JP5783586B1 - Pcr装置及びpcr方法 - Google Patents

Pcr装置及びpcr方法 Download PDF

Info

Publication number
JP5783586B1
JP5783586B1 JP2015009891A JP2015009891A JP5783586B1 JP 5783586 B1 JP5783586 B1 JP 5783586B1 JP 2015009891 A JP2015009891 A JP 2015009891A JP 2015009891 A JP2015009891 A JP 2015009891A JP 5783586 B1 JP5783586 B1 JP 5783586B1
Authority
JP
Japan
Prior art keywords
pcr
electrode pair
reaction solution
reaction
ring channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015009891A
Other languages
English (en)
Other versions
JP2016131548A (ja
Inventor
修三 平原
修三 平原
Original Assignee
有限会社フルイド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社フルイド filed Critical 有限会社フルイド
Priority to JP2015009891A priority Critical patent/JP5783586B1/ja
Application granted granted Critical
Publication of JP5783586B1 publication Critical patent/JP5783586B1/ja
Priority to EP16152303.0A priority patent/EP3047909B1/en
Priority to US15/002,715 priority patent/US10040070B2/en
Publication of JP2016131548A publication Critical patent/JP2016131548A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • B01L7/525Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/088Channel loops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1833Means for temperature control using electrical currents in the sample itself
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Organic Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)

Abstract

【課題】チャネルの小型化、小容量化及び加熱均一化を図ることができるPCR装置及びPCR方法を提供すること。【解決手段】PCR装置1の反応容器10は、基板11とチャネル形成板12とカバー板13とによって形成された管状のリングチャネル20を有する。リングチャネル20は、リングチャネル20の一方の側壁内面の直径方向に、水平方向のギャップを挟んで対向して配置される電極対21を備え、鉛直方向に立っている。電極対21のギャップ長は、リングチャネル20断面内の全幅に亘っている。【選択図】図1

Description

本発明は、PCR(Polymerase Chain Reaction:ポリメラ−ゼ連鎖反応)装置及びPCR方法に関し、特に、チャネルの小容量化及び加熱均一化を図るPCR装置及びPCR方法に関する。
従来の反応液のジュール加熱によるPCR方法は、直流電流を反応液に流すものであるので、反応液が電気分解してしまい、電極の周辺に不要な気体の発生や、不要な酸性及びアルカリ性の溶液が発生してしまう。また、長いチャネルの両端に電圧を印加するものであるので、必要なジュール熱を発生させるためには高い電圧を印加しなければならならず、回路負担が大きかった。
そこで、例えば特許文献1には、ポリメラ−ゼ連鎖反応(PCR)を行う容器の内面に、反応液の流れに沿うギャップを挟んで対向して配置される電極対を設け、該電極対に交流電圧を印加して反応液に交流電流を流すことによってジュール熱を発生させて前記反応液の温度を制御するPCR装置が記載されている。
図6は、特許文献1に記載のPCR装置の反応容器の正面図である。
図6に示すように、特許文献1に記載のPCR装置は、カバー板41、排出口42、注入口43、チャネル44、電極対45、チャネル形成板46、及び基板を備え、反応容器は鉛直方向に立っている。特許文献1に記載のPCR装置は、電極対45の間のギャップにおいて反応液の中に電流を流して、そのジュール熱によって反応液を加熱してPCR増幅する。反応液は、環状のチャネル44を循環することで、温度が上昇及び下降してPCRサイクルの温度変化を受けてPCR増幅する。
特開2011-115159号公報(図4)
しかしながら、特許文献1に記載のPCR装置は、環状のチャネル44に直線部分があるために小型化の妨げとなり、チャネルの小容量化は困難であった。
また、電極対45が細く長いものとなるので、製造精度が高くなければならない。また、電流が流れる電極対45のギャップがチャネル断面内の中央だけであるので、加熱される部分が断面内の中央だけになってしまって温度むらが発生していた。
本発明は、上記問題点に鑑み、チャネルの小型化、小容量化及び加熱均一化を図ることができるPCR装置及びPCR方法を提供することを目的とする。
本発明に係るPCR装置は、ポリメラ−ゼ連鎖反応(PCR)を行う、流路断面が長方形であり全体として円環状であり縦置き配置される環状容器と、前記環状容器を形成する対向基板の一方の内面に配置される2つの電極からなり、反応液の流れの全幅に亘り、該流れに交差し、かつ、水平のギャップ中心線となるギャップを挟んで対向して配置される電極対と、前記電極対に交流電圧を印加して反応液に交流電流を流すことによってジュール熱を発生させて、該反応液を上昇させると共に該反応液の温度を制御する制御手段とを備えることを特徴とする。
また、本発明に係るPCR装置は、ポリメラ−ゼ連鎖反応(PCR)を行う、流路断面が長方形であり全体として円環状であり縦置き配置される環状容器と、前記環状容器を形成する対向基板のそれぞれの内面に1つずつ配置される電極からなり、反応液の流れの全幅に亘り、該流れに交差し、かつ、水平のギャップ中心線となるギャップを挟んで対向して配置される電極対と、前記電極対に交流電圧を印加して反応液に交流電流を流すことによってジュール熱を発生させて、該反応液を上昇させると共に該反応液の温度を制御する制御手段とを備えることを特徴とする。
本発明に係るPCR方法は、ポリメラ−ゼ連鎖反応(PCR)を行う、流路断面が長方形であり全体として円環状であり縦置き配置される環状容器を形成する対向基板の一方の内面に配置される2つの電極からなり、反応液の流れの全幅に亘り、該流れに交差し、かつ、水平のギャップ中心線となるギャップを挟んで対向して配置される電極対を設け、該電極対に交流電圧を印加して反応液に交流電流を流すことによってジュール熱を発生させて、該反応液を上昇させると共に該反応液の温度を制御することを特徴とする。
また、本発明に係るPCR方法は、ポリメラ−ゼ連鎖反応(PCR)を行う、流路断面が長方形であり全体として円環状であり縦置き配置される環状容器を形成する対向基板のそれぞれの内面に1つずつ配置される電極からなり、反応液の流れの全幅に亘り、該流れに交差し、かつ、水平のギャップ中心線となるギャップを挟んで対向して配置される電極対を設け、該電極対に交流電圧を印加して反応液に交流電流を流すことによってジュール熱を発生させて、該反応液を上昇させると共に該反応液の温度を制御することを特徴とする。
また、前記電極対は、前記環状容器を形成する対向基板の一方に配置される2つの電極からなることで、一方の基板にだけに電極を形成すれば済むので、製造コストを低減できる。
また、前記電極対は、前記環状容器を形成する対向基板のそれぞれに1つずつ配置される2つの電極からなることで、環状容器の幅方向だけでなく、深さ方向においても、均一に加熱することができる。
本発明によれば、チャネルの小型化、小容量化及び加熱均一化を図ることができるPCR装置及びPCR方法を実現する。
本発明の実施例1によるPCR装置の反応容器の構成を示す図である。 本発明の実施例1によるPCR装置の反応容器のリングチャネル及び電極対を示す斜視図である。 本発明によるPCR装置の反応容器を用いた増幅特性を示す図である。 本発明によるPCR装置の反応容器を用いた融解特性を示す図である。 本発明の実施例2によるPCR装置の反応容器の構成を示す図である。 従来例のPCR装置の反応容器の正面図である。
以下、添付図面を参照しながら本発明を実施するための形態について詳細に説明する。
図1は、本発明の実施例1によるPCR装置の反応容器の構成を示す図であり、図1(a)は、その正面図、図1(b)は、その底面図、図1(c)は、その側面図である。
また、図2は、リングチャネル(Ring Channel)20及び電極対21を示す斜視図である。なお、本発明の実施例では、「上」は鉛直方向の上方、「下」は鉛直方向の下方、「水平」又は「水平方向」は鉛直方向と直交する方向とする。また、「前」は正面から見て手前方向、「後」は正面から見て後ろ方向、「左」は正面から見て左方向、「右」は正面から見て右方向、「垂直」は水平方向に直交する鉛直方向をいう。
まず、PCR装置の構成について説明する。
図1に示すように、PCR装置1の反応容器10(環状容器)は、基板11、チャネル形成板12、及びカバー板13を備える。基板11とチャネル形成板12とカバー板13とによって環状の管状のリングチャネル20を形成する。リングチャネル20は、環状であり、例えば円環状のチャンバである。
図2に示すように、リングチャネル20は、直径方向が水平面に対して垂直方向に立ち上がるように縦置き配置される。リングチャネル20の外径Lは、好ましくは1〜3mm、例えば2mmである。また、リングチャネル20は、円形開口部20aを有し、リングチャネル20の内径L1は、好ましくは0.5〜1.5mm、例えば1mmである。すなわち、リングチャネル20は、例えば外径2mmと内径1mmとの間に流路を有する円環チャンバである。なお、本実施例では、リングチャネル20の中心点と円形開口部20aの中心点とを一致させているので、リングチャネル20の外径と内径との間の流路の幅は全周にわたって等しい。当該中心点は多少はずれていても良い。リングチャネル20の流路深さDは、チャネル形成板12の厚さによって決定され、好ましくは100〜300μm、例えば200μmである。また、リングチャネル20の流路体積は、好ましくは0.3〜1.0μL、例えば0.47μLである。この場合、流路断面は500μm×200μmの長方形である。
図1に示す基板11は、ガラス製であり上面に薄いクロム、その上に金を蒸着して作成した電極対21がパターニングされ、電極対21からは引出し電極部22がリングチャネル20の外周側に引き出されている。電極対21及び引出し電極部22は、金蒸着により形成され、膜厚は極めて薄く、殆ど無視することができる。このため、基板11上に電極対21が形成されていても反応液の流れが妨げられることはない。
図1及び図2に示すように、電極対21のギャップ幅Gは、好ましくは10〜500μm、例えば100μm、ギャップ長GLは、好ましくは0.25〜1mm、例えば0.5mmである。引出し電極部22は、例えば4mmである。図2に示すように、リングチャネル20は、その直径方向が垂直方向に立ち上がるように配置されると共に、電極対21はそのリングチャネル20の左右の少なくとも一方に配置される。また、電極対21のギャップの中心線(図2の一点鎖線参照)は、水平方向である。この例では、電極対21のギャップは、リングチャネル20の左側においてリングチャネル20を水平に横断する。反応液は、電極対21によってジュール加熱され変成温度にされると共に、ジュール加熱を受けて電極対21の周辺で上昇流となる。この場合、リングチャネル20の左側における電極対21のギャップの位置で反応液流れは上昇である。これにより、電極対21のギャップの中心線に交差する方向に反応液を上昇させて、環状のリングチャネル20内において反応液を循環させる。
このように、リングチャネル20は、電極対21のギャップの中心線(図2の一点鎖線参照)が水平であり、その中心線に交差する方向に反応液を上昇させて、環状のリングチャネル20内において反応液を循環させることができる。
本実施例は、電極対21のギャップが水平にリングチャネル20を横断するので、加熱領域が小さく、その分だけ加熱のパワーが小さいものの、リングチャネル20自体が小さく、したがってリングチャネル20内を循環する反応液が少ないので、十分にPCRサイクルを実現することができる。また、電極対21のギャップ長GLがチャネル断面内の全幅にわたっているので、流れる溶液の断面全体を加熱することができる。
チャネル形成板12は、PDMS(ポリジメチルシロキサン)製であり、基板11の上に接着されて配置される。チャネル形成板12は、基板11とカバー板13との間を所定距離に保つスペーサとしての機能を有し、その厚さ(例えば200μm)はリングチャネル20の流路深さDとなる。チャネル形成板12には、リングチャネル20を形成する環状溝が設けられる。また、この環状溝の上端の電極対21側に反応液の注入ウェル15が、下端の電極対21から離隔する側に反応液の排出ウェル16がそれぞれ設けられる。
カバー板13は、ガラス製であり、チャネル形成板12の全面を覆うことよってリングチャネル20を形成する。
リングチャネル20の上下端の注入ウェル15及び排出ウェル16に接する基板11の部分には、厚み方向に貫通孔(図示省略)が開けられ、この貫通孔にチューブ(図示省略)を接続して反応液の流入流出が行われる。
制御部30(制御手段)は、PCRサイクルを行うために必要な交流電圧を電極対21に印加する。交流の周波数は、10kHz〜10MHz、例えば1MHzである。リングチャネル20内の僅かな量の反応液と比べて大きな電極を用いることができ、かつ反応液を直接加熱する構成を採用しているので、電圧印加に対する反応液温度応答の時定数は1秒以内とすることができる。
以下、上述のように構成されたPCR装置の動作について説明する。
PCRサイクルは、例えば次のステップを順に20〜30サイクル繰返し行う。
(1) 変性(≒94℃)を2から10秒
(2) アニール(54〜66℃)を5秒
(3) 伸長(≒72℃)を5から15秒
実際には、アニールと伸長を同じ温度で行う2ステップのPCRサイクルとして、反応容器10を囲む環境をアニール・伸長温度に保ち、変成温度となるように電極対21に対応する交流電圧を印加する。これにより、反応液に交流電流を流し、ジュール熱によって反応液を加熱することによって反応液の温度を制御して、PCRサイクルを行う。
本実施例は、反応液に交流電流を流すので、反応液を電気分解することはない。また、電極対21のギャップに電流を流すので、ギャップを流れる電流は距離が短いから、負荷抵抗が小さく、低い印加電圧であってもPCRサイクルの温度制御に十分なジュール熱を発生させることができる。
さらに、本実施例のリングチャネル20を用いる場合、オンラインプロセスとして、前段又は後段のプロセスと連結できる。前段としては、細胞のすりつぶし、遺伝子の取り出しと精製、又は遺伝子の細分化などが考えられ、また後段としてしては、電気泳動分析、マイクロアレイ分析、又は質量分析装置への接続、さらにはチューブを介さずに直接マイクロチャネルで接続する一体型のデバイスとして、様々な遺伝子分析方法をつなげることができる。
PCR装置1は、二本鎖DNAに特異的に挿入(インターカレート)して蛍光を発する色素を用いるリアルタイムPCR装置として構築可能である。リアルタイムPCR方法は、PCRの増幅量をリアルタイムでモニタし解析することができ、電気泳動が不要で迅速性と定量性に優れている。
次に、本実施例のPCR方法について説明する。
図1(a),(c)に示すように、PCR装置1の反応容器10は、鉛直方向に立てて設置される。
注入ウェル15から反応液を注入し、排出ウェル16から排出する。反応液は、電極対21によってジュール加熱され変成温度にされると共に、電極対21の周辺で上昇流となって、リングチャネル20内を循環し、PCRサイクルが行われる。ここでは2ステップPCRサイクルを想定している。PCRが完了すると、反応液は排出ウェル16から排出される。なお、図示しない外部ポンプ又はシリンジによって、反応容器10へ反応液の注入・排出が行われる。
図2に示すように、反応容器10は、電極対21がリングチャネル20の左右いずれか一方(この例では左側)に配置され、電極対21のギャップの中心線は、リングチャネル20の水平方向になるよう配置される。この構成により、リングチャネル20の左右の一方側において電極対21のギャップがリングチャネル20を水平に横断することになる。
リングチャネル20内には反応液が充填されていて、電極対21のギャップのところで反応液の中に電流が流れる。すると、反応液の抵抗によってジュール熱が発生して反応液が加熱され、軽くなって上昇する(「加熱によるポンプ機能」)。これにより、反応液はチャネル内を循環する(この場合は時計方向回りに循環する)。同時に、リングチャネル20内の反応液の温度が上昇し、また循環して非発熱部分に移動することにより温度が下降する。当該反応液は、温度変化を受け、それをPCRサイクルのための温度変化にすることによってPCR増幅することができる。
特に図示はしていないが、リングチャネル20は全体としてほとんどの部分を、別途、ヒータによって一定温度(アニール・伸長温度)に制御されている。したがって、反応液の流れはリングチャネル20の円形に沿って流れ、電極対21のギャップはそのリングチャネル20の左右のいずれか(ここでは左側)において、リングチャネル20を水平に横断する。なお、本実施例にいう「水平」とは、文字通りの鉛直方向に直交する水平のほか、上記「加熱によるポンプ機能」が実現できる程度の水平に近いやや傾きを持った水平状態を含む。
図2に示すように、リングチャネル20の左側における電極対21のギャップの位置において、反応液の流れは上昇であるから、電極対21のギャップは反応液の流れを横断する、すなわち、流路の流れの全幅に亘る。電極対21及び引出し電極部22は、基板11に蒸着されていて、この厚さは1μm以下なので反応液流れを妨げることはない。
以上説明したように、本実施例によるPCR装置1の反応容器10は、基板11とチャネル形成板12とカバー板13とによって形成された管状のリングチャネル20を有する。リングチャネル20は、リングチャネル20の一方の側壁内面に、かつリングチャネル20が水平面と交差する2つの断面のうちの一方にあるギャップを挟んで対向して配置される電極対21を備え、鉛直方向に立っている。電極対21のギャップ長は、リングチャネル20断面内の全幅に亘っている。制御部30は、電極対21に交流電圧を印加して反応液に交流電流を流すことによってジュール熱を発生させて反応液の温度を制御する。
これにより、本実施例によるPCR装置1及びPCR方法は、下記の効果を得ることができる。
すなわち、従来例のPCR装置(図6参照)は、チャネル44に沿って電極対45間のギャップを設ける構成であったため、チャネル44に所定の長さの直線部分が必要となり、環状といっても4角形になってしまっていた。チャネル44に直線部分があるため、チャネル44の大きさを小さくすることは困難であった。
これに対して、本実施例によるPCR装置1は、図1及び図2に示すように、リングチャネル20の円環の一方側を横断するように電極対21のギャップを配置する構成を採る。したがって、リングチャネル20に従来例のような直線部分が必要なくなり、円形の環状内で反応液をスムーズに流すことができ、かつ、リングチャネル20の全体の大きさを小さくすることができる。リングチャネル20の小型化が可能になるので、この小型化によって、より少ない量の反応液でPCR増幅できるという効果を得ることができる。
また、従来例では、電極対45(図6参照)が細く長いものとなり、製造精度が高くなければならず、かつ、電流が流れる電極対のギャップがチャネル44(図6参照)断面内の中央だけなので、加熱される部分が断面内の中央だけになってしまって温度むらが発生していた。
これに対して、本実施例の電極対21は、図2に示すように、リングチャネル20の直径の半分程度の幅の電極の大きさにすることができる。電極対21の大きさを大きく形成することができるので、電極対21を形成する際の製造精度を低くすることができる。この製造精度の低減とは、具体的には位置合せ精度の緩和や組立労力の低減である。
また、電極対21のギャップが、リングチャネル20断面内の全幅に亘っているので、電極対21のギャップに流れる反応液の断面全体を加熱することができる。さらに、流路と交差する横断面方向の温度差がないので、温度むらがなく均一に加熱でき、かつ加熱効率も高い。このように、本実施例では、電極対21のギャップが水平にリングチャネル20を横断するので、加熱領域が小さく、その分加熱のパワーを小さくすることができる。
ここで、上述したように、本実施例は、リングチャネル20を小型化することができる。このため、小型化されたリングチャネル20において、少ない反応液でPCR増幅でき、従来例に比べて小さい加熱力であっても十分にPCRサイクルを実現することができる。すなわち、本実施例は、リングチャネル20のサイズが小さいため、反応液の量が少なくても十分に循環させることができ、小さな加熱力でも十分に温度上昇させてPCR増幅することができる。
図3は、実施例1によるPCR装置1の反応容器10(小型化流路)を用いた増幅特性を示す図であり、電圧印加時間[分]の検出蛍光量[A.U.(任意単位)]を示す。
増幅特性(図3)は、下記条件により得られた。
リングチャネル20の流路体積:0.47μL
印加電圧:11.0V
チャネル形成板12(スペーサ)厚み:0.3mm
撮影間隔:20sec
マスターミックス:illustra(GEヘルスケア社)
テンプレート:λdna 1.31ng/25μL
ターゲットdna:199bp
ポリメラーゼとその他PCRに必要な成分をメーカが調製したマスターミックスとしてGEヘルスケア社のillustraを用いた。このマスターミックスに、テンプレート遺伝子としてλdna、それとテンプレート遺伝子内の特定一部分(ターゲットdna)を切り出すためのプライマー、さらに遺伝子増幅観察用の蛍光染料としてBiotium社のEvaGreenを混合、調製して試料とした。プライマーとしてλdnaから199bpのターゲットdnaを切り出す(さらに増幅する)塩基配列のプライマーを使用した。
図3の増幅特性に示すように、電圧印加時間に対して十分なPCR産物量を得ることが確認できた。
また、ここではテンプレートの濃度1.31ng/25μLにおけるPCR増幅特性を示したが、ここでは示していない異なるテンプレート濃度における特性の曲線は、高濃度ならば早い方向(図3では左方向)へ、低濃度ならば遅い方向(図3では右方向)へ移動した同じ形の曲線であることを確認した。これはテンプレート濃度の定量的測定に用いられるリアルタイムPCRと同様の性質である。本実施例によれば、リアルタイムPCRが可能である。
図4は、増幅後の融解特性を示す図であり、印加電圧[V]に対する検出蛍光量[A.U.](実線)、及び負の検出蛍光変化量[A.U.](破線)を示す。増幅完了後に、アニール・伸長温度である環境温度はそのままにしておいて、電極間の印加電圧を下げてから、印加電圧を上げて、電極間ギャップ近傍領域における試料の温度を上げながら、その領域の蛍光輝度を観察することによって、融解特性を得ることができる。その際に、その領域の温度上昇に伴い、試料は再び循環を始めるが、増幅はすでに完了して飽和しており、更に増幅が進行することはなく、融解特性の観察に支障はない。融解するdnaの長さは温度に依存するので、融解特性を観察することによって、それぞれの長さのdnaの存在を検証することができる。図4に示すように、特異的産物(ターゲットdna)の融解温度に相当する電圧でピーク(図4符号a参照)が得られ、非特異的副産物は増幅されなかったことを確認できた。本実施例によるPCR方法は、リアルタイムPCRが可能であって、電気泳動法が不要であるので試料回収も不要になる利点がある。このため、排出ウェル16は必ずしも必要ない。
以下、本実施例の技術的要素を記述する。
PCRサイクル内の各ステップには最小限必要な時間がある。
一版に、PCRでは、(1)変性ステップ(95℃〜98℃)、(2)アニーリングステップ(温度は様々である)、(3)伸長ステップ(前2温度の間で、やはり一定ではない)の3ステップを用いる。近年では、高速化の要請から上記(2)と(3)を共通化して同じ温度で扱う2ステップの方法が用いられ、特にリアルタイムPCRでは2ステップのファストPCRと呼ばれる方法が良く用いられる。
ファストPCRでは、(1)変性ステップに1〜5秒、上記(2)と(3)のステップにはターゲットdnaの長さに応じて最低限(1kbp長さに対して1分という割合で比例すると言われる)の時間を設定する。
本発明者による実験では、(1)変性ステップは電極間ギャップを通過する一瞬の時間で十分であることを見出した。本実施例では、リングチャネル20の流路の内壁1mmφ、外壁2.5〜3mmφを用いて実験した。その結果、従来例に比して、反応液がリングチャネル20を周回する速度は約2/3位に遅くなるものの、予想よりPCR反応は意外と速いことが判明した。この知見は、流れの駆動源である浮力が弱くても、循環する流路の距離を短くすれば実用範囲内に入ってくるということを示す。形状的には、半導体プロセスで用いられる光リソグラフィーで流路を作成すれば、もっと小さく作製することができるので、更に早くなる可能性はある。すなわち、本発明は、非常に微量の試料体積でPCRが実現するという今までに無かったメリットを提供することができるものである。現在、市販の一般的なPCR(リアルタイムPCRも含む)では、0.2mLのμチューブ使い、試料は20〜100μLほど必要となる。本実施例は、現在実験中のデバイスでも0.5μLと少なくなる。しかも、これが最少限界ということではなく、更なる容量低減が可能である。
実施例1では、一方の基板11に電極対21を設けていた。実施例2は、基板とその対向基板のそれぞれに1つずつの電極を設けて電極対とする例について説明する。
図5は、本発明の実施例1によるPCR装置の反応容器の構成を示す図であり、図5(a)は、その正面図、図5(b)は、その底面図、図5(c)は、その側面図である。実施例2の説明にあたり、図1及び図2と同一構成部分には同一符号を付して重複箇所の説明を省略する。
図5に示すように、PCR装置1の反応容器10A(環状容器)は、基板11、チャネル形成板12、及び対向基板13Aを備え、反応容器10Aは鉛直方向に立っている。基板11とチャネル形成板12と対向基板13Aとによって環状の管状のリングチャネル20を形成する。対向基板13Aは、実施例1のカバー板13の機能を兼ねている。
基板11と対向基板13Aは、チャネル形成板12を挟んで固定される。電極対21Aの一方の電極211は基板11内面に、他方の電極212は対向基板13A内面に配置され、反応液を挟み、リングチャネル20中央の断面を水平方向に横切って電圧を印加する電極対21Aを構成する。図5(c)に示すように、電極対21Aの一方の電極211と他方の電極212とが重ならないように配置されている。なお、電極対21Aである2つの電極211と電極212が対向する基板(基板11と対向基板13A)のそれぞれに配置され、電流が一方の基板11の電極211から対向基板13Aの電極212流れる。これにより、電流は、電極211のエッジから電極212のエッジに流れる、すなわち、一方の基板から他方の基板に流れるので、流路断面内を均一に電流が流れ、実施例1と比べても、より均一な加熱ができる。
反応液は、電極対21Aによってジュール加熱され変成温度にされると共に、電極対21Aの周辺で上昇流となって、平たいリングチャネル20内を環状に循環し、PCRサイクルが行われる。ここでは2ステップPCRサイクルを想定している。本実施例においてもジュール加熱による反応液の上昇流を利用する。
実施例1の場合には基板11に沿って電流を流すので、加熱しても少なくない熱が基板から逃げてしまうが、本実施例の場合には基板11から対向基板13Aへとリングチャネル20の(厚み方向)中央に電流を流すので、逃げてしまう熱を減らして、効率よく温度制御することができる。また、本実施例の場合は、電極間ギャップの距離をチャネル形成板12であるスペーサによって規定するので、高価な電極対のパターニングの必要がなく、安価かつ均一に製造することができる。
なお、本発明は上記実施例に限定されるものではない。
各構成要素の材質は上述のものに限られず、一般的なマイクロチャネルに用いられる材質のものを採用することができる。
特に2つの電極が基板11上に形成される実施例1では、カバー板13はガラス製、チャネル形成板12はPDMS製と異なる材質として述べたが、両者の材質は同じでも良い。例えば同じ材質のPDMSである場合にはモ−ルディングによる一体成形が容易となり、量産に向いた製造方法としてメリットがある。
また、「交差」は直角に交差するものに限られない。
1 PCR装置
10,10A 反応容器(環状容器)
11 基板
12 チャネル形成板
13 カバー板
13A 対向基板(カバー板)
15 注入ウェル
16 排出ウェル
20 リングチャネル
21,21A 電極対
22 引出し電極部
20a 円形開口部
30 制御部(制御手段)
211,212 電極
G 電極対のギャップ幅
GL 電極対のギャップ長
D リングチャネルの流路深さ

Claims (4)

  1. ポリメラ−ゼ連鎖反応(PCR)を行う、流路断面が長方形であり全体として円環状であり縦置き配置される環状容器と、
    前記環状容器を形成する対向基板の一方の内面に配置される2つの電極からなり、反応液の流れの全幅に亘り、該流れに交差し、かつ、水平のギャップ中心線となるギャップを挟んで対向して配置される電極対と、
    前記電極対に交流電圧を印加して反応液に交流電流を流すことによってジュール熱を発生させて、該反応液を上昇させると共に該反応液の温度を制御する制御手段と
    を備えることを特徴とするPCR装置。
  2. ポリメラ−ゼ連鎖反応(PCR)を行う、流路断面が長方形であり全体として円環状であり縦置き配置される環状容器と、
    前記環状容器を形成する対向基板のそれぞれの内面に1つずつ配置される電極からなり、反応液の流れの全幅に亘り、該流れに交差し、かつ、水平のギャップ中心線となるギャップを挟んで対向して配置される電極対と、
    前記電極対に交流電圧を印加して反応液に交流電流を流すことによってジュール熱を発生させて、該反応液を上昇させると共に該反応液の温度を制御する制御手段と
    を備えることを特徴とするPCR装置。
  3. ポリメラ−ゼ連鎖反応(PCR)を行う、流路断面が長方形であり全体として円環状であり縦置き配置される環状容器を形成する対向基板の一方の内面に配置される2つの電極からなり、反応液の流れの全幅に亘り、該流れに交差し、かつ、水平のギャップ中心線となるギャップを挟んで対向して配置される電極対を設け、該電極対に交流電圧を印加して反応液に交流電流を流すことによってジュール熱を発生させて、該反応液を上昇させると共に該反応液の温度を制御することを特徴とするPCR方法。
  4. ポリメラ−ゼ連鎖反応(PCR)を行う、流路断面が長方形であり全体として円環状であり縦置き配置される環状容器を形成する対向基板のそれぞれの内面に1つずつ配置される電極からなり、反応液の流れの全幅に亘り、該流れに交差し、かつ、水平のギャップ中心線となるギャップを挟んで対向して配置される電極対を設け、該電極対に交流電圧を印加して反応液に交流電流を流すことによってジュール熱を発生させて、該反応液を上昇させると共に該反応液の温度を制御することを特徴とするPCR方法。
JP2015009891A 2015-01-22 2015-01-22 Pcr装置及びpcr方法 Active JP5783586B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015009891A JP5783586B1 (ja) 2015-01-22 2015-01-22 Pcr装置及びpcr方法
EP16152303.0A EP3047909B1 (en) 2015-01-22 2016-01-21 Pcr device and pcr method
US15/002,715 US10040070B2 (en) 2015-01-22 2016-01-21 PCR device and PCR method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015009891A JP5783586B1 (ja) 2015-01-22 2015-01-22 Pcr装置及びpcr方法

Publications (2)

Publication Number Publication Date
JP5783586B1 true JP5783586B1 (ja) 2015-09-24
JP2016131548A JP2016131548A (ja) 2016-07-25

Family

ID=54200752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015009891A Active JP5783586B1 (ja) 2015-01-22 2015-01-22 Pcr装置及びpcr方法

Country Status (3)

Country Link
US (1) US10040070B2 (ja)
EP (1) EP3047909B1 (ja)
JP (1) JP5783586B1 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3721603B2 (ja) * 1995-05-31 2005-11-30 株式会社島津製作所 Dnaの複製方法
EP0972082A4 (en) * 1997-04-04 2007-04-25 Caliper Life Sciences Inc BIOCHEMICAL ANALYZERS OPERATING IN CLOSED LOOP
JP4143948B2 (ja) * 1999-12-17 2008-09-03 株式会社フロンティアエンジニアリング 流動性食品材料の連続加熱装置
JP4310510B2 (ja) * 2001-01-29 2009-08-12 株式会社フロンティアエンジニアリング 流動性食品材料の連続通電加熱装置
JP4737847B2 (ja) * 2001-02-22 2011-08-03 株式会社フロンティアエンジニアリング 流動性食品材料の連続通電加熱装置
EP1384022A4 (en) * 2001-04-06 2004-08-04 California Inst Of Techn AMPLIFICATION OF NUCLEIC ACID USING MICROFLUIDIC DEVICES
US8323570B2 (en) * 2006-03-21 2012-12-04 Koninklijke Philips Electronics N.V. Microelectronic sensor device with sensor array
JP4997571B2 (ja) * 2006-12-19 2012-08-08 有限会社フルイド マイクロ流体デバイスおよびそれを用いた分析装置
KR101221872B1 (ko) * 2009-04-16 2013-01-15 한국전자통신연구원 중합효소 연쇄반응 장치
US9050597B2 (en) 2009-11-04 2015-06-09 Fluid Incorporated PCR method and PCR device

Also Published As

Publication number Publication date
JP2016131548A (ja) 2016-07-25
EP3047909A1 (en) 2016-07-27
US20160214111A1 (en) 2016-07-28
US10040070B2 (en) 2018-08-07
EP3047909B1 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
Chabert et al. Automated microdroplet platform for sample manipulation and polymerase chain reaction
US6824664B1 (en) Electrode-less dielectrophorises for polarizable particles
JP6004486B2 (ja) マイクロ流体装置を活用した核酸増幅方法
KR101664201B1 (ko) 마이크로 유체 디바이스
JP2005253466A (ja) 核酸増幅方法及び装置
US11254978B2 (en) Non-thermal cycling for polymerase chain reaction
JP2001515204A (ja) 電気流体制御および電気熱制御を有するマイクロ流体システム
Wang et al. A miniaturized quantitative polymerase chain reaction system for DNA amplification and detection
JP2012242118A (ja) 流体デバイスを用いる熱処理装置、および流体の処理方法
WO2004029241A1 (ja) 電磁誘導加熱による核酸の増幅方法並びにそれに用いる反応容器及び反応装置
Cao et al. Fast DNA sieving through submicrometer cylindrical glass capillary matrix
Wu et al. Flow-through polymerase chain reaction inside a seamless 3D helical microreactor fabricated utilizing a silicone tube and a paraffin mold
Kulkarni et al. A review on recent advancements in chamber-based microfluidic PCR devices
JP5700403B2 (ja) Pcr方法及びpcr装置
JP5783586B1 (ja) Pcr装置及びpcr方法
US8900852B2 (en) Amplification reaction vessel, and method of manufacturing the same
JP2010139491A (ja) 反応液温度測定方法、反応液温度測定装置、反応液温度調整装置及び遺伝子の増幅反応処理を行うための装置
JP2015139379A (ja) 核酸増幅装置及び核酸増幅方法
Chien et al. A micro circulating PCR chip using a suction-type membrane for fluidic transport
Sugumar et al. Amplification of SPPS150 and Salmonella typhi DNA with a high throughput oscillating flow polymerase chain reaction device
TWI386253B (zh) Heater-type tilting device
KR101950210B1 (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법
US20090155894A1 (en) Electrokinetic Thermal Cycler and Reactor
CN103894247A (zh) 一种核酸多重扩增微流控芯片
JP2004242607A (ja) 反応装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150715

R150 Certificate of patent or registration of utility model

Ref document number: 5783586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250