JP5836947B2 - 微細加工された慣性センサのオフセット検出および補償 - Google Patents

微細加工された慣性センサのオフセット検出および補償 Download PDF

Info

Publication number
JP5836947B2
JP5836947B2 JP2012525613A JP2012525613A JP5836947B2 JP 5836947 B2 JP5836947 B2 JP 5836947B2 JP 2012525613 A JP2012525613 A JP 2012525613A JP 2012525613 A JP2012525613 A JP 2012525613A JP 5836947 B2 JP5836947 B2 JP 5836947B2
Authority
JP
Japan
Prior art keywords
signal
resonator
error
modulated
coriolis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012525613A
Other languages
English (en)
Other versions
JP2013502581A (ja
Inventor
ウィリアム エー. クラーク,
ウィリアム エー. クラーク,
ジョン エー. ジーン,
ジョン エー. ジーン,
Original Assignee
アナログ デバイシス, インコーポレイテッド
アナログ デバイシス, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アナログ デバイシス, インコーポレイテッド, アナログ デバイシス, インコーポレイテッド filed Critical アナログ デバイシス, インコーポレイテッド
Publication of JP2013502581A publication Critical patent/JP2013502581A/ja
Application granted granted Critical
Publication of JP5836947B2 publication Critical patent/JP5836947B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Description

(関連出願の引用)
本願は、共有に係る米国特許出願第12/469,899号(2009年5月21日出願、名称「Mode−Matching Apparatus and Method For Micromachined Inertial Sensors」、代理人事件番号第2550/C21)に関連する。該出願は、その全体が参照により本明細書に引用される。
(技術分野)
本発明は、微細加工された慣性センサに関し、より具体的には、微細加工された慣性センサのオフセット誤差の検出および/または低減に関する。
微細加工された(MEMS)ジャイロスコープは、有用な市販品として確立されてきた。概して、MEMSジャイロスコープは、2つの高性能MEMSデバイスを組み込んでおり、具体的には、自己同調型共振器を駆動軸に組み込み、超小型加速度センサを感知軸に組み込んでいる。ジャイロスコープの性能は、とりわけ、製造ばらつき、パッケージングの際の誤差、駆動、直線加速、温度等に対して非常に敏感である。角速度感知ジャイロスコープの動作の基本原理は、十分に理解されており、従来技術に記載されている(例えば、非特許文献1、http://www。analog.com/library/analogDialogue/archives/37−03/gyro.htmlで入手可能であり、参照によりその全体が本明細書に組み込まれる)。
離散質量を伴う振動感知型角速度ジャイロスコープの原理には長い歴史がある(例えば、Lymanの特許文献1およびLymanの特許文献2を参照されたい。それぞれ、参照によりその全体が本明細書に組み込まれる)。概して、振動速度ジャイロスコープは、試験質量(本明細書では、「シャトル」または「共振器」とも称される)を振動させることによって機能する。振動は、共振周波数でばね−質量−ダンパー系に印加される周期的な力によって発生する。共振での動作は、印加された力に対する振動振幅を大きくすることを可能にする。ジャイロスコープが回転すると、振動試験質量には、被駆動振動および回転の両方に直角な方向にコリオリ加速度が発生する。コリオリ加速度の大きさは、振動試験質量の速度および回転速度に比例する。結果として生じるコリオリ加速度は、試験質量の偏向を感知することによって測定することができる。そのような試験質量の偏向を感知するために使用される電気的および機械的構造は、概して、加速度計と称される。
多くのMEMSジャイロスコープは、Tangの特許文献3に概して記載される種類の平衡化コーム駆動を用いている。その基板に直角なコリオリ感知を伴う半導体基板の上側の微細加工された層の使用は、概して、Zablerの特許文献4に記載されており、参照によりその全体が本明細書に組み込まれる。例示的なMEMSジャイロスコープは、Bernsteinの特許文献5、Dunnの特許文献6、Geenの特許文献7、Geenの特許文献8、Zerbiniの特許文献9、およびGeenの特許文献10に記載されており、それぞれ、参照によりその全体が本明細書に組み込まれる。後者の4つの特許は、回転可能に振動させられる質量を用いる。
MEMSジャイロスコープの製造における1つの問題は、それらが依存するコリオリ信号が比較的に小さいことである。振動ジャイロスコープの信号サイズを、コリオリ加速度計を共振状態で動作させることによって、すなわち、加速度計の周波数を振動シャトルの周波数に一致させることによって拡大できることは、古くから認識されていた(例えば、Ljungの特許文献11、またはO’Brienの特許文献12、またはClarkの特許文献13、それぞれ、参照によりその全体が本明細書に組み込まれる)。概して、この信号サイズの増加は、関連する電子要件を緩和し、それによってコストを低減する。しかしながら、概して、共振増幅が大きくなるにつれて、小さい周波数摂動に対する加速度計の位相シフトがより敏感になる。そのような位相シフトは特にジャイロスコープの性能に悪影響を及ぼすので、実際には、周波数を十分に分離するか、または加速度計の周波数をシャトルの周波数に緊密にサーボすることが概して必要である。差動容量型加速度計の周波数を制御するための機構は、好都合に、印加されるコモンモード電圧を変化させることによって利用することができる。
振動速度ジャイロスコープでは、種々の機械的構造ならびに駆動および感知に使用される電子部品における不完全性等の数多くの因子が、加速度計の振動を引き起こす可能性があり、これは、コリオリ加速度および回転速度と混同される可能性がある。そのような誤差源は、しばしば、集合的にジャイロスコープオフセットと称される。ジャイロスコープオフセット誤差には、2つの主な種別、すなわち、直交誤差(quadrature errors)および同相誤差(in−phase errors)がある。
直交誤差の存在下で、加速度計は、共振器の変位にほぼ比例し、かつコリオリ加速度信号に対して約90度である力を受ける。直交誤差の例は、振動運動が加速度計に対して完全に直角でない時に生じる。
同相誤差の存在下で、加速度計は、共振器の速度にほぼ比例し(共振状態では、振動駆動力にも比例する)、かつコリオリ加速度信号と実質的に同相または同期である力を受ける。同相誤差には、2つの主な種別、すなわち、共振器の実際の運動に関連する同相誤差、および共振器の実際の運動以外の起源を有する同相誤差がある。前者の例は、共振器への空気力学的な影響を含む。後者の例は、振動駆動力が加速度計に対して完全に直角でないような共振器駆動機構の不整列によって引き起こされる同相誤差、および駆動系から加速度計の感知電子部品への電気的フィードスルーによって引き起こされる同相誤差を含む。
ジャイロスコープのオフセット誤差は、デバイスの設計、製造、およびパッケージングを通してある程度低減することができるが、これらの手法には、特に、ジャイロスコープのオフセットが、例えば温度または応力の変化のため、経時的に変動する可能性がある場合には、実用限界がある。
米国特許第2,309,853号明細書 米国特許第2,513,340号明細書 米国特許第5,025,346号明細書 米国特許第5,275,047号明細書 米国特許第5,349,855号明細書 米国特許第5,359,893号明細書 米国特許第5,635,640号明細書 米国特許第5,869,760号明細書 米国特許第6,370,954号明細書 米国特許第6,837,107号明細書 米国特許第4,884,446号明細書 米国特許第5,392,650号明細書 米国特許第5,992,233号明細書
Geen,他,New iMEMS Angular−Rate−Sensing Gyroscope,Analog Devices,Inc.,Analog Dialog 37−03(2003)
本発明の一側面によれば、少なくとも1つの誤差源を検出するために、変調した駆動信号を共振器に提供し、変調した駆動信号によって誘発される加速度計信号を感知することによって、慣性センサの共振器に印加される駆動信号に関連する少なくとも1つの誤差源を検出するための方法、慣性センサ、およびコントローラが提供される。
本発明の別の側面によれば、少なくとも1つの誤差源を検出するために、共振器の共振を引き起こすように駆動信号を提供し、共振器と下側の基板との間の距離を変調するように変調した試験信号を提供し、そして、変調した試験信号によって誘発される加速度計信号を感知することによって、慣性センサの共振器の空気力学に関連する少なくとも1つの誤差源を検出するための方法、慣性センサ、およびコントローラが提供される。
上述の実施形態のいずれかにおいて、信号は、振幅変調、周波数変調、オン/オフキーイング、およびスペクトラム拡散変調のうちの1つを使用して変調され得る。変調した駆動信号または試験信号によって誘発される加速度計信号の検出は、駆動/試験信号を変調するために使用される変調信号に基づいた加速度計信号の復調を含み得る。少なくとも1つの誤差源によって導入される誤差を相殺するために、少なくとも1つの補償信号が提供され得る(例えば、例えば同相オフセット誤差、パススルー、および/または空気力学的な影響を実質的に相殺するために、補償信号が一組の同相補償電極に提供され得る)。加速度計は、x軸センサ、y軸センサ、およびz軸センサのうちの少なくとも1つを含み得る。共振器は1つ以上のシャトルを含み得、複数のシャトルを含む実施形態において、シャトルは、単一の共振周波数で共振するように連結され得る。
本発明はさらに、例えば、以下を提供する。
(項目1)
共振器および加速度計を有する慣性センサにおいて、該共振器に印加される駆動信号に関連する少なくとも1つの誤差源を検出する方法であって、
変調した駆動信号を該共振器に提供することと、
該少なくとも1つの誤差源を検出するために、該変調した駆動信号によって誘発される加速度計信号を感知することと
を含む、方法。
(項目2)
前記変調した駆動信号を前記共振器に提供することは、振幅変調、周波数変調、オン/オフキーイング、およびスペクトラム拡散変調のうちの1つを使用して、駆動信号を変調することを含む、項目1に記載の方法。
(項目3)
前記変調した駆動信号によって誘発される加速度計信号を検出することは、前記駆動信号を変調するために使用される変調信号に基づいて、加速度計信号を復調することを含む、項目1に記載の方法。
(項目4)
前記少なくとも1つの誤差源によって導入される誤差を実質的に相殺するために、少なくとも1つの補償信号を提供することをさらに含む、項目1に記載の方法。
(項目5)
前記少なくとも1つの誤差源は、同相オフセット誤差を含む、項目1に記載の方法。
(項目6)
前記同相オフセット誤差を実質的に相殺するために、補償信号を一組の同相補償電極に提供することをさらに含む、項目5に記載の方法。
(項目7)
前記少なくとも1つの誤差源は、前記駆動信号の前記加速度計への電子パススルーを含む、項目1に記載の方法。
(項目8)
前記パススルーを実質的に相殺するために、補償信号を前記加速度計に提供することをさらに含む、項目7に記載の方法。
(項目9)
前記共振器は、単一の共振周波数で共振するように連結された複数のシャトルを含む、項目1に記載の方法。
(項目10)
前記加速度計は、x軸センサ、y軸センサ、およびz軸センサのうちの少なくとも1つを含む、項目1に記載の方法。
(項目11)
慣性センサであって、
共振器と、
加速度計と、
変調した駆動信号を該共振器に提供するように構成された共振器ドライバと、
該共振器に印加された該駆動信号に関連する少なくとも1つの誤差源を検出するために、該変調した駆動信号によって誘発される加速度計信号を感知するように構成されたオフセット検出器と
を備えている、慣性センサ。
(項目12)
前記共振器ドライバは、振幅変調、周波数変調、オン/オフキーイング、およびスペクトラム拡散変調のうちの1つを使用して、前記駆動信号を変調するように構成されている、項目11に記載の慣性センサ。
(項目13)
前記オフセット検出器は、前記変調した駆動信号によって誘発される加速度計信号を検出するために、前記駆動信号を変調するために使用される変調信号に基づいて、加速度計信号を復調するように構成されている、項目11に記載の慣性センサ。
(項目14)
前記少なくとも1つの誤差源によって導入される誤差を実質的に相殺するために、少なくとも1つの補償信号を提供するように構成されたサーボをさらに備えている、項目11に記載の慣性センサ。
(項目15)
前記少なくとも1つの誤差源は、同相オフセット誤差を含む、項目11に記載の慣性センサ。
(項目16)
前記同相オフセット誤差を実質的に相殺するために、補償信号を一組の同相補償電極に提供するように構成されたサーボをさらに備えている、項目15に記載の慣性センサ。
(項目17)
前記少なくとも1つの誤差源は、前記駆動信号の前記加速度計への電子パススルーを含む、項目11に記載の慣性センサ。
(項目18)
前記パススルーを実質的に相殺するために、補償信号を前記加速度計に提供するように構成されたサーボをさらに備えている、項目17に記載の慣性センサ。
(項目19)
前記共振器は、単一の共振周波数で共振するように連結された複数のシャトルを含む、項目11に記載の慣性センサ。
(項目20)
前記加速度計は、x軸センサ、y軸センサ、およびz軸センサのうちの少なくとも1つを含む、項目11に記載の慣性センサ。
(項目21)
共振器および加速度計を含む慣性センサの該共振器に印加される駆動信号に関連する少なくとも1つの誤差源を検出するためのコントローラであって、
変調した駆動信号を該共振器に提供するように構成された共振器ドライバと、
該共振器に印加された該駆動信号に関連する少なくとも1つの誤差源を検出するために、該変調した駆動信号によって誘発される加速度計信号を感知するように構成されたオフセット検出器と
を備えている、コントローラ。
(項目22)
前記少なくとも1つの誤差源によって導入される誤差を実質的に相殺するために、少なくとも1つの補償信号を前記慣性センサに提供するように構成されたサーボをさらに備えている、項目21に記載のコントローラ。
(項目23)
共振器および加速度計を有し、該共振器が下側の基板によって支持された慣性センサにおいて、該共振器の空気力学に関連する少なくとも1つの誤差源を検出する方法であって、
該共振器の共振を引き起こすために、駆動信号を提供することと、
該共振器と該下側の基板との間の距離を変調するために、変調した試験信号を提供することと、
該少なくとも1つの誤差源を検出するために、該変調した試験信号によって誘発される加速度計信号を感知することと
を含む、方法。
(項目24)
前記変調した試験信号を提供することは、振幅変調、周波数変調、オン/オフキーイング、およびスペクトラム拡散変調のうちの1つを使用して、駆動信号を変調することを含む、項目23に記載の方法。
(項目25)
前記変調した試験信号は、一組の直交補償電極、一組の同相補償電極、および別個の組の試験電極のうちの少なくとも1つに印加される、項目23に記載の方法。
(項目26)
前記変調した試験信号によって誘発される加速度計信号を検出することは、前記試験信号を変調するために使用される変調信号に基づいて、加速度計信号を復調することを含む、項目23に記載の方法。
(項目27)
前記少なくとも1つの誤差源によって導入される誤差を実質的に相殺するために、少なくとも1つの補償信号を提供することをさらに含む、項目23に記載の方法。
(項目28)
慣性センサであって、
基板によって支持された共振器と、
加速度計と、
該共振器の共振を引き起こすために、駆動信号を該共振器に提供するように構成された共振器ドライバと、
該共振器と該基板との間の距離を変調するために、変調した試験信号を提供するように構成された試験信号発生器と、
該共振器の空気力学に関連する少なくとも1つの誤差源を検出するために、該変調した試験信号によって誘発される加速度計信号を感知するように構成された検出器と
を備えている、慣性センサ。
(項目29)
前記試験信号発生器は、振幅変調、周波数変調、オン/オフキーイング、およびスペクトラム拡散変調のうちの1つを使用して、前記試験信号を変調するように構成されている、項目28に記載の慣性センサ。
(項目30)
前記変調した試験信号は、一組の直交補償電極、一組の同相補償電極、および別個の組の試験電極のうちの少なくとも1つに印加される、項目28に記載の慣性センサ。
(項目31)
前記検出器は、前記試験信号を変調するために使用される変調信号に基づいて、加速度計信号を復調するように構成されている、項目28に記載の慣性センサ。
(項目32)
前記少なくとも1つの誤差源によって導入される誤差を実質的に相殺するために、少なくとも1つの補償信号を提供するように構成されたサーボをさらに備えている、項目28に記載の慣性センサ。
(項目33)
慣性センサの共振器の空気力学に関連する少なくとも1つの誤差源を検出するためのコントローラであって、該慣性センサは、該共振器と加速度計とを含み、該共振器は、基板によって支持され、
該コントローラは、
該共振器の共振を引き起こすために、駆動信号を該共振器に提供するように構成された共振器ドライバと、
該共振器と下側の該基板との間の距離を変調するために、変調した試験信号を提供するように構成された試験信号発生器と、
該共振器の空気力学に関連する少なくとも1つの誤差源を検出するために、該変調した試験信号によって誘発される加速度計信号を感知するように構成された検出器と
を備えている、コントローラ。
(項目34)
前記少なくとも1つの誤差源によって導入される誤差を実質的に相殺するために、少なくとも1つの補償信号を前記慣性センサに提供するように構成されたサーボをさらに備えている、項目33に記載のコントローラ。
本発明の上述の特徴は、添付図面を参照して、以下の詳細な説明を参照すれば、より容易に理解されるであろう。
図1は、デバイス層構造を強調した、本発明の例示的実施形態による、振動X−Y軸ジャイロスコープの概略上面図である。 図2は、図1で強調したデバイス層構造に関連する基板層構造を強調した、本発明の例示的実施形態による、振動X−Y軸ジャイロスコープの概略上面図である。 図3は、本発明の例示的実施形態による、同相オフセット誤差を検出するためのジャイロスコープ100による使用に好適な電子制御回路を示す、概略ブロック図である。 図4は、本発明の例示的実施形態による、同相オフセット誤差を軽減するための随意の同相補償サーボを含む図3の電子制御回路を示す、概略ブロック図である。 図5は、本発明の例示的実施形態による、共振器の駆動力不整列の影響を軽減するために構成される随意の同相補償サーボを含む図3の電子制御回路を示す、概略ブロック図である。 図6は、本発明の例示的実施形態による、駆動電子部品からコリオリ感知電子部品への電気的フィードスルーの影響を軽減するために構成される随意の同相補償サーボを含む図3の電子制御回路を示す、概略ブロック図である。 図7は、本発明の代替の実施形態による、振動ジャイロスコープの概略上面図であり、図7Aは、構造の上面図であり、図7Bは、構造の一部の拡大図である。 図8は、本発明の別の代替物実施形態による、例示的な振動Z軸ジャイロスコープの概略上面図である。 図9は、本発明の別の代替物実施形態による、交差直交Z軸ジャイロスコープの概略上面図である。 図10は、図9に示される実施形態による、モード整合に適合することができる、特定の交差直交ジャイロスコープ構成を示す図である。
前述の図およびその中に表される要素は、必ずしも一貫した尺度または任意の尺度で描かれているわけではないことに留意されたい。文脈で他に提示されていない限り、同様の要素は、同様の符号によって示される。
定義。本明細書および添付の特許請求の範囲で用いられるように、以下の用語は、文脈上異なる解釈を要する場合を除き、示される意味を有するものとする。
1つの「組」は、1つ以上の要素を含む。
「電極」は、それを通して電気的または電気機械的効果が適用および/または感知される構造である。例示的実施形態では、容量カップリングを通して電気的または電気機械的効果を適用および/または感知するための種々の電極が使用されるが、他の種類の電極およびカップリング(例えば、圧電性)が使用され得ることに留意されたい。
「品質係数」、または「Q値」、または単に「Q」という用語は、振動物理系の振幅の減衰に対する時定数をその振動期間と比較する、無次元数を示す。同等に、系が振動する周波数を、そのエネルギーを散逸する速度と比較する。より高いQは、発振周波数に対するエネルギー散逸の速度がより遅く、よって、よりゆっくりと振動が消滅することを示す。高いQを伴う系は、低いQを伴う系よりも大きい振幅で(共振周波数で)共振し、その応答は、周波数が共振から離れるにつれてより急激に低下する。
「f」という用語は、共振器の共振周波数を指すために短縮形として使用され得る。
共振体の「モード」は、共振時の本体の運動の形である。
本発明の実施形態は、ある種類のジャイロスコープ誤差源を原位置で検出および低減するために提供される。第1の誤差源は、直交誤差(quadratur error)であり、これは、直交相殺電極を使用して測定および相殺される。第2は、同相誤差(in−phase error)をもたらす駆動源の不完全度と関連付けられる。第3の同相誤差源は、寄生フィードスルーに起因する。第4の同相誤差源は、構造の空気力学と関連付けられる。全てのこれらの実施例において、誤差源は、測定され、ゼロに駆動される。直交は、主信号から復調されて、特殊電極を使用して相殺される。同相誤差源(例えば、駆動不完全度、寄生フィードスルー、および空気力学)について、誤差源の測定は、付加的な刺激を含む。
例示的実施形態において、駆動不完全性の測定は、駆動力を変調し、結果として生じる信号をある程度の駆動不完全性に達するように復調し、次いで、相殺力を印加することによって行われる。
同様に、空気力学的な誤差源も、検出を可能にするために変調される。空気力学的な誤差は、ジャイロ構造が環境ガス/流体を通して移動する時に発生する浮き上がりに起因する。これは、ジャイロスコープ構造および下側の基板の双方の幾何学的な不完全性の強い関数である。誤差の変調は、ジャイロスコープ構造の「浮上高さ」を変化させるか、または変調することによって達成される。浮上高さは、基板に直角な力(例えば、静電力)を印加することによって変化させられる。空気力学的な力は、浮上高さの変調によって変化し、復調することができ、そして再度、駆動不完全性に類似する静電気で相殺することができる。
本発明の実施形態において、試験質量の振動を駆動するために使用される力に関連付けられる種々のジャイロスコープ誤差源は、駆動力を変調し、コリオリチャネルにおいて誘発される対応する信号を感知することによって検出される。同相オフセット誤差の大きさは、駆動力の大きさに関連するので、駆動力の変調は、概して、同相オフセット誤差の変調をもたらす。このオフセット誤差の供給源は、回転速度を識別するために使用されるコリオリ加速度信号を妨げずに、フィードバックによって、電子的に、電気機械的に、あるいは別様に相殺され得る。駆動信号は、振幅変調、周波数変調、オン/オフキーイング、スペクトラム拡散技術、または他の適切な変調技術を使用して変調され得る。ある例示的実施形態は、コリオリ加速度を未変調のままにするように、共振器の振幅を殆ど変化しない状態に維持するのに十分な高さの周波数で、容易に発生させた試験信号を使用して駆動力の大きさを変調する。試験信号周波数は、一般的に共振周波数の整数分の1(例えば、f/8)である。
同相誤差、特に、共振器の実際の運動以外の起源を有する同相誤差(例えば、共振器の駆動機構の不整列によって引き起こされる同相誤差、および駆動系から加速度計感知電子部品への電気的フィードスルーによって引き起こされる同相誤差であり、これらは、概して、図1および図2に示される種類のジャイロスコープの同相誤差の最も大きい供給源であるとみなされる)を検出するために、本発明の実施形態は、コリオリ出力において同相加速度計オフセット信号を誘発するために、高周波試験(キャリア)信号によって駆動コーム128に提供される駆動信号を変調する。試験信号は、共振器の周波数より十分低い帯域外周波数等の、コリオリ信号に影響を及ぼさない様式で提供され、よって、シャトルは、共振器の振幅を実質的に変化させずに試験信号に応答する。例えば、例示的な一実施形態において、ジャイロスコープの応答は、約32Hz未満であり得、共振器の周波数(f)は、約64kHzであり得、また、試験信号の周波数は、約1KHz〜8KHz(すなわち、f/64〜f/8)であり得る。さらに、駆動信号に適用される変調は、好ましくは、経時的にゼロに平均化する。
同様に、駆動電子部品から、コリオリ感知電子部品等の他の電子部品系への電気パススルーは、駆動信号の変調を通して検出され得、そして、電子的に、電気機械的に、あるいは別様に軽減され得る。
共振器は、高いQの系であるので、駆動力の変調は、共振器の振動を、したがって回転速度によって発生するコリオリ加速度を、実質的に変化させずに行うことができる。しかしながら、加速度センサおよび関連付けられる感知電子部品は、共振器の駆動に対する変化に迅速に反応する。駆動力の変調は、一次信号を妨げずに、オフセットの主な供給源を顕在化させるために使用することができる。
図1および図2は、本発明の例示的実施形態による、振動X−Y軸ジャイロスコープ100の概略上面図である。この振動ジャイロスコープは、概して、Geenの米国特許第5,635,640号に開示されているように動作し、該特許は、参照によりその全体が本明細書に組み込まれる。具体的には、この振動ジャイロスコープは、種々の微細加工されたジャイロスコープ構造を、種々の基板層構造を有する下側の基板の上側に配向されたデバイス層の中に含む。便宜上、関連するジャイロスコープ構造は、デバイス面の中でラベル「a」および「b」が付された軸を参照して以下に説明する。ラベル「a」および「b」が付された軸は、その周りで、コリオリ加速度、したがって回転速度が感知される軸(すなわち、ジャイロスコープ感知軸)を表す。
デバイス面の中のジャイロスコープ構造は、2つの回転可能にディザリングされた質量(以下、シャトルと称する)102および104を含み、それぞれ、ポスト(「+」様の形状)およびサスペンションフレキシャ101(便宜上、2つのポストのうちの1つ、およびサスペンションフレキシャの配置だけが強調されている)を介して基板に移動可能に連結される中央ハブから、多数のスポーク(ここでの場合、12のスポークであるが、異なる実施形態は、異なる数のスポークを使用してもよい)を介して懸架される、外側リムを含む。ポストは、基板に取り付けられ、サスペンションフレキシャは、シャトルが、回転可能に振動することを可能にし、カップリングフレキシャ106ならびに支持フレキシャ108および110は、名目上、デバイス面内で、シャトルが相互に逆相で振動する(すなわち、シャトル102が時計回りに回転する時、シャトル104は、反時計回りに回転し、逆もまた同じである)ことを確実にするのを援助する。便宜上、デバイス面の中のディザリングされたジャイロスコープ構造は、集合的に共振器と称され得る。
スポークのそれぞれは、基板に取り付けられた対応するコーム構造128と相互に組み合う、フィンガー構造を含む(便宜上、24組のコームのうちの2つだけが強調されており、各組は、2つのコームを含む)。この例示的実施形態では、24組のコーム128がシャトルの運動を駆動するために使用され、具体的には、電気信号をコームに交互に印加して、シャトル102および104を、スポークのフィンガー構造との容量カップリングを通して振動させることによって、各対の一方のコームがシャトルを時計回り方向に駆動するために使用され、もう一方がシャトルを反時計回り方向に駆動するために使用される。速度感知電極は、シャトルの振動を感知および制御するために、フィードバックループで使用される。この例示的実施形態において、a指向およびb指向のスポーク(すなわち、各シャトルの4つのスポーク)の半径方向縁部の下側の基板上の速度感知電極130は、速度を感知するために使用される(便宜上、8対の速度感知電極130のうちの1つだけが強調されている)。コーム128のうちのいくつかは、別個の速度感知電極130に加えて、またはその代わりに速度を感知するために使用され得ることに留意されたい。
この例示的実施形態において、シャトルのそれぞれは、基板上の対応する電極配置を覆う4つの突出したプレートを含み、各電極配置は、コリオリ感知電極と、同相補償電極と、コリオリ感知電極および同相補償電極の両側の一対の直交補償電極とを含む。具体的には、シャトル102は、それぞれが配置(112C、112P、112Q)、(114C、114P、114Q)、(116C、116P、116Q)、および(118C、118P、118Q)を覆う、プレート112、114、116、および118を含む一方で、シャトル104は、それぞれが配置(120C、120P、120Q)、(122C、122P、122Q)、(124C、124P、124Q)、および(126C、126P、126Q)を覆う、プレート120、122、124、および126を含み、ここで、「C」は、コリオリ感知電極を示し、「P」は同相補償電極を示し、「Q」は、直交補償電極を示す。各プレートは、コリオリ感知電極および同相補償電極を完全に覆うが、直交補償電極は一部だけしか覆わず、よって、プレートと直交補償電極のそれぞれとの間の容量カップリングは、シャトルの回転位置に依存する一方で、プレートとコリオリ感知電極および同相補償電極との間の容量カップリングは、シャトルの回転位置とは実質的に無関係である。この例示的実施形態において、プレートは、x軸およびy軸と整列するように(すなわち、a軸およびb軸に対して約45度の角度で)位置付けられる。この例示的実施形態において、コリオリ感知電極は、駆動コーム128のうちのいずれとも整列しないことに留意されたい。また、速度感知電極130および直交補償電極は、幾分可換性があり、特定の一対の電極が、特定の実装の所望に応じて、速度を感知するために、および/または直交調整のために使用され得ることに留意されたい。種々の電極は、以下にさらに詳細に論じる。
シャトルが、それらの共振周波数(f)で振動し、速度感知電極130を介して提供されるフィードバックによって駆動コーム128を介して駆動されている間、x軸およびy軸周りのジャイロスコープの面外の動きは、シャトル102および104を、コリオリ力を通して基板に対して面外に傾けさせ、これらの面外(すなわち、コリオリ軸)の動きは、プレートとの容量カップリングを通して、コリオリ感知電極を介して検出される。この例示的実施形態において、そのようなコリオリの力は、コリオリ感知電極に関する差動容量によって、2つの軸で感知される。例えば、x軸周りのジャイロスコープの回転は、プレート114および124をそれらのそれぞれのコリオリ感知電極に向かって移動させる一方で、プレート118および120をそれらのそれぞれのコリオリ感知電極から離れるように移動させ、これらの動きは、各プレートとその対応するコリオリ感知電極との間の容量の変化によって検出され、4つのコリオリ感知電極から取得した信号は、ジャイロスコープの動きを表す出力信号をジャイロスコープに提供するように組み合わせられる。同様に、y軸周りのジャイロスコープの回転は、プレート116および126をそれらのそれぞれのコリオリ感知電極に向かって移動させる一方で、プレート112および122をそれらのそれぞれのコリオリ感知電極から離れるように移動させる。プレート112、114、116、118、120、122、124、および126は、シャトルの回転運動範囲の全体を通して、それらのそれぞれのコリオリ感知電極を完全に覆い、よって、コリオリ感知電極から取得した信号は、シャトルの回転変位とは実質的に無関係である。
前述のように、ジャイロスコープにいかなる外部的な動きも存在しない場合であっても、シャトルの振動は、一般的に、例えばシャトルおよびそれらのそれぞれの支持構造の不均衡のため、シャトルのわずかな面外の動きをもたらし、そのようなシャトルの面外の動きが、コリオリ信号と誤解され、したがって、誤差信号を表す可能性がある。前述のように、そのような誤差信号は、同相成分および直交成分を含み得る。直交誤差信号は、位相誤差信号よりも実質的に大きくなる可能性があり、したがって、位相誤差を相殺する電子回路を圧倒する可能性があるが、概して、どちらの誤差成分も除去することが望ましい。加速度計共振モードがシャトル共振モードを伴う面外である、図1および図2に示される種類のジャイロスコープでは、概して、直交および同相誤差成分を取り除くために、機械的構造(例えば、レバーおよびフレキシャ)を使用することは実用的でない。
同相誤差、特に、共振器の実際の運動以外の起源を有する同相誤差(例えば、共振器の駆動機構の不整列によって引き起こされる同相誤差、空気力学的な影響によって引き起こされる同相誤差、および駆動系から加速度計感知電子部品への電気的フィードスルーによって引き起こされる同相誤差であり、これらは、概して、図1および図2に示される種類のジャイロスコープの同相誤差の最も大きい供給源であるとみなされる)を検出するために、本発明の実施形態は、コリオリ出力において同相加速度計オフセット信号を誘発するために、高周波試験(キャリア)信号によって駆動コーム128に提供される駆動信号を変調する。試験信号は、共振器の周波数より十分低い帯域外周波数等の、コリオリ信号に影響を及ぼさない様式で提供され、よって、シャトルは、共振器の振幅を実質的に変化させずに試験信号に応答する。例えば、例示的な一実施形態において、ジャイロスコープの応答は、約32Hz未満であり得、共振器の周波数(f)は、約64kHzであり得、また、試験信号の周波数は、約1KHz〜8KHz(すなわち、f/64〜f/8)であり得る。駆動信号は、振幅変調、周波数変調、オン/オフキーイング、スペクトラム拡散技術、または他の適切な変調技術を使用して変調され得る。さらに、駆動信号に適用される変調は、好ましくは、経時的にゼロに平均化する。
同相オフセット誤差は、例えば試験信号に対応するコリオリ出力の中にいかなる信号もなくなるまでバイアス電圧を同相補償電極にかけることによって、コリオリ出力の中の誘発された同相加速度計オフセット信号に基づいて、デバイス面の中のシャトルの動き(例えば、シャトルの面内の動きに影響を及ぼすトリム電極を使用する)、または面外のシャトルの動き(例えば、加速度計の軸において)等を調整するために、補償力を共振器および/または加速度計に与えることによって低減され得る。追加的または代替的に、駆動電子部品から、コリオリ感知電子部品等の他の電子部品系へのパススルーは、例えば補償信号をコリオリチャネル増幅器の入力に印加することによって、コリオリ出力における同相加速度計オフセット信号に基づいて電子的に低減され得る。同相オフセット誤差を軽減し、信号のパススルーを軽減するためのいくつかの例示的な回路構成を以下に説明する。
直交誤差は、Clarkの米国特許第5,992,233号、またはGeenの米国特許第7,032,451号(それぞれ、参照によりその全体が本明細書に組み込まれる)に記載されているものに類似した様式で、正味トルクをコリオリ軸においてシャトル(すなわち、デバイス面の外側)に及ぼすことによって低減され得る。図1および図2に示される例示的実施形態では、プレートの縁部の下側に位置付けられる基板上の直交補償電極(すなわち、直交補償電極112Q、114Q、116Q、118Q、120Q、122Q、124Q、および126Q)、ならびにa指向およびb指向のスポークの間に位置付けられる各シャトルの8つのスポークの半径方向縁部に位置付けられる基板上の直交補償電極(すなわち、直交補償電極132。便宜上、16対の直交補償電極132のうちの4つだけが強調されている)は、直交調整を行うために使用されるが、代替の実施形態では、例えばバイアス電圧をコリオリ感知電極に印加することによって、類似した直交調整を行うことができる。DC直交調整信号は、正味トルクをシャトルに及ぼすように直交調整電極に印加される。直交補償電極は、プレートおよびスポークの縁部を超えて延在しているので、直交補償電極によって生成されるトルクは、デバイス面の中のシャトルの振動変位に比例し、かつ電極間の電位差の関数である。したがって、トルクは、直交補償電極の電位によって変調される、コリオリ軸(すなわち、デバイス面に垂直な軸)における直交運動を引き起こす。直交の抑制はまた、Lemkinの米国特許第7,051,590号、Chaumetの米国特許出願公開第2008/0282833号、およびSaukoskiのSystem and Circuit Design for a Capacitive MEMS Gyroscope,Doctoral Dissertation,TKK Dissertations 116,Helsinki University of Technology,Espo,Finland(2008)で論じられており、それぞれ、参照によりその全体が本明細書に組み込まれる。
図3は、本発明の例示的実施形態による、同相オフセット誤差を検出するための、ジャイロスコープ100とともに使用するのに好適な電子制御回路を示す、概略ブロック図である。とりわけ、この電子回路は、オフセット検出器310と、直交補償サーボ320と、コリオリ出力回路330と、シャトル駆動サーボ340と、関連する回路とを含む。
シャトル共振駆動サーボ340は、速度感知電極から受信した信号に基づいて、変調した駆動信号を駆動コームに提供する。駆動信号は、振幅変調、周波数変調、オン/オフキーイング、スペクトラム拡散技術、または他の適切な変調技術を使用して変調され得る。この例示的実施形態において、駆動信号は、共振器駆動電子部品に送られる、位相ロックループ(PLL)回路341から導出される試験信号を使用して変調される(図中、ラベル「MOD」が付される)。他の実施形態において、試験信号は、他の供給源から導出され得る。共振器は、高いQの系であるので、駆動力の変調は、共振器の振動を、したがって回転速度によって発生するコリオリ加速度を、実質的に変化させずに行うことができる。以下に詳細に論じるように、MOD信号はまた、オフセットを表す信号を抽出するためのオフセット検出器310の中の復調器にも送られ、MOD信号は、随意の同相補償サーボ350の中の変調器に送るために使用され得る。シャトル共振駆動サーボ340はまた、位相および直交基準信号も提供する。
オフセット検出器310は、コリオリ検知(「Cor」)電極から増幅した(301)コリオリチャネル信号を受信し、MOD基準でコリオリチャネル信号を復調し(311)、そして、復調した信号を積分(312)してオフセット誤差を反映したオフセット出力信号を生成する。このオフセット出力信号は、それ自体を、例えば製造中に原位置で品質保証の試験を行うために、またはデバイスの校正もしくは試験を行うために使用し得る。追加的または代替的に、(例えば、デバイス面の中のシャトルの運動を調整することによって)オフセット誤差を軽減するために、および/または(例えば、加速度計軸の中のシャトルの運動を調整することによって、またはオフセットの影響を除去するために、コリオリチャネル信号を調整することによって)オフセット出力信号に基づいたオフセット誤差の影響を軽減するために、回路が含まれ得る。
直交サーボ320は、コリオリ検知(「Cor」)電極から増幅した(301)コリオリチャネル信号を受信し、直交基準でコリオリチャネル信号を復調し(321)、そして、復調した信号を積分(322)して、直交サーボ320から直交補償(Quad)電極へのフィードバック信号によって示されるように、直交調整(「Quad」)電極に送り返される、低周波微分直交無効化信号を生成する。
コリオリ出力回路330は、コリオリ検知(「Cor」)電極から増幅した(301)コリオリチャネル信号を受信し、位相基準でコリオリチャネル信号を復調し(331)、復調した信号をフィルタ処理(332)して高周波成分を除去し、そして、フィルタ処理した信号を増幅(333)してジャイロスコープ出力信号を生成する。
図4は、本発明の例示的実施形態による、同相オフセット誤差を軽減するための随意の同相補償サーボ350を含む図3の電子制御回路を示す、概略ブロック図である。同相補償サーボ350は、位相基準、MOD基準、オフセット検出器310からのオフセット出力信号、および/またはトリム量に基づいて、1つ以上の補償信号を生成する。補償信号は、補償力を共振器および/または加速度計に与えて、デバイス面の中のシャトルの動き(例えば、シャトルの面内の動きに影響を及ぼすトリム電極を使用する)、または面外のシャトルの動き(例えば、加速度計の軸において)等を調整するために使用され得る。追加的または代替的に、補償信号は、駆動電子部品から、コリオリ感知電子部品等の他の電子部品系へのパススルーを電子的に相殺するために使用され得る。
図5は、本発明の例示的実施形態による、共振器駆動力の不整列の影響を軽減するために構成される随意の同相補償サーボ360を含む図3の電子制御回路を示す、概略ブロック図である。同相補償サーボ360は、変調した補償信号を同相補償電極に提供する、変調器361を含む。変調器361は、位相(Ph)およびMOD基準によって、および同相トリム362(すなわち、トリム係数によって調整されたオフセット検出器310からのオフセット出力信号)によって駆動される。同相トリム362は、共振器駆動の不整列による同相補正値を相殺するように調整される。この変調器は、駆動系における不完全性を相殺することを意図しているので、既に補償した不完全性が駆動信号の変調によって顕在化しないように、共振器駆動と合わせて変調されるべきである。付加的なオフセットが発見された場合、そのオフセットは、例えば駆動面の中のシャトルの運動を調整するために、別個のオフセット相殺機構にフィードバックすることができる。このようにして、オフセットの変化は、関心の信号、コリオリ加速度、または同等に、回転速度を妨げずに、検出および相殺することができる。
図6は、本発明の例示的実施形態による、駆動電子部品からコリオリ感知電子部品への電気的フィードスルーの影響を軽減するために構成される随意の同相補償サーボ370を含む図3の電子制御回路を示す、概略ブロック図である。同相補償サーボ370は、同相補償電極ではなくコリオリチャネル増幅器301の入力に容量結合される変調した補償信号を提供する、変調器371を含む。変調器371は、図に示されるように、位相(Ph)およびMOD基準によって駆動され、また、トリム量および/またはオフセット検出器310からのフィードバックによって駆動され得る。オフセットを相殺するための信号処理および信号レベルは異なり得るが、サーボ370は、図5に示されるサーボ360に類似していることに留意されたい。
電子制御回路は、例えば、一方が、図5を参照して前述したような駆動力の不整列を軽減するための同相補償電極に連結され、もう一方が、図6を参照して前述したようなフィードスルーを軽減するためのコリオリチャネル増幅器301に連結される、複数のサーボを含み得ることに留意されたい。
図1および図2に示される実施形態において、各シャトルは、シャトルの外周から外向きに延在する、プレートを含み、各プレートは、対応するコリオリ(加速度センサ)電極を完全に覆い、コリオリ電極の両側の一対の直交電極を部分的に覆い、よって、プレートと直交電極との間の容量カップリングは、シャトルの回転位置に依存する一方で、プレートとコリオリ電極との間の容量カップリングは、シャトルの回転位置には実質的に無関係である。しかしながら、代替の実施形態では、異なるシャトルおよび/または電極の構成が使用され得ることに留意されたい。例えば、ある代替の実施形態において、シャトルの外周部分は、コリオリ感知電極との容量カップリングであり得る。
図7は、本発明の代替の一実施形態による、振動ジャイロスコープの概略上面図である。この振動ジャイロスコープは、概して、図1および図2を参照して前述したものと同様に動作するが、より少ない構造を有することによって、より単純な設計であると考えられる。また、主要なジャイロスコープ構造は、上下軸に沿って、または、その軸に対して45度に配向され、これは、微細加工装置(例えば、エッチング装置)が直線格子に基づいてしばしばエッチングを生成するので、微細加工を容易にし、よって、直線格子、およびその格子と整列する、またはその格子に対して45度である構造が、より一貫してより真っ直ぐな縁部を伴って生成され得る。
本発明は、図1、図2、および図7に示されるジャイロスコープの設計に限定されないことに留意されたい。種々の代替の実施形態では、Geenの米国特許第5,635,640号に図示および説明される種類の1つ、2つ、またはそれ以上(例えば、4つ)のシャトルを有するジャイロスコープが使用され得る。さらに、本発明は、回転可能に振動するシャトルに限定されないが、より一般的には、コリオリチャネルにおいて対応する信号を誘発するように駆動信号を変調することができるという類似した原理の下で動作する、他の種類の慣性センサ(例えば、振動および音叉型ジャイロスコープ)に適用することができる。種々の実施形態において、加速度計のモードは、共振器のモードと比較して、面内または面外であり得る。
図8は、本発明の別の代替物実施形態による、振動Z軸ジャイロスコープの概略上面図である。このジャイロスコープは、概して、Geenの米国特許第6,877,374号に開示されているように動作し、該特許は、参照によりその全体が本明細書に組み込まれる。とりわけ、このジャイロスコープ構造は、加速度計サスペンションフレキシャ202、204、206、および208によってその4つのコーナー部で懸架される、実質的に正方形のフレーム210を含む。フレーム210の4つの縁部外側には、フィンガー212、213、214、215、216、217、218、および219がある。種々の共振構造が、フレーム210内に懸架される。これらの共振構造は、4つの移動可能なシャトル220、222、224、および226と、4つのレバー228、230、232、および234と、2つのフォーク236および238とを含む。シャトル222、224、および226は、シャトル220と実質的に同じ形状、サイズ、および質量であり、x軸および/またはy軸に沿ってシャトル220の鏡像のように配向されていることに留意されたい。レバー230、232、および234は、レバー228と実質的に同じ形状、サイズ、および質量であり、x軸および/またはy軸に沿ってレバー228の鏡像のように配向されていることに留意されたい。4つの移動可能なシャトル220、222、224、および226は、それぞれ、フレキシャ240、242、244、および246によってフレーム210から懸架される。4つの移動可能なシャトル220、222、224、および226の動きは、静電ドライバ248、250、252、254、256、258、260、および262を使用して、静電的に制御される。また、レバーの運動を駆動またはレバーの運動を感知するために使用することができる、レバー228、230、232、および234と関連付けられる静電構造もある。微細加工されたジャイロスコープ構造のこれらの、および他の特徴を、以下にさらに詳述する。
4つの加速度計サスペンションフレキシャ202、204、206、および208は、基板に固定され、かつ、x軸に沿った、およびy軸に沿ったフレーム210の動き(すなわち、並進運動)を実質的に制限する一方で、フレーム210が、いずれの方向にもより自由に回転すること(すなわち、回転運動)を可能にするよう構成される。そのようなフレーム110の回転運動は、主に、共振構造の基準系の動きによるコリオリ効果によって引き起こされる。
フィンガー212、213、214、215、216、217、218、および219は、フレーム210の4つの側部から延在する。フィンガー212、213、214、215、216、217、218、および219の間には、基板に機械的に連結され、かつ基板に対して移動しない、2組のコリオリセンサが位置付けられる。フレーム210の動きは、コリオリセンサに対するフィンガー212、213、214、215、216、217、218、および219の動きをもたらし、この動きは、電子回路(図示せず)によって測定することができる、静電容量の変化を生成する。
シャトル220、222、224、および226と、フレキシャ240、242、244、および246と、レバー228、230、232、および234と、フォーク236および238とを含む共振構造は、機械的に連結される。シャトル220および222は、ピボットフレキシャ264を介して機械的に連結され、シャトル224および226は、ピボットフレキシャ266を介して機械的に連結される。シャトル220および224は、レバー228および230、ならびにフォーク236を介して機械的に連結され、シャトル222および226は、レバー232および234、ならびにフォーク238を介して機械的に連結される。ピボットフレキシャ264および266、レバー228、230、232、および234、ならびにフォーク236および238は、シャトル220、222、224、および226が一緒に移動することを可能にする。
シャトル220は、フレキシャ240によってフレーム210から、ピボットフレキシャ264によってシャトル222から、また、ピボットフレキシャ268によってレバー228から懸架される。シャトル222は、フレキシャ242によってフレーム210から、ピボットフレキシャ264によってシャトル220から、また、ピボットフレキシャ272によってレバー232から懸架される。シャトル224は、フレキシャ244によってフレーム210から、ピボットフレキシャ266によってシャトル226から、また、ピボットフレキシャ276によってレバー230から懸架される。シャトル226は、フレキシャ246によってフレーム210から、ピボットフレキシャ266によってシャトル224から、また、ピボットフレキシャ280によってレバー234から懸架される。
レバー228は、ピボットフレキシャ270によってフレーム210から、ピボットフレキシャ268によってシャトル220から、また、フォーク236によってレバー230から懸架される。レバー230は、ピボットフレキシャ278によってフレーム210から、ピボットフレキシャ276によってシャトル224から、また、フォーク236によってレバー228から懸架される。レバー232は、ピボットフレキシャ274によってフレーム210から、ピボットフレキシャ272によってシャトル222から、また、フォーク238によってレバー234から懸架される。レバー234は、ピボットフレキシャ282によってフレーム210から、ピボットフレキシャ280によってシャトル226から、また、フォーク238によってレバー232から懸架される。
フレキシャ240、242、244、および246は、それぞれ、シャトル220、222、224、および226のy軸に沿った動きを実質的に制限するが、それぞれ、シャトル220、222、224、および226のx軸に沿った動きを可能にする。フレキシャ240、242、244、および246はまた、それぞれ、シャトル220、222、224、および226が移動するにつれて、それらがわずかに旋回することを可能にする。
ピボットフレキシャ264は、それらが一緒に移動するように、シャトル220および222を一緒に本質的に固定する。同様に、ピボットフレキシャ266は、(シャトル220および222に対して反対方向であるが)シャトル224および226が一緒に移動するように、それらを一緒に本質的に固定する。
レバー228および230、フォーク236、ならびにピボットフレキシャ268、270、276、および278は、シャトル220および224が実質的に等しいが反対方向に移動するように、それらを一緒に本質的に固定する。同様に、レバー232および234、フォーク238、ならびにピボットフレキシャ272、274、280、および282は、シャトル222および226が実質的に等しいが反対方向に移動するように、それらをともに本質的に固定する。
図9は、本発明の別の代替物実施形態による、交差直交Z軸ジャイロスコープの概略上面図である。このジャイロスコープは、概して、Geenの米国特許第7,421,897号に開示されているように動作し、該特許は、参照によりその全体が本明細書に組み込まれる。具体的には、4つのジャイロスコープ16A〜16Dは、垂直および水平に連結された交差直交構成で配置され、よって、ジャイロスコープフレームの頂部対およびジャイロスコープフレームの底部対は、フレームの別個の平行なY軸に沿った逆相の動きを可能にするカップリング99によって相互接続される一方で、ジャイロスコープフレームの左側対およびジャイロスコープフレームの右側対は、フレームの同一直線上の逆相の動きを可能にするカップリング95によって相互接続される。各ジャイロスコープは、好ましくは、サスペンション93によって、垂直カップリング95に向かい合う側で支持される。ジャイロスコープ16A〜16Dは、米国特許第6,505,511号および第6,122,961号に開示されるジャイロスコープに類似し得、参照によりその全体が本明細書に組み込まれる。
図10は、本発明の別の代替物実施形態による、モード整合に適合することができる、特定の交差直交ジャイロスコープ構成を示す。ここで、各ジャイロスコープ50A、50B、50C、50Dは、フレーム(52A、52B、52C、52D)と、フレームの内周内で移動可能に懸架される共振器(54A、54B、54C、54D)とを含む。ジャイロスコープ50Aおよび50Bのフレーム52Aおよび52Bは、ジャイロスコープ50Cおよび50Dのフレーム52Cおよび52Cと同様に、相互に連結される。さらに、ジャイロスコープ50Aおよび50Cのフレーム52Aおよび52Cは、ジャイロスコープ50Bおよび50Dのフレーム52Bおよび52Dと同様に、相互に連結される。
ジャイロスコープ50A/50Bおよび50C/50Dの各対の共振器は、相互に逆相で動作する。さらに、本発明の例示的実施形態において、ジャイロスコープ50Aおよび50Bの共振器は、ジャイロスコープ50Cおよび50Dの対応する共振器に対して逆相で動作する。したがって、斜めに向かい合うジャイロスコープの共振器は、相互に同相で動作する一方で、隣接するジャイロスコープの任意の対の共振器は、相互に逆相で動作する。
また、ジャイロスコープ50A/50Bおよび50C/50Dの各対のフレームは、反対方向の動きを可能にするが、同じ方向の動きは実質的に制限するように連結される。さらに、本発明の例示的実施形態によれば、ジャイロスコープ50Aおよび50Cのフレームは、ジャイロスコープ50Bおよび50Dのフレームと同様に、反対方向の動きを可能にするが、同じ方向の動きは実質的に制限するように連結される。ジャイロスコープ50A/50Cのフレームは、ジャイロスコープ50B/50Dのフレームに対して逆相で移動する。したがって、斜めに向かい合うジャイロスコープのフレームは、相互に同相で動作する一方で、任意の隣接するジャイロスコープの対のフレームは、相互に逆相で動作する。
共振器は、X軸において前後に共振させられる。慣性センサのZ軸周りの回転は、Y軸におけるフレームの変位を引き起こす。例えば、いくつかの条件の下で、ジャイロスコープ50Aおよび50Cのフレーム52Aおよび52Cは、相互に向かって移動する一方で、ジャイロスコープ50Bおよび50Dのフレーム52Bおよび52Dは、相互から離れるように移動する。いくつかの他の条件の下で、ジャイロスコープ50Aおよび50Cのフレーム52Aおよび52Cは、相互から離れるように移動する一方で、ジャイロスコープ50Bおよび50Dのフレーム52Bおよび52Dは、相互に向かって移動する。
図1、図2、および図7を参照して前述した例示的実施形態のように、図8〜図10を参照して前述したジャイロスコープは、同相オフセット誤差、電子パススルー、および駆動信号に関連する他の誤差を受ける。例えば、図8を参照して前述したジャイロスコープにおいて、同相オフセット誤差は、コリオリチャネルにおいて誤差信号を生成する回転力をジャイロスコープフレームに与え得る。同様に、図10を参照して前述したジャイロスコープにおいて、同相オフセット誤差は、コリオリチャネルにおいて誤差信号を生成するy軸力をジャイロスコープフレームに与え得る。図3〜図6を参照して前述したように、駆動信号に関連する誤差は、駆動信号を変調し、コリオリチャネルにおいて誘発される対応する信号を感知することによって検出することができ、そして、電子的に、電気機械的に、あるいは別様に、例えば実質的に軽減することができる。
したがって、本発明の実施形態は、1軸(例えば、x軸、y軸、またはz軸)慣性センサと、2軸(例えば、x−y軸またはx−z軸)慣性センサと、3軸慣性センサとを含み得る。
前述のように駆動信号に関連する誤差源を検出することに類似して、本発明のある実施形態は、追加的または代替的に、共振器と下側の基板との間の距離を変調し、そのような変調によって誘発される加速度計信号を検出することによって、共振器の空気力学に関連する誤差源を検出する。したがって、例えば、駆動信号は、共振器の共振を引き起こすように提供され、変調した試験信号は、共振器と下側の基板との間の距離を変調するために(例えば、直交補償電極、同相補償電極、および/または別個の試験電極に)提供され、また、共振器の空気力学を検出および/または補償するために、変調した試験信号によって誘発される加速度計信号が感知され得る。前述した実施形態のように、試験信号は、振幅変調、周波数変調、オン/オフキーイング、およびスペクトラム拡散変調のうちの1つを使用して変調され得る。加速度計信号は、試験信号を変調するために使用される変調信号に基づいて、復調され得る。補償信号は、空気力学的な影響によって引き起こされる誤差を実質的に相殺するために提供され得る。補償信号は、同相補償電極または他の好適な電極を介して提供され得る。共振器と基板との間の距離を変調するために使用される変調した試験信号と合わせて出力されるコリオリチャネルに基づいて同相補償電極を駆動するための、図5に示される種類のサーボは、空気力学的な影響を検出および/または軽減するために使用され得る。
前述した本発明の実施形態は、単に例示することを意図したものであり、当業者には、数多くの変形形態および修正形態が明らかになるであろう。全てのこのような変形形態および修正形態は、いずれかの添付の特許請求の範囲に記載されている本発明の範囲内にあることを意図している。

Claims (17)

  1. 共振器と、コリオリチャネルのコリオリ加速度信号帯域内のコリオリ加速度信号を測定する加速度計とを有する慣性センサにおいて、該共振器に印加される駆動信号の大きさに関連する少なくとも1つの誤差源を検出する方法であって、該少なくとも1つの誤差源は、該駆動信号と同相の該コリオリチャネル内の対応する誤差信号を誘発し、該コリオリ加速度信号に影響を及ぼす誤差信号を含み、該方法は、
    変調した駆動信号を該共振器に提供することであって、該変調した駆動信号は、該共振器に印加される駆動力の大きさを変調することにより、該少なくとも1つの誤差源の大きさを変調して、該コリオリチャネル内の対応する変調した誤差信号を誘発し、該誤差信号は、該コリオリ加速度信号帯域の外の周波数で変調される、ことと、
    該少なくとも1つの誤差源の変調によって生じる加速度計信号を感知することであって、該感知することは、該コリオリチャネル内の該変調した誤差信号を感知することを含む、ことと、
    該コリオリ加速度信号に影響を及ぼす該少なくとも1つの誤差源によって導入される誤差を実質的に相殺するために、該感知された変調した誤差信号に応答して、少なくとも1つの補償信号を、該共振器に補償力を印加する一組の同相補償電極に提供することと
    を含み、
    該変調した大きさの駆動力の周波数が該共振器の周波数よりも低いことにより、該共振器に印加される駆動力の大きさの変調は、該共振器の振幅に実質的に影響を及ぼさない、方法。
  2. 前記変調した駆動信号を前記共振器に提供することは、振幅変調、周波数変調、オン/オフキーイング、およびスペクトラム拡散変調のうちの1つを使用して、駆動信号を変調することを含む、請求項1に記載の方法。
  3. 前記変調した駆動信号によって誘発される変調した誤差信号を感知することは、前記駆動信号を変調するために使用される変調信号に基づいて、加速度計信号を復調することを含む、請求項1に記載の方法。
  4. 前記少なくとも1つの誤差源は、同相オフセット誤差を含む、請求項1に記載の方法。
  5. 前記少なくとも1つの誤差源は、前記駆動信号の前記加速度計への電子パススルーを含む、請求項1に記載の方法。
  6. 前記パススルーを実質的に相殺するために、補償信号を前記加速度計に提供することをさらに含む、請求項に記載の方法。
  7. 前記共振器は、単一の共振周波数で共振するように連結された複数のシャトルを含む、請求項1に記載の方法。
  8. 前記加速度計は、x軸センサ、y軸センサ、およびz軸センサのうちの少なくとも1つを含む、請求項1に記載の方法。
  9. 慣性センサであって、
    共振器と、
    コリオリチャネルのコリオリ加速度信号帯域内のコリオリ加速度信号を測定する加速度計と、
    変調した駆動信号を該共振器に提供するように構成された共振器ドライバであって、該変調した駆動信号は、該共振器に印加される駆動力の大きさを変調することにより、該共振器に印加される該駆動信号の大きさに関連する少なくとも1つの誤差源の大きさを変調して、該コリオリチャネル内の対応する変調した誤差信号を誘発し、該誤差信号は、該コリオリ加速度信号帯域の外の周波数で変調され、該少なくとも1つの誤差源は、該駆動信号と同相の該コリオリチャネル内の対応する誤差信号を誘発し、該コリオリ加速度信号に影響を及ぼす誤差信号を含む、共振器ドライバと、
    該共振器に印加された該駆動信号に関連する該少なくとも1つの誤差源の変調によって生じる加速度計信号を感知するように構成されたオフセット検出器であって、該感知することは、該コリオリチャネル内の該変調した誤差信号を感知することを含む、オフセット検出器と、
    該共振器に補償力を印加する一組の同相補償電極と、
    該コリオリ加速度信号に影響を及ぼす該少なくとも1つの誤差源によって導入される誤差を実質的に相殺するために、該感知された変調した誤差信号に応答して、少なくとも1つの補償信号を該一組の同相補償電極に提供することにより該共振器に補償力を印加するように構成されたサーボと
    を備えており、
    該変調した大きさの駆動力の周波数が該共振器の周波数よりも低いことにより、該共振器に印加される駆動力の大きさの変調は、該共振器の振幅に実質的に影響を及ぼさない、慣性センサ。
  10. 前記共振器ドライバは、振幅変調、周波数変調、オン/オフキーイング、およびスペクトラム拡散変調のうちの1つを使用して、前記駆動信号を変調するように構成されている、請求項に記載の慣性センサ。
  11. 前記オフセット検出器は、前記変調した駆動信号によって誘発される変調した誤差信号を感知するために、前記駆動信号を変調するために使用される変調信号に基づいて、加速度計信号を復調するように構成されている、請求項に記載の慣性センサ。
  12. 前記少なくとも1つの誤差源は、同相オフセット誤差を含む、請求項に記載の慣性センサ。
  13. 前記少なくとも1つの誤差源は、前記駆動信号の前記加速度計への電子パススルーを含む、請求項に記載の慣性センサ。
  14. 前記パススルーを実質的に相殺するために、補償信号を前記加速度計に提供するように構成された前記サーボをさらに備えている、請求項13に記載の慣性センサ。
  15. 前記共振器は、単一の共振周波数で共振するように連結された複数のシャトルを含む、請求項に記載の慣性センサ。
  16. 前記加速度計は、x軸センサ、y軸センサ、およびz軸センサのうちの少なくとも1つを含む、請求項に記載の慣性センサ。
  17. 共振器と、コリオリチャネルのコリオリ加速度信号帯域内のコリオリ加速度信号を測定する加速度計とを含む慣性センサの該共振器に印加される駆動信号の大きさに関連する少なくとも1つの誤差源を検出するためのコントローラであって、該少なくとも1つの誤差源は、該駆動信号と同相の該コリオリチャネル内の対応する誤差信号を誘発し、該コリオリ加速度信号に影響を及ぼす誤差信号を含み、該コントローラは、
    変調した駆動信号を該共振器に提供するように構成された共振器ドライバであって、該変調した駆動信号は、該共振器に印加される駆動力の大きさを変調することにより、該共振器に印加される該駆動信号の大きさに関連する該少なくとも1つの誤差源の大きさを変調して、該コリオリチャネル内の対応する変調した誤差信号を誘発し、該誤差信号は、該コリオリ加速度信号帯域の外の周波数で変調される、共振器ドライバと、
    該共振器に印加された該駆動信号に関連する該少なくとも1つの誤差源の変調によって生じる加速度計信号を感知するように構成されたオフセット検出器であって、該感知することは、該コリオリチャネル内の該変調した誤差信号を感知することを含む、オフセット検出器と、
    該コリオリ加速度信号に影響を及ぼす該少なくとも1つの誤差源によって導入される誤差を実質的に相殺するために、該感知された変調した誤差信号に応答して、少なくとも1つの補償信号を該慣性センサの該共振器に補償力を印加する一組の同相補償電極に提供するように構成されたサーボと
    を備えており、
    該変調した大きさの駆動力の周波数が該共振器の周波数よりも低いことにより、該共振器に印加される駆動力の大きさの変調は、該共振器の振幅に実質的に影響を及ぼさない、コントローラ。
JP2012525613A 2009-08-21 2010-08-10 微細加工された慣性センサのオフセット検出および補償 Active JP5836947B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/545,334 US8783103B2 (en) 2009-08-21 2009-08-21 Offset detection and compensation for micromachined inertial sensors
US12/545,334 2009-08-21
PCT/US2010/045037 WO2011022256A2 (en) 2009-08-21 2010-08-10 Offset detection and compensation for micromachined inertial sensors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015153812A Division JP2015194507A (ja) 2009-08-21 2015-08-04 微細加工された慣性センサのオフセット検出および補償

Publications (2)

Publication Number Publication Date
JP2013502581A JP2013502581A (ja) 2013-01-24
JP5836947B2 true JP5836947B2 (ja) 2015-12-24

Family

ID=43604220

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012525613A Active JP5836947B2 (ja) 2009-08-21 2010-08-10 微細加工された慣性センサのオフセット検出および補償
JP2015153812A Withdrawn JP2015194507A (ja) 2009-08-21 2015-08-04 微細加工された慣性センサのオフセット検出および補償

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015153812A Withdrawn JP2015194507A (ja) 2009-08-21 2015-08-04 微細加工された慣性センサのオフセット検出および補償

Country Status (4)

Country Link
US (2) US8783103B2 (ja)
EP (1) EP2467675B1 (ja)
JP (2) JP5836947B2 (ja)
WO (1) WO2011022256A2 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8151641B2 (en) 2009-05-21 2012-04-10 Analog Devices, Inc. Mode-matching apparatus and method for micromachined inertial sensors
US8783103B2 (en) 2009-08-21 2014-07-22 Analog Devices, Inc. Offset detection and compensation for micromachined inertial sensors
US8134393B1 (en) * 2010-09-29 2012-03-13 Motorola Solutions, Inc. Method and apparatus for correcting phase offset errors in a communication device
KR20130071081A (ko) * 2011-12-20 2013-06-28 삼성전기주식회사 자이로센서 위상오차 보정회로, 자이로센서 시스템 및 자이로센서 위상오차 보정방법
US9027403B2 (en) * 2012-04-04 2015-05-12 Analog Devices, Inc. Wide G range accelerometer
US9212908B2 (en) 2012-04-26 2015-12-15 Analog Devices, Inc. MEMS gyroscopes with reduced errors
US9310202B2 (en) 2012-07-09 2016-04-12 Freescale Semiconductor, Inc. Angular rate sensor with quadrature error compensation
CN103162679B (zh) * 2013-03-06 2015-07-22 莫冰 一种基于乘法消除微机械陀螺同相误差系统及方法
US9109901B2 (en) * 2013-03-08 2015-08-18 Freescale Semiconductor Inc. System and method for monitoring a gyroscope
US9238580B2 (en) * 2013-03-11 2016-01-19 Analog Devices Global Spread-spectrum MEMS self-test system and method
US9476711B2 (en) 2013-06-24 2016-10-25 Freescale Semiconductor, Inc. Angular rate sensor with quadrature error compensation
CN103869098B (zh) * 2014-04-16 2016-02-10 东南大学 一种硅微谐振式加速度计电路控制系统
CN107003131B (zh) * 2014-12-18 2021-01-12 赖斯阿克里奥公司 用于微机电陀螺仪的正交补偿方法和陀螺仪传感器
EP3034997B1 (en) * 2014-12-18 2020-12-16 RISE Research Institutes of Sweden AB Mems gyro
FI20146153A (fi) * 2014-12-29 2016-06-30 Murata Manufacturing Co Mikromekaaninen gyroskooppirakenne
US9869552B2 (en) * 2015-03-20 2018-01-16 Analog Devices, Inc. Gyroscope that compensates for fluctuations in sensitivity
DE112016002627T5 (de) * 2015-06-11 2018-02-22 Georgia Tech Research Corporation MEMS-Trägheitsmessvorrichtung mit geneigten Elektroden zur Abstimmung der Quadratur
US9419597B1 (en) 2015-06-15 2016-08-16 Analog Devices Global Power-efficient chopping scheme for offset error correction in MEMS gyroscopes
CN105424979B (zh) * 2015-11-23 2018-09-18 东南大学 一种单芯片双轴集成硅微谐振式加速度计闭环驱动控制和频率检测电路
US10088315B2 (en) * 2015-12-10 2018-10-02 Invensense, Inc. Two frequency gyroscope compensation system and method
US10365104B2 (en) * 2016-05-11 2019-07-30 Murata Manufacturing Co., Ltd. Digital controller for a MEMS gyroscope
IT201600098502A1 (it) * 2016-09-30 2018-03-30 St Microelectronics Srl Giroscopio mems avente elevata stabilita' nei confronti delle variazioni di temperatura e di umidita'
US10247600B2 (en) 2016-11-10 2019-04-02 Analog Devices, Inc. Mode-matching of MEMS resonators
US10852136B2 (en) 2017-08-30 2020-12-01 Analog Devices, Inc. Frequency mismatch detection method for mode matching in gyroscopes
US11112269B2 (en) 2018-07-09 2021-09-07 Analog Devices, Inc. Methods and systems for self-testing MEMS inertial sensors
EP3671118B1 (en) 2018-12-19 2021-08-25 Murata Manufacturing Co., Ltd. Vibration-robust multiaxis gyroscope
EP3671116B1 (en) 2018-12-19 2021-11-17 Murata Manufacturing Co., Ltd. Synchronized multi-axis gyroscope
RU191511U1 (ru) * 2019-05-17 2019-08-08 Пазушко Павел Михайлович Устройство для измерения параметров вибрации
EP3786581B1 (en) * 2019-08-29 2023-06-07 Murata Manufacturing Co., Ltd. Offset-cancelling capacitive mems gyroscope
CN111208317B (zh) * 2020-02-26 2021-07-02 深迪半导体(绍兴)有限公司 Mems惯性传感器及应用方法和电子设备
US12012327B2 (en) 2020-03-12 2024-06-18 Honeywell International Inc. Methods for vibration immunity to suppress bias errors in sensor devices
DE102020203571A1 (de) * 2020-03-19 2021-09-23 Robert Bosch Gesellschaft mit beschränkter Haftung Drehratensensor und Verfahren zum Betreiben eines Drehratensensors
US11125580B1 (en) * 2020-05-14 2021-09-21 Invensense, Inc. MEMS sensor modulation and multiplexing
DE102020206919A1 (de) * 2020-06-03 2021-12-09 Robert Bosch Gesellschaft mit beschränkter Haftung Sensorsystem, Verfahren zum Betreiben eines Sensorsystems
DE102020211467A1 (de) 2020-09-11 2022-03-17 Robert Bosch Gesellschaft mit beschränkter Haftung Schaltung für ein MEMS-Gyroskop sowie ein Verfahren zum Betreiben einer entsprechenden Schaltung
JP7362684B2 (ja) * 2021-02-25 2023-10-17 株式会社東芝 センサ及び電子装置

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2309853A (en) * 1941-04-10 1943-02-02 Sperry Gyroscope Co Inc Rate and attitude indicating instrument
US2513340A (en) * 1945-10-17 1950-07-04 Sperry Corp Angular velocity responsive apparatus
US4267478A (en) * 1978-11-17 1981-05-12 The Singer Company Pathlength controller for a ring laser gyroscope
US4755057A (en) * 1984-10-02 1988-07-05 Litton Systems, Inc. Path length control method for ring laser gyroscope
US4884446A (en) * 1987-03-12 1989-12-05 Ljung Per B Solid state vibrating gyro
DE8900990U1 (de) * 1989-01-28 1989-10-26 Forschungszentrum Jülich GmbH, 52428 Jülich Schaltungsvorrichtung mit dividierendem Analogdigitalwandler
US5025346A (en) * 1989-02-17 1991-06-18 Regents Of The University Of California Laterally driven resonant microstructures
DE4032559C2 (de) * 1990-10-13 2000-11-23 Bosch Gmbh Robert Drehratensensor und Verfahren zur Herstellung
US5205171A (en) * 1991-01-11 1993-04-27 Northrop Corporation Miniature silicon accelerometer and method
US5359893A (en) * 1991-12-19 1994-11-01 Motorola, Inc. Multi-axes gyroscope
US5349855A (en) * 1992-04-07 1994-09-27 The Charles Stark Draper Laboratory, Inc. Comb drive micromechanical tuning fork gyro
US5656778A (en) * 1995-04-24 1997-08-12 Kearfott Guidance And Navigation Corporation Micromachined acceleration and coriolis sensor
US5635640A (en) * 1995-06-06 1997-06-03 Analog Devices, Inc. Micromachined device with rotationally vibrated masses
US5992233A (en) * 1996-05-31 1999-11-30 The Regents Of The University Of California Micromachined Z-axis vibratory rate gyroscope
JP3603501B2 (ja) * 1996-09-25 2004-12-22 株式会社村田製作所 角速度検出装置
DE19653020A1 (de) * 1996-12-19 1998-06-25 Bosch Gmbh Robert Vorrichtung zur Ermittlung einer Drehrate
US5939633A (en) * 1997-06-18 1999-08-17 Analog Devices, Inc. Apparatus and method for multi-axis capacitive sensing
US6032531A (en) * 1997-08-04 2000-03-07 Kearfott Guidance & Navigation Corporation Micromachined acceleration and coriolis sensor
US6122961A (en) * 1997-09-02 2000-09-26 Analog Devices, Inc. Micromachined gyros
DE19845185B4 (de) * 1998-10-01 2005-05-04 Eads Deutschland Gmbh Sensor mit Resonanzstruktur sowie Vorrichtung und Verfahren zum Selbsttest eines derartigen Sensors
DE19910415B4 (de) * 1999-03-10 2010-12-09 Robert Bosch Gmbh Verfahren und Vorrichtung zum Abstimmen eines ersten Oszillators mit einem zweiten Oszillator
US7051590B1 (en) * 1999-06-15 2006-05-30 Analog Devices Imi, Inc. Structure for attenuation or cancellation of quadrature error
DE19939998A1 (de) * 1999-08-24 2001-03-01 Bosch Gmbh Robert Vorrichtung zur Vorspannungserzeugung für einen schwingenden Drehratensensor
EP1083430B1 (en) * 1999-09-10 2006-07-26 STMicroelectronics S.r.l. Semiconductor integrated inertial sensor with calibration microactuator
EP2327959B1 (en) * 2002-02-06 2012-09-12 Analog Devices, Inc. Micromachined gyroscope
US6854315B2 (en) * 2002-04-22 2005-02-15 Northrop Grumman Corporation Quadrature compensation technique for vibrating gyroscopes
CN100523821C (zh) * 2002-07-19 2009-08-05 模拟设备公司 加速度计以及在加速度计中减小偏移的方法
FR2849183B1 (fr) * 2002-12-20 2005-03-11 Thales Sa Gyrometre vibrant avec asservissement de la frequence de detection sur la frequence d'excitation
DE10317158B4 (de) * 2003-04-14 2007-05-10 Litef Gmbh Verfahren zur Ermittlung eines Nullpunktfehlers in einem Corioliskreisel
US6837107B2 (en) * 2003-04-28 2005-01-04 Analog Devices, Inc. Micro-machined multi-sensor providing 1-axis of acceleration sensing and 2-axes of angular rate sensing
US6892575B2 (en) * 2003-10-20 2005-05-17 Invensense Inc. X-Y axis dual-mass tuning fork gyroscope with vertically integrated electronics and wafer-scale hermetic packaging
WO2005078458A1 (en) * 2004-02-05 2005-08-25 Analog Devices, Inc. Capped sensor
US7640803B1 (en) * 2004-05-26 2010-01-05 Siimpel Corporation Micro-electromechanical system inertial sensor
DE102004026972B4 (de) * 2004-06-02 2015-03-12 Robert Bosch Gmbh Drehratensensor mit Frequenznachführung
DE102004058183A1 (de) * 2004-12-02 2006-06-08 Robert Bosch Gmbh Messfühler mit Selbsttest
US7421897B2 (en) * 2005-04-14 2008-09-09 Analog Devices, Inc. Cross-quad and vertically coupled inertial sensors
JP4535989B2 (ja) 2005-11-21 2010-09-01 日本航空電子工業株式会社 振動ジャイロ
FR2894661B1 (fr) * 2005-12-13 2008-01-18 Thales Sa Gyrometre vibrant equilibre par un dispositif electrostatique
JP4536016B2 (ja) 2006-02-03 2010-09-01 日本航空電子工業株式会社 振動ジャイロ
US8151641B2 (en) * 2009-05-21 2012-04-10 Analog Devices, Inc. Mode-matching apparatus and method for micromachined inertial sensors
US8266961B2 (en) * 2009-08-04 2012-09-18 Analog Devices, Inc. Inertial sensors with reduced sensitivity to quadrature errors and micromachining inaccuracies
US8783103B2 (en) 2009-08-21 2014-07-22 Analog Devices, Inc. Offset detection and compensation for micromachined inertial sensors
US8701459B2 (en) * 2009-10-20 2014-04-22 Analog Devices, Inc. Apparatus and method for calibrating MEMS inertial sensors

Also Published As

Publication number Publication date
US20110041609A1 (en) 2011-02-24
EP2467675A2 (en) 2012-06-27
US20140060186A1 (en) 2014-03-06
US8783103B2 (en) 2014-07-22
WO2011022256A2 (en) 2011-02-24
JP2015194507A (ja) 2015-11-05
EP2467675B1 (en) 2016-12-07
WO2011022256A3 (en) 2011-05-19
US8677801B1 (en) 2014-03-25
JP2013502581A (ja) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5836947B2 (ja) 微細加工された慣性センサのオフセット検出および補償
US8616055B2 (en) Mode-matching apparatus and method for micromachined inertial sensors
US9683844B2 (en) Extension-mode angular velocity sensor
US8794068B2 (en) Non-degenerate mode MEMS gyroscope
US6860151B2 (en) Methods and systems for controlling movement within MEMS structures
US7444869B2 (en) Force rebalancing and parametric amplification of MEMS inertial sensors
EP2444775B1 (en) MEMs gyros with quadrature reducing springs
AU2004210952B2 (en) Methods and systems for simultaneously fabricating multi-frequency MEMS devices
EP3205978B1 (en) Inertial sensors
US9869552B2 (en) Gyroscope that compensates for fluctuations in sensitivity
JP2008008884A (ja) 時間で変動する電圧を使用したmems慣性センサのフォース・リバランシング
JP2016507731A (ja) マイクロメカニカルz軸ジャイロスコープ
JP2007519925A (ja) 電子結合を持つ微小機械加工振動ジャイロスコープ、及び方法
JP2013096801A (ja) 出力安定性に優れた振動型ジャイロ
US20160349053A1 (en) Micromachined Resonating Beam Gyroscopes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140919

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141010

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151104

R150 Certificate of patent or registration of utility model

Ref document number: 5836947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250