JP5790733B2 - 電源電流監視装置 - Google Patents

電源電流監視装置 Download PDF

Info

Publication number
JP5790733B2
JP5790733B2 JP2013219111A JP2013219111A JP5790733B2 JP 5790733 B2 JP5790733 B2 JP 5790733B2 JP 2013219111 A JP2013219111 A JP 2013219111A JP 2013219111 A JP2013219111 A JP 2013219111A JP 5790733 B2 JP5790733 B2 JP 5790733B2
Authority
JP
Japan
Prior art keywords
power supply
time
monitoring
supply current
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013219111A
Other languages
English (en)
Other versions
JP2015080991A (ja
Inventor
精二 森野
精二 森野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013219111A priority Critical patent/JP5790733B2/ja
Priority to DE102014114715.4A priority patent/DE102014114715B4/de
Priority to US14/515,873 priority patent/US9581634B2/en
Publication of JP2015080991A publication Critical patent/JP2015080991A/ja
Application granted granted Critical
Publication of JP5790733B2 publication Critical patent/JP5790733B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation

Description

本発明は、負荷を駆動する駆動回路において電源電流の大きさを監視する電源電流監視装置に関する。
従来、モータ等の負荷を駆動する駆動回路において、バッテリ(電源)から駆動回路への給電経路に電源電流センサを設け、駆動回路に短絡異常が発生したとき、当該電源電流センサが過電流を検出し、電源リレーをオフすることで給電経路を切断する技術が知られている(例えば特許文献1)。
特開2003−219675号公報
電源電流センサによる過電流の検出において、一時的な回路の接触による短絡やノイズによる誤検出等を除外するため、過電流が1回検出された後、電源リレーのオフとオンを繰り返し、過電流が規定回数連続して検出されたとき短絡異常を確定する反復監視処理を行う場合がある。特許文献1に開示されたような1系統のインバータ回路から構成される駆動回路に対しては、このような反復監視処理は、誤検出を防止し、不要なフェールセーフによる機能停止を回避する点で有効である。
ところで、車両の電動パワーステアリングシステム等では、信頼性を向上するための冗長設計として複数系統のモータ駆動回路を備える構成が知られている。また、一般にインバータ回路等の駆動回路の入力部には、入力電圧を平滑化するコンデンサが設けられる。電源に対して複数系統の駆動回路が並列に接続される装置では、通常運転時、各系統の入力部コンデンサに電荷が蓄えられている。
ここで、仮に2系統のうち1系統の駆動回路で過電流が1回検出され電源リレーをオフした場合を想定する。以下、過電流が1回検出された系統を「仮異常系統」という。仮異常系統の駆動回路が実際に短絡した場合、仮異常系統の入力部コンデンサの電荷は放電される。そのため、反復監視処理において再度電源リレーをオンしたとき、正常系統の入力部コンデンサの電荷が突入電流として仮異常系統に流れ込む。すると、仮異常系統の短絡異常がその後正常復帰したとしても、反復監視処理において、正常系統からのコンデンサ突入電流を「電源電流の過電流」であると誤検出する。
さらに、突入電流を放出した正常系統では、仮異常系統での過電流の検出により電源リレーをオフした後、電源から入力部コンデンサに二次突入電流が流れ込む。この二次突入電流に基づき、正常系統が過電流であると誤検出するおそれがある。
このように、2系統以上の駆動回路を備える装置では、仮異常系統の短絡異常を確定するための反復監視処理を適切に実行することができないという問題があった。
本発明は上述の課題に鑑みて成されたものであり、その目的は、2系統の駆動回路の1系統で電源電流の過電流が1回検出された後、当該仮異常系統について電源リレーのオフとオンを繰り返す反復監視処理によって短絡異常を確定する電源電流監視装置において、電源リレーをオンしたとき正常系統の入力部コンデンサから流れ込む突入電流に起因する誤検出を防止する電源電流監視装置を提供することにある。
本発明は、バッテリと、バッテリに対して並列に接続され協働して負荷を駆動する2系統の駆動回路と、駆動回路のバッテリ側の入力部に設けられる入力部コンデンサと、バッテリの電力が分岐される電力分岐点と駆動回路との間に設けられ電力経路を接続又は遮断する電源リレーと、を含む負荷駆動装置に適用され、駆動回路に向かって電源リレーを通過する電源電流の大きさを系統毎に監視する電源電流監視装置に係る発明である。
ここで、「電源電流」には、バッテリから駆動回路に供給される電流に加え、他系統から電力分岐点を経由して流れ込む電流が含まれる。
この電源電流監視装置は、電源電流が流れる電流検出手段の両端電圧に基づいて、駆動回路の高電位側と低電位側とが短絡する短絡異常が発生したことを判定する異常判定手段と、電源リレーの開閉を制御する電源リレー制御手段とを備える。
この電源電流監視装置は、異常判定手段により、いずれかの系統で所定閾値を超える電源電流が1回検出されたとき、当該系統を短絡異常の可能性がある「仮異常系統」であると認定する。そして、当該仮異常系統の電源リレーをオフした後、電源電流が所定閾値を超えた開始時刻から所定のサイクル時間後に再びオンしたときの電源電流の大きさを監視する監視サイクルを規定回数繰り返すことにより、所定条件を満たした場合に仮異常系統が短絡異常であると確定する反復監視処理を実行する。
反復監視処理において仮異常系統の電源リレーをオンしたとき想定される電源電流は、仮異常系統の他の系統である正常系統の入力部コンデンサから仮異常系統に流れ込むコンデンサ突入電流、及び、仮異常系統の短絡異常が継続している場合にバッテリから流れ込むバッテリ短絡電流である。
そして、電源電流監視装置は、反復監視処理において、少なくとも、仮異常系統の電源リレーをオンしてから再びオフした後の所定期間、正常系統についての電源電流の監視を停止する「マスク処理」を実行することを特徴とする。
好ましい形態では、反復監視処理の各監視サイクルにおいて、電源リレーをオンした後、電源電流が所定閾値を超えた時間である過電流時間の積算時間が所定の判定閾値に達したとき、電源リレーをオフすると同時にマスク処理を開始し、開始時刻から、サイクル時間より短い所定の監視時間後にマスク処理を終了する。
反復監視処理において、正常系統については、仮異常系統の電源リレーをオフしたとき入力部コンデンサからコンデンサ突入電流が放電される。そして、仮異常系統で過電流を検出し電源リレーをオフすると、正常系統の入力部コンデンサに、バッテリから二次突入電流が流れ込むこととなる。この二次突入電流によって、正常系統が過電流であると誤検出されるおそれがある。そこで、上記の期間、正常系統についての電源電流の監視を停止する「マスク処理」を実行することにより、二次突入電流によって正常系統が過電流異常と判定される誤検出を防止することができる。
本発明の実施形態による電流電源監視装置が適用される電動パワーステアリングシステム用モータ駆動装置の概略構成図。 本発明の実施形態による電流電源監視装置の回路構成図。 2系統インバータ回路の1系統で短絡異常が発生したときに流れる電流を説明する説明図。 仮異常系統の電源リレーに流れる電源電流の波形図。 コンデンサ突入電流の理論波形図。 バッテリ短絡電流の理論波形図。 2系統インバータ回路の1系統で発生した短絡異常が継続しているときの、本発明の第1実施形態による電流電源監視処理のタイムチャート。 2系統インバータ回路の1系統で発生した短絡異常が正常復帰したときの、本発明の第1実施形態による電流電源監視処理のタイムチャート。 電流電源監視装置においてノイズが発生したときのタイムチャート。 本発明の第1実施形態による電流電源監視処理のフローチャート。 2系統インバータ回路の1系統で発生した短絡異常が継続しているときの、本発明の第2実施形態による電流電源監視処理のタイムチャート。
以下、本発明の実施形態による電源電流監視装置について図面に基づいて説明する。
最初に、電源電流監視装置が適用される電動パワーステアリングシステム用モータ駆動装置の全体構成について、図1を参照して説明する。
(システム構成)
図1に示すように、モータ駆動装置10は、バッテリ47、2系統のインバータ回路601、602を含む電力変換装置50、マイコン20及び電源電流監視装置30等から構成されている。インバータ回路601、602は、特許請求の範囲に記載の「駆動回路」に相当する。また、モータ駆動装置10は、「負荷」としてのモータ80を駆動する「負荷駆動装置」に相当する。特に本実施形態のモータ駆動装置10は、車両において運転者の操舵トルクをアシストする電動パワーステアリングシステムに用いられる。
モータ駆動装置10は、マイコン20に入力されるトルクセンサ94からの操舵トルク信号や、回転角センサ85からの回転角信号等に基づいてモータ80の駆動を制御する。これにより、モータ80は、運転者によるハンドル91の操舵を補助するための操舵アシストトルクを出力する。操舵アシストトルクは、図示しない減速ギアを経由してステアリングシャフト92に伝達される。
モータ80は、例えば三相交流ブラシレスモータであり、2組の三相巻線組801、802を有している。電力変換装置50は、2組の巻線組801、802に対応する2系統のインバータ回路601、602を備え、インバータ回路601、602が出力する電力によってモータ80を駆動する。冗長設計によって2系統の構成を採用することで、仮にいずれか1系統のインバータ回路が故障した場合、他方の系統のインバータ回路によってモータ80の駆動を継続することができるため、信頼性が向上する。
以下の説明では、構成要素の符号について、原則として第1系統の構成要素には3桁の末尾に「1」を、第2系統の構成要素には3桁の末尾に「2」を付して区別する。
バッテリ47は、直流電力を充放電可能な蓄電装置であり、ニッケル水素若しくはリチウムイオン等の二次電池や電気二重層キャパシタ等を含む。バッテリ47の直流電力は、正極側の電力分岐点54で2系統に分岐される。
電力変換装置50は、インバータ回路601、602の入力部に、電源リレー551、552、シャント抵抗571、572、及び入力部コンデンサ581、582を系統毎に有している。2系統でのこれらの仕様及び電気的性能は互いに同等である。
電源リレー551、552は、電力分岐点54とインバータ回路601、602との間に設けられ、インバータ回路601、602への電力経路を接続又は遮断する。
「電流検出手段」としてのシャント抵抗571、572は、電源リレー551、552と直列に接続され、その両端電圧に基づいて、電源電流監視装置30により、電源リレー551、552を通過する電源電流が検出される。電源電流は、バッテリ47側からインバータ回路601、602側に向かって流れる電流を正とする。後述するように、電源電流監視装置30は、正の電源電流の大きさを系統毎に監視する。
入力部コンデンサ581、582は、インバータ回路601、602の高電位側と低電位側との間に接続されており、電荷を蓄え、インバータ回路601、602への電力供給を補助したり、脈動を平滑化したりする。
インバータ回路601、602は、バッテリ47からの直流電力を三相交流電力に変換し、モータ80の巻線組801、802へ供給する。
マイコン20は、トルク信号、回転角信号等の入力信号に基づいて、モータ80の駆動制御に係る各演算値を制御演算する。
電源電流監視装置30は、「異常判定手段」としての異常判定部311、312、及び「電源リレー制御手段」としての電源リレープリドライバ391、392を系統毎に備えており、後述する反復監視処理を実行する。
異常判定部311、312は、各系統のシャント抵抗571、572の両端電圧に基づいて電源電流を検出し、いずれかの系統でインバータ回路601、602の高電位側と低電位側とが短絡する「短絡異常」が発生したことを判定する。ここで、「高電位側」及び「低電位側」は、それぞれバッテリ47の正極及び負極に接続される。また、本明細書で「短絡異常」とは、上記のとおり「駆動回路の高電位側と低電位側とが短絡する異常」の意味で用い、例えば三相巻線組の相間での短絡等を意味しない。
電源リレープリドライバ391、392は、異常判定部311、312及びマイコン20の指令に基づき、電源リレーの開閉を制御する。また、2系統の電源リレープリドライバ391、392は、後述するマスク処理に関して相互に信号を通信する。
次に、電源電流監視装置30の詳細な回路構成について、図2を参照して説明する。2系統の構成は同等であるため、代表として第1系統について説明する。
上述のように、電源電流監視装置30は、インバータ回路601に短絡異常が発生したことを判定する「異常判定手段」としての異常判定部311、及び、電源リレー551の開閉を制御する「電源リレー制御手段」としての電源リレープリドライバ391を含む。
異常判定部311は、電圧増幅部321、コンパレータ331、NANDゲート341、積算時間カウンタ351、判定部361、ダイアグ信号生成部371等から構成されている。
シャント抵抗571の両端電圧は電圧増幅部321で増幅され、コンパレータ331に入力される。コンパレータ331は、増幅された検出電圧を基準電圧と比較し、検出電圧が基準電圧未満のときLO信号、検出電圧が基準電圧を超えたときHI信号を出力する。
NANDゲート341は、コンパレータ331の出力信号とクロック信号との否定論理積を演算し、積算時間カウンタ351に出力する。
判定部361は、積算時間カウンタ351の積算時間が判定閾値に達したか判定する。
ダイアグ信号生成部371は、判定部361の判定結果に基づいてダイアグ信号を生成し、マイコン20に送信する。
電源リレー551の開閉制御に関し、第1系統のANDゲート381は、マイコン20からの指令があること、判定部361からの過電流判定信号があることに加え、第2系統が「監視時間Tw中でない」ことの情報が入力され、論理積を演算する。同様に、電源リレー552の開閉制御に関し、第2系統のANDゲート382は、第1系統が「監視時間Tw中でない」ことの情報が入力され、論理積を演算する。このように、電源電流監視装置30は、他系統が監視時間Tw中であるか否かの情報に基づいて、後述するマスク処理を実行する。
電源リレープリドライバ391は、ANDゲート381の出力信号に基づき、電源リレー551のゲートにスイッチング信号を送信する。
次に、電力変換装置50の具体的構成、及び、いずれかの系統のインバータ回路で短絡異常が発生したときに回路に流れる電流について、図3、図4を参照して説明する。
図3に示すように、電力変換装置50は、バッテリ47の正極側接続点51及び負極側接続点59にてバッテリ47からの配線に接続されている。配線は、配線抵抗48及び配線インダクタンス49を有している。
電力変換装置50は、正極側接続点51に続く入力部にノイズフィルタとしてのコンデンサ52及びコイル53を有している。バッテリ47の直流電力は、コイル53の反バッテリ側の電力分岐点54で2系統に分岐される。図3の左側に図示する第1系統は、電源リレー551、シャント抵抗571、入力部コンデンサ581及びインバータ回路601を含む。図の右側に図示する第2系統は、電源リレー552、シャント抵抗572、入力部コンデンサ582及びインバータ回路602を含む。
本実施形態では、電源リレー551、552は、スイッチング素子で構成されている。また、インバータ回路601、602は、それぞれ、6つのスイッチング素子がブリッジ接続されている。インバータ回路601、602のスイッチング素子は、プリドライバからゲートに入力されるゲート信号によってスイッチング動作し、三相巻線組801、802の各相への通電を切り替える。これらのスイッチング素子として、例えばMOSFET(金属酸化物半導体電界効果トランジスタ)が用いられる。三相インバータ回路の構成は周知技術であるので、詳細な説明を省略する。
この電力変換装置50において、第1系統のインバータ回路601の高電位側と低電位側とが短絡する短絡異常が発生した場合を想定する。図3では、短絡異常を模式的に説明するための仮想スイッチSCを図示している。短絡異常の状態は、この仮想スイッチSCがオンされた状態と等価である。
以下の説明では、図3に示す状態を基本とし、「短絡異常が発生した系統を第1系統、正常系統を第2系統」として説明中の符号を付す。
第1系統のインバータ回路601で短絡異常が発生すると、バッテリ47からのバッテリ短絡電流Ibは、実線矢印で示すように第1系統の電源リレー551を通って流れる。また、第2系統の入力部コンデンサ582に蓄えられた電荷が、コンデンサ突入電流Icとして破線矢印で示すように第1系統の電源リレー551を通って流れる。したがって、バッテリ短絡電流Ib及びコンデンサ突入電流Icが第1系統の「電源電流」として検出される。
このように、2系統のインバータ回路601、602がバッテリ47に対して並列に接続された電力変換装置50では、1系統で短絡異常が発生したとき、正常系統からのコンデンサ突入電流Icが電力分岐点54を経由して異常系統に流れ込む。この現象は、インバータ回路が1系統の構成では想定し得ない、複数系統特有の現象である。
ところで、一般に電源電流センサによる過電流の検出において、一時的な回路の接触による短絡やノイズによる誤検出等を除外するため、過電流が1回検出された後、電源リレーのオフとオンを繰り返し、過電流が規定回数連続して検出されたとき短絡異常であると確定する「反復監視処理」を行う場合がある。1系統のインバータ回路から構成される駆動回路に対しては、反復監視処理は、誤検出を防止し、不要なフェールセーフによる機能停止を回避する点で有効である。
しかし、2系統の駆動回路を備える装置では、上述のコンデンサ突入電流Icにより反復監視処理を適切に実行することが困難となる。その理由を説明するため、次に、反復監視処理におけるコンデンサ突入電流Ic及びバッテリ短絡電流Ibの経時変化について、図4の電流波形図を参照して説明する。反復監視処理では、電源電流の過電流が1回検出された系統を「仮異常系統」と認定し、電源リレーのオフとオンを繰り返して電源電流を監視することで、仮異常系統のインバータ回路が真に短絡しているか、或いは、一時的な接触やノイズを検出したに過ぎないのか判定する。
図4(a)は、実験によって得られた電源電流波形を示し、図4(b)、(c)は、それぞれ、「仮異常系統の電源電流I」、及び「正常系統の電源電流J」の波形を模式的に示したものである。この例では、仮異常系統で実際に短絡異常が継続しているものとする。
仮異常系統では、時刻t0で電源リレー551をオンし短絡状態となると、コンデンサ突入電流Icのピークが先に現れた後、続いてバッテリ短絡電流Ibのピークが現れる。そして、電源電流が閾値Vthを超えたとき、過電流が検出される。
なお、電源電流監視装置30は、シャント抵抗571、572の両端電圧を増幅した検出電圧を基準電圧と比較しており、電源電流を直接的に電流閾値と比較しているわけではない。しかし、本明細書では、技術常識に基づき電圧を電流に換算して考え、「電源電流が閾値Vthを超える」という表現を用いることとする。
図4(b)に示すように、仮異常系統では、時刻t1から時刻t2の間、コンデンサ突入電流Icが閾値Vthを超え、時刻t3から時刻t5の間、バッテリ短絡電流Ibが閾値Vthを超える。電源電流が閾値Vthを超えた時間を「過電流時間」という。特に、コンデンサ突入電流Icによる時刻t1から時刻t2までの過電流時間を「第1過電流時間Tc」といい、バッテリ短絡電流Ibによる時刻t3から時刻t5までの過電流時間を「第2過電流時間Tb」という。また、最初に電源電流が閾値Vthを超えた時刻t1を「開始時刻t1」といい、後述する積算時間の始期とする。
時刻t3と時刻t5との間の時刻t4で、フェールセーフのため、仮異常系統の電源リレー551はオフされる。
一方、図4(c)に示すように、正常系統では、時刻t0に、コンデンサ突入電流Icの裏返しとしての負のコンデンサ放出電流Jcが発生する。さらに、仮異常系統の電源リレー551がオフされた時刻t4後に、配線インダクタンス49およびコイル53に蓄積されたエネルギーにより電力分岐点54の端子電圧が上昇するので入力部コンデンサ582に吸収されバッテリ47からの正の電流Jbcが流れ込む。以下、電流Jbcを「二次突入電流」という。
続いて、コンデンサ突入電流Ic及びバッテリ短絡電流Ibの理論的根拠について、図5、図6を参照して説明する。
図5(a)に示すように、直流電圧E0に充電された静電容量Cのコンデンサに対し、抵抗Rの抵抗器、及びインダクタンスLのコイルが直列に接続されたモデルを想定する。この回路を切断状態から接続したときコンデンサから放電されるコンデンサ突入電流Ic(t)は、下式(1.1)−(1.3)で表される。
Figure 0005790733
図5(b)に示すように、コンデンサ突入電流Ic(t)は、t=0のときIc=0であり、t=tpのときIcは正の極値を取り、t>tpにて、Icが0に収束する波形を示している。
また図6(a)に示すように、直流電圧E0のバッテリに対し、抵抗Rの抵抗器、及びインダクタンスLのコイルが直列に接続されたモデルを想定する。このモデルに基づき、バッテリ短絡電流Ib(t)は、下式(2)で表される。
Figure 0005790733
図6(b)に示すように、バッテリ短絡電流Ib(t)は、一次遅れ系のステップ応答型の波形を示している。
実際のインバータ回路601、602では、コンデンサ突入電流Icとバッテリ短絡電流Ibとが合成した波形が得られる。
以上のような電源電流の挙動により、反復監視処理において次のような現象が生じる。
まず、仮異常系統について、電源リレー551を一旦オフした後、正常復帰した場合を想定する。この状態で電源リレー551を再びオンしてもバッテリ短絡電流Ibは流れない。しかし、前回のサイクルで電源リレー551をオンしたとき仮異常系統の入力部コンデンサ581は放電状態となっているため、電源リレー551を再びオンしたとき、正常系統の入力部コンデンサ582からコンデンサ突入電流Icが流れ込む。このコンデンサ突入電流Icが過電流として誤検出されるため、仮異常系統は、正常復帰したにもかかわらず短絡異常であると判定されることとなり、反復監視処理を実行する意味が無い。
さらに、正常系統については、仮異常系統の電源リレー551をオフしたとき入力部コンデンサ582からコンデンサ突入電流Icが放電される。そして、仮異常系統で過電流を検出し電源リレー551をオフすると、正常系統の入力部コンデンサ582に、バッテリ47から二次突入電流Jbcが流れ込むこととなる。この二次突入電流Jbcによって、正常系統が過電流であると誤検出されるおそれがある。
このように、2系統の駆動回路を備える装置では、1系統の場合とは異なり、反復監視処理を適切に実行することができない。そこで、本発明の電源電流監視装置は、2系統の駆動回路を備える装置での反復監視処理において、仮異常系統の電源リレー551をオフしたとき、正常系統の入力部コンデンサ582から仮異常系統に流れ込むコンデンサ突入電流Icに起因する誤検出を防止することを目的とする。
以下、反復監視処理の具体的な構成について、実施形態毎に説明する。
(第1実施形態)
本発明の電源電流監視装置による反復監視処理の第1実施形態について、図7〜図10を参照して説明する。
まず、仮異常系統に短絡異常が発生し、且つ、その短絡異常が継続しているときのタイムチャートを図7に示す。図7は、反復監視処理の規定回数をN回(N≧3)とした場合の、1回目、2回目及びN回目の監視サイクルにおける特性値を示している。2回目から(N−1)回目までの監視サイクルは、2回目の監視サイクルと同様である。
図7のうち、(a)〜(d)、(g)、(h)は、仮異常系統に関する特性値を示す。
(a)は、図4(b)に対応し、仮異常系統の電源電流を示す。各監視サイクルで、コンデンサ突入電流Ic及びバッテリ短絡電流Ibが波形に現れている。
(b)は、コンパレータ331の出力信号を示す。(a)の電源電流が閾値Vthを超えている期間、コンパレータ出力信号はオンする。
(c)は、過電流時間の積算時間カウンタを示す。開始時刻t1後、仮異常系統にコンデンサ突入電流Icが流れたとき第1過電流時間Tcが積算される。ここで、過電流時間の判定閾値Tjは、第1過電流時間Tcより長く、且つ、第1過電流時間Tcと第2過電流時間Tbとの和より短く設定されている。また、判定閾値Tjから第1過電流時間Tcを減じた時間を余裕時間Taという。すなわち、式(3.1)−(3.3)のように表される。
Tc<Tj<Tc+Tb ・・・(3.1)
Tc+Ta=Tj ・・・(3.2)
Ta<Tb ・・・(3.3)
余裕時間Taは、第1過電流時間Tcが積算された時点における判定閾値Tjまでの余裕の時間である。言い換えれば、第1過電流時間Tcが積算され、さらに余裕時間Taが積算されたとき、積算時間カウンタが判定閾値Tjに達する。積算時間カウンタは、開始時刻t1から所定の監視時間Tw(例えば1ms)が経過するとリセットされる。
(d)は、仮異常系統の電源リレー551のオンオフを示す。(c)の積算時間カウンタが判定閾値Tjに達したとき、電源リレー551はオフされる。また、反復監視処理の規定回数未満で、開始時刻t1から所定のサイクル時間Tx(例えば5ms)が経過したとき、電源リレー551は再度オンされる。こうして、電源リレー551が再度オンした時刻t0から次の監視サイクルに移行する。
ここで、「サイクル時間」は、厳密には、電源リレー551をオンした時刻t0から、次に電源リレー551をオンした時刻t0までの時間を指すと考えられる。しかし、現実には、時刻t0から電源電流が閾値Vthを超える開始時刻t1までの時間は極めて短く無視できるため、開始時刻t1から次の監視サイクルの電源リレーオン時刻t0までの時間を便宜的に「サイクル時間Tx」という。
(g)、(h)は、電源電流監視装置30からマイコン20に送信されるダイアグ信号を示す。(g)は、各監視サイクルで電源リレー551がオフしたとき送信される仮ダイアグ信号を示し、(h)は、仮ダイアグ信号がN回連続したとき送信される確定ダイアグ信号を示す。仮ダイアグ信号又は確定ダイアグ信号を受信したマイコン20は、フェールセーフの観点から仮異常系統の異常時処置を実行する。なお、マイコン20が実行する処理に関しては本発明の特徴的事項ではないため、詳細な説明を省略する。
図7(e)、(f)は、正常系統に関する特性値を示す。
(e)は、正常系統についての電源電流の監視を停止するマスク処理を実行する期間を示す。本実施形態では、各監視サイクルの電源リレー551をオフした時刻から、監視時間Twがタイムアップするまでの期間、マスク処理を実行する。なお、監視時間Twは、当然ながらサイクル時間Txより短く設定される。
(f)は、図4(c)に対応し、正常系統の電源電流を示す。二次突入電流Jbcが現れる期間がマスク処理の期間に含まれるように、監視時間Twが設定されている。
以上の(a)〜(h)が示す事項は、次の図8、図9にて援用する。
1回目の監視サイクルにおいて、仮異常系統に流れるコンデンサ突入電流Ic及びバッテリ短絡電流Ibが流れると、積算時間カウンタで第1過電流時間Tc及び余裕時間Taが積算されて判定閾値Tjに達する。すると、電源リレー551がオフされると同時に、仮ダイアグ信号が送信され、また、マスク処理が開始される。
開始時刻t1から監視時間Twが経過すると、積算時間カウンタがリセットされると同時に、マスク処理が終了する。その後、開始時刻t1からサイクル時間Tx後に電源リレー551が再度オンされ、2回目の監視サイクルに移行する。
短絡異常が継続している場合、2回目から(N−1)回目までの監視サイクルでは、1回目の監視サイクルと同様の挙動が繰り返される。そして、N回目の監視サイクルにおいて電源リレー551がN回目にオフすると、N回目の仮ダイアグ信号とともに確定ダイアグ信号がマイコン20に送信される。これにより、仮異常系統が短絡異常であることが確定する。
次に、仮異常系統に一時的に短絡異常が発生し、その後正常復帰したときの反復監視処理のタイムチャートを図8に示す。図8において、仮異常系統で短絡異常が発生した後の1回目の監視サイクルについては図7と同一である。
しかし、図8(a)に示すように、1回目の監視時間Tw終了後に仮異常系統が正常復帰すると、2回目の監視サイクルでは仮異常系統にコンデンサ突入電流Icのみが流れ、バッテリ短絡電流Ibは流れない。
そのため、積算時間カウンタでは、コンデンサ突入電流Icによる第1過電流時間Tcのみが積算され、判定閾値Tjに達しないまま監視時間Twがタイムアップして、カウントがリセットされる(図8(c))。これにより、2回目の監視サイクルでオンされた電源リレー551は、そのままオン状態を維持する。つまり、監視時間Twのタイムアップに伴って、仮異常系統についての反復監視処理は自動的に終了する。一方、正常系統については、電源リレー551がオフされないため、バッテリ47からの二次突入電流Jbcは発生しない。
次に、もともと短絡異常が発生しておらず、外乱によるノイズが混入したときのタイムチャートを図9に示す。この場合、ノイズが検出された側の系統を便宜的に仮異常系統という。
図9(a)、(f)に示すように、いずれの系統にも実際に短絡電流は発生していない。ただし、図9(b)に示すように、コンパレータ信号に数μs程度のパルス状のノイズが現れたと仮定する。この場合、図9(c)に示すように、最初のノイズ発生から過電流時間の積算が開始されるが、パルスに対応するわずかな過電流時間が積算されるに過ぎず、判定閾値Tjに到達しないまま監視時間Twがタイムアップして積算時間カウンタがリセットされる。
このように、外乱ノイズによる誤検出についても適切に防止することができる。
続いて、図7、図8のタイムチャートに対応する反復監視処理のフローチャートを図10に示す。フローチャートの説明において、記号「S」はステップを示す。
S11では、仮異常系統で電源電流が過電流であるか否か判定する。なお、1回目の判定においては、「仮異常系統で」の部分を「いずれかの系統で」と読み替える。そして、電源電流が過電流であると判定された系統が「仮異常系統」と認定され、その後、S18から戻ってきたときのS11では、仮異常系統についての電源電流について判定する。
S11でYESの場合、S12にて、電源電流が閾値を超えた時刻を開始時刻t1として過電流時間の積算を開始する。その後、仮異常系統では、短絡異常が継続している場合、コンデンサ突入電流Ic及びバッテリ短絡電流Ibが流れ(図7参照)、正常復帰した場合、コンデンサ突入電流Icが流れ、バッテリ短絡電流Ibは流れない(図8参照)。
S13では、過電流時間の積算時間が判定閾値Tjに達したか否か判定する。
コンデンサ突入電流Icによる第1過電流時間Tcにバッテリ短絡電流Ibによる第2過電流時間Tbのうち余裕時間Taが積算され、積算時間が判定閾値Tjに達したとき、S13でYESと判定され、S14に移行する。S14では、電源リレー551をオフするとともに、電源リレーオフ回数をインクリメントする。また、電源電流監視装置30は、仮ダイアグ信号をマイコン20に送信する(図7参照)。
一方、開始時刻t1から監視時間Tw内に第1過電流時間Tcに余裕時間Taが積算されず、積算時間が判定閾値Tjに達しない場合、S13でNOと判定され、S20にて積算時間カウンタをリセットし、処理を終了する(図8参照)。
S14に続くS15では、電源リレーオフ回数が反復監視処理の規定回数であるN回に達したか否か判定する。規定回数に達していない場合(S15:NO)、電源リレーオフと同時に正常系統のマスク処理を開始する(S16)。そして、開始時刻t1から監視時間Tw後に積算時間カウンタをリセットすると同時にマスク処理を終了する(S17)。
その後、開始時刻t1からサイクル時間Tx後に電源リレーをオンし(S18)、S11に戻って次の監視サイクルに移る(以上、図7参照)。
電源リレーオフ回数がN回に達すると(S15:YES)、電源電流監視装置30は、S18にて、仮異常系統が短絡異常であると確定する確定ダイアグ信号をマイコン20に送信し、反復監視処理を終了する(図7参照)。
以上の構成による本実施形態の電源電流監視装置の作用効果を整理する。
(1)電源電流監視装置30は、仮異常系統の反復監視処理において、電源リレー551をオンした後、過電流時間の積算時間が所定の判定閾値Tjに達した監視サイクルが規定回数のN回連続したとき、仮異常系統が短絡異常であると確定する。判定閾値Tjは、コンデンサ突入電流Icによる第1過電流時間Tcより長く、且つ、第1過電流時間Tcと、バッテリ短絡電流Ibによる第2過電流時間Tbとの和より短く設定されている。これにより、コンデンサ突入電流Icを短絡異常の判定対象から除外し、バッテリ短絡電流Ibの有無に基づいて短絡異常を判定することができる。
(2)電源電流監視装置30は、仮異常系統の反復監視処理において、少なくとも、仮異常系統の電源リレーをオンしてから再びオフした後の所定期間、正常系統についての電源電流の監視を停止するマスク処理を実行する。これにより、二次突入電流Jbcによって正常系統が過電流異常と判定される誤検出を防止することができる。
(3)本実施形態では、反復監視処理の各監視サイクルにおいて、電源リレー551をオンした後、過電流時間の積算時間が所定の判定閾値Tjに達したとき、電源リレー551をオフすると同時にマスク処理を開始し、開始時刻t1から監視時間Tw後にマスク処理を終了する。マスク処理の期間を最小限とすることで、マスク処理中に正常系統に発生した異常を検出し損なうリスクを可及的に回避することができる。
(4)本実施形態の電源電流監視装置30は、車両の電動パワーステアリングシステム用モータ駆動装置に適用される。電動パワーステアリングシステムでは、信頼性を向上するため、モータ駆動装置の駆動回路を2系統とする冗長設計が望まれる。したがって、本実施形態の電源電流監視装置30の効果が特に有効に発揮される。
(第2実施形態)
次に、本発明の電源電流監視装置による反復監視処理の第2実施形態について、図11のタイムチャートを参照して説明する。図11は、第1実施形態の図7に対応する図であり、図7に用いた記号を援用する。
図11(e)に示すように、第2実施形態では、正常系統についてのマスク処理を、1回目に過電流を検出した開始時刻t1から、反復監視処理の最終(N回目)の監視サイクルにおける監視時間Twの終了時刻まで継続して実行する。すなわち、第2実施形態のマスク処理期間は、第1実施形態のマスク処理期間をそっくり含み、さらに監視サイクル毎にマスク処理を中断することなく継続する。
この形態では、各監視サイクルの電源リレーのオン時刻t0から開始時刻t1までの時間を無視すると、「マスク処理期間≒サイクル時間Tx×(N−1)+監視時間Tw」となる。また、仮異常系統について、積算時間に基づいて短絡異常を判定する点等、マスク処理以外の処理については第1実施形態と同様である。
なお、1回目の監視サイクルにおけるマスク処理の開始タイミングを、第1実施形態と同様、電源リレーをオフしたタイミングとしてもよい。
第2実施形態は、第1実施形態の効果(1)、(2)、(4)と同様の効果を奏する。
(その他の実施形態)
(ア)両端電圧に基づいて電源電流が検出される各系統の電流検出手段は、シャント抵抗571、572に限らず、既知の抵抗値を有する他の素子を用いることができる。
例えば、バッテリ47の極性を逆に接続した場合に電源リレー551、552の寄生ダイオードを経由してインバータ回路601、602に電流が流れることを防止するため、電源リレー551、552とは寄生ダイオードの向きが反対の第2電源リレーを直列に接続する構成が知られている(例えば特開2013−183462号公報)。このような構成では、第2電源リレーを電流検出手段として用いてもよい。
(イ)上記実施形態では、本発明の電源電流監視装置が適用される2系統の駆動回路として、三相交流ブラシレスモータを駆動する2系統のインバータ回路601、602を例示した。その他、本発明の電源電流監視装置は、例えばブラシ付きDCモータを駆動する2系統のHブリッジ回路に適用してもよい。これらのモータは、電動パワーステアリングシステム用の操舵アシストモータに限らない。また、本発明の電源電流監視装置は、駆動回路の入力部に入力部コンデンサを有するものであれば、モータ以外のどのような負荷を駆動する2系統の駆動回路に適用することもできる。
(ウ)さらに、本発明の電源電流監視装置は、3系統以上の複数系統の駆動回路が電源に対して並列に接続される負荷駆動装置に適用されてもよい。その場合、電源電流監視装置は、複数系統のうち仮異常系統、及び1つの正常系統を対象とする部分において、本発明の技術的範囲に含まれる。残りの正常系統については、1つ目の正常系統と同様、仮異常系統の電源リレーをオンしたとき負のコンデンサ放出電流Jcが発生する。そして、残りの正常系統からのコンデンサ突入電流Icに起因する誤検出を防止することの課題解決に関しては、本発明の技術的思想を単純に寄せ集めることで達成される。
以上、本発明はこのような実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において、種々の形態で実施することができる。
10 ・・・モータ駆動装置(負荷駆動装置)、
30 ・・・電源電流監視装置、
311、312・・・異常判定部(異常判定手段)、
391、392・・・電源リレープリドライバ(電源リレー制御手段)、
47 ・・・バッテリ、 54 ・・・電力分岐点、
551、552・・・電源リレー、
571、572・・・シャント抵抗(電流検出手段)、
581、582・・・入力部コンデンサ、
601、602・・・インバータ回路(駆動回路)、
80 ・・・モータ(負荷)。

Claims (5)

  1. バッテリ(47)と、
    前記バッテリに対して並列に接続され協働して負荷(80)を駆動する2系統の駆動回路(601、602)と、
    前記駆動回路の前記バッテリ側の入力部に設けられる入力部コンデンサ(581、582)と、
    前記バッテリの電力が分岐される電力分岐点(54)と前記駆動回路との間に設けられ電力経路を接続又は遮断する電源リレー(551、552)と、
    を含む負荷駆動装置(10)に適用され、前記駆動回路に向かって前記電源リレーを通過する電源電流の大きさを系統毎に監視する電源電流監視装置(30)であって、
    前記電源電流が流れる電流検出手段(571、572)の両端電圧に基づいて、前記駆動回路の高電位側と低電位側とが短絡する短絡異常が発生したことを判定する異常判定手段(311、312)と、
    前記電源リレーの開閉を制御する電源リレー制御手段(391、392)と、
    を備え、
    前記異常判定手段により、いずれかの系統で所定閾値(Vth)を超える前記電源電流が1回検出されたとき、当該系統を短絡異常の可能性がある仮異常系統であると認定し、当該仮異常系統の前記電源リレーをオフした後、前記電源電流が前記所定閾値を超えた開始時刻(t1)から所定のサイクル時間(Tx)後に再びオンしたときの前記電源電流の大きさを監視する監視サイクルを規定回数繰り返すことにより、所定条件を満たした場合に前記仮異常系統が短絡異常であると確定する反復監視処理を実行し、
    前記反復監視処理において前記仮異常系統の前記電源リレーをオンしたとき想定される前記電源電流は、前記仮異常系統の他の系統である正常系統の前記入力部コンデンサから前記仮異常系統に流れ込むコンデンサ突入電流(Ic)、及び、前記仮異常系統の短絡異常が継続している場合に前記バッテリから流れ込むバッテリ短絡電流(Ib)であり、
    前記反復監視処理において、少なくとも、前記仮異常系統の前記電源リレーをオンしてから再びオフした後の所定期間、前記正常系統についての前記電源電流の監視を停止するマスク処理を実行することを特徴とする電源電流監視装置。
  2. 前記反復監視処理の各前記監視サイクルにおいて、
    前記電源リレーをオンした後、前記電源電流が前記所定閾値を超えた時間である過電流時間の積算時間が所定の判定閾値(Tj)に達したとき、前記電源リレーをオフすると同時に前記マスク処理を開始し、
    前記開始時刻から、前記サイクル時間より短い所定の監視時間(Tw)後に、前記マスク処理を終了することを特徴とする請求項1に記載の電源電流監視装置。
  3. 前記2系統の駆動回路、前記入力部コンデンサ、前記電源リレー及び前記電流検出手段は、仕様及び電気的性能が互いに同等であることを特徴とする請求項1または2に記載の電源電流監視装置。
  4. 前記負荷を駆動する2系統の駆動回路は、交流モータを駆動する2系統のインバータ回路、又は、直流モータを駆動する2系統のHブリッジ回路であることを特徴とする請求項1〜3のいずれか一項に記載の電源電流監視装置。
  5. 前記交流モータ又は前記直流モータは、車両の電動パワーステアリングシステムにおいて操舵アシストトルクを出力するモータであることを特徴とする請求項4に記載の電源電流監視装置。
JP2013219111A 2013-10-22 2013-10-22 電源電流監視装置 Active JP5790733B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013219111A JP5790733B2 (ja) 2013-10-22 2013-10-22 電源電流監視装置
DE102014114715.4A DE102014114715B4 (de) 2013-10-22 2014-10-10 Überwachungsvorrichtung für einen Leistungsversorgungsstrom
US14/515,873 US9581634B2 (en) 2013-10-22 2014-10-16 Power supply current monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013219111A JP5790733B2 (ja) 2013-10-22 2013-10-22 電源電流監視装置

Publications (2)

Publication Number Publication Date
JP2015080991A JP2015080991A (ja) 2015-04-27
JP5790733B2 true JP5790733B2 (ja) 2015-10-07

Family

ID=52775316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013219111A Active JP5790733B2 (ja) 2013-10-22 2013-10-22 電源電流監視装置

Country Status (3)

Country Link
US (1) US9581634B2 (ja)
JP (1) JP5790733B2 (ja)
DE (1) DE102014114715B4 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6239895B2 (ja) * 2013-08-08 2017-11-29 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JPWO2016185711A1 (ja) * 2015-05-21 2018-03-15 日本電気株式会社 蓄電池監視装置
US10836423B2 (en) * 2015-10-22 2020-11-17 Mitsubishi Electric Corporation Electric power steering device and control method of electric power steering device
US10421367B2 (en) * 2015-10-30 2019-09-24 Faraday & Future Inc. Electric vehicle battery test
JP2017158318A (ja) * 2016-03-02 2017-09-07 日立オートモティブシステムズ株式会社 モータ駆動装置
JP6533754B2 (ja) 2016-03-17 2019-06-19 日立オートモティブシステムズ株式会社 電子制御装置及びその制御方法
JP6289530B2 (ja) * 2016-04-14 2018-03-07 三菱電機株式会社 駆動装置一体型回転電機、及び、電動パワーステアリング装置
JP6203326B1 (ja) * 2016-04-22 2017-09-27 三菱電機株式会社 交流回転機の制御装置
CN106646269B (zh) * 2016-06-20 2020-02-11 哈尔滨工业大学 一种高压电源故障激发监测装置及其监测方法
WO2018097821A1 (en) 2016-11-22 2018-05-31 Intel Corporation Restricting current draw in wearable devices
CN106644507B (zh) * 2016-12-07 2019-08-16 浙江吉利控股集团有限公司 一种紧急控制装置、车辆及测试系统
EP3576297A1 (en) * 2018-05-31 2019-12-04 Alstom Ferroviaria S.P.A. Method for localizing short circuits in a supply circuit of a pmm motor
DE102019200091B4 (de) * 2019-01-07 2021-07-22 Thyssenkrupp Ag Elektronische Steuervorrichtung mit Kurzschlussschutz zur Ansteuerung eines Elektromotors einer elektromechanischen Kraftfahrzeuglenkung
CN110568246B (zh) * 2019-05-17 2021-09-14 上海繁易信息科技股份有限公司 一种掉电报警电路及报警方法
US11243264B2 (en) 2020-04-22 2022-02-08 Renesas Electronics Corporation Abnormal power supply voltage detection device and method for detecting abnormal power supply voltage
CN113514717B (zh) * 2021-04-22 2022-09-27 微企(天津)信息技术有限公司 一种非侵入式电力负荷监测系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601107B2 (ja) 1995-04-20 2004-12-15 株式会社デンソー 直流電動機付き車両用操舵装置
JP2003219675A (ja) 2002-01-17 2003-07-31 Koyo Seiko Co Ltd モータ駆動装置
JP4270978B2 (ja) 2003-08-25 2009-06-03 本田技研工業株式会社 電動パワーステアリング装置の故障検出装置
JP3875222B2 (ja) 2003-09-03 2007-01-31 本田技研工業株式会社 車両の操舵制御装置
JP2008206276A (ja) 2007-02-19 2008-09-04 Toyota Motor Corp 異常判定装置
JP2009067174A (ja) 2007-09-12 2009-04-02 Nsk Ltd 電動パワーステアリング装置の制御装置
JP4600505B2 (ja) * 2008-04-09 2010-12-15 トヨタ自動車株式会社 車両のステアリング装置
US8350510B2 (en) * 2009-11-27 2013-01-08 Denso Corporation Voltage booster apparatus for power steering system
JP5083305B2 (ja) 2009-12-24 2012-11-28 株式会社デンソー 電動機駆動装置、および、これを用いた電動パワーステアリング装置
JP5760830B2 (ja) 2011-08-09 2015-08-12 株式会社デンソー 3相回転機の制御装置
JP5532065B2 (ja) 2012-02-29 2014-06-25 株式会社デンソー 電動機駆動装置

Also Published As

Publication number Publication date
US9581634B2 (en) 2017-02-28
DE102014114715A1 (de) 2015-04-23
JP2015080991A (ja) 2015-04-27
US20150109020A1 (en) 2015-04-23
DE102014114715B4 (de) 2023-02-16

Similar Documents

Publication Publication Date Title
JP5790733B2 (ja) 電源電流監視装置
JP5835301B2 (ja) 電源電流監視装置
JP5743934B2 (ja) インバータ装置及びパワーステアリング装置
US9762050B2 (en) Motor drive device
EP2985911B1 (en) Electronic apparatus
EP3193443B1 (en) Inverter device for driving multi-phase ac motor
EP2424064A1 (en) Overcurrent fault detection device for electrical drive control system
JP5446409B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5441481B2 (ja) インバータ装置の故障診断方法
JP2009060358A (ja) 過電流保護回路及び電力変換システム
JP5751152B2 (ja) インバータ用短絡故障検出装置及びモータ制御装置
WO2007096994A1 (ja) 系統連系インバータ装置
CN103991475A (zh) 电动动力转向用电子控制装置
CN110932579A (zh) 电力转换装置
JP6374891B2 (ja) モータ駆動制御装置及びそのモータ駆動制御方法
JP4556918B2 (ja) 回生エネルギー消費回路を備える電源装置
EP2998200B1 (en) Electric power steering device
JP6683647B2 (ja) モータ駆動回路の制御装置及びモータ駆動回路の診断方法
KR101912970B1 (ko) 브러시리스 모터를 동작시키는 방법 및 디바이스
JP2015136213A (ja) 電動車両の電力変換装置
JP6686611B2 (ja) 電圧変換装置
JP2013255297A (ja) 車両用インバータ装置
JP6797233B2 (ja) 電力変換装置
WO2023095695A1 (ja) 異常検出装置
WO2022168898A1 (ja) 昇圧装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R151 Written notification of patent or utility model registration

Ref document number: 5790733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250