheet. The yield per 10a was 3088 kg, an increase of about 26% compared to the yield of 2451 kg when compost was used as the original manure.

実施例1で得たアミノ酸含有液を用い、畑でスナップエンドウを栽培した。本実施例においては、上水で500倍希釈した一次処理液及び堆肥を元肥として用い、上水で500倍希釈した一次処理液を追肥として散布し、上水で100倍希釈した二次処理液を害虫忌避剤として使用した。比較例1では、元肥に堆肥のみを用い、追肥として化学肥料及び害虫忌避のための化学薬剤を用いた。本実施例と比較例1の11月から翌年4月までの収穫量を、表2に示す。   Using the amino acid-containing liquid obtained in Example 1, snap peas were cultivated in the field. In this embodiment, the primary treatment liquid and compost diluted 500 times with clean water are used as the primary fertilizer, the primary treatment liquid diluted 500 times with clean water is sprayed as additional fertilizer, and the secondary treatment liquid diluted 100 times with clean water. Was used as a pest repellent. In Comparative Example 1, only compost was used as the base manure, and chemical fertilizer and a chemical agent for pest repellent were used as additional fertilizer. Table 2 shows the yields of this example and Comparative Example 1 from November to April of the following year.

Figure 0005850363
Figure 0005850363

表2に示される様に、比較例1が一般的な収穫量を示したのに対して、本実施例では合計約11%の収穫量増加が認められ、特に2〜4月の収穫量増加が顕著である。これは、一般的には外気温の上昇に伴って収穫量が低下するが、希釈したアミノ酸含有液を施肥した本実施例では、生り疲れせず収穫可能期間が延びたためである。また、実施例3の12月及び1月の収穫量が大幅に減少しているのは、害虫が発生したことによる。   As shown in Table 2, while Comparative Example 1 showed a general yield, in this example, a total yield increase of about 11% was observed, and in particular, an increase in yield in February to April. Is remarkable. This is because, in general, the yield decreases as the outside air temperature rises, but in this example in which the diluted amino acid-containing liquid was fertilized, the harvestable period was extended without being tired. In addition, the amount of harvest in December and January in Example 3 is greatly reduced due to the occurrence of pests.

実施例1で得たアミノ酸含有液を用い、ビニールハウスでトマトを栽培した。本実施例においては、元肥に堆肥を用い、上水で250倍希釈した一次処理液を追肥として散布し、上水で100倍希釈した二次処理液を害虫忌避剤として使用した。比較例2では、元肥に堆肥を用い、追肥として化学肥料を用い、害虫忌避のために化学薬剤を用いた。本実施例と比較例2で収穫されたトマトについて食品分析を行った結果を、表3に示す。表3に示される様に、糖度,ビタミンA(β−カロテン)含量,及びビタミンC含量の何れも、有意に上昇していた。   Using the amino acid-containing liquid obtained in Example 1, tomatoes were grown in a greenhouse. In this example, compost was used as the basic manure, a primary treatment solution diluted 250 times with clean water was sprayed as additional fertilizer, and a secondary treatment solution diluted 100 times with clean water was used as a pest repellent. In Comparative Example 2, compost was used as the original fertilizer, chemical fertilizer was used as additional fertilizer, and chemical agents were used for pest repellent. Table 3 shows the results of food analysis of the tomatoes harvested in this example and Comparative Example 2. As shown in Table 3, sugar content, vitamin A (β-carotene) content, and vitamin C content all increased significantly.

Figure 0005850363
Figure 0005850363

実施例1で得たアミノ酸含有液を用い、ビニールハウスで夏イチゴを栽培した。上水で250倍希釈した一次処理液を液肥として葉面散布し、上水で100倍希釈した二次処理液をアブ防止のための害虫忌避剤として使用した。収穫される夏イチゴの糖度は、6月当初には13%、7〜8月には10.8%の高値を示した。   Using the amino acid-containing liquid obtained in Example 1, summer strawberries were cultivated in a greenhouse. The primary treatment solution diluted 250 times with clean water was sprayed on the foliage as liquid fertilizer, and the secondary treatment solution diluted 100 times with clean water was used as a pest repellent for preventing abs. The sugar content of the harvested summer strawberries was 13% at the beginning of June and 10.8% in July to August.

1 原料タンク
2 固体分貯留槽
3 液体分貯留槽
4 一次処理槽
5 二次処理槽
6 一次熟成槽
6’ 二次熟成槽
7 回転篩
8 曝気ブロワ
9 噴射ノズル
10 ポンプ
11 バルブ
12 送液孔
13 混合室
14 吸気口
15 送液管
16 送気管
DESCRIPTION OF SYMBOLS 1 Raw material tank 2 Solid content storage tank 3 Liquid content storage tank 4 Primary processing tank 5 Secondary processing tank 6 Primary aging tank 6 'Secondary aging tank 7 Rotary sieve 8 Aeration blower 9 Injection nozzle 10 Pump 11 Valve 12 Liquid feeding hole 13 Mixing chamber 14 Intake port 15 Liquid supply pipe 16 Air supply pipe

Claims (5)

(A)植物細胞又は繊維質を含む食品加工廃液を処理槽に投入する工程
(C)前記処理槽に酢酸菌及び乳酸菌を投入し、間歇曝気により酢酸発酵と乳酸発酵とを交互に行い、発酵物を得る工程
(D)前記発酵物を固液分離してアミノ酸含有液を得る工程
順に行われる上記工程(A),(C),及び(D)を含むことを特徴とするアミノ酸含有液の製造方法。
(A) A step of introducing a food processing waste liquid containing plant cells or fiber into a processing tank (C) Acetic acid bacteria and lactic acid bacteria are charged into the processing tank, and acetic acid fermentation and lactic acid fermentation are alternately performed by intermittent aeration, and fermentation A step of obtaining a product (D) comprising the above steps (A), (C), and (D) performed in the order of steps of obtaining the amino acid-containing solution by solid-liquid separation of the fermented product. Production method.
(B)食品加工廃液に気液二相流を噴射する工程
上記工程(B)が前記工程(C)の前に行われることを特徴とする請求項に記載のアミノ酸含有液の製造方法。
(B) method for producing amino acid-containing solution of claim 1, step the step of injecting a gas-liquid two-phase flow in food processing waste (B) is characterized by being performed prior to said step (C).
液温を30℃以上37℃以下に維持して工程(C)が行われることを特徴とする請求項又は請求項に記載のアミノ酸含有液の製造方法。 The method for producing an amino acid-containing liquid according to claim 1 or 2 , wherein the step (C) is carried out while maintaining the liquid temperature at 30 ° C or higher and 37 ° C or lower. 食品加工廃液が、焼酎若しくは泡盛の蒸留粕又は該蒸留粕を固液分離して得た液体分であることを特徴とする請求項乃至請求項の何れか1項に記載のアミノ酸含有液の製造
方法。
Food processing waste liquid, amino acid-containing solution according to any one of claims 1 to 3, characterized in that a liquid fraction obtained by distillation residue or the evaporated Tomekasu the solid-liquid separation of shochu or awamori Manufacturing method.
食品加工廃液が、工程(D)でアミノ酸含有液と分離された粘稠物に水を加えた懸濁液であることを特徴とする請求項乃至請求項の何れか1項に記載のアミノ酸含有液の製造方法。 The food processing waste liquid is a suspension obtained by adding water to the viscous material separated from the amino acid-containing liquid in the step (D), according to any one of claims 1 to 3 . A method for producing an amino acid-containing liquid.
JP2011244071A 2011-11-08 2011-11-08 Method for producing amino acid-containing liquid Expired - Fee Related JP5850363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011244071A JP5850363B2 (en) 2011-11-08 2011-11-08 Method for producing amino acid-containing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011244071A JP5850363B2 (en) 2011-11-08 2011-11-08 Method for producing amino acid-containing liquid

Publications (2)

Publication Number Publication Date
JP2013100192A JP2013100192A (en) 2013-05-23
JP5850363B2 true JP5850363B2 (en) 2016-02-03

Family

ID=48621254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011244071A Expired - Fee Related JP5850363B2 (en) 2011-11-08 2011-11-08 Method for producing amino acid-containing liquid

Country Status (1)

Country Link
JP (1) JP5850363B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398798B2 (en) * 2011-08-24 2014-01-29 和己 柴田 Liquid fertilizer and method for producing the same
CN103626545B (en) * 2013-11-20 2016-07-06 路平 A kind of amino-acid compound fertilizer, preparation method and Agro-ecology circulation development approach
CN103755455A (en) * 2013-12-20 2014-04-30 当涂县科辉商贸有限公司 Insect-proofing organic fertilizer and preparation method thereof
CN103755450A (en) * 2013-12-20 2014-04-30 当涂县科辉商贸有限公司 Ecological organic compound fertilizer and preparation method thereof
CN103755448A (en) * 2013-12-20 2014-04-30 当涂县科辉商贸有限公司 Functional regulating fertilizer and preparation method thereof
JP6215272B2 (en) * 2015-07-27 2017-10-18 株式会社アミノ Plant improvement composition produced using distilled liquor waste liquor and method for producing the same
JP2022036699A (en) * 2020-08-24 2022-03-08 阿部化学 株式会社 Microbial activator and method for producing microbial activator
CN113731135B (en) * 2021-11-04 2022-02-11 北京锦绣新技术发展有限公司 Carbon dioxide trapping agent for preparing fertilizer from amino acid waste liquid

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811099A (en) * 1981-07-15 1983-01-21 Ebara Corp Aerator
JPH02199091A (en) * 1989-01-30 1990-08-07 Isao Osuga Production of liquid fertilizer
JP2957944B2 (en) * 1996-04-01 1999-10-06 弘明 穴田 Rice husk compost and its production method
JPH11244832A (en) * 1998-03-02 1999-09-14 Osaki Seisakusho:Kk Food residual dross decomposing method and device therefor
JP2002306158A (en) * 2000-05-15 2002-10-22 Makoto Kumazaki Composite culture material, method for producing composite culture material, precultured material, method for producing precultured material and method for producing microbial preparation
JP2002003291A (en) * 2000-06-19 2002-01-09 Mi Tec:Kk Compost-mixed fertilyzer and grain
JP2002273473A (en) * 2001-03-23 2002-09-24 Toto Ltd Waste water treating system
JP2003012387A (en) * 2001-06-27 2003-01-15 Jonan Koken:Kk Compost
JP2003033170A (en) * 2001-07-25 2003-02-04 Kumesen Shuzo Kk Method for producing vinegar from distillation residue of okinawa rice brandy
JP3909329B2 (en) * 2004-02-12 2007-04-25 住友重機械工業株式会社 Wastewater treatment equipment

Also Published As

Publication number Publication date
JP2013100192A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP5850363B2 (en) Method for producing amino acid-containing liquid
EP2619157B1 (en) Method for the production of a fertilizer precursor and also of a fertilizer
KR101535430B1 (en) Mushroom Compost Medium Manufacturing Method Using Livestock Manure And Mushroom Cultivation Method Using Mushroom Compost Medium Produced by Livestock Manure
AU2019315926A1 (en) Process for manufacturing nutritional compositions for plants and soils
KR20150084471A (en) a manufacturing method of fertilizer and manufactured thereof
CN110066071A (en) A kind of livestock breeding wastewater biological utilisation processing method
JP2009051709A (en) Liquid fertilizer, liquid stock feed, and methods for producing them
CN105132244A (en) Liquid fermentation distilled liquor technique
CN107686401A (en) One kind utilizes microbial manure and preparation method thereof made from yeast fermentation broth
KR101156650B1 (en) Manufacturing method of liquid manure using humic acid
CN107602287A (en) It is a kind of to utilize ferment bacterium compost of preserved apple processing byproduct and preparation method thereof
KR102185297B1 (en) Liquid fertilizer production method and high-quality liquid fertilizer based on lfqc and chlorella microbiological fertilizer manufacture method
WO2010113255A1 (en) Method of producing fermented neem
RU2428405C1 (en) Method of producing liquid-phase biological agent for crop growing and agriculture
JP2020124174A (en) Method for producing nutritional supplement solution
JP5152953B2 (en) How to produce feed and fertilizer from chicken manure
EP0190610B1 (en) Method for producing alcohol and protein-enriched vinasse from raw materials containing sugar, starch and/or cellulose
US20190059235A1 (en) Bokashi Mushroom Growth Substrate
RU2815050C1 (en) Method of producing biologically active biohumus
EP2024489B1 (en) Process for the production of yeast
KR20110100460A (en) Manufacturing method of liquid manure using humic acid
JPH0356715B2 (en)
JP2022033544A (en) Method for producing nutrient solution
CN104987178A (en) Making method of pleurotus eryngii cultivating medium
JP2007197234A (en) Method of manufacturing liquid compost

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20150831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151120

R150 Certificate of patent or registration of utility model

Ref document number: 5850363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees