JP5807129B2 - 実質的に純粋なナノ粒子を調製するフローシステムの方法、当該方法により得られるナノ粒子及びその使用 - Google Patents
実質的に純粋なナノ粒子を調製するフローシステムの方法、当該方法により得られるナノ粒子及びその使用 Download PDFInfo
- Publication number
- JP5807129B2 JP5807129B2 JP2014557166A JP2014557166A JP5807129B2 JP 5807129 B2 JP5807129 B2 JP 5807129B2 JP 2014557166 A JP2014557166 A JP 2014557166A JP 2014557166 A JP2014557166 A JP 2014557166A JP 5807129 B2 JP5807129 B2 JP 5807129B2
- Authority
- JP
- Japan
- Prior art keywords
- nanoparticles
- reducing agent
- solution
- clo
- hso
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
- A61K31/167—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/141—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
- A61K9/143—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0004—Preparation of sols
- B01J13/0043—Preparation of sols containing elemental metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/52—Gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8926—Copper and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0545—Dispersions or suspensions of nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0466—Alloys based on noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2203/00—Controlling
- B22F2203/11—Controlling temperature, temperature profile
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/12—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/02—Alloys based on gold
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/04—Alloys based on a platinum group metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pain & Pain Management (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
Fe(CN)6 3-/Fe(CN)6 4-, Fe3+/Fe2+, [Co(bipy)3]2+/[Co(bipy)3]3+, Co(phen)3 3+/Co(phen)3 2+, [Ru(bipy)3]3+/[Ru(bipy)3]2+, [Ru(NH3)6]3+/[Ru(NH3)6]2+ [Ru(CN)6]3-/[Ru(CN)6]4-, Fe(phen)3 3+/Fe(phen)3 2+及びCe4+/Ce3+
本発明の方法において使用される、実質的に純粋なナノ粒子の合成のための連続フローシステムが、図1a及び1bに模式的に示されている。このシステムはテフロン製のチューブの組を備えており、該チューブを通って試薬がポンピングされ、ナノ粒子コロイドの形状の生成物が排出される。ポンプは、システム全体に一定流量の試薬が行き渡ることを確保するものであるため、このシステムにとって重要な要素である。前駆体物質の還元が行われる領域は、恒温に維持されている。
−パラジウム:Pd(NO3)2・xH2O、99.9%、Alfa Aesar社製
−ヒドラジン:Ν2Η4・Η2O、濃度50−60%、Aldrich社製
−パーヒドロール:30%過酸化水素溶液、分析用に不純物を含まないもの、Chempur社製
−銅:Cu(NO3)2・3H2O、分析用に不純物を含まないもの、POCH社製
−金:HAuCl4、99.99%、Alfa Aesar社製
−白金:K2PtCl4、99.99%、Alfa Aesar社製
−水酸化ナトリウム:NaOH、分析用に不純物を含まないもの、POCH社製
−硝酸: HNO3、65%、分析用に不純物を含まないもの、POCH社製
−硫酸:99.999%、Sigma Aldrich社製
A)還元反応は、図1aに示す連続フローシステムの、内径1/32インチ(約0.8mm)、長さ40cmのテフロン製のチューブにおいて実施され、反応チューブ内の試薬の流量は200ml/hであった。
ナノ構造の合成は、過酸化水素溶液を添加しなかったこと以外は、実施例1Aに示されるのと同様の方法で実施された。
実施例1Aから1Cにおいて得られたコロイドの一部を遠心分離させた後、乾燥させて、黒い粉を得た。
還元反応は、図1aに示す連続フローシステムの、内径1/32インチ(約0.8mm)、長さ40cmのテフロン製のチューブにおいて実施され、反応チューブ内の試薬の流量は200ml/hであった。
還元反応は、図1aに示す連続フローシステムの、内径1/32インチ(約0.8mm)、長さ5cmのテフロン製のチューブにおいて実施され、反応チューブ内の試薬の流量は100ml/hであった。
還元反応は、図1aに示すシステムの、内径1/32インチ(約0.8mm)、長さ40cmのテフロン製のチューブにおいて実施され、反応チューブ内の試薬の流量は100ml/hであった。
還元反応は、図1aに示すシステムの、内径1/32インチ(約0.8mm)、長さ40cmのテフロン製のチューブにおいて実施され、反応チューブ内の試薬の流量は200ml/hであった。
還元反応は、図1bに示す連続フローシステムの、内径1/32インチ(約0.8mm)、長さ40cmのテフロン製のチューブにおいて、2つの工程それぞれについて行われ、反応チューブ内の試薬の流量は、第1工程では200ml/hであり、第2工程では300ml/hであった。
PdO及びCu2O等の金属酸化物の有無は、過酸化水素の濃度及び溶液のpHに依存する範囲で、粉末X線回折により確認された。
本実施例において、実施例1Aにて合成されたパラジウムナノ粒子が、鈴木反応における触媒として使用された。
Ph-Br + Ph-B(OH)2 = Ph-Ph
実施例1Aにて得られたパラジウムナノ粒子及び実施例3にて得られた銅ナノ粒子を、事前の浄化を経ずに、パラセタモール溶液内で1日インキュベートした。
Claims (16)
- 制御されたサイズの、表面に界面活性剤や他の有機分子が吸着していない、純粋なナノ粒子を、連続フローシステムにて合成する方法であって、前記連続フローシステムは、試薬及び生成物のストリームが内部を連続的に流れるチューブを備え、前記方法は、前駆体物質溶液が還元剤溶液の使用による還元反応を経て、ナノ粒子が製造される少なくとも1つの工程を含み、前記還元反応は最終工程後に還元剤を無効化する物質の添加により停止し、ナノ粒子コロイドを製造する方法。
- 前記前駆体物質溶液が、前記還元剤溶液の使用による還元反応を経て、均一なナノ粒子が得られる1つの工程を含む、請求項1に記載の方法。
- 前記前駆体物質溶液が、前記還元剤溶液を使用による還元反応を経て、コアシェル型の積層されたナノ粒子が得られる、少なくとも2つの工程を含む、請求項1に記載の方法。
- 前記前駆体物質は、金属前駆体又は金属前駆体の混合物である、請求項1〜3のいずれか一項に記載の方法。
- 前記金属前駆体は、金属塩又は異なる金属塩の混合物である、請求項4に記載の方法。
- 前記金属は、パラジウム、銀、金、白金、ルテニウム、オスミウム、イリジウム、ロジウム、ニッケル、コバルト、銅及び鉄を含む群から選択される、請求項4又は5に記載の方法。
- 前記前駆体物質は、AgNO3, AgClO4, AgHSO4, Ag2SO4, AgF, AgBF4, AgPF6, CH3COOAg, AgCF3SO3, CuCl2, Cu(NO3)2, CuSO4, Cu(HSO4)2, Cu(ClO4)2, CuF2, (CHCOO)2Cu, H2PtCl6, H6Cl2N2Pt, PtCl2, PtBr2, K2[PtCl4], Na2[PtCl4], Li2[PtCl4], H2Pt(OH)6, Pt(NO3)2, [Pt(NH3)4]Cl2, [Pt(NH3)4](HCO3)2, [Pt(NH3)4](OAc)2, (NH4)2PtBr6, K2PtCl6, PtSO4, Pt(HSO4)2, Pt(ClO4)2, H2PdCl6, H6Cl2N2Pd, PdCl2, PdBr2, K2[PdCl4], Na2[PdCl4], Li2[PdCl4], H2Pd(OH)6, Pd(NO3)2, [Pd(NH3)4]Cl2, [Pd(NH3)4](HCO3)2, [Pd(NH3)4](OAc)2, (NH4)2PdBr6, (NH3)2PdCl6, PdSO4, Pd(HSO4)2, Pd(ClO4)2, HAuCl4, AuCl3, AuCl, AuF3, (CH3)2SAuCl, AuF, AuCl(SC4H8), AuBr, AuBr3, Na3Au(S2O3)2, HAuBr4, K[Au(CN)2], CoF2, Co(NO3)2, CoCl2, CoSO4, Co(HSO4)2, Co(ClO4)2, (CHCOO)2Co, CoBr2, [Co(NH3)6]Cl3, [CoCl(NH3)5]Cl2, [Co(NO2)(NH3)5]Cl2, NiF2, Ni(NO3)2, NiCl2, NiSO4, Ni(HSO4)2, Ni(ClO4)2, (CHCOO)2Ni, NiBr2, Ni(OH)HSO4, Ni(OH)Cl, FeF2, Fe(NO3)2, FeCl2, FeSO4, Fe(HSO4)2, Fe(ClO4)2, (CHCOO)2Fe, FeBr2, FeF3, Fe(NO3)3, FeCl3, Fe2(SO4)3, Fe(HSO4)3, Fe(ClO4)3, (CHCOO)3Fe, FeBr3, RuCl2((CH3)2SO)4, RuCl3, [Ru(NH3)5(N2)]Cl2, Ru(NO3)3, RuBr3, RuF3, Ru(ClO4)3, OsI, OsI2, OsBr3 , OsCl4, OsF5, OsF6, OsOF5, OsF7, IrF6, IrCl3, IrF4, IrF5, Ir(ClO4)3, K3[IrCl6], K2[IrCl6], Na3[IrCl6], Na2[IrCl6], Li3[IrCl6], Li2[IrCl6], [Ir(NH3)4Cl2]Cl, RhF3, RhF4, RhCl3, [Rh(NH3)5Cl]Cl2, RhCl[P(C6H5)3]3, K[Rh(CO)2Cl2], Na[Rh(CO)2Cl2], Li[Rh(CO)2Cl2], Rh2(SO4)3, Rh(HSO4)3及びRh(ClO4)3を含む群から選択された塩、これらの水和物又はこれらの塩及び/又は水和物の混合物である、請求項1〜6のいずれか一項に記載の方法。
- 前記還元剤は、ヒドラジン、アスコルビン酸、水素化ホウ素ナトリウム、次亜リン酸ナトリウム、水素化テトラエチルホウ素リチウム、メタノール、1,2−ヘキサデカンジオール、ヒドロキシルアミン及びジメチルボラザン、ジメチルアミンボラン(DMAB)を含む群から選択される、請求項1〜7のいずれか一項に記載の方法。
- 前記還元剤を無効化する物質は、過酸化水素、酸素、オゾン、NO2及びレドックスバッファを含む群から選択される、請求項1〜8のいずれか一項に記載の方法。
- 前記連続フローシステムにおいて、内部を試薬、反応混合物及び生成物のストリームが流れる、前記連続フローシステムの特定のチューブ要素は、複数の異なる温度に保たれている、請求項1〜9のいずれか一項に記載の方法。
- 前記前駆体物質はPd(NO3)2であり、前記還元剤はヒドラジンであり、前記還元剤を無効化する前記物質は過酸化水素である、請求項1、2、4〜10のいずれか一項に記載の方法。
- 前記前駆体物質はCu(NO3)2であり、前記還元剤はヒドラジンであり、前記還元剤を無効化する前記物質は過酸化水素であり、前記還元剤を無効化する前記物質の溶液はNaOHをさらに含む、請求項1、2、4〜10のいずれか一項に記載の方法。
- 第1工程において、前駆体物質Cu(NO3)2の溶液が、ヒドラジン溶液の使用による還元反応を経て、銅コアが形成され、第2工程において、前駆体物質Pd(NO3)2の溶液が、反応混合物に供給され、その結果得られる混合物を還元することで、第1工程で形成された銅ナノ粒子上にパラジウムシェルが形成され、前記還元反応は、過酸化水素溶液及び塩基の添加により停止し、塩基濃度は生成物ストリームの中性pHを確保するのに十分である、請求項1、3〜10のいずれか一項に記載の方法。
- 前記前駆体物質は、Pd(NO3)2とPt(NO3)2との混合物であり、当該混合物の還元により、Pd/Pt合金の均一なナノ粒子が形成される、請求項1、2、4〜10のいずれか一項に記載の方法。
- 前記還元剤を無効化する物質は、金属コアの金属外層のアンダーポテンシャル還元につながる電位を有するレドックスバッファである、請求項1〜10のいずれか一項に記載の方法。
- 前記方法は、さらにコロイドナノ粒子の遠心分離及び/又は乾燥の工程を含み、これらの工程によりナノ粒子粉末が得られる、請求項1〜15のいずれか一項に記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PLPL399505 | 2012-06-13 | ||
PL399505A PL399505A1 (pl) | 2012-06-13 | 2012-06-13 | Sposób wytwarzania zasadniczo czystych nanoczastek w ukladzie przeplywowym, nanoczastki otrzymane tym sposobem oraz ich zastosowanie |
PCT/IB2013/054857 WO2013186740A1 (en) | 2012-06-13 | 2013-06-13 | A continuous flow system method for preparing pure nanoparticles, nanoparticles obtained by this method and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015511274A JP2015511274A (ja) | 2015-04-16 |
JP5807129B2 true JP5807129B2 (ja) | 2015-11-10 |
Family
ID=49757662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014557166A Active JP5807129B2 (ja) | 2012-06-13 | 2013-06-13 | 実質的に純粋なナノ粒子を調製するフローシステムの方法、当該方法により得られるナノ粒子及びその使用 |
Country Status (9)
Country | Link |
---|---|
US (1) | US9221044B2 (ja) |
EP (1) | EP2785483B1 (ja) |
JP (1) | JP5807129B2 (ja) |
DK (1) | DK2785483T3 (ja) |
HR (1) | HRP20151121T1 (ja) |
HU (1) | HUE028073T2 (ja) |
PL (2) | PL399505A1 (ja) |
SI (1) | SI2785483T1 (ja) |
WO (1) | WO2013186740A1 (ja) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL240163B1 (pl) * | 2014-02-14 | 2022-02-28 | Univ Warszawski | Sposób wytwarzania czystych nanocząstek metali szlachetnych o ścianach (100) oraz zastosowanie nanocząstek otrzymanych tym sposobem |
JP6020506B2 (ja) | 2014-04-11 | 2016-11-02 | トヨタ自動車株式会社 | 触媒微粒子及びカーボン担持触媒の各製造方法 |
KR20170033369A (ko) | 2014-07-17 | 2017-03-24 | 킹 압둘라 유니버시티 오브 사이언스 앤드 테크놀로지 | 금속 나노-합금의 확대 가능한 모양- 및 크기-제어 합성법 |
BR112017005827A2 (pt) | 2014-10-07 | 2018-01-30 | Basf Corp | dispersão coloidal, método de fazer uma dispersão coloidal e catalisador |
JP6096816B2 (ja) * | 2015-01-22 | 2017-03-15 | トヨタ自動車株式会社 | 触媒の製造方法及び製造装置 |
US10710162B2 (en) | 2015-07-23 | 2020-07-14 | National Institute Of Advanced Industrial Science And Technology | Apparatus and method for manufacturing metal nanoparticle dispersion, method for manufacturing metal nanoparticle support, metal nanoparticle, metal nanoparticle dispersion, and metal nanoparticle support |
CN105214655B (zh) * | 2015-09-25 | 2017-07-28 | 北京化工大学 | 一种无负载纳米金属催化剂的制备及应用 |
WO2017109556A1 (en) * | 2015-12-23 | 2017-06-29 | Uniwersytet Warszawski | Means for carrying out electroless metal deposition with atomic sub-monolayer precision |
CN106914255B (zh) * | 2017-03-29 | 2020-03-03 | 国家纳米科学中心 | 一种非合金金属复合物及其制备方法和应用 |
US20200095686A1 (en) * | 2017-06-06 | 2020-03-26 | Uniwersytet Warszawski | A method of electroless deposition of platinum group metals and their alloys and a plating bath used therein |
CN107511479A (zh) * | 2017-09-08 | 2017-12-26 | 厦门大学 | 一种超薄壳层隔绝大粒径金纳米粒子的合成方法 |
CN107648263A (zh) * | 2017-11-15 | 2018-02-02 | 福州大学 | 一种金铂双金属纳米粒子在制备细胞免疫治疗促进剂上的应用 |
CL2017003489A1 (es) * | 2017-12-29 | 2018-05-25 | Univ Chile | Método secuencial para la construcción de nanopartículas de cobre metálico y su posterior decoración o revestimiento con nanopartículas más pequeñas del metal secundario |
JP6847994B2 (ja) * | 2018-03-20 | 2021-03-24 | 旭化成株式会社 | 分散体の製造方法 |
US20190308157A1 (en) * | 2018-04-09 | 2019-10-10 | COMSATS University Islamabad | One-step Dual Heater Based Flow Synthesis Setup for Synthesis of Inorganic Particles in Near Ambient Conditions |
CN108588740B (zh) * | 2018-04-12 | 2019-08-30 | 商洛学院 | 一种用于水裂解产氧的Au-Ir纳米链电催化剂的制备方法 |
CN108672718B (zh) * | 2018-06-07 | 2019-10-11 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | 一种类球形银粉的制备方法 |
WO2020223323A1 (en) * | 2019-04-29 | 2020-11-05 | The Johns Hopkins University | Compositionally defined plasmid dna/polycation nanoparticles and methods for making the same |
CN110405200B (zh) * | 2019-06-18 | 2021-10-19 | 华南农业大学 | 一种蛋黄-蛋壳结构贵金属@空心碳纳米球复合材料及其制备方法和应用 |
CN112387980A (zh) * | 2019-08-19 | 2021-02-23 | 近镒生技股份有限公司 | 纳米金粒子、包含其的药物载体、其制备方法及其用途 |
CN115945204B (zh) * | 2022-04-01 | 2024-04-26 | 四川晨光博达新材料有限公司 | 一种多孔负载定型二氟化钴催化剂及其制备方法 |
CN117102477A (zh) * | 2023-08-01 | 2023-11-24 | 淮安中顺环保科技有限公司 | 一种铜钯合金纳米颗粒及其制备方法和应用 |
CN118417577B (zh) * | 2024-04-15 | 2025-03-04 | 重庆材料研究院有限公司 | 一种高均匀性微米级铂粉的制备方法 |
CN119346119B (zh) * | 2024-12-24 | 2025-03-14 | 成都大学 | 一种具有核壳结构的气凝胶催化剂及其制备方法和应用 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8497131B2 (en) * | 1999-10-06 | 2013-07-30 | Becton, Dickinson And Company | Surface enhanced spectroscopy-active composite nanoparticles comprising Raman-active reporter molecules |
KR100438408B1 (ko) * | 2001-08-16 | 2004-07-02 | 한국과학기술원 | 금속간의 치환 반응을 이용한 코어-쉘 구조 및 혼합된합금 구조의 금속 나노 입자의 제조 방법과 그 응용 |
US20050129580A1 (en) | 2003-02-26 | 2005-06-16 | Swinehart Philip R. | Microfluidic chemical reactor for the manufacture of chemically-produced nanoparticles |
US8361553B2 (en) * | 2004-07-30 | 2013-01-29 | Kimberly-Clark Worldwide, Inc. | Methods and compositions for metal nanoparticle treated surfaces |
JP4553356B2 (ja) * | 2004-10-29 | 2010-09-29 | キヤノン株式会社 | 顔料分散物の製造方法及び顔料分散物製造装置 |
US20070116773A1 (en) * | 2005-07-05 | 2007-05-24 | Interuniversitair Microelektronica Centrum (Imec) | Metal nanostructures and pharmaceutical compositions |
US7601668B2 (en) | 2006-09-29 | 2009-10-13 | Headwaters Technology Innovation, Llc | Methods for manufacturing bi-metallic catalysts having a controlled crystal face exposure |
JP2008297614A (ja) * | 2007-06-01 | 2008-12-11 | Fuji Xerox Co Ltd | 金属粒子混合体の作製装置 |
HU230862B1 (hu) | 2008-04-28 | 2018-10-29 | DARHOLDING Vagyonkezelő Kft | Berendezés és eljárás nanorészecskék folyamatos üzemű előállítására |
JP5726164B2 (ja) * | 2009-03-24 | 2015-05-27 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 成形金属粒子の製造およびその使用 |
KR20110019603A (ko) | 2009-08-20 | 2011-02-28 | 한국지질자원연구원 | 슬러리환원법에 의해 염화은으로부터 나노 은 입자를 제조하는 방법 및 그 나노 은입자 |
JP2011195852A (ja) * | 2010-03-17 | 2011-10-06 | Daihatsu Motor Co Ltd | ナノ粒子の製造方法 |
-
2012
- 2012-06-13 PL PL399505A patent/PL399505A1/pl unknown
-
2013
- 2013-06-13 DK DK13739509.1T patent/DK2785483T3/en active
- 2013-06-13 JP JP2014557166A patent/JP5807129B2/ja active Active
- 2013-06-13 WO PCT/IB2013/054857 patent/WO2013186740A1/en active Application Filing
- 2013-06-13 SI SI201330092T patent/SI2785483T1/sl unknown
- 2013-06-13 PL PL13739509T patent/PL2785483T3/pl unknown
- 2013-06-13 EP EP13739509.1A patent/EP2785483B1/en active Active
- 2013-06-13 HU HUE13739509A patent/HUE028073T2/en unknown
-
2014
- 2014-09-12 US US14/485,023 patent/US9221044B2/en active Active
-
2015
- 2015-10-23 HR HRP20151121TT patent/HRP20151121T1/hr unknown
Also Published As
Publication number | Publication date |
---|---|
US20150011655A1 (en) | 2015-01-08 |
PL399505A1 (pl) | 2013-12-23 |
HUE028073T2 (en) | 2016-11-28 |
DK2785483T3 (en) | 2015-11-16 |
JP2015511274A (ja) | 2015-04-16 |
HRP20151121T1 (en) | 2015-11-20 |
US9221044B2 (en) | 2015-12-29 |
WO2013186740A1 (en) | 2013-12-19 |
PL2785483T3 (pl) | 2016-01-29 |
EP2785483B1 (en) | 2015-08-12 |
EP2785483A1 (en) | 2014-10-08 |
SI2785483T1 (sl) | 2015-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5807129B2 (ja) | 実質的に純粋なナノ粒子を調製するフローシステムの方法、当該方法により得られるナノ粒子及びその使用 | |
Kim et al. | Noble metal‐based multimetallic nanoparticles for electrocatalytic applications | |
Liao et al. | Ag-Based nanocomposites: synthesis and applications in catalysis | |
Pal et al. | Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis | |
Li et al. | Construction of Pd-M (M= Ni, Ag, Cu) alloy surfaces for catalytic applications | |
Thota et al. | Colloidal Au–Cu alloy nanoparticles: synthesis, optical properties and applications | |
Jin | The impacts of nanotechnology on catalysis by precious metal nanoparticles | |
Atar et al. | Silver, gold, and silver@ gold nanoparticle-anchored l-cysteine-functionalized reduced graphene oxide as electrocatalyst for methanol oxidation | |
Wu et al. | Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications | |
Jin et al. | Copper can still be epitaxially deposited on palladium nanocrystals to generate core–shell nanocubes despite their large lattice mismatch | |
Nadagouda et al. | Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres, wires and rods | |
Naik et al. | Nitrogen doping on the core-shell structured Au@ TiO2 nanoparticles and its enhanced photocatalytic hydrogen evolution under visible light irradiation | |
Han et al. | Retrospect and prospect: nanoarchitectonics of platinum‐group‐metal‐based materials | |
Feng et al. | Optical properties and catalytic activity of bimetallic gold-silver nanoparticles | |
US11702720B2 (en) | Method of producing stable Cu-based core-shell nanoparticles | |
Haldar et al. | Noble copper-silver-gold trimetallic nanobowls: An efficient catalyst | |
Cao et al. | Cu-based materials: Design strategies (hollow, core-shell, and LDH), sensing performance optimization, and applications in small molecule detection | |
Chen et al. | Advances in photochemical deposition for controllable synthesis of heterogeneous catalysts | |
Ma et al. | Ag-Pd bimetallic hollow nanostructures with tunable compositions and structures for the reduction of 4-nitrophenol | |
Goncharova et al. | Gold-based catalysts prepared by pulsed laser ablation: A review of recent advances | |
Adesuji et al. | From nano to macro: Hierarchical platinum superstructures synthesized using bicontinuous microemulsion for hydrogen evolution reaction | |
Tang et al. | Synthesis of Cu-Pd nanoplates and their catalytic performance for H2O2 generation reaction | |
Dutta et al. | Aromaticity driven interfacial synthetic strategy for porous platinum nanostructure: an efficient electrocatalyst for methanol and formic acid oxidation | |
Yang et al. | Phase-transfer identification of core-shell structures in bimetallic nanoparticles | |
Bi et al. | Iodide ions control galvanic replacement growth of uniform rhodiumnanotubes at room temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20150115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150224 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20150323 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150323 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150818 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150907 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5807129 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |