JP5785419B2 - 光学要素を冷却する方法、リソグラフィ装置、およびデバイスを製造する方法 - Google Patents

光学要素を冷却する方法、リソグラフィ装置、およびデバイスを製造する方法 Download PDF

Info

Publication number
JP5785419B2
JP5785419B2 JP2011077418A JP2011077418A JP5785419B2 JP 5785419 B2 JP5785419 B2 JP 5785419B2 JP 2011077418 A JP2011077418 A JP 2011077418A JP 2011077418 A JP2011077418 A JP 2011077418A JP 5785419 B2 JP5785419 B2 JP 5785419B2
Authority
JP
Japan
Prior art keywords
heat transfer
gas
optical
gap
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011077418A
Other languages
English (en)
Other versions
JP2011222992A (ja
Inventor
ヤンセン,フランシスクス,ヨハネス,ヨセフ
ループストラ,エリック,ルーロフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2011222992A publication Critical patent/JP2011222992A/ja
Application granted granted Critical
Publication of JP5785419B2 publication Critical patent/JP5785419B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/52Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/181Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

[0001] 本発明は、光学要素およびシステム、特に近真空環境において光学要素を冷却する方法に関する。本発明はさらに、リソグラフィ装置およびデバイスを製造する方法に関する。本発明は特に、極端紫外線(EUV)リソグラフィ装置に適用される。
[0002] リソグラフィ装置は、所望のパターンを基板上、通常、基板のターゲット部分上に付与する機械である。リソグラフィ装置は、例えば、集積回路(IC)の製造に用いることができる。その場合、ICの個々の層上に形成される回路パターンを生成するために、マスクまたはレチクルとも呼ばれるパターニングデバイスを用いることができる。このパターンは、基板(例えばシリコンウェーハ)上のターゲット部分(例えば1つ以上のダイの一部を含む)に転写することができる。通常、パターンの転写は、基板上に設けられた放射感応性材料(レジスト)層上への結像によって行われる。一般には、単一の基板が、連続的にパターニングされる隣接したターゲット部分のネットワークを含んでいる。
[0003] リソグラフィは、ICおよび他のデバイスおよび/または構造の製造における重要なステップの1つとして広く認識されている。しかしながら、リソグラフィを使用して作られるフィーチャの寸法が小さくなるにつれて、リソグラフィは小型ICまたは他のデバイスおよび/または構造を製造可能にするためのより重大な要素になりつつある。
[0004] パターンプリンティングの限界の理論推定値は、式(1)に示されるような解像度についてのレイリー(Rayleigh)基準によって与えることができる:
Figure 0005785419
ここで、λは用いられる放射の波長であり、NAはパターンのプリントに用いられる投影システムの開口数であり、k1は、レイリー定数とも呼ばれる、プロセス依存型調節係数であり、CDはプリントされたフィーチャのフィーチャサイズ(またはクリティカルディメンション)である。式(1)から、フィーチャの最小プリント可能サイズの縮小は、3つの方法、すなわち、露光波長λを短くすること、開口数NAを大きくすること、またはk1の値を小さくすることによって得られることが分かる。
[0005] 露光波長を短くする、したがって最小プリント可能なサイズを縮小するために、極端紫外線(EUV)源を使用することが提案されている。EUV放射は、例えば13〜14nmの範囲内である5〜20nmの範囲内の波長を有する電磁放射である。6.7nmまたは6.8nmといった例えば5〜10nmの範囲内である10nm未満の波長を有するEUV放射を用いることがさらに提案されている。このような放射は、極端紫外線または軟X線放射と呼ばれる。可能な放射源としては、例えばレーザ生成プラズマ源、放電プラズマ源、または電子蓄積リングによって供給されるシンクロトロン放射に基づいた放射源が挙げられる。
[0006] EUV放射の特性によって、光学システムの特質に大幅な変更が必要となる。一般に、屈折型光学要素は所望の放射を吸収し過ぎるので、EUV照明および投影のための光学システムは反射型光学要素(ミラー)を用いて設計される。さらに、ガス状雰囲気はEUV放射を吸収するので、光学システムは真空チャンバ内に収容され、実質的に真空内で動作させられる。これらの変更は、EUV放射のための光学システムの設計に多くの問題をもたらす。
[0007] EUV光のかなりの部分が、ミラーの比較的低い反射によってミラー内で吸収される。これによりミラーが加熱し、また、非一様に加熱する。この加熱によってミラーが変形し、光学性能が低減する。(リソグラフィ装置では、性能尺度は結像およびオーバレイである。)投影光学システムでは、ミラーは低膨張係数材料から作られる。そうであっても、ミラーの能動的な熱調節がなければ、変形が大きすぎて容認可能な光学性能に到達することができない。記載する実施例では、冷却を熱調節の一例として用いる。より一般的な用語「熱調節」は、単純な冷却のみならず、光学要素全体に所望の温度分布を与える任意のプロセスを包含するように用いられる。これには、冷却によるもの、加熱によるもの、または、空間および/または時間における様々な位置/時点における異なる加熱度および/または冷却度の利用によるものであってよい。例えば「冷却流体」、「冷却プレート」、または「冷却体」に言及される記載がある場合、これは、熱調節流体等の一例に過ぎないと理解されるべきである。
[0008] 空気路または水路によってミラーを直接熱調節することは、少なくとも最も重要な素子において許容できない性能損失につながる動的振動を引き起こす傾向がある。
[0009] 本発明は、EUVリソグラフィ装置の投影システムといった真空光学システム内の光学要素のための向上された冷却配置を提供することを目的とする。
[0010] 本発明の一態様では、真空環境において動作する光学要素を熱調節する方法が提供される。光学要素は少なくとも1つの光学面と少なくとも1つの熱伝達面を有する第1の本体を含み、第1の本体は位置および/または向きにおいて動的に制御される。係る方法は、第1の熱伝達面の形態に相互補完的な形態の第2の熱伝達面を含む第2の本体の温度を所望の温度に制御することと、第2の本体を第1の本体に隣接して位置決めし、本体間に接触がない状態で実質的に一定の配置に第1および第2の熱伝達面を維持するように位置および/または向きにおいて第2の本体を動的に制御することと、第1および第2の熱伝達面によって画定される熱伝達空間内にガスを熱伝達媒体として送出する一方で、熱伝達空間内のガスの圧力を約30Paと約300Paの間の所定値となるよう制御することとを含む。
[0011] 本発明の一態様では、極端紫外線用の光学システムが提供される。かかる光学システムは、光学システムを近真空環境内に収容するように構成された真空チャンバと、真空チャンバ内に取り付けられた第1の本体を含み、第1の本体は少なくとも1つの光学面と少なくとも1つの第2の熱伝達面を有する、光学要素と、第1の本体を支持するように構成され、支持構造に対して光学要素の位置および/または向きを制御するように動作可能である複数のアクチュエータと、少なくとも1つの第2の熱伝達面を有する第2の本体を含む熱調節要素と、第1および第2の熱伝達面間の熱伝達ギャップ内にガスを熱伝達媒体として送出するように構成されたガスデリバラと、第1および第2の本体間の接触を許可することなく熱伝達ギャップを所定値未満に維持するように第1の本体に対して実質的に固定の関係で第2の本体を支持するように構成されたサポートとを含む。
[0012] 本発明はさらに、1つ以上のかかる冷却された光学要素を含む光学システムが組み込まれたリソグラフィ装置を提供する。
[0013] 本発明はさらに、リソグラフィ装置の一部として上述した光学システムを用いて例えば半導体デバイスであるデバイスを製造する方法を提供する。
[0014] 本発明のいくつかの実施形態を、単なる例として、添付の概略図を参照して以下に説明する。これらの図面において同じ参考符号は対応する部分を示す。
[0015] 図1は、本発明の一実施形態による光学システムの一例としてのリソグラフィ装置を概略的に示す。 [0016] 図2は、図1の装置のより詳細な図である。 [0017] 図3Aは、図2の装置の投影光学システムの一実施形態における光学要素および関連の冷却配置の断面略図である。 [0018] 図3Bは、図3Aの光学要素の平面図である。 [0019] 図4は、図3Aおよび図3Bの冷却配置において利用可能な寸法および圧力範囲を概略的に示すグラフである。 [0020] 図5は、図1〜図4の装置における特定の設計および性能特性を概略的に示すグラフである。 [0021] 図6は、本発明の一実施形態における光学要素および関連の冷却配置の断面略図である。
[0022] 図1は、本発明の一実施形態による放射源コレクタモジュールSOを含むリソグラフィ装置100を概略的に示す。リソグラフィ装置は、放射ビームB(例えばEUV放射)を調整するように構成された照明システム(イルミネータ)ILと、パターニングデバイス(例えばマスクまたはレチクル)MAを支持するように構成され、かつパターニングデバイスを正確に位置決めするように構成された第1のポジショナPMに接続されたサポート構造(例えばマスクテーブル)MTと、基板(例えばレジストコートウェーハ)Wを保持するように構成され、かつ基板を正確に位置決めするように構成された第2のポジショナPWに接続された基板テーブル(例えばウェーハテーブル)WTと、パターニングデバイスMAによって放射ビームBに付与されたパターンを基板Wのターゲット部分C(例えば1つ以上のダイを含む)上に投影するように構成された投影システム(例えば反射投影システム)PSとを含む。
[0023] 照明システムとしては、放射を誘導し、整形し、または制御するために、屈折型、反射型、磁気型、電磁型、静電型、またはその他のタイプの光コンポーネント、あるいはそれらの任意の組み合せ等の様々なタイプの光コンポーネントを含むことができる。
[0024] サポート構造MTは、パターニングデバイスの向き、リソグラフィ装置の設計、および、パターニングデバイスが真空環境内で保持されているか否か等の他の条件に応じた態様でパターニングデバイスを保持する。サポート構造は、機械式、真空式、静電式またはその他のクランプ技術を使って、パターニングデバイスを保持することができる。サポート構造は、例えば、必要に応じて固定または可動式にすることができるフレームまたはテーブルであってもよい。サポート構造は、パターニングデバイスを、例えば投影システムに対して所望の位置に確実に置くことができる。
[0025] 用語「パターニングデバイス」は、基板のターゲット部分内にパターンを作るように放射ビームの断面にパターンを付与するために使用することのできる任意のデバイスを指していると広く解釈されるべきである。放射ビームに付与されたパターンは、集積回路などのターゲット部分内に作り出されるデバイス内の特定の機能層に対応しうる。
[0026] パターニングデバイスは、透過型であっても反射型であってもよい。パターニングデバイスの例としては、マスク、プログラマブルミラーアレイ、およびプログラマブルLCDパネルが含まれる。マスクは、リソグラフィでは周知であり、バイナリ、レべンソン型(alternating)位相シフト、およびハーフトーン型(attenuated)位相シフトなどのマスク型、ならびに種々のハイブリッドマスク型を含む。プログラマブルミラーアレイの一例では、小型ミラーのマトリックス配列が用いられ、入射する放射ビームを様々な方向に反射させるように各小型ミラーを個別に傾斜させることができる。傾斜されたミラーは、ミラーマトリックスによって反射される放射ビームにパターンを付与する。
[0027] 照明システムのような投影システムは、用いられる露光放射に、または真空の使用といった他の要因に適切な屈折型、反射型、磁気型、電磁型、静電型、または他の型の光学コンポーネント、またはそれらのあらゆる組合せを含むあらゆる型の光学コンポーネントを含みうる。他のガスは放射を吸収しすぎることがあるので、EUV放射には真空を用いることが望ましい。したがって、真空壁および真空ポンプを用いてビーム経路全体に真空環境を与えうる。
[0028] 本明細書に示されているとおり、リソグラフィ装置は反射型装置であってよい(例えば反射型マスクを採用する)。
[0029] リソグラフィ装置は、2つ(デュアルステージ)以上の基板テーブル(および/または2つ以上のマスクテーブル)を有する型のものであってもよい。そのような「マルチステージ」機械では、追加のテーブルを並行して使うことができ、すなわち予備工程を1つ以上のテーブル上で実行しつつ、別の1つ以上のテーブルを露光用に使うこともできる。
[0030] 図1を参照すると、イルミネータILは、放射源コレクタモジュールSOから極端紫外線ビームを受け取る。EUV光を生成する方法には、次に必ずしも限定されないが、物質を、EUV範囲内の1本以上の輝線を有する例えばキセノン、リチウム、またはスズである少なくとも1つの元素を有するプラズマ状態に変換することが含まれる。多くの場合、レーザ生成プラズマ(「LPP」)と呼ばれるこのような方法の1つでは、必要とされるプラズマは、必要な輝線放出元素を有する物質の液滴、ストリーム、またはクラスタをレーザビームによって照射することによって生成することができる。放射源コレクタモジュールSOは、燃料を励起するためのレーザビームを提供する、図1には図示しないレーザを含むEUV放射システムの一部であってよい。結果として生じるプラズマは、例えばEUV放射である出力放射を放出し、この放射は、放射源コレクタモジュール内に配置される放射源コレクタを使って集められる。例えばCOレーザを用いて燃料励起のためのレーザビームを提供する場合は、レーザと放射源コレクタモジュールは別個の構成要素であってよい。
[0031] その場合、レーザは、リソグラフィ装置の一部を形成しているとはみなされず、また、放射ビームはレーザから放射源コレクタモジュールへ、例えば適切な誘導ミラーおよび/またはビームエキスパンダを含むビームデリバリシステムを使って送られる。その他の場合、例えば放射源が、多くの場合DPP源と呼ばれる放電生成プラズマEUVジェネレータである場合、放射源は放射源コレクタモジュールの一体部分とすることもできる。
[0032] イルミネータILは、放射ビームの角強度分布を調節するアジャスタを含むことができる。一般に、イルミネータの瞳面内の強度分布の少なくとも外側および/または内側半径範囲(通常、それぞれσ-outerおよびσ-innerと呼ばれる)を調節することができる。さらに、イルミネータは、ファセットフィールドデバイスおよび瞳ミラーデバイスといった様々な他のコンポーネントを含むことができる。イルミネータを使って放射ビームを調整すれば、放射ビームの断面に所望の均一性および強度分布を持たせることができる。
[0033] 放射ビームBは、サポート構造(例えばマスクテーブル)MT上に保持されているパターニングデバイス(例えばマスク)MA上に入射して、パターニングデバイスによってパターン形成される。パターニングデバイス(例えばマスク)MAから反射された後、放射ビームBは投影システムPSを通過し、投影システムPSは、基板Wのターゲット部分C上にビームの焦点を合わせる。第2ポジショナPWおよび位置センサPS2(例えば、干渉計デバイス、リニアエンコーダ、または静電容量センサ)を使い、例えば、様々なターゲット部分Cを放射ビームBの経路内に位置決めするように、基板テーブルWTを正確に動かすことができる。同様に、第1ポジショナPMおよび別の位置センサPS1を使い、パターニングデバイス(例えばマスク)MAを放射ビームBの経路に対して正確に位置決めすることもできる。パターニングデバイス(例えばマスク)MAおよび基板Wは、マスクアライメントマークM1、M2と、基板アライメントマークP1、P2を使って位置合わせされうる。
[0034] 例示の装置は、以下に説明するモードのうち少なくとも1つのモードで使用できる。
[0035] 1.ステップモードでは、サポート構造(例えばマスクテーブル)MTおよび基板テーブルWTを基本的に静止状態に保ちつつ、放射ビームに付けられたパターン全体を一度にターゲット部分C上に投影する(すなわち、単一静的露光)。その後、基板テーブルWTは、Xおよび/またはY方向に移動され、それにより別のターゲット部分Cを露光することができる。
[0036] 2.スキャンモードでは、サポート構造(例えばマスクテーブル)MTおよび基板テーブルWTを同期的にスキャンする一方で、放射ビームに付けられたパターンをターゲット部分C上に投影する(すなわち、単一動的露光)。サポート構造(例えばマスクテーブル)MTに対する基板テーブルWTの速度および方向は、投影システムPSの(縮小)拡大率および像反転特性によって決めることができる。
[0037] 3.別のモードでは、プログラマブルパターニングデバイスを保持した状態で、サポート構造(例えばマスクテーブル)MTを基本的に静止状態に保ち、また基板テーブルWTを動かす、またはスキャンする一方で、放射ビームに付けられているパターンをターゲット部分C上に投影する。このモードでは、通常、パルス放射源が採用され、さらにプログラマブルパターニングデバイスは、基板テーブルWTの移動後ごとに、またはスキャン中の連続する放射パルスと放射パルスとの間に、必要に応じて更新される。この動作モードは、前述の型のプログラマブルミラーアレイといったプログラマブルパターニングデバイスを利用するマスクレスリソグラフィに容易に適用することができる。
[0038] 上述の使用モードの組合せおよび/またはバリエーション、或いは完全に異なる使用モードもまた採用可能である。
[0039] 図2は、放射源コレクタモジュールSO、照明システムIL、および投影システムPSを含むリソグラフィ装置100をより詳細に示す。放射源コレクタモジュールSOは、放射源コレクタモジュールSOの囲い構造220内に真空環境が維持可能であるように構成される。EUV放射放出プラズマ210が、放電生成プラズマ源によって形成されうる。EUV放射は、例えばXeガス、Li蒸気またはSn蒸気といったガスまたは蒸気によって生成されうる。ガスまたは蒸気内では、非常に高温のプラズマ210が生成されて電磁スペクトルのEUV範囲内の放射を放出する。非常に高温のプラズマ210は、例えば少なくとも部分的にイオン化されたプラズマをもたらす放電によって生成される。例えば10Paの分圧のXe、Li、Sn蒸気または任意の他の適切なガスまたは蒸気が、効率のよい放射の発生に必要となりうる。一実施形態では、励起されたスズ(Sn)のプラズマが提供されてEUV放射が生成される。
[0040] 高温プラズマ210によって放出された放射は、放射源チャンバ211からコレクタチャンバ212内へと、放射源チャンバ211の開口の中または背後に位置決めされる光学ガスバリアまたは汚染物質トラップ230(場合によっては汚染物質バリアまたはフォイルトラップとも呼ばれる)を介して渡される。汚染物質トラップ230はチャネル構造を含みうる。汚染物質トラップ230はさらに、ガスバリア、または、ガスバリアとチャネル構造の組み合わせを含みうる。本明細書において以下に示す汚染物質トラップまたは汚染物質バリア230は、当技術分野において知られているように少なくともチャネル構造を含む。
[0041] コレクタチャンバ212は、いわゆるかすめ入射コレクタでありうる放射源コレクタCOを含みうる。放射源コレクタCOは、上流放射コレクタ側251および下流放射コレクタ側252を有する。コレクタCOを通過する放射は、仮想放射源点IFに合焦するように格子スペクトルフィルタ240を反射しうる。仮想放射源点IFは、通常、中間焦点と呼ばれ、放射源コレクタモジュールは、中間焦点IFが囲い構造220内の開口221にまたは付近に位置付けられるように構成される。仮想放射源点IFは、放射放出プラズマ210の像である。
[0042] 次に、放射は、パターニングデバイスMAにおいて放射ビーム21の所望の角分布を、かつ、パターニングデバイスMAにおいて所望の放射強度均一性を与えるように構成されたファセットフィールドミラーデバイス22およびファセット瞳ミラーデバイス24を含みうる照明システムILを通過する。サポート構造MTによって保持されたパターニングデバイスMAにおいて放射ビーム21が反射すると、パターン付きビーム26が形成され、このパターン付きビーム26は、投影システムPSによって、反射素子28、30を介して、ウェーハステージまたは基板テーブルWTによって保持される基板W上に結像される。
[0043] 通常、図示されるよりも多くの素子が、照明光学ユニットILおよび投影システムPS内にあってよい。格子スペクトルフィルタ240は、リソグラフィ装置の型に応じて任意選択的にあってよい。さらに、図に示すものよりも多くのミラーが存在してよく、例えば、図2に示すものよりも1〜6個多い追加の反射素子が投影システムPS内にあってよい。
[0044] 図2に示すような放射コレクタまたはコレクタ光学部品COは、コレクタ(またはコレクタミラー)のほんの一例として、かすめ入射リフレクタ253、254、および255を有するネスト型コレクタとして示される。かすめ入射リフレクタ253、254、および255は、光軸Oの周りに軸対称に配置され、この型のコレクタ光学部品COは、多くの場合DPP源と呼ばれる放電生成プラズマ源と組み合わせて用いられることが好適である。
[0045] あるいは、放射源コレクタモジュールSOは、図3に示すようなLPP放射システムの一部であってもよい。レーザLAは、キセノン(Xe)、スズ(Sn)、またはリチウム(Li)といった燃料にレーザエネルギーを堆積するように構成され、それにより、数十eVの電子温度を有する、高度にイオン化されたプラズマ210が生成される。これらのイオンの脱励起および再結合時に発生されたエネルギー放射は、プラズマから放出され、近法線入射コレクタ光学部品COによって集められ、囲い構造220にある開口221へと合焦される。
[0046] さらなる代替の配置(図示せず)では、スペクトル純度フィルタが、反射型格子ではなく透過型フィルタであってよい。この場合、放射源SOからの放射は、コレクタから中間焦点IF(仮想放射源点)への直線路に従う。スペクトル純度フィルタは、仮想放射源点IF、または、コレクタ光学部品COと仮想放射源点との間の任意の位置に位置決めされうる。フィルタは、例えば仮想放射源点の下流の放射路における他の位置に配置されてよい。多数のフィルタを配置してよい。上述したように、コレクタCOは、かすめ入射型であっても、直接リフレクタ型であってもよい。
[0047] 本明細書において、IC製造におけるリソグラフィ装置の使用について具体的な言及がなされているが、本明細書記載のリソグラフィ装置が、集積光学システム、磁気ドメインメモリ用のガイダンスパターンおよび検出パターン、フラットパネルディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッド等の製造といった他の用途を有し得ることが理解されるべきである。当業者には当然のことであるがそのような別の用途においては、本明細書で使用される「ウェーハ」または「ダイ」という用語はすべて、それぞれより一般的な「基板」または「ターゲット部分」という用語と同義であるとみなしてよい。本明細書に記載した基板は、露光の前後を問わず、例えば、トラック(通常、基板にレジスト層を塗布し、かつ露光されたレジストを現像するツール)、メトロロジーツール、および/またはインスペクションツールで処理されてもよい。適用可能な場合には、本明細書中の開示内容を上記のような基板プロセシングツールおよびその他の基板プロセシングツールに適用してもよい。さらに基板は、例えば、多層ICを作るために複数回処理されてもよいので、本明細書で使用される基板という用語は、すでに多重処理層を包含している基板を表すものとしてもよい。
[0048] 「レンズ」という用語は、文脈によって、屈折、反射、磁気、電磁気、および静電型光コンポーネントを含む様々な種類の光コンポーネントのいずれか1つまたはこれらの組合せを指すことができる。図示したようなリソグラフィ装置といったEUV光学システムのコンテキストでは、反射型コンポーネントが主である。
[0049] 本願は、動作中に、投影システムPSの光学要素を既知の均一な温度に維持するという課題に特に関するものである。これらの光学要素は、便宜上、保護の範囲を制限することなくミラーと呼ぶ。EUV光学システムのミラーは、実際には部分的にしか反射されないEUV放射によって温められうる。過熱を回避するために、かつ、光学性能を損ないうる熱応力および歪みを軽減するために、熱調節(本実施例では冷却)が適用される。放射源光学部品SOおよび照明システムILでは、ミラーは、装置の性能に深刻に影響を及ぼすことなく、水または他の冷却媒体によって直接冷却可能である。しかしながら、投影システムPSでは、直接冷却は、通常、流体流自体によっておよび/またはポンプモータに結合されることによって引き起こされる振動をもたらす。これらの振動は、結像性能を阻害しうる。
[0050] EUV投影光学部品を冷却する問題に対処する、公開されている従前の試みでは、(i)流体コイルシステムの綿密な設計によって振動を低減しようとすること、および/または、(ii)様々な手段によって冷却システムからミラーを切り離すこと、に焦点が置かれてきている。真空全体に亘る熱の放射に依存する熱伝達ギャップが提案されているが、発明者は真空全体に亘って達成される熱伝達が依然として不所望の加熱を可能にしてしまうことを見出している。ミラーとヒートシンクとの間で熱伝達媒体としてバックフィルガスを用いることも検討されているが、相当な圧力でガスを導入することは、真空環境の目的に反するものであり、潜在的には古い振動および歪みの発生源の代わりに新しい振動および歪みの発生源をもたらしうる。特に、ミラーは、通常、ミラーの位置および姿勢(向き)のリアルタイムの制御を与えるアクチュエータ上に支持される。ヒートシンクがミラーに結合されていない場合、熱伝達ガス用のギャップはかなり変り易く、ミラー面積全体に亘って非均一である。このことは、ひいては、均一な冷却効果を与えるべく圧力を制御することの難しさを暗示するものである。
[0051] 図3Aおよび図3Bは、それぞれ、半径方向の断面図および平面図で示す冷却システムを有するミラーの第1の実施形態を概略的に示す。図3Aにおける断面は、図3Bの一点鎖線に従ったものである。ミラー300の形態にあるEUV光学要素は、ミラー本体304上に形成された反射面302を含む。ミラー本体304は、動作温度範囲内で低熱膨張係数(CTE)を有する基板材料から形成されている。特殊な超低膨張(ULE)ガラスがこの目的のために市販されており、また、所望の温度値においてCTEを最小限に抑えるようにカスタマイズされることが可能である。EUV放射では、放射面302は、通常は、多層金属‐半導体構造であり、例えばスタック内で交互にされる複数のMo‐Si層である。
[0052] ミラー本体304には、光軸(図示せず)の周りに角度が付けられて間隔が置かれた取り付け台306A〜306Cが設けられている。各取り付け台306A〜306Cは、各々のアクチュエータ307A〜307Cを介して、フレーム310上に固定された各々のサポート308A〜308Cに結合される。本実施例では、各アクチュエータは、2自由度でミラー取り付け台を駆動することができる。したがって、これら3つのアクチュエータは共に電子システム(図示せず)によって6自由度でミラーを位置決めし且つ方向付けるように制御されることが可能である。アクチュエータの他の配置も可能である。アクチュエータは、例えば圧電型であっても、または電磁(ボイスコイル)であってもよい。本実施例では、各取り付け台306A〜306Cは、バネの特性を有するリンク312A〜312Cを介してアクチュエータに結合される。図示しないが、ミラー位置および向き制御システムの一部として干渉計または光学エンコーダといったセンサが存在し、これらは、様々な軸におけるミラーの様々な部分の位置を測定する。これらのアクチュエータおよびセンサは、当業者には周知であるサーボ制御システムの一部を形成する。
[0053] ミラー300の機能光学面(面302)から離れて、熱伝達面314がミラー本体304の背部に設けられる。本実施例では、熱伝達面314は、動作時に発熱する機能(反射)面302の近くに近づくように本体304の基板材料内に凹部となるようにされる。図示するように、円柱状のボアであり、基板全体に亘って比較的均一に分布される幾つかの凹部が形成される。
[0054] ミラー本体304の背部には、良好な熱伝導および低CTEを有する金属でありうる冷却本体320を含む冷却デバイスが隣接する。例えば、アルミニウムが好適でありうる。冷却本体320には、ミラー本体304の熱伝達面314に面する熱伝達面322が設けられる。特に、冷却本体面322は、ミラー本体の凹部内に突出するように設計された材料のフィンガ上に位置付けられることによってミラー本体面314の近くにされる。冷却本体には、各凹部内に突出して、ミラー本体304の熱伝達面314の全面から熱を受け取るように設計された多数のフィンガが設けられている。
[0055] 凹部の数および形態は、いずれも、ミラー本体の構造上の完全性および安定性を弱めることなく必要な冷却度を与えるように設計される。ミラーが数センチメートルの直径(例えば8〜10cm)と数センチメートルの厚さを有する一実施例では、凹部は、1センチメートル程度(例えば0.5〜1.5cm)の直径と、1〜5センチメートル程度の凹部間の間隔を有しうる。これらの凹部は均一に分布される必要も、均一のサイズおよび形状である必要もない。ミラー面302が平面ではなく曲面である場合、凹部の深度は、各位置におけるミラー面の高さに合わせられうる。詳細な設計のこれらの検討事項および他の特徴は、米国特許出願公開第2005/0105066A(Franken/ASML)に記載される。
[0056] 熱伝達面314、322を、各々、凹部とフィンガの端にあるように記載したが、熱伝達は、1つの本体がもう1つの本体に面する面全体間である程度生じることは理解されよう。これには、凹部/フィンガの側壁、および、凹部/フィンガ間の背面が含まれる。ギャップの任意の部分に亘る熱伝達度は、その場所における2つの本体間の温度差に大きく依存する。熱をその発生源にできるだけ近くで除去することで、本体の他の部分における温度の勾配は実際には最小限となる。
[0057] 冷却本体320は、本体内の管324を通る流体の循環によって所望の温度に維持される。ポンプ326が、レザバ328からの例えば水である流体の安定した流れを与え、レザバでは流体の温度がモニタリングされて制御される。本体304から本体320に伝達される熱は、この流体を介して除去される。本体320内の任意の温度勾配も一様にされる傾向がある。この管は、1つの連続経路または幾つかの経路を、必要に応じて画定しうる。通常は、光学システムおよびそのコンポーネントにおける温度勾配を回避し、寸法安定性を最大限にすることを目的とする。したがって、レザバ328内の冷却流体の温度は、ミラーおよびその周囲環境の所望の動作温度と実質的に等しい。一実施例では、この温度は摂氏22度である。
[0058] ポンプの動作と管324内の流体の力によって本体320内に振動(ノイズ)が発生するが、この振動は、本体間に存在するギャップによってミラー本体304には伝達されない。同時に、このギャップは本体間の熱伝達を必ず妨げる。
[0059] 光学システム内の雰囲気は絶対真空ではないが、例えば1〜5Paと非常に低く、記載する実施形態では例えば3Paである。熱伝達目的のためには、この雰囲気は事実上真空であり、面314と面322との間のギャップに亘る熱の伝達は、放射のみに限定され、温度差1度あたりたった2または3Wm−2の熱伝達率が達成できる。
[0060] 放射だけで提供できる熱伝達率よりも一桁以上大きい熱伝達率を提供するために、本体304の面314と本体320の面322との間のギャップにガス状の熱伝達媒体が、1つ以上のガス送出管330を介して導入される。例えば水素(H)またはヘリウム(He)であるガスが、質量流量コントローラ334の形態のレギュレータを介して、大気圧で供給源332から供給される。本体304、320は、どの場所においても互いに接触していないので、注入されたガスは本体の周囲周りから連続的に漏出する。管330から周囲へのガスの経路は、図3Aの2次元断面図ではかなり入り組んでいるように見えるが、3次元では、ガスは凹部に侵入することなくフィンガの周りを流れることができることを念頭に置くべきである。本体304と本体320との間のガス分布空間は、その領域全体に亘って幅d1を有するが、本体間の空間からガスが漏出する周囲ギャップは幅d2を有し、幅d2はガス分布ギャップd1よりかなり小さい。この制限されたギャップは、図示されるように、本体320の面上の周囲リム336によって形成可能であるが、ミラー本体304上のリムによっても、または、1つまたは両方の部分の特徴の組み合わせによっても形成可能である。熱伝達面314と熱伝達面322との間のギャップ(便宜上、熱伝達ギャップと呼ぶ)は幅d3を有し、幅d3は幅d1と同じであっても異なっていてもよい。
[0061] 周囲ギャップがゼロの場合、本体は接触していることになり、冷却システムにおける振動からのミラーの分離は達成されていない。周囲ギャップが全く制限されていない場合、熱伝達ガスの圧力は、ガス送出管330から周囲への経路に沿って絶えず減少し、熱伝達率はミラー全体に亘って均一でなくなる。また、圧力を十分に高く維持するために必要な流れは、真空チャンバ全体内の圧力を高くするようなものであり、EUVの不所望の吸収を増加してしまう。d2はd1より小さいので、熱伝達ギャップ内に所望の圧力レベルを確立するために必要なガスの流量は減少し、熱伝達ギャップにおけるミラー全体に亘るガス圧は実質的に均一にされる。不均等のまたは過剰のガス圧の別の影響は、ミラー本体304およびミラー面302の歪みであり、これは熱歪みの問題を一層深刻なものにする。時間の経過における圧力の変動も以下に説明するように回避されるべきである。
[0062] 過剰量のガスが真空チャンバ内に漏出することなく熱伝達ギャップ内の圧力を均一化可能とするために、ギャップd2を実用可能な限り小さくするよう制御することが望ましい。ギャップは、時間の経過における圧力の変動を回避するために、アクチュエータ307A〜307Cの制御下でミラーが移動する際に一定であるべきである。ギャップd2は1mm未満、例えば0.5mm、または、0.3〜0.6mmの範囲内の別の値であるべきであることが提案される。ギャップを一定に維持するためには、冷却本体320がミラー本体304と並列に移動することが必要となる。図3Aおよび図3Bの実施例では、このことは、冷却本体320を、ミラー本体304と同じアクチュエータ307A〜307C上に支持することによって達成される。冷却システムの振動がミラー本体内へと伝わることを回避するために、冷却本体320は、リンク仕掛け340A〜340Cによってアクチュエータ上に支持される。リンク仕掛けもバネ特性を有する。
[0063] バネ312Aのバネ定数(剛性)が、ミラー本体304の質量と共に、位置および向きの制御におけるアクチュエータの移動に従う際の本体304の周波数応答を決定する。バネ定数は、様々な軸に沿って異なってもまたは均一であってもよい。同様に、バネ340Aのバネ定数が、冷却本体320の質量と共に、位置および向きの制御におけるアクチュエータの移動に従う際の本体320の周波数応答を決定する。同じアクチュエータ上に取り付けられているので、冷却本体の位置用の独立したセンサが必要ではないが、任意選択的に設けられてもよい。能動的な調節機構(図示せず)を設けてギャップd2を設定してもよい。一実施形態では、ギャップは、例えば、バネリンク仕掛け312A〜312C、340A〜340Cがアクチュエータおよび/または夫々の支持された本体に接触する場所において、バネリンク仕掛け312A〜312C、340A〜340Cの一部または全部に作用する止めネジによって、コミッショニングプロセスの一部として、設定される。
[0064] 動作時、ミラー本体304の冷却は、ミラー本体の近くに冷却面322を保持し、冷却面をミラーと共に作動させて一定の小さい離隔距離を達成し、冷却プレートとミラーとの間のガス圧を増加することによって達成される。図4に、全く概略的かつ定性的に、ギャップサイズおよびガス圧が熱伝達機構に及ぼす影響を示す。熱伝達ギャップのサイズd1は垂直軸上に示す。熱伝達ギャップ内のガスの圧力は、水平軸(非線形目盛)に沿って示す。熱伝達ガスは、光学システム(図1および図2における投影システムPS)の目的のために比較的不活性であるべきである。水素およびヘリウムが考えられる例である。水素は豊富に利用可能であり、典型的なEUV装置において、例えば汚染物質制御のために既に存在する。ミラーまたは他の素子を冷却するために導入される追加のガスが、真空ポンプシステムが過負荷となるほど大量には供給されないのであれば、水素は良好な候補となる。EUV光学システムの近真空環境におけるそのようなガスの圧力は、通常、5Pa未満、例えば3Paである。面314と面322との間の熱伝達空間におけるこのような低圧力によって、装置は、実質的に真空として動作することになり、これは図4のグラフにおいて領域「V」によって示される。この領域では、例えば2〜3Wm−2−1の範囲内の不十分な冷却効果しか達成できない。この領域における熱伝達は、放射と(非常に悪い)伝導の混合によるものである。10Paより上、特に50Paより上の圧力では、ガス分子による熱の伝導は著しい伝導を提供し始め、冷却効果が上がる。100Paより上では、ギャップ内の雰囲気は完全にガス状となる(領域「G」)。熱伝達特性は非常に良好となるが、伝導はギャップおよび温度差に依存する。真空システムの過負荷を防ぐためにガスを抑制することが必要となる。ミラー本体304の背後にそのような圧力が含まれることによって、ミラーの歪みおよび/または振動がもたらされることがあり、望ましくない。
[0065] 10Pa〜200Pa、特に50Pa〜100Paの圧力では、ガス分子は、ギャップd3と同じ桁の平均自由行程を有するので、ガスはフルガス(full gas)としては挙動せず、むしろ、領域「T」によって示される遷移挙動を有する。それにも関わらず、この領域では、熱伝達は、放射だけの場合と比較して一桁分増加する(>20Wm−2−1)。これらの領域間の境界は図示するように明確ではなく、実際には、圧力が増加するにつれて挙動の連続体がある。挙動はガスの選択にも依存する。
[0066] 本明細書において開示した原理に従った綿密な設計および選択によって、大幅に高められた熱伝達を提供するガスの圧力を少量の流量で達成することができ、それにより、真空チャンバ内の圧力が高くなりすぎることが回避される。ギャップサイズd1は、1〜5mm、特に0.9〜3.2mmといったように小さくなるように制御されることができ、それにより、所望の圧力を達成するために必要なガスの量を減少する。このために、ギャップの周囲における本体間の距離d2は、例えば0.1mm〜1mmまたは0.3mm〜0.6mmの範囲内、例えば0.5mmであるように小さくされる。その動作においてミラー本体304に許可される移動の範囲を考えると、このようなギャップは、図3Bに示すような作動配置によって冷却本体をミラーと共に移動させることだけで達成され且つ一定に維持される(同じ目的のための代替の配置を以下に説明する)。
[0067] 質量流量コントローラ334がギャップ内に熱伝達ガスの安定した質量流量を送出する限り、また、ギャップd1、d2、およびd3が一定に維持される限り、所望の圧力を達成することができ且つ一定に保持することができる。圧力における突然の変化は、光学面302の振動に変換しうるので、回避されるべきである。さらに、本体304の背後の圧力は、通常、多少の歪みをもたらし、光学面302の形状は極めて高い精度で定義されるべきであるので、ミラー本体304の後部と前部間の圧力差は、光学面302が正確に所望の形状に圧力によって変形されるように特定の値に設定されなければならない。この圧力の設定に必要となる精度は、ミラー本体304の剛性に依存する。好適な実施形態では、圧力は、光学システムの動作中に5Pa未満、好適には1Pa未満、特に0.5Pa未満で変動する。ミラーは、特定の圧力において最適性能を達成するように設計される。実際には、質量流量ではなく圧力が、最適光学性能を達成するためのセットアップ時に調節される。本体間の質量流量の調節された値およびギャップ特性は、装置の動作寿命に亘って高い安定性で同じ圧力を維持するように一定のままであるべきである。
[0068] 増加した圧力が、ミラーを効果的に冷却するように十分な熱伝達を有するために必要である。例えば、1mmの熱伝達ギャップd3では、50Wm−1(50Pa)〜90Wm−1(100Pa)の範囲における熱伝達を達成することができる。ギャップd3を例えば3mmに増加すると、熱伝達は例えば30Wm−1(50Pa)〜50Wm−1(100Pa)に減少される。これは不都合なように見えるが、他の設計上の制約を緩和するためには好ましい場合もある。例えばd3とd1が等しい場合、d3を少し増加することは、ミラー本体の全領域に亘る熱伝達の均一性を改善しうる。均一な熱伝達のためには、熱伝達ギャップ全体の圧力は均一であるべきである。このことは、ガス分布ギャップd1が周囲ギャップd2より実質的に大きい場合に達成される。これらの実施例において言及される周囲とは、本体304、320全体の周囲であるが、夫々の「周囲」によって互いから切り離されている、熱伝達ガス流と熱伝達ガス除去の別個の領域を設けることも可能である。
[0069] 必要とされるガス圧の均一度は設計上の選択事項であるが、本明細書における実施例は、熱伝達ギャップd3において、(周囲リム336付近の)ガスの最小圧は、(管330を通りガスが侵入する部分の付近の)最大圧の少なくとも80%であるように設計される。d1/d2の比は2より大きい、例えば3より大きくてよい。
[0070] 図5は、本発明を用いたミラー温度の制御によって光学性能の大きい増大を得られる方法を説明する。ミラー本体304は、図5中、曲線ULE1によって示す温度Tに関連する熱膨張を有する超低熱膨張(ULE)材料から作られる。この図は、温度の関数として代表的な目盛で変形(dL/L)を示す。材料を選択する際に自由に選択することのできる温度T0では変形は実質的にゼロである。この温度T0の両側では、熱膨張係数(CTE)は低いが、温度が上昇または減少するに従って、それぞれ、正または負の値に増加する。したがって、温度の範囲を本体内に制限することだけで、ULE特性を十分に活用することができる。
[0071] 第1の実施例では、本体における温度は、最小温度Tminから最大値Tmax1に及ぶ。本実施例では、Tminは光学システムの環境温度であって、例えば摂氏22度である。Tmax1は入射放射の加熱効果が最も強く、および/または、冷却が最も効果がないミラー本体の一部によって到達される最高温度である。本体内の温度の範囲を、この範囲Tmin〜Tmax1に限定することができたのならば、本体全体の膨張は最大でもE1に制限され、したがって、歪みの可能性は非常に制限されたものとなる。その一方で、加熱および冷却性能によって本体の一部がより高い温度Tmax2に到達可能となるならば、その部分は曲線ULE1のより急な部分にあり、熱膨張は曲線ULE1の上端にある白丸によって示されるより大きい値に到達してしまうことがある。高いT0を有する材料(曲線ULE2)を選択することによって、膨張をより中程度のレベルE2にまで抑えることが可能でありうるが、ミラーにおける熱変形は依然としてTmax1における場合よりも相当に大きい。
[0072] この理論を実行に移して、凹部とフィンガが光学面302から10〜20mmに到達し、また、熱伝達ガスが100Paの圧力で導入される実施例では、ミラー本体304における温度勾配は約2分の1に減少されることが可能である。例えば、TminおよびTmax2が、フィンガおよび熱伝達ガスなしで、それぞれ、摂氏25度および摂氏33度である場合(8〜9度の範囲)、TminおよびTmax1は、フィンガおよび熱伝達ガスありで、たった摂氏22度および摂氏27度でありうる(4〜5度の範囲)。さらに、ミラー全体ではなくミラー本体304の上部のみが著しく加熱する。超低膨張ミラー材料の熱膨張は、温度と共に、非常に非線形であるので、ミラーの変形(またその結果として光学収差)は10分の1に低減され、ミラーの底部はほとんど加熱しない。材料の選択が動作のあらゆる段階において簡単となり、動作状態と起動状態とでの変動も低減される。
[0073] 変形および追加の設計の検討事項を以下に説明する。上述したように、冷却本体320は、水循環システム内の振動による振動の影響を受けうる。このような振動がミラー基板に伝達することを回避するための対策は、冷媒の流量を低減することと、また、冷却プレート振動を機械的に減衰させることである。ミラーをアクチュエータに接続するリンク仕掛け340A〜340Cのバネ定数は、冷却プレートをアクチュエータに接続するコネクタのバネ定数より大きくすることができ、それにより、冷媒によって誘起された振動はアクチュエータまたはミラー基板にほとんど影響を及ぼさない。
[0074] 例えばミラーをアクチュエータに接続するリンク仕掛け312A〜312Cの固有周波数は200Hz以上、例えば700〜900Hz、または800Hzでありうる一方で、冷却本体320とアクチュエータとの間の接続の固有周波数は100Hz未満、例えば20〜23Hzでありうる。
[0075] 図6は、図3Aおよび図3Bに示す装置の実施形態を、個々にまたは一緒に、変更するように用いうる冷却装置の設計における2つの変形を示す。同様の参照符号を同様のコンポーネントに用いる。水およびガス循環システムは、明確にするために、省略しているが先の実施例と同様に設けられている。
[0076] 第1の変更では、加熱抵抗線360が冷却フィンガの表面上または冷却フィンガ内に設けられて、加熱をフィンガのサブグループに対して作動することによって熱伝達を変化させている。このような局所的熱伝達調節は、ミラーへの熱入力が均一ではなく、したがって、非均一な冷却が適切である場合に望ましい。熱入力はEUV放射に依存し均一ではない場合がある。例えば、照明システムは、放射が基板の2つ以上の軸外セクションに集中するように設計されうる(例えばダイポール照明の場合)。このような非対称熱入力は、一部のフィンガの温度は上げてその他のフィンガの温度は上げないことによって制御される同様に非対称の熱伝達によって補償しうる。コントローラ362は、図示するように線の様々なグループに接続される出力H1、H2を有する。冷却本体内への冷却流体の分割送出または非均一送出によって、または、熱伝達ガスの分割送出または非均一送出によって同様の効果が達成されうる。
[0077] 冷却本体、特に凹部およびフィンガの形状は、米国特許出願公開第2005/0105066(EP1522892Aが対応する)においてFrankenらによって言及される方法を含む様々な方法によって調整されうる。ここに記載される技術は、熱伝達をより均一にするように設計されている。当然ながら、必要に応じて非均一な熱伝達を提供するような形状にされてもよい。序論において言及したように、記載した冷却装置および方法は、本発明にも包含される熱調節装置および方法の例である。熱調節は、高温、加熱、および加熱の均一性が所望される用途に容易に適応可能である。
[0078] 図6に示すもう1つの変更は、ミラー本体304(光学要素)を担持するアクチュエータ307A〜307Cとは別個のアクチュエータ364A〜364C上への冷却本体320の取り付けにある。バネリンク仕掛け366A〜366Cが設けられて冷却本体320をそのアクチュエータに接続する。アクチュエータ364A〜364Cは能動的に制御され、ミラー本体304に従い、熱伝達ギャップを一定に維持しかつ熱伝達空間におけるガス圧を一定に維持することを目的としている。各本体のアクチュエータはそれぞれ独自のサーボコントローラを有しても、または、共通のコントローラによって駆動されてもよい。所望の許容公差内にあって同一であるならば、これらの2つの本体は並列で移動すべきである。この変形は、アクチュエータが本体304および320間で共有される場合よりも取り付け台をより大型化かつ高価にする可能性が高い。しかし、振動管理のために2つの本体の切り離しを向上させることによって、また、各アクチュエータ/バネ/本体の組み合わせの周波数応答に関して設計者に追加の自由度を与えることによって、性能および全体的な価格において利点がありうる。
[0079] 以上、本発明の具体的な実施形態を説明してきたが、本発明は、上述以外の態様で実施できることが明らかである。上記の説明は、制限ではなく例示を意図したものである。したがって、当業者には明らかなように、添付の特許請求の範囲を逸脱することなく本記載の発明に変更を加えてもよい。

Claims (16)

  1. 真空環境において動作する光学要素を熱調節する方法であって、前記光学要素は少なくとも1つの光学面と少なくとも1つの熱伝達面を有する第1の本体を含み、前記方法は、 前記第1の熱伝達面の形態に相互補完的な形態の第2の熱伝達面を含む第2の本体の温度を所望の温度に制御することと、
    第1のリンク仕掛けを介して前記第1の本体に結合された第1のアクチュエータを用いて、前記第1の本体を位置および/または向きにおいて動的に制御することと、
    前記第2の本体を前記第1の本体に隣接して位置決めし、前記本体間に接触がない状態で実質的に一定の配置に前記第1および第2の熱伝達面を維持するように、第2のリンク仕掛けを介して前記第2の本体に結合された第2のアクチュエータを用いて、位置および/または向きにおいて前記第2の本体を動的に制御することと、
    前記第1および第2の熱伝達面によって画定される熱伝達空間内にガスを熱伝達媒体として送出する一方で、前記熱伝達空間内の前記ガスの圧力を約30Paと約300Paの間の所定値となるよう制御することと、
    非均一な熱伝達が必要な場合には、前記第2の本体に設けられた加熱要素により、局所的熱伝達調整を行うことと
    を含む方法。
  2. 前記所定値は、約40Paと約110Paの間である、請求項1に記載の方法。
  3. 前記所定値は、約50Paと約100Paの間である、請求項2に記載の方法。
  4. 前記ガスは、前記第1および第2の本体間のギャップを含むガス分布空間に送出され、前記分布空間は、前記熱伝達空間と流体連結し、また、前記送出されたガスが漏出可能である一方で前記分布空間に亘って均質度を維持するように周囲領域における比較的小さいギャップによって境界付けられる、請求項1に記載の方法。
  5. 前記ガス分布空間は、前記周囲領域における前記ギャップの寸法の2倍より大きい最小寸法を有する、請求項4に記載の方法。
  6. 前記ガス分布空間の前記最小寸法は、約0.9mmから約5mmの範囲内にあり、前記周囲領域における前記ギャップの前記寸法は、約0.2mmから約0.8mmの範囲内にある、請求項5に記載の方法。
  7. 前記ガスの送出は、質量流量コントローラによるものであり、前記第1および第2の本体間の前記ガスの圧力は、約5Pa未満で時間の経過と共に変動する、請求項1〜6のいずれかに記載の方法。
  8. 前記第1および第2の本体間の前記ガスの圧力は、約1Pa未満で時間の経過と共に変動する、請求項7に記載の方法。
  9. 前記第1および第2の熱伝達面間の熱伝達ギャップは、約0.5mmから約5mmの範囲内の値に維持される、請求項1〜8のいずれかに記載の方法。
  10. 冷却流体が前記第2の本体内を循環させられて前記第2の本体の前記温度を制御する、請求項1〜9のいずれかに記載の方法。
  11. 前記動的制御のために、前記第1の本体は複数の前記第1のリンク仕掛けを介して複数のアクチュエータに結合され、前記第2の本体は複数の前記第2のリンク仕掛けを介して前記複数のアクチュエータと同じアクチュエータに接続され、前記第1のリンク仕掛け及び前記第2のリンク仕掛けはバネ要素を備え、それにより前記第2の本体から前記第1の本体への振動の伝達を低減する、請求項1〜10のいずれかに記載の方法。
  12. 前記第1の熱伝達面は前記第1の本体内の凹部を含み、前記凹部は周囲部よりも前記光学面の近くに位置し、前記第2の熱伝達面は前記第2の本体上の相互補完的な突出部上にある、請求項1〜11のいずれかに記載の方法。
  13. 極端紫外線用の光学システムであって、
    前記光学システムを近真空環境内に収容する真空チャンバと、
    前記真空チャンバ内に取り付けられた第1の本体を含み、前記第1の本体は少なくとも1つの光学面と少なくとも1つの第2の熱伝達面を有する、光学要素と、
    複数の第1のリンク仕掛けを介して前記第1の本体を支持し、支持構造に対して前記光学要素の位置および/または向きを制御するように動作可能である複数のアクチュエータと、
    少なくとも1つの第2の熱伝達面を有する第2の本体を含む熱調節要素と、
    前記第1および第2の熱伝達面間の熱伝達ギャップ内にガスを熱伝達媒体として送出するガスデリバラと、
    前記第1および第2の本体間の接触を許可することなく前記熱伝達ギャップを所定値未満に維持するように前記第1の本体に対して実質的に固定の関係で前記第2の本体を支持し、前記複数のアクチュエータに結合された複数の第2のリンク仕掛けを備えたサポートと、
    前記第2の本体に設けられ、非均一な熱伝達が必要な場合には、局所的熱伝達調整を行う加熱要素と
    を含む、光学システム。
  14. EUVリソグラフィによってデバイスを製造する方法であって、光学システムの1つ以上の要素が請求項1から12のいずれかに記載される方法によって冷却される、方法。
  15. 放射ビームにパターンを付けるパターニングデバイスを支持するサポートと、
    前記パターン付き放射ビームを基板上に投影する投影システムと、
    を含み、
    前記投影システムは光学システムを含み、
    前記光学システムは、
    前記光学システムを近真空環境内に収容する真空チャンバと、
    前記真空チャンバ内に取り付けられた第1の本体を含み、前記第1の本体は少なくとも1つの光学面と少なくとも1つの第2の熱伝達面を有する、光学要素と、
    複数の第1のリンク仕掛けを介して前記第1の本体を支持し、支持構造に対して前記光学要素の位置および/または向きを制御するように動作可能である複数のアクチュエータと、
    少なくとも1つの第2の熱伝達面を有する第2の本体を含む熱調節要素と、
    前記第1および第2の熱伝達面間の熱伝達ギャップ内にガスを熱伝達媒体として送出するガスデリバラと、
    前記第1および第2の本体間の接触を許可することなく前記熱伝達ギャップを所定値未満に維持するように前記第1の本体に対して実質的に固定の関係で前記第2の本体を支持し、前記複数のアクチュエータに結合された複数の第2のリンク仕掛けを備えた第2のサポートと、
    前記第2の本体に設けられ、非均一な熱伝達が必要な場合には、局所的熱伝達調整を行う加熱要素と
    を含む、リソグラフィ装置。
  16. パターニングデバイスを用いて放射ビームにパターンを付けることと、
    投影システムを用いて前記パターン付き放射ビームを基板上に投影することと、
    前記投影システム内の真空環境において動作する光学要素を熱調節することと、
    を含み、
    前記光学要素は少なくとも1つの光学面と少なくとも1つの熱伝達面を有する第1の本体を含み、
    前記光学要素を熱調節することは、
    前記第1の熱伝達面の形態に相互補完的な形態の第2の熱伝達面を含む第2の本体の温度を所望の温度に制御することと、
    第1のリンク仕掛けを介して前記第1の本体に結合された第1のアクチュエータを用いて、前記第1の本体を位置および/または向きにおいて動的に制御することと、
    前記第2の本体を前記第1の本体に隣接して位置決めし、前記本体間に接触がない状態で実質的に一定の配置に前記第1および第2の熱伝達面を維持するように、第2のリンク仕掛けを介して前記第2の本体に結合された第2のアクチュエータを用いて、位置および/または向きにおいて前記第2の本体を動的に制御することと、
    前記第1および第2の熱伝達面によって画定される熱伝達空間内にガスを熱伝達媒体として送出する一方で、前記熱伝達空間内の前記ガスの圧力を約30Paと約300Paの間の所定値となるよう制御することと、
    非均一な熱伝達が必要な場合には、前記第2の本体に設けられた加熱要素により、局所的熱伝達調整を行うことと
    を含む、デバイス製造方法。
JP2011077418A 2010-04-07 2011-03-31 光学要素を冷却する方法、リソグラフィ装置、およびデバイスを製造する方法 Expired - Fee Related JP5785419B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32164610P 2010-04-07 2010-04-07
US61/321,646 2010-04-07

Publications (2)

Publication Number Publication Date
JP2011222992A JP2011222992A (ja) 2011-11-04
JP5785419B2 true JP5785419B2 (ja) 2015-09-30

Family

ID=44760718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011077418A Expired - Fee Related JP5785419B2 (ja) 2010-04-07 2011-03-31 光学要素を冷却する方法、リソグラフィ装置、およびデバイスを製造する方法

Country Status (2)

Country Link
US (1) US8817229B2 (ja)
JP (1) JP5785419B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011081259A1 (de) 2010-09-28 2012-03-29 Carl Zeiss Smt Gmbh Anordnung zur Spiegeltemperaturmessung und/oder zur thermischen Aktuierung eines Spiegels in einer mikrolithographischen Projektionsbelichtungsanlage
US20120127445A1 (en) * 2010-11-18 2012-05-24 Akimitsu Ebihara Isolation system for an optical element of an exposure apparatus
DE102011079450A1 (de) * 2011-07-20 2013-01-24 Carl Zeiss Smt Gmbh Optische Anordnung mit Degradationsunterdrückung
JP6209518B2 (ja) 2011-09-21 2017-10-04 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影露光装置のミラーの熱作動用の構成体
JP6291477B2 (ja) * 2012-04-23 2018-03-14 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置用の汚染トラップ
CN104321702B (zh) 2012-05-22 2016-11-23 Asml荷兰有限公司 传感器、光刻设备以及器件制造方法
DE102013204427A1 (de) * 2013-03-14 2014-09-18 Carl Zeiss Smt Gmbh Anordnung zur thermischen Aktuierung eines Spiegels, insbesondere in einer mikrolithographischen Projektionsbelichtungsanlage
US20170261866A1 (en) * 2014-11-05 2017-09-14 Asml Netherlands B.V. Thermal conditioning fluid pump
KR102211898B1 (ko) * 2014-11-27 2021-02-05 삼성전자주식회사 노광 장치용 액체 누출 감지 장치 및 방법
DE102015224281A1 (de) * 2015-03-12 2016-09-15 Carl Zeiss Smt Gmbh Verfahren zum herstellen eines spiegels für eine lithographieanlage
JP6602388B6 (ja) * 2015-03-25 2020-01-15 エーエスエムエル ネザーランズ ビー.ブイ. メトロロジ方法、メトロロジ装置、及びデバイス製造装置
CN105511050B (zh) * 2016-01-13 2017-10-13 中国科学院上海技术物理研究所 一种反射镜弹性中心支撑结构
EP3248761A4 (en) * 2016-03-25 2018-05-09 Technology Research Association for Future Additive Manufacturing 3d additive manufacturing device, control method for 3d additive manufacturing device, and control program for 3d additive manufacturing device
US11287752B2 (en) 2017-06-26 2022-03-29 Asml Netherlands B.V. Cooling apparatus and plasma-cleaning station for cooling apparatus
DE102020208648A1 (de) * 2020-07-09 2022-01-13 Carl Zeiss Smt Gmbh Spiegel für ein Lithographiesystem

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050099611A1 (en) * 2002-06-20 2005-05-12 Nikon Corporation Minimizing thermal distortion effects on EUV mirror
JP4333090B2 (ja) * 2002-07-03 2009-09-16 株式会社ニコン ミラー冷却装置及び露光装置
EP1522892B1 (en) 2003-10-09 2007-08-29 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4666908B2 (ja) * 2003-12-12 2011-04-06 キヤノン株式会社 露光装置、計測方法及びデバイス製造方法
US7485881B2 (en) * 2004-12-29 2009-02-03 Asml Netherlands B.V. Lithographic apparatus, illumination system, filter system and method for cooling a support of such a filter system
KR101670518B1 (ko) * 2007-10-09 2016-10-28 칼 짜이스 에스엠테 게엠베하 광학 소자의 온도 제어 장치
US20090147386A1 (en) * 2007-12-11 2009-06-11 Nikon Corporation Temperature-regulating devices for reflective optical elements
DE102009033818A1 (de) * 2008-09-19 2010-03-25 Carl Zeiss Smt Ag Temperiervorrichtung für eine optische Baugruppe

Also Published As

Publication number Publication date
US8817229B2 (en) 2014-08-26
US20110249245A1 (en) 2011-10-13
JP2011222992A (ja) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5785419B2 (ja) 光学要素を冷却する方法、リソグラフィ装置、およびデバイスを製造する方法
JP4685667B2 (ja) 多層スペクトル純度フィルタ、このようなスペクトル純度フィルタを備えたリソグラフィ装置及びデバイス製造方法
US8115900B2 (en) Lithographic apparatus and device manufacturing method
JP5732257B2 (ja) リソグラフィ装置、デバイス製造方法およびコンピュータ読取可能媒体
KR20190126450A (ko) 리소그래피 장치의 물체를 유지하는 척과 클램프 및 리소그래피 장치의 클램프에 의해 유지되는 물체의 온도를 제어하는 방법
JP2010537424A (ja) 極端紫外線を生成するモジュールおよび方法
EP2465010A1 (en) Euv radiation system and lithographic apparatus
JP5722074B2 (ja) リソグラフィ装置および方法
US8018576B2 (en) Contamination prevention system, a lithographic apparatus, a radiation source and a method for manufacturing a device
JP2005203754A (ja) リソグラフィ装置及びデバイス製造方法
US7397531B2 (en) Lithographic apparatus and device manufacturing method
KR20150097715A (ko) 리소그래피 장치를 위한 기판 지지체 및 리소그래피 장치
TW201543185A (zh) 微影裝置及元件製造方法
US20130287968A1 (en) Lithographic apparatus and device manufacturing method
US11892779B2 (en) Optical component and clamp used in lithographic apparatus
TWI452440B (zh) 多層鏡及微影裝置
WO2015144370A1 (en) Housing for an array of densely spaced components and associated manufacturing method
KR20160091979A (ko) 장치, 디바이스 및 디바이스 제조 방법
NL2005692A (en) Method of cooling an optical element, lithographic apparatus and method for manufacturing a device.
NL2004635A (en) Lithographic apparatus, device manufacturing method and computer readable medium.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150724

R150 Certificate of patent or registration of utility model

Ref document number: 5785419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees