JP5783525B2 - ケミカルヒートポンプ及び熱回収方法 - Google Patents

ケミカルヒートポンプ及び熱回収方法 Download PDF

Info

Publication number
JP5783525B2
JP5783525B2 JP2011121711A JP2011121711A JP5783525B2 JP 5783525 B2 JP5783525 B2 JP 5783525B2 JP 2011121711 A JP2011121711 A JP 2011121711A JP 2011121711 A JP2011121711 A JP 2011121711A JP 5783525 B2 JP5783525 B2 JP 5783525B2
Authority
JP
Japan
Prior art keywords
reaction
valve
reactor
mesh
reaction medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011121711A
Other languages
English (en)
Other versions
JP2012247171A (ja
Inventor
陽平 志連
陽平 志連
丸山 徹
徹 丸山
阿萬 康知
康知 阿萬
工藤 健二
健二 工藤
田中 正治
正治 田中
祥史 大場
祥史 大場
佐藤 達哉
達哉 佐藤
裕直 小倉
裕直 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2011121711A priority Critical patent/JP5783525B2/ja
Publication of JP2012247171A publication Critical patent/JP2012247171A/ja
Application granted granted Critical
Publication of JP5783525B2 publication Critical patent/JP5783525B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、ケミカルヒートポンプ及び熱回収方法に関する。
近年、可逆反応の反応熱を利用して、蓄熱及び放熱を可能とするケミカルヒートポンプが注目されている。
吸着質の反応材に、水蒸気などの反応媒体を吸脱着させるタイプのケミカルヒートポンプでは、反応材の熱伝導の低さから、反応材と熱交換器との間で行われる効率が低く、蓄熱及び放熱工程の反応速度が低くなる等の問題を有していた。
上記問題点を解決するためには、熱交換器と接触する伝熱済みの反応材と、未伝熱の反応材とを、連続的に入れ替える手段が考えられる。攪拌による物質移動に伴う熱移動により、反応材と熱交換器との間の熱交換効率を高め、反応速度を上げることが可能である。また、攪拌により反応容器の深部に存在する反応材にも、反応気体が供給され易くなるため、さらに反応速度が向上する。
攪拌手段として、機械的な攪拌機能を有する構成を反応器に付与する場合、攪拌のために新規エネルギーが必要となり、系全体のエネルギー効率が低下する。そこで、特許文献1では、反応材を充填した容器内で、反応媒体を含む流通ガスを流動させ、発生又は吸収する熱を反応器内熱交換器と熱交換する構成が開示されている。
しかしながら、特許文献1では、反応材を流動させるために、流通ガスを対流させている。そのため、ポンプ等の追加エネルギーが必要となり、系全体のエネルギー効率が低下する。さらに、発生する反応熱が流通ガスに奪われてしまうという問題点も有していた。
そこで、本発明では、系内に反応媒体以外の気体を流入させることなく、かつ、ポンプ等の追加エネルギーを投入することなく、攪拌機能を有する反応速度が高いケミカルヒートポンプを提供することを目的とする。
本発明によると、
反応材と熱交換器を有し、前記反応材と気体状の反応媒体とを反応させて、反応物を生成すると共に放熱する生成反応と、前記反応物を加熱して、反応材と気体状の反応媒体とに分解する分解反応とを、可逆的に行う反応器と、
前記反応器と第一の開閉弁を介して接続される主蒸発器と、
前記反応器と第二の開閉弁を介して接続される主凝縮器と、
を有するケミカルヒートポンプであって、
前記第一の開閉弁を開いて、前記生成反応により生じた前記反応器と前記蒸発器との差圧により、前記主蒸発器から気体状の反応媒体を前記反応器に導入して、前記導入により発生する気流により前記反応器内の前記反応物及び未反応の前記反応材を攪拌し、
前記第二の開閉弁を開いて、前記分解反応により生じた前記反応器と前記主凝縮器との差圧により、前記主凝縮器に前記分解反応により脱離した気体状の反応媒体を排出し、前記排出により発生する気流により前記反応器内の前記分解反応で得られた反応材及び未分解の前記反応物を攪拌する、
ことを特徴とする、ケミカルヒートポンプが提供される。
本発明によれば、系内に反応媒体以外の気体を流入させることなく、かつ、ポンプ等の追加エネルギーを投入することなく、攪拌機構を有する反応速度が高いケミカルヒートポンプを提供できる。
図1は、本発明のケミカルヒートポンプの一例を示す、装置概略図である。 図2は、化学蓄熱材の蓄・放熱の原理を説明する図であって、平衡時の反応媒体B(g)の蒸気圧を示す圧力(P)−温度(T)線図である。 図3は、本発明のケミカルヒートポンプの他の例の概略図である。 図4は、本発明のケミカルヒートポンプのさらに他の例の概略図である。 図5は、本発明のケミカルヒートポンプのさらに他の例の概略図である。 図6は、本発明のケミカルヒートポンプのさらに他の例の概略図である。 図7は、連続運転型のヒートポンプを例示する全体概略図である。 図8は、図7の放熱器及び蒸発器周辺の拡大概略図である。 図9は、図7の再生器及び凝縮器周辺の拡大概略図である。 図10は、連続運転型のヒートポンプの他の例を説明するための、放熱器周辺の概略図である。 図11は、連続運転型のヒートポンプの他の例を説明するための、再生器周辺の概略図である。 図12は、連続運転型のヒートポンプの他の例を説明するための、放熱器周辺の概略図である。 図13は、図12の放熱器をさらに詳細に説明するための、概略図である。 図14は、連続運転型のヒートポンプの他の例を説明するための、再生器周辺の概略図である。 図15は、連続運転型のヒートポンプの他の例を説明するための、概略図である。 図16は、補助蒸発器及び補助凝縮器を有する場合の、連続運転型のヒートポンプの例を説明するための、概略図である。
まず、本発明で使用できる、反応材と反応媒体について説明する。
[反応材]
本発明で使用できる粒状の反応材(化学蓄熱材)としては、反応媒体との吸脱着を可逆的に行うことができる、反応材及び反応媒体との組み合わせであれば、特に限定されない。
反応媒体としては、例えば、水、アンモニア、メタノールなどを使用することができる。
反応媒体として水を用いる場合、反応材としては、例えば、硫酸カルシウム、硫酸ナトリウム、塩化カルシウム、塩化マグネシウム、塩化マンガン、酸化カルシウム、酸化マグネシウム、酢酸ナトリウム、炭酸ナトリウムなどを使用することができるが、本発明はこれに限定されない。反応媒体としてアンモニアを用いる場合、反応材としては、例えば、塩化マンガン、塩化マグネシウム、塩化ニッケル、塩化バリウム、塩化カルシウムなどを使用することができる。反応媒体としてメタノールを使用する場合、反応材としては、例えば、塩化マグネシウムなどが挙げられる。
また、反応材は1種類を単独で使用しても良く、2種類以上を混合して使用しても良い。さらに、反応材間の熱伝導性を高めるために、粒状グラファイトや金属粉を混合して使用しても良い。なお、本実施の形態では、粒状の反応材(化学蓄熱材)として硫酸カルシウムを、用いた場合を代表して説明する。
次に、本発明のケミカルヒートポンプの特徴について、図面を参照することにより具体的に解説する。
[第1の実施形態のケミカルヒートポンプの構成]
図1に、本発明のケミカルヒートポンプの一例を示す、装置概略図を示す。
第1の実施形態のケミカルヒートポンプは、主として、粉粒状固気反応材A(本実施の形態では、硫酸カルシウム)が充填された反応器100、凝縮器200、蒸発器300から構成される。反応器100は、反応器100と熱の授受を行う熱交換器101を有する。なお、下記で述べる全ての実施の形態において、熱交換器は、反応器、後述する放熱器又は後述する再生器などの容器の内部に格納されて、反応材と直接熱の授受を行う構造でも良い。また、前記容器の外周に接触して、前記容器を介して熱の授受を行う構造であっても良い。本発明は、この点において限定されない。
また、反応器100の上部にはメッシュ103が配置され、メッシュ103の上部から、気体溜め105、弁107、水蒸気流路203の順に介して、凝縮器200と接続される。凝縮器200内には、凝縮用熱交換器201が配置される。反応器100の下部にはメッシュ104が配置され、メッシュ104の下部から、気体溜め106、弁108、水蒸気流路303の順に介して、蒸発器300と接続される。蒸発器300内には、反応媒体B(本実施の形態では水又は水蒸気)及び蒸発用熱交換器301が配置される。
メッシュ103及びメッシュ104は、粉粒状固気反応材Aを通さない粗さを有する構造となっており、メッシュ103の上部(気体溜め105)及び、メッシュ104の下部(気体溜め106)には、粉粒状固気反応材Aは存在しない。
反応器100内の反応材Aの量は、反応器100内で反応材Aの攪拌動作が可能な空間を保つよう、例えば、反応器100の容積や、反応材Aと反応媒体Bの組み合わせなどにより、当業者が考慮して充填できるものである。
ケミカルヒートポンプの各部は、十分に断熱されており、熱の授受は各々の熱交換器を介してのみで行われると仮定される。また、本発明で使用される凝縮用熱交換器201、蒸発用熱交換器301などの熱交換器は、ペルティエ素子や電熱ヒータなど、蒸発器300及び凝縮器200内部の熱を授受する機構であれば、公知のものを使用できる。さらに、ヒートポンプの運転前には、反応器、凝縮器、蒸発器等の装置内部は真空ポンプにより十分脱気されており、装置内部には反応媒体以外の気体が実質的に存在していない状態が運転中も保たれるよう、機密性が高い構造となっている。
[第1の実施形態のケミカルヒートポンプの原理]
図2に、化学蓄熱材の蓄・放熱の原理を説明する図であって、平衡時の反応媒体B(g)の蒸気圧を示す圧力(P)−温度(T)線図を示す。横軸は温度の逆数を示し、縦軸は蒸気圧の対数を示す。
図2(a)、図2(b)における、線Pは、下記式(1)の平衡時における、系内の温度と反応媒体B(g)の蒸気圧との関係を示し、線Qは、下記式(2)における、反応媒体B(g)の飽和蒸気圧を示す。なお、式(1)及び式(2)において、固体及び液体の活量は1と仮定している。
A+B(g)⇔AB 式(1)
B(l)⇔B(g) 式(2)
図2において、線Pよりも右側の反応材温度及び蒸気圧力条件においては、反応材Aは、反応媒体Bと反応して発熱する。一方、線Pよりも左側の温度及び圧力条件においては、吸熱して反応媒体Bの脱着反応が進行する。なお、一般的に、図2(a)に示すような、蓄熱温度より放熱温度が高い場合を昇温モードと呼び、図2(b)に示すような、蓄熱温度より放熱温度が低い場合を増熱モードと呼ぶ。
反応器、蒸発器、凝縮器の間の反応媒体の移動が速やかに行われた場合、理論的には、各々の飽和蒸気圧が等しくなる温度で反応が進行する。しかしながら、実際には、流路圧損などが存在するため、図2に示すように、圧力差を持って反応が進行する。
本実施形態の放熱過程及び蓄熱過程について、図1及び図2(c)及び図2(d)を用いて説明する。図2(c)、図2(d)における、線Rは、下記式(3)の平衡時における、系内の温度とHO(g)の蒸気圧との関係を示し、線Sは、下記式(4)における、HO(g)の飽和蒸気圧を示す。なお、式(3)及び式(4)において、固体及び液体の活量は1と仮定している。
CaSO+1/2HO(g)⇔CaSO・1/2HO 式(3)
O(l)⇔HO(g) 式(4)
[放熱過程]
まず、放熱過程について説明する。
弁107、108を閉じた状態で、加熱熱媒302から熱交換器301を通じて供給された熱により、蒸発器300内の反応媒体Bを蒸発させる。この時、蒸発器300内の圧力は、反応媒体Bの温度における飽和水蒸気圧と等しくなる(図1(c)B)。この時、反応器100内の反応材Aは主として無水物として存在するが、後述する蓄熱工程、放熱工程を繰り返す場合、一部半水和物及び反応媒体Bが混在する。そのため、反応器100の内圧は、反応器内反応材Aの温度における、反応材Aの無水物及び半水和物の、反応平衡水蒸気圧力と等しくなる(図1(c)AR0)。
次に、弁108を開くと、反応器100の内圧AR0と蒸発器300の内圧Bとの差圧により、反応媒体Bが反応媒体気流路303を通り、反応器100に供給される。反応器100内の硫酸カルシウムは、反応媒体気流bにより攪拌されながら反応媒体Bと発熱反応し、半水和物となる。反応熱は、熱交換器101を通して外部に取り出される。
この時、気体溜め105により一定の反応媒体気流入路が確保され、反応媒体気流bは攪拌に適した方向に方向付けがなされる。反応が進行し、反応器100内の温度が上昇すると、反応器100内の温度及び反応媒体Bの蒸気圧は、平均として図1(c)に示すAR2の状態に達する。蒸発器と反応器との間の差圧ΔPR2から発生する反応媒体気流bが、十分に大きくない場合、反応材Aが十分に攪拌されない。そのため、反応熱の熱交換器101への熱輸送は、主に粉粒体間の熱伝導を通じて行われる。反応材Aと反応媒体Bとの反応(水の場合は水和反応)は放熱反応であり、熱交換器に近い領域に存在する反応材Aほど、先に水和反応を終える。攪拌が十分でない状態で、水和反応を進行させた場合、水和反応を終えた反応材Aは、熱交換器と未反応反応材Aとの間の熱抵抗として残留する。つまり、熱交換器から遠い領域に存在する反応材Aの水和反応の進行を阻害し、反応材Aからの熱の取り出しが効率的に行えない。
そこで、反応気体流による反応材Aの攪拌を再度起こし、物質輸送による熱輸送の促進を行うため、弁108を一時的に閉じる。これにより、反応器内部への反応媒体Bの新規供給は絶たれる。つまり、反応器内に残存する反応媒体Bと反応材Aとの間のみで、反応が進行し、同時に、反応熱は熱交換器を通して外部に供給される。そのため、AR2の状態に対して、反応器内部反応材の温度及び反応媒体Bの蒸気圧が低下した、例えば、AR1の状態になる。BとAR1との差圧ΔPR1は、BとAR2との差圧ΔPR2よりも大きい(即ち、差圧を回復させることができる)ため、その後、弁108を開放することで、再度反応媒体気流bにより反応材Aは攪拌される。反応媒体気流bによる再攪拌により、熱交換器周辺の反応材A粒子が入れ替わり、熱伝導効率と反応速度を高めることが出来る。即ち、本実施の形態においては、弁108の開閉により、攪拌の頻度を制御でき、これにより、反応を制御することができる。弁108の開閉の頻度は、反応器100の大きさ、反応材Aの量、反応媒体Bの量などに応じて、当業者が適宜選択できるものである。また、弁108は、開度を調節することにより、反応媒体Bの流入量を制御できることも、当業者にとっては明らかである。
反応器100上部に配置されるメッシュ103の形状は、例えば、逆円錐状のように、反応器100の中心部に比して、反応器100の外側方向に傾斜を有する形状であることが望ましい。メッシュ103をこのような構造にすることにより、気体溜め105へ吹き上げられた反応材が、メッシュ103により反応器100外壁側へ落下しやすくなり、攪拌が効果的に行われる。また、落下した反応材Aが反応器100外壁に接触しやすくなり、反応材Aと熱交換器101との熱交換を促進できる。
即ち、放熱過程において、弁108の開閉を適宜繰り返し、反応媒体気流bにより反応材を効率よく攪拌させることで、高い反応性を有するケミカルヒートポンプ動作が実現できる。
[蓄熱過程]
次に蓄熱工程について説明する。
弁107を閉じた状態で、冷却熱媒202から熱交換器201を通じて供給された冷熱により、凝縮器200内の反応媒体Bは、熱交換器201の冷却温度まで低下される。この時、凝縮器200内の圧力は、反応媒体Bの温度における飽和蒸気圧と等しくなる(図2(d)B)。前述の放熱工程の後、弁108を閉じ、熱交換器101に加熱用熱媒を流すことで、反応器100内の反応材Aを所望の温度に加熱する。放熱工程後の反応器100内では、反応材Aとして硫酸カルシウムを使用した場合は、概ね、半水和物となっており、反応器100の内圧は、反応器100内硫酸カルシウム半水和物(及び無水物)の温度における、硫酸カルシウム無水物及び半水和物の、反応平衡水蒸気圧力と等しくなる(図1(d)AS0)。
その後、弁107を開くと、反応器100の内圧AS0と凝縮器200の内圧Bとの差圧により、反応器内の反応媒体Bが、反応媒体気流路203を通り、反応器100から排出される。反応器100内の反応媒体Bの蒸気圧が低下することにより、式(3)において脱着反応が進行する方向に平衡が傾き、脱着反応がより効率的に進行する。実施の形態における、硫酸カルシウムの半水和物が、無水物となる反応は、吸熱反応であり、温度の低下した未反応の反応材Aは、熱交換器101を通して外部より熱が加えられる。
弁107開放時において、反応器100の下部の気体溜め106に残留していた反応媒体Bが持ち上げられることにより、反応媒体気流bが発生し、反応材Aは底部より攪拌される。反応媒体Bの脱着反応が進行し、反応器100内の温度が低下すると、反応器100内の温度及び反応媒体Bの蒸気圧は、図1(d)に示すAS2の状態に達する。蓄熱反応では、前述の弁107の開放時の反応媒体気流bによってのみ攪拌されるため、弁107の開放後は、脱着反応に必要な熱は、主に粉粒体間の熱伝導で行われる。この脱着反応(実施の形態においては、硫酸カルシウムの半水和物の脱水反応)は、吸熱反応であり、熱交換器に近い部分ほど先に脱着反応を終える。攪拌が十分でない状態で、脱着反応を終えた反応材は、熱交換器と未脱着反応材との間の熱抵抗として残留する。つまり、熱交換器から遠い領域に存在する未脱着反応材の脱水反応の進行を阻害する。
そこで、反応気体流による未脱着反応材及び反応材Aの攪拌を再度起こし、物質輸送による熱輸送の促進を行うため、弁107を一時的に閉じる。これにより、反応器外部への水蒸気の新規排出は絶たれる。つまり、熱交換器により供給される熱により、反応器100内で脱着した反応媒体が溜まり(反応器100内の反応媒体圧が上昇する)、かつ、供給される熱により反応器100内の温度が上昇して、例えば、AS1の状態になる。BとAS1との差圧ΔPS1は、BとAS2との差圧ΔPS2よりも大きく、その後、弁107を開放することで、再度反応媒体気流bが発生し、未脱着反応材及び反応材Aは攪拌される。熱交換器周辺の未脱着反応材及び反応材A粒子が入れ替わることで、熱伝導効率と脱着速度を高めることが出来る。即ち、本実施の形態においては、弁107の開閉を適宜繰り返し、水蒸気流bにより硫酸カルシウムの半水和物及び無水物を効率よく攪拌させることで、急速な蓄熱が可能であるケミカルヒートポンプ動作が実現できる。
ケミカルヒートポンプを以上のような構成にすることで、(1)機械式攪拌装置を導入するよりも簡便で、(2)攪拌動作によってロスするエネルギーも少ない機構により、(3)反応器内部に反応に関わらないガスを導入することなく、反応材を攪拌することができる。また、反応気体の流入量をバルブの開閉によって制御することにより、反応速度を制御できるケミカルヒートポンプが提供できる。
[第2の実施の形態のケミカルヒートポンプ]
図3(a)に、本発明のケミカルヒートポンプの他の例の概略図を示す。また、図3(b)は、図3(a)のケミカルヒートポンプ内に反応材が充填され、攪拌が起こっていない状態を例示する、概略図である。さらに、図3(c)は、図3(a)のα−α断面図を示す。第2の実施の形態では、第1の実施の形態の反応容器100に、筒状メッシュ111と、伝熱フィン112とを有する。
筒状メッシュ111は、その筒状構造の内部を、反応材が流通することができるが、メッシュ構造の部分を、反応材が通過できない構造となっている。
筒状メッシュ111は、例えば、気体溜め105と気体溜め106を結ぶ流路に対して、平行な方向に固定される。また、攪拌時において、反応材Aが、筒状メッシュ111の内部を通過できるように、筒状メッシュ111の端部と、メッシュ103及び104との間には、隙間が設けられている。
伝熱フィンを有することにより、熱交換効率が上がり、反応速度を上げることが出来る。伝熱フィン112は、攪拌による反応材移動を妨げないように設置されれば、どのように設置しても構わず、例えば、図3(c)のように、反応容器100の外壁の内側と筒状メッシュ111とが接続されるように設置することができる。なお、伝熱フィン112は、他の実施形態においても、使用することができる。
図3(b)に示すように、本実施の形態では、攪拌が起こっていない静状態においては、筒状メッシュ111の内部には反応材Aは充填されていない。この状態で、第1の実施形態で説明したような反応媒体気流を発生させると、反応媒体気流は、反応材A粒子による圧損が少ない筒状フィンの内部を選択的に通る。そのため、筒状メッシュ下部の反応材Aが吹き上がり、吹き上がった反応材Aは、メッシュ103によって反応器の外壁側に移動させられる。筒状メッシュ111下部の反応材Aが抜けた部分には、重力により反応材Aが流れ落ち、初期の静状態に戻る。
筒状メッシュ内部は反応材Aにより圧損が少ないため、蒸発器と反応器との間の差圧又は凝縮器と反応器との間の差圧による水蒸気流が発生しやすくなる。その結果、反応材A(及び/又は反応材Aと反応媒体Bとの反応物)が効率よく攪拌される。即ち、放熱工程においては、図2(c)におけるAR1の温度を上げることが出来て、より高い温度での平均放熱出力が得られる。一方、蓄熱工程においては、図2(d)におけるAS1の温度を下げることが出来て、より低い温度での蓄熱動作が可能になる。
さらに、反応媒体気流により攪拌される反応材A(及び/又は反応材Aと反応媒体Bとの反応物)は、筒状メッシュが存在することにより、熱交換器近くを移動することができるため、反応材A(及び/又は反応材Aと反応媒体Bとの反応物)と熱交換器との間の伝熱性が高まる。またさらに、反応材A(及び/又は反応材Aと反応媒体Bとの反応物)の攪拌に必要な空間を、反応器の内部中央に配置することで、反応器の外部に配置する熱交換器との熱交換表面積を高めることが出来る。
筒状メッシュは、メッシュ構造の部分を、反応材Aが通過できない構造となっているが、反応媒体Bは流通出来るため、熱交換器周辺の反応材Aへの反応媒体供給を阻害する、充填反応材による圧損が生じづらく、放熱反応の進行を促進することができる。
なお、ケミカルヒートポンプの動作は、第1の実施の形態と同様であるので、ここでは記さない。
[第3の実施の形態のケミカルヒートポンプ]
図4に、本発明のケミカルヒートポンプのさらに他の例の概略図を示す。第3の実施の形態では、反応器100の内部にチューブ型熱交換器120及び熱交換フィン122を有する。
反応器100は、熱交換フィン112により鉛直方向に仕切られ、セル117が形成される。各々のセル117には、反応材A(及び/又は反応材Aと反応媒体Bとの反応物)が充填されている。各々のセル117の上部及び下部には、第1の実施の形態と同様に、メッシュ103、水蒸気分流路113と、メッシュ104、水蒸気分流路114とに繋がっている。さらに、反応媒体分流路113及び反応媒体分流路114は、各々回転弁115、116に接続されている。回転弁115、116は、各々弁107、108に接続され、それ以降の接続形態は、第1の実施の形態と同様である。
また、チューブ型熱交換器120は、反応器100内にあり、各々のセルと熱交換ができるように、各セルを貫通して配置されている。
回転弁は、例えば、図4(b)及び(c)に示すように、接続される任意のセルに対して開閉を自在に行うことができるバルブである。また、セル内には、鉛直方向の追加のフィンが挿入されても良い。
第3の実施の形態のケミカルヒートポンプの放熱過程においては、弁107は閉状態で、回転弁115は全てのセルに対して開状態となっている。即ち、全てのセルは、上部の反応媒体分流路113を介して通じている。
また、回転弁116は、所望のセルに対してのみ開状態となっており、弁108を開くことで、蒸発器300から反応器100へと反応媒体が流入する。流入した反応媒体気流は、開状態のセル内の反応材を、第1の実施の形態と同様の原理により攪拌し、また、反応媒体分流路113と、回転弁115を経て、攪拌セル以外のセルにも水蒸気を供給する。さらに、弁108の開閉操作と、回転弁116の操作により、各々のセルに順々に攪拌を起こすことができる。これにより、より効率的に放熱反応を進行させることができる。
一方、蓄熱工程においては、放熱過程とは逆に、弁108は閉状態であり、回転弁1116は全てのセルに対して開状態になっている。即ち、全てのセルは、下部の反応媒体分流路114を介して通じている。
また、回転弁115は、所望のセルに対してのみ開状態となっており、弁107を開くことで、反応器100から凝縮器200へと反応媒体が排出される。各セルに溜まっていた反応媒体は、反応媒体分流路114と回転弁116を経て、所望のセルを通じて凝縮器200へ排出されるので、反応媒体流によって所望のセルの反応材A(及び/又は反応材Aと反応媒体Bとの反応物)が攪拌される。弁107の開閉操作と、回転弁115の操作により、各々のセルに順々に攪拌を起こすことができる。これにより、より効率的に蓄熱反応を進行させることができる。
第3の実施の形態では、セルごとに攪拌を行うことができるため、攪拌で攪拌される反応材A(及び/又は反応材Aと反応媒体Bとの反応物)の量を少なくすることが出来るため、攪拌効率が高くなる。また、攪拌セルの上部と下部で、より大きな差圧を確保することができることも、攪拌効率が高くなる一因となる。
[第4の実施の形態のケミカルヒートポンプ]
図5に、本発明のケミカルヒートポンプのさらに他の例の概略図を示す。第4の実施の形態では、第3の実施の形態の熱交換フィンを、鉛直方向に対して鋭角の傾きをつけ、さらに、熱交換フィンと、メッシュ103との間に隙間を有するように配置されている。このような構成にすることで、反応器100内の反応材A(及び/又は反応材Aと反応媒体Bとの反応物)を、フィンの傾き方向へ移動させながら攪拌することができる。
図5(b)に、図5(a)の反応器100の平面図を示すように、チューブ型熱交換器120は、例えば、円形中空状の反応器100に対して螺旋状に配置され、熱交換フィン122は、鉛直方向に対して鋭角の傾きを有して配置されている。
チューブ型熱交換器120及び熱交換フィン122はメッシュ103、104で挟まれ、反応材A(及び/又は反応材Aと反応媒体Bとの反応物)は、このメッシュで挟まれた空間に格納される。熱交換フィン122の上部と、メッシュ103との間には、隙間が設けられている。また、メッシュ103の上部及びメッシュ104の下部には、反応媒体を制御するための回転弁118、119がそれぞれ設けられる。
回転弁118、119は、例えば、図5(c)で示すように、任意の1つのセルのみを順々に開放できるような構成にしても良いが、接続される任意のセルに対して開閉を自在に行うことができる構成でも良い。例えば、第3の実施の形態で示したような構成のものも使用できる。
回転弁118の上部及び回転弁119の下部には、それぞれ、気体溜め105、106、を介して、弁107、108に接続されており、弁107、108から凝縮器200、蒸発器300への接続は、第1の実施の形態と同様である。
第4の実施の形態のケミカルヒートポンプの放熱過程においては、弁107は閉状態であり、回転弁118、119は、反応材Aの攪拌を行う所望のセルに対応する部分を開いた状態にする。そして、弁108を開くことにより、蒸発器300から反応器100へ反応媒体Bが流入し、流入した反応媒体流は、回転弁が開いている所望のセル内の反応材Aを吹き上げ、気体溜め105及び他のセルに反応媒体Bを供給する。
吹き上げられた反応材は、熱交換フィンが鉛直方向に対して鋭角に傾いていることにより、隣のセルに搬送される。これにより、鉛直方向のみに反応媒体気流を生じさせて攪拌させる場合よりも、効果的に攪拌を行うことができる。
攪拌を行った後は、弁108を一度閉じることで、反応器内および気体溜めに残留した反応媒体Bが未反応の反応材Aと反応し、反応器内反応媒体圧が下がる。その後、再度、弁108を開くことにより、第1の実施の形態と同様の原理より、再び反応媒体気流を生じさせ、攪拌を行うことができる。
また、回転弁118、119は、全てのセルの開閉を、所望の状態にすることができるよう構成されているので、弁108の開閉と、回転弁118、119の操作により、セル内の反応材Aをより効率的に攪拌することが出来、より効率的に放熱が達成される。
一方、蓄熱過程においては、弁108は閉状態であり、回転弁118、119は、攪拌を行う所望のセルに対応する部分を開いた状態にする。そして、弁107を開くことにより、反応器100から凝縮器200へ反応媒体を排出させる。気体溜め106よりセルに流入した反応媒体気流は、所望のセルの反応材A及び反応材Aと反応媒体Bとが反応した反応物を吹き上げ、気体溜め105に流れ込み、凝縮器に反応媒体を排出する。
吹き上げられたセル内の反応物は、熱交換フィンが鉛直方向に対して鋭角に傾いていることにより、隣のセルに搬送される。これにより、鉛直方向のみに反応媒体気流を生じさせて攪拌させる場合よりも、効果的に攪拌を行うことができる。
攪拌を行った後は、弁107を一度閉じることで、反応器内及び気体溜めに脱着した反応媒体が充満し、反応器内の反応媒体圧が上昇する。その後、弁107を開くことで、再度攪拌することができる。
また、回転弁118、119は、全てのセルの開閉を、所望の状態にすることができるよう構成されているので、弁107の開閉と、回転弁118、119の操作により、より効率的に蓄熱が達成される。
[第5の実施の形態のケミカルヒートポンプ]
図6に、本発明のケミカルヒートポンプのさらに他の例の概略図を示す。本実施の形態では、補助凝縮器及び補助蒸発器を有する。
ここでは、例えば、第3の実施の形態で説明した、反応器100を使用する例で説明するが、本発明はこれに限定されず、前述の全ての実施の形態に、下記で説明する補助凝縮器及び補助蒸発器を組み込むことができる。
第3の実施の形態では、回転弁115と蒸発器300とは、弁108を介して反応媒体流路303で接続されているが、本実施の形態では、反応媒体流路303は枝分かれし、弁108と水蒸気流路303を経て(主)蒸発器300、及び、弁120と補助水蒸気流路403を経て補助凝縮器400に接続されている。
同様に、反応器100下部の反応媒体路203は枝分かれし、弁107と水蒸気流路203を経て主凝縮器200、及び、弁121と補助水蒸気流路503を経て補助蒸発器500に接続されている。
回転弁115、116は、例えば、第3の実施の形態で説明したような、全開及び任意の単開を行うことができるバルブを使用することができる。
この時、補助蒸発器500内の温度及び反応媒体圧は、(主)蒸発器300内部の温度及び反応媒体圧よりも十分に高くなるように、ヒータ等の公知の熱源により調節される。また、補助凝縮器400内部の温度及び反応媒体圧は、(主)凝縮器200内部の温度及び反応媒体圧よりも十分低くなるように、チラー等の公知の冷却源により調節される。
第5の実施の形態のケミカルヒートポンプの放熱過程においては、弁107、108、120、121は閉状態であり、回転弁115、116が全開となっている状態から始める。この状態から弁108を開くことにより、(主)蒸発器300から反応媒体Bが、反応器100内に流入する。
攪拌を行う場合、攪拌したい所望のセルに対応する回転弁116を開き、弁121を開く。補助蒸発器500の圧力は、(主)蒸発器の圧力よりも高いため、補助蒸発器500から供給された反応媒体Bは、反応媒体気流を形成し、セル内の反応材Aと反応しながら攪拌させた後、回転弁115を経て、その他のセル内及び(主)蒸発器300に流入する。この時、攪拌を行わないその他のセル及び(主)蒸発器300は、気体溜まりとして作用する。所望セル内の攪拌が行われた後は、弁121を閉じることで、補助蒸発器500からの反応媒体供給を停止する。
補助蒸発器を用いることにより、反応器100内の反応媒体圧は、(主)蒸発器300内部の反応媒体圧とほぼ同じになる。即ち、補助蒸発器を用いない場合に比べて、高い反応媒体圧が得られるため、放熱反応が促進される。また、補助蒸発器500に入力される、気体状の反応媒体を作成するための熱エネルギーは、放熱過程により外部出力として利用されるため、機械動作による攪拌に比べて、エネルギーロスを少なくすることができる。つまり、本実施の形態では、ケミカルヒートポンプの放熱過程において、主蒸発器の熱源に排熱などを利用した場合に、熱源の熱量が少なく、攪拌に必要な差圧を作ることが困難な場合などに適している。
また、攪拌時又は弁108を閉じた後に、攪拌したい所望のセルに通じる回転弁116を単開し、弁121を開いてもよい。この場合、主蒸発器300に補助蒸発器500から供給される高圧の反応媒体が流入しないため、1主蒸発器内の反応媒体の蒸発熱により、冷熱を取り出す場合に有効である。
一方、蓄熱工程においては、弁107、108、120、121は閉状態であり、回転弁115、116が全開となっている状態から開始する。弁107を開き、反応器100内の反応媒体Bを、(主)凝縮器200へと排出させることで蓄熱過程を開始する。
攪拌を行う場合、攪拌したい所望のセルに対応する回転弁115を開き、弁120を開く。補助凝縮器400の圧力は、(主)凝縮器200の圧力よりも低いため、系内の反応媒体は、回転弁116を経て、所望のセルを流路として反応媒体気流を発生させ、所望のセルの反応材A及び反応材Aと反応媒体Bとの反応物を攪拌させた後、補助凝縮器400へと排出される。この時、攪拌を行わないその他のセル及び(主)凝縮器200は、気体溜まりとして作用する。所望セル内の攪拌が行われた後は、弁120を閉じることで、補助凝縮器400への反応媒体排出を停止する。
補助凝縮器を用いることにより、反応器100内の反応媒体圧は、(主)凝縮器300内部の反応媒体圧とほぼ同じになる。即ち、補助凝縮器を用いない場合に比べて、反応器100内の反応媒体圧が低くなり、反応媒体が速やかに排出されることにより蓄熱反応が促進される。本実施の形態では、ケミカルヒートポンプの蓄熱過程において、主凝縮器の凝縮潜熱を利用するために、凝縮器内の温度を比較的高温に保つ必要があり、攪拌に必要な差圧を作ることが困難な場合などに適している。
また、攪拌時又は弁107を閉じた後に、攪拌したい所望のセルに通じる回転弁115単開し、弁120を開いてもよい。この場合、主凝縮器200から凝縮潜熱が奪われないため、主凝縮器で温熱を取り出して利用する場合に、有効である。
上述のように、補助蒸発器及び補助凝縮器を追加することで、(主)蒸発器及び(主)凝縮器による定常的な放熱及び蓄熱を行いながら、補助攪拌効果を付加でき、効果的に放熱及び蓄熱を行える。
[第6の実施の形態のケミカルヒートポンプ]
第6の実施の形態では、反応媒体気流により反応材A(及び/又は反応材Aと反応媒体Bとの反応物)を攪拌させながら搬送することで、ケミカルヒートポンプを連続運転可能にする構成について説明する。
図7は、連続運転型のヒートポンプを例示する全体概略図を示す。また、図8は、図7の放熱器及び蒸発器周辺の拡大概略図であり、図9は、図7の再生器及び凝縮器周辺の拡大概略図を示す。本実施の形態では、ヒートポンプは、主として、反応材A(及び/又は反応材Aと反応媒体Bとの反応物)の攪拌搬送を行いながら放熱及び蓄熱を行う放熱器600、蒸発器300、再生器700、凝縮器200とを有する。放熱器600と再生器700との間は、搬送弁801、804を介する輸送装置804及び搬送弁800、803を介する輸送装置803とで接続されている。各々の搬送弁は、反応媒体の移動を遮断しながら、反応材A(及び/又は反応材Aと反応媒体Bとの反応物)の搬入及び搬出が可能な構造となっている。
放熱器600は、傾斜フィン602が設置されている。傾斜フィン602は、鉛直方向に対して、反応材A(及び/又は反応材Aと反応媒体Bとの反応物)を搬送する方向に、鋭角に傾いている。また、傾斜フィン602により、放熱器600は、反応材Aの搬送方向に複数のセル616に仕切られている。
また、放熱器600の内部には、チューブ型熱交換器601が設置され、各セル616内の反応材A(及び/又は反応材Aと反応媒体Bとの反応物)と熱の授受を行う。
各セルの下部には、反応材A(及び/又は反応材Aと反応媒体Bとの反応物)を透過しないが、反応媒体Bが流通できるメッシュ603が敷かれている。また、傾斜フィン602の上部と、反応器600の上部内壁との間には、隙間が設けられている。さらに、メッシュ603の下部には、セルごとに反応媒体気流を発生させるための、開閉可能な仕切り弁604が設けられている。仕切り弁604の構造は、図7〜図9で示すような構造でも良く、第4の実施の形態で説明した回転弁の構造でも構わない。
仕切り弁604の下には、反応媒体流路605と、弁606とを経て、反応媒体流路303を通して蒸発器300と接続されている。また、放熱器600には、反応材搬入口及び搬出口が設けられ、それぞれ、搬送弁800、801が配置される。
一方、再生器700の内部にも、放熱器と同様の構成である、傾斜フィン702と、チューブ型熱交換器701とが設置されている。再生器700の上部及び下部には、反応材A(及び/又は反応材Aと反応媒体Bとの反応物)を透過しないが、反応媒体Bが流通できるメッシュ707、703が設置されている。傾斜フィン702と、上側のメッシュ707との間には、隙間が設けられている。メッシュ707の上部及びメッシュ703の下部には、各々、セルごとに反応媒体気流を発生させるための、開閉可能な仕切り弁708、704が設置されている。仕切り弁708、704の構成は、仕切り弁604の構成と同様、第4の実施の形態で説明した回転弁の構造でも構わない。
仕切り弁708の上側及び仕切り弁704の下側には、各々、反応媒体流路709、705が設けられ、反応媒体流路709の上側には、弁706、反応媒体流路203を介して凝縮器200と接続される。
また、再生器700には、反応材搬入口及び搬出口が設けられ、各々、搬送弁802、803が配置される。
放熱器600と再生器700との間は、搬送弁801、804を介する輸送装置804及び搬送弁800、803を介する輸送装置803とで接続される。また、反応媒体の移動を遮断しつつ、反応材A(及び/又は反応材Aと反応媒体Bとの反応物)を搬入出することの出来る装置であり、例えば、ロータリーバルブやロードロック室を持つ搬送機などを使用することができる。
輸送装置804、805は、各々、搬送弁801、803から搬出された反応材A(及び/又は反応材Aと反応媒体Bとの反応物)を、搬送弁802、800を介して再生器700、放熱器600に輸送する装置である。具体的には、例えば、スロープやベルトコンベア、スクリュー輸送装置などを使用することができる。なお、輸送装置804、805、放熱器600、再生器700は、作動前は真空ポンプにより十分に脱気され、作動中も反応媒体以外の気体が混在しないように、気密性が保たれた構造となっている。
第6の実施の形態のケミカルヒートポンプを用いて、連続運転する手順について、下記に詳細に説明する。
まず、搬送弁800から放熱器600へ搬入された反応材Aは、放熱器600内の反応媒体と放熱反応し、熱交換器601に反応熱を供給する。反応材Aへの反応媒体搬送時以外の時は、弁606は閉状態とし、反応材Aは、放熱気600内に残留する反応媒体と反応させる。反応材Aに反応媒体を搬送する場合は、所望のセルの下部の仕切り弁604及び弁606を開くことにより、第1の実施の形態で説明した原理によって反応媒体気流bが発生する。反応材Aは、反応媒体気流bと反応しながら吹き上げられるが、この時、セルを構成する傾斜フィン602の傾きにより、搬入口から搬出口の方向(搬送弁801がある方向)に吹き上げ方向が方向付けられる。従って、反応材A(及び/又は反応材Aと反応媒体Bとの反応物)は、搬出口方向に存在するセルへ移動する。
つまり、仕切り弁604及び弁606の開閉を制御することにより、所望のセルで反応媒体気流bを発生させることができ、かつ、反応媒体気流bにより反応材Aは放熱しながら搬送出口に搬送される。最終的には、搬送弁801によって、放熱器600の外部に搬出される。
放熱器600から搬出された反応材Aと反応媒体Bとの反応物(反応済み反応材と呼ぶことがある)は、輸送装置804により再生器搬入口の搬送弁802に搬送され、再生器700内に搬入される。反応済み反応材は、熱交換器701からの熱により加熱され、反応媒体Bを脱着しながら蓄熱を開始する。反応媒体の排出時以外の場合には、仕切り弁708は全閉し、仕切り弁704は全開し、弁706は開放しておく。これにより、反応媒体流路709内の反応媒体圧を下げておき、攪拌時の反応媒体排出を促進することができる。反応媒体排出時は、所望するセルの下にある仕切り弁704を開いた後、仕切り弁708のうちの、仕切り弁704の真上にある仕切り弁708よりも、排出口寄りの弁を開くことが好ましい。これにより、所望のセルに反応媒体気流bを発生させ、反応材A及び未反応反応材を吹き上げる。この時、反応媒体流路705は、気体溜めとして作用する。吹き上げられた反応材は、メッシュ707により、水蒸気流路709へと通過することなく落下する。再生器700に形成された傾斜フィン702により、搬入口から搬出口の方向に吹き上げ方向が方向付けられる。従って、吹き上げられ落下する反応材Aは、吹き上げられる前のセルよりも搬出口方向に存在するセルへと移動する。
つまり、仕切り弁708、704及び弁706の開閉を制御することにより、反応媒体の脱着反応を進行させながら、所望のセルで反応媒体気流bにより反応材Aを再生器700の搬出口に搬送することができる。搬送された反応材Aは、搬送弁803を通り、輸送装置によって搬送弁800に通され、再び放熱器に供される。
上記の手順により、反応媒体気流により反応材A(及び/又は反応材Aと反応媒体Bとの反応物)を攪拌させながら搬送することで、連続運転式ケミカルヒートポンプを達成することができる。
本実施の形態では、反応媒体の気流による搬送を利用することにより、従来の機械的な搬送機構により連続化を行うケミカルヒートポンプと比して、必要とされる機械動作が弁の開閉のみであり、装置機構が簡易化される。また、攪拌に使用するエネルギーロスも少ないため、ケミカルヒートポンプ運転時のエネルギー効率が高い。さらに、反応媒体搬送においては、比較的粒径が小さい反応材ほど搬送されやすい。そのため、反応媒体との反応及び脱着が速やかに進行する小粒径反応材は、素早く放熱器600及び再生器700内を通過する。従って、熱抵抗となる反応済み、蓄熱済み反応材を、放熱器600及び再生器700の外部に排出しやすくなるため、熱伝導効率も向上し、反応効率も向上する。
[第7の実施の形態のケミカルヒートポンプ]
第7の実施の形態のヒートポンプは、第6の実施の形態と同様、主として、反応材A(及び/又は反応材Aと反応媒体Bとの反応物)の攪拌搬送を行いながら放熱及び蓄熱を行う放熱器600、蒸発器300、再生器700、凝縮器200とを有する。第7の実施の形態と、第6の実施の形態とでは、補助蒸発器及び補助凝縮器を接続させる点で相違点を有する。また、放熱器600及び再生器700の構造も、第6の実施の形態の放熱器及び再生器と異なる。そのため、ここでは、この相違点を重点的に、図を参照することにより説明する。なお、放熱器600と再生器700との間は、搬送弁801、804を介する輸送装置804及び搬送弁800、803を介する輸送装置803とで接続されている点は、第6の実施の形態と同様である。
図10に、連続運転型のヒートポンプの他の例を説明するための、放熱器周辺の概略図を示し、図11に、再生器周辺の概略図を示す。本実施の形態では、放熱器600は、反応材と熱の授受を行う熱交換器601が配置される。この時、熱交換器は、放熱器600の内部に格納されていても良く、放熱器600の容器外周に接触して、容器を介して熱の授受を行う構造であっても良い。
また、放熱器600は、熱交換器601内部に、反応材A(及び反応材Aと反応媒体Bとの反応物)を通さない粗さの、上部メッシュ607、下部603が配置されている。上部メッシュ607、下部メッシュ603及び放熱器600の壁部で囲まれた空間に、反応材は格納される。また、上部メッシュ607は、反応材が収納される高さよりも、十分に高い高さに配置される。上部メッシュ607の上部及び下部メッシュ603の下部には、鉛直方向から、反応材搬送方向に鋭角の角度が付けられた、指向反応媒体流路612、611が各々設置されている。さらに、指向反応媒体流路612の上部及び指向反応媒体流路611の下部には、各々、仕切り弁608、604が設けられている。仕切り弁の構造は、第6の実施の形態と同様のものを使用することができる。仕切り弁608は、反応媒体流路609、弁606、反応媒体流路303を介して、(主)蒸発器に接続される。また、仕切り弁604は、反応媒体流路605、610,503を介して、補助蒸発器500に接続される。放熱器600には、反応材搬入口と搬出口が設けられ、それぞれに搬送弁800、801が配置される点は第6の実施の形態と同様である。
また、再生器700も、基本構造は放熱器600と同様の構成である。再生器700は、反応材と熱の授受を行う熱交換器701が配置される。熱交換器701内部に、反応材A(及び反応材Aと反応媒体Bとの反応物)を通さない粗さの、上部メッシュ707、下部703が配置されている。上部メッシュ707、下部メッシュ703及び再生器700の側壁に囲まれた空間に、反応材は格納される。また、上部メッシュ707は、反応材が収納される高さよりも、十分に高い高さに配置される。上部メッシュ707の上部及び下部メッシュ703の下部には、鉛直方向から、反応材搬送方向に鋭角の角度が付けられた、指向反応媒体流路712、711が各々設置されている。さらに、指向反応媒体流路712の上部及び指向反応媒体流路711の下部には、各々、仕切り弁708、704が設けられている。仕切り弁の構造は、第6の実施の形態と同様のものを使用することができる。仕切り弁708は、反応媒体流路709、弁710、反応媒体流路403を介して、補助凝縮器に接続される。また、仕切り弁704は、反応媒体流路705、弁706,203を介して、(主)凝縮器200に接続される。再生器700には、反応材搬入口と搬出口が設けられ、それぞれに搬送弁802、803が配置される点は第6の実施の形態と同様である。
また、(主)蒸発器、(主)凝縮器、補助蒸発器、補助凝縮器の圧力関係は、第5の実施の形態と同様である。
本実施の形態のケミカルヒートポンプの連続運転の手順を下記に説明する。
搬送弁800から放熱器600に搬入された反応材Aは、放熱器内の反応媒体Bと反応し、放熱を開始する。反応媒体Bを搬送する時以外は、仕切り弁608、604は全開とし、弁610は閉、弁606は開状態にする。これにより、放熱器600内に反応媒体を定常的に供給させ、放熱反応を進行させる。反応媒体Bを搬送する時は、弁610を開いた後、反応媒体を所望の搬送したい位置に対応する弁604、608を開放させる。この時、反応媒体気流bが発生し、反応媒体気流bは指向反応媒体流路により方向づけられるため、反応材Aは搬送方向に吹き上げられる。従って、吹き上げられて落下する反応材Aは、吹き上げられる前の位置から搬出口方向へと移動する。この時、反応媒体流路609、303及び主蒸発器が気体溜めとして作用するため、強い反応媒体気流を発生させることができる。その後、弁503を閉じ、仕切り弁604、608を全開にする。このように、仕切り弁604、608及び弁610の開閉を制御することにより、反応材を十分に攪拌させて放熱反応を進行させ、かつ、搬出口方向に反応材を搬送することができる。最終的には、反応済み反応材は、搬送弁801によって、放熱器外部に搬出される。
なお、反応媒体の搬送時は、(主)蒸発器300の弁606を閉じても良い。この場合、(主)蒸発器300に、補助蒸発器500から供給される高圧の反応媒体が流入しない。(主)蒸発器300の気化熱で冷熱を取り出す場合や、補助蒸発器500の消費エネルギーを抑えたい場合に、好ましい。
放熱器600から搬出された反応済み反応材は、第6の実施形態と同様、輸送装置804により再生器搬入口の搬送弁802に搬送され、再生器700内に搬入される。再生器700内で、反応済み反応材は、熱交換器701からの熱により加熱され、反応媒体Bを脱着しながら蓄熱を始める。再生器700では、反応媒体Bの排出時以外の時は、仕切り弁708は全閉し、弁710は開くことにより、仕切り弁708から補助凝縮器400に至るまでの流路内の反応媒体圧を下げておく。仕切り弁704は全閉し、弁706は開き、再生器700内の反応媒体を排出させることで、脱着反応を進行させる。攪拌時は、攪拌したい所望の位置に対応する仕切り弁704、708を開放することで、反応媒体気流を発生させる。発生した反応媒体気流は、指向反応媒体流路711により方向付けられ、搬送方向に反応材が吹き上げられる。この時、反応媒体流路705、203及び主凝縮器200に溜まった反応媒体が吹き込むため、強い反応媒体気流を発生させることが出来る。その後、仕切り弁708を閉じ、式利便704を全開にする。このように、仕切り弁704、708及び弁706の開閉を制御することにより、脱着反応を効率的に進行させながら、反応媒体Bが脱着した反応材Aを搬送出口方向に搬送することができる。反応材Aは、最終的には、搬送弁803によって再生器700外部に搬出され、輸送装置805により再び放熱器600に供される。
なお、再生器700における反応媒体排出時、(主)凝縮器200の弁706を閉じても良い。この場合、排出時も(主)凝縮器200から蒸発潜熱が奪われない。(主)凝縮器200の凝縮熱により温熱を取り出し利用する場合や、補助凝縮器400の冷却に必要なエネルギーを抑えたい場合、好ましい。
本実施の形態では、反応材Aの粒径が大きく、第6の実施の形態ではフィン602、603に反応材が留まる場合に、特に好ましい。
さらに、攪拌動作用の補助蒸発器500及び補助凝縮器400を使用することにより、第5の実施の形態と同様の効果が得られるだけでなく、搬送可能な反応材の粒径条件が広くなる。また、(主)蒸発器及び(主)凝縮器の温度条件を広くとることができる。さらに、本実施の形態では、搬送速度、水蒸気供給量を調節できるため、反応率の調節及び放熱出力並びに再生速度の調節可能である、連続運転式ケミカルヒートポンプを達成できる。
[第8の実施の形態]
第8の実施の形態では、反応材Aの反応媒体搬送の補助として、重力による落下を利用した搬送機構を有する連続式ケミカルヒートポンプであり、図を参照することにより、より詳細に説明する。
第8の実施の形態においても、第6の実施の形態と同様、ケミカルヒートポンプは、放熱器600、再生器700、蒸発器300、凝縮器200を有する。放熱器600と再生器700との間は、搬送弁801、804を介する輸送装置804及び搬送弁800、803を介する輸送装置803とで接続されている。各々の搬送弁は、反応媒体の移動を遮断しながら、反応材A(及び/又は反応材Aと反応媒体Bとの反応物)の搬入及び搬出が可能な構造となっている。
図12に、連続運転型のヒートポンプの他の例を説明するための、放熱器周辺の概略図を示し、図13に、図12の放熱器をさらに詳細に説明するための、概略図を示す。
放熱器600は、内部に熱媒が流れるチューブ型熱交換器601が、例えば、水平方向に配置される。熱交換器601の数は、放熱器600の大きさなどにより、当業者が適宜選択することができる。また、放熱器600には、熱交換器601に干渉しないように、図12(b)に示すような、複数の金属板が傾斜を有して、所定の間隔で階段状に配置されて構成された、傾斜板613が設置される。傾斜板613は、反応材Aが透過しない粗さで、反応媒体Bが透過できるメッシュを、上述の傾斜を有するように配置しても良い。本実施の形態では、メッシュを利用した場合について説明する。傾斜板613は、放熱器600内で複数配置する場合は、傾斜方向が一段ごとに互い違いになるように配置されることが好ましい。また、各々の傾斜板の下端は、反応容器内壁に対して十分な隙間が設けられる。最上段の傾斜板上端の上部には、反応材の搬入口が設置され、最下段の傾斜板下端の下部には、反応材の搬出口が設置される。また、放熱器600の内部には、熱交換促進のために、例えば、鉛直方向に、フィンを設置しても良い。放熱器600の下部には、反応媒体流路303と、弁606を介して、蒸発器300が接続される。この時、反応媒体流路303には、例えば、S字の粉体トラップを設置することが好ましい。これにより、落下してきた反応材が弁606又は蒸発器300内に混入することを防ぐことができる。
図14に、連続運転型のヒートポンプの他の例を説明するための、再生器周辺の概略図を示す。再生器700の内部構造は、放熱器600と同様である。再生器700の上部は、弁706、反応媒体流路203を介して、凝縮器200に接続される。
本実施の形態のヒートポンプの運転手順について、下記に詳細に説明する。
まず、反応材Aは、搬送弁800を介して放熱器600に搬送された反応材Aは、放熱器600内部の反応媒体と反応し、放熱を開始する。反応媒体Bの搬送時以外は、弁606を閉じておき、反応材Aは放熱器600内に残留する反応媒体と放熱反応する。反応媒体Bの搬送時には、弁606を開き、蒸発器300より流入する反応媒体により、鉛直方向上方向に、反応媒体気流bを発生させる。これにより、反応材Aは鉛直方向上方向に吹き上げられる。吹き上げられた反応材は、重力により落下し、傾斜板613の傾斜に沿って転落することで搬送が進行する。その後、弁606を閉じ、反応材Aと残留反応媒体Bとが反応することで、系内の反応媒体圧が低下する。
このように、弁606の開閉を制御することにより、反応媒体気流により反応材A(及び/又は反応材Aと反応媒体Bとの反応物)が攪拌され、かつ、反応済み反応材は搬出口に搬送されて、搬送弁801により搬出される。
放熱器600から搬出された反応済み反応材は、輸送装置804により搬送弁802を介して再生器の搬入口に搬送される。反応済み反応材は、熱交換器701からの熱により加熱され、反応媒体Bを脱着しながら蓄熱を開始する。攪拌及び反応媒体Bの排出時以外は、弁706は閉じておき、再生器内の反応媒体圧を高くしておく。攪拌及び反応媒体Bの排出時は、弁706を開放し、再生器700内の反応媒体を凝縮器200内に流入させることで、反応媒体気流bを発生させる。反応媒体気流bにより、反応済み反応材及び反応材Aは、鉛直方向上方向に吹き上げられる。吹き上げられた反応材は、重力により落下し、傾斜板713の傾斜に沿って転落することで搬送が進行する。その後、弁706を閉じ、脱着反応を進行させ、再生器700内部の反応媒体圧を上昇させる。
このように、弁706の開閉を制御することにより、反応媒体気流により反応材A(及び/又は反応材Aと反応媒体Bとの反応物)が攪拌され、かつ、反応材Aは搬出口に搬送されて、搬送弁803により搬出される。再生器700から搬出された反応材Aは、輸送装置805により、搬送弁800を介して放熱器600に再び供される。
このように、反応媒体気流により反応材の攪拌及び搬送と、重力による落下を利用することで、効率的な連続運転式ケミカルヒートポンプが達成される。
なお、上述のように、傾斜板613は、複数の金属板が傾斜を有して階段状に構成された構成でも良い。これにより、図12(b)に示すように、傾斜板下部より吹き込む反応媒体気流が傾斜方向に方向付けられるため、上述のメッシュを利用する場合に比べ、搬送速度をあげることができる。
図15は、連続運転型のヒートポンプの他の例を説明するための、概略図であり、図15(a)は、図12の放熱器の他の接続形態を示す概略図である。また、図15(b)は、図14の再生器の他の接続形態を示す概略図である。図12では、放熱器600の下部に、粉体とラップ614、弁606、反応媒体流路304を接続している例を示したが、図15(a)のように、反応媒体流路304を複数設けて放熱器600の側壁に接続する構成にしても良い。それにより、反応媒体気流は指向性を付与することが可能となり、反応材の搬送を促進させることができる。同様に、再生器700にも、複数の反応媒体流路204を設ける構成にしても良い。本実施の形態は、反応材Aと反応媒体Bとの反応速度が早い組み合わせ、反応条件の場合に好ましい。
さらに図16に、補助蒸発器及び補助凝縮器を有する場合の、連続運転型のヒートポンプの例を説明するための、概略図を示す。この場合、補助蒸発器及び補助凝縮器を接続する場合の作動方法は、第5の実施の形態と同様である。補助蒸発器を接続する場合は、放熱器600の下部に補助蒸発器が接続され、(主)蒸発器は放熱器600の上部に接続される。また、補助凝縮器は、再生器の上部に接続され、(主)凝縮器は再生器700の下部に接続される。
図16のように補助蒸発器及び補助凝縮器を追加することにより、(主)蒸発器及び(主)凝縮器による定常的な放熱及び攪拌を行いながら、補助攪拌効果を付与することができる。
なお、上述の実施の形態で述べた、放熱器600及び再生器700は、各々の実施の形態で使用したものを、組み合わせを変えて使用しても良い。また、利用する熱源に適した形状の変化などは、当業者が想到できるものである。また、従来の機械搬送式の反応器と、本発明に係る反応器を組み合わせて使用しても良い。
100 反応器
101 熱交換器
102 熱媒
103、104 メッシュ
105、106 気体溜め
111 筒状メッシュ
112 伝熱フィン
117 セル
120 チューブ型熱交換器
122 熱交換フィン
200 凝縮器
201 熱交換器
202 冷却熱媒
300 蒸発器
301 熱交換器
302 加熱熱媒
400 補助凝縮器
500 補助蒸発器
600 放熱器
602、702 傾斜フィン
700 再生器
800、801,802、803 搬送弁
804、805 輸送装置
A 反応材
B 反応媒体
b 反応媒体気流
特開昭63−126540号公報

Claims (15)

  1. 粉粒状固気反応材と熱交換器を有し、前記粉粒状固気反応材と気体状の反応媒体とを反応させて、反応物を生成すると共に放熱する生成反応と、前記反応物を加熱して、粉粒状固気反応材と気体状の反応媒体とに分解する分解反応とを、可逆的に行う反応器と、
    前記反応器と第一の開閉弁を介して接続される主蒸発器と、
    前記反応器と第二の開閉弁を介して接続される主凝縮器と、
    を有するケミカルヒートポンプであって、
    前記主蒸発器は、前記反応器の下部から接続され、前記主凝縮器は、前記反応器の上部から接続されており、
    前記反応器の上部及び下部には、それぞれ、前記粉粒状固気反応材が通過できない粗さを有する第一のメッシュ及び第二のメッシュが設置され、前記第一のメッシュ、前記第二のメッシュ及び前記反応器の壁部とで形成される空間内に、前記粉粒状固気反応材が収納され、
    前記第一の開閉弁を開いて、前記生成反応により生じた前記反応器と前記蒸発器との差圧により、前記主蒸発器から気体状の反応媒体を前記反応器に導入して、前記導入により発生する気流により前記反応器内の前記反応物及び未反応の前記粉粒状固気反応材を攪拌し、
    前記第二の開閉弁を開いて、前記分解反応により生じた前記反応器と前記主凝縮器との差圧により、前記主凝縮器に前記分解反応により脱離した気体状の反応媒体を排出し、前記排出により発生する気流により前記反応器内の前記分解反応で得られた粉粒状固気反応材及び未分解の前記反応物を攪拌する、
    ことを特徴とする、ケミカルヒートポンプ。
  2. 前記反応器に第三の開閉弁を介して接続され、前記主蒸発器よりも前記反応媒体の圧力が高い補助蒸発器と、
    前記反応器に第四の開閉弁を介して接続され、前記主凝縮器よりも前記反応媒体の圧力が低い補助凝縮器と、
    をさらに有し、
    前記補助蒸発器は前記反応器の下部から接続され、
    前記補助凝縮器は前記反応器の上部から接続され、
    前記主蒸発器は前記反応器の上部から接続され、
    前記主凝縮器は前記反応器の下部から接続される、請求項1に記載のケミカルヒートポンプ。
  3. 前記第一のメッシュは、鉛直方向下向きに凸である、請求項1に記載のケミカルヒートポンプ。
  4. 前記反応器は、前記粉粒状固気反応材が通過できない粗さを有するメッシュで形成された筒状メッシュを有し、
    前記筒状メッシュの上端部及び下端部は、前記反応器と接続されていない、請求項1乃至3のいずれか一項に記載のケミカルヒートポンプ。
  5. 前記反応器は、前記反応器と前記第一の開閉弁との間で、複数の流路を介して第三の開閉弁と接続され、
    前記反応器は、前記反応器と前記第二の開閉弁との間で、複数の流路を介して第四の開閉弁と接続され、
    前記第三の開閉弁及び前記第四の開閉弁は、前記複数の流路を個別に開閉制御できる機能を有する、請求項1乃至4のいずれか一項に記載のケミカルヒートポンプ。
  6. 前記熱交換器は前記反応器の内部にあり、
    前記反応器は、前記熱交換器と接続される熱交換フィンをさらに有する、請求項1乃至5のいずれか一項に記載のケミカルヒートポンプ。
  7. 前記熱交換フィンは、鉛直方向に対して鋭角に傾きを有し、前記熱交換フィンの上端は、前記反応器と接続されていない、請求項6に記載のケミカルヒートポンプ。
  8. 前記反応器と、前記反応器と接続される前記開閉弁との間には、粉体トラップが設置される、請求項1乃至7のいずれか一項に記載のケミカルヒートポンプ。
  9. 粉粒状固気反応材と熱交換器を有し、前記粉粒状固気反応材と気体状の反応媒体とを反応させて、反応物を生成すると共に放熱する生成反応を行う放熱器と、
    前記放熱器と第一の開閉弁を介して接続される主蒸発器と、
    前記反応物を加熱して、粉粒状固気反応材と気体状の反応媒体とに分解する分解反応を行う再生器と、
    前記再生器と第二の開閉弁を介して接続される主凝縮器と、
    を有し、
    前記放熱器の下部には、前記粉粒状固気反応材が通過できない粗さを有する第一のメッシュが設置され、
    前記再生器の上部には、前記粉粒状固気反応材が通過できない粗さを有する第二のメッシュが設置され、
    前記放熱器内では、前記第一のメッシュの上部に前記粉粒状固気反応材が収納され、かつ、
    前記再生器内では、前記第二のメッシュの下部に前記粉粒状固気反応材が収納され、
    前記主蒸発器は、前記第一のメッシュの下部から接続され、前記主凝縮器は、前記第二のメッシュの上部から接続される、前記粉粒状固気反応材及び前記反応物が循環するケミカルヒートポンプであって、
    前記第一の開閉弁を開いて、前記生成反応により生じた前記放熱器と前記蒸発器との差圧により、前記主蒸発器から気体状の反応媒体を前記放熱器に導入して、前記導入により発生する気流により前記放熱器内の前記反応物及び未反応の前記粉粒状固気反応材を攪拌し、
    前記第二の開閉弁を開いて、前記分解反応により生じた前記再生器と前記主凝縮器との差圧により、前記主凝縮器に前記分解反応により脱離した気体状の反応媒体を排出し、前記排出により発生する気流により前記再生器内の前記分解反応で得られた粉粒状固気反応材及び未分解の前記反応物を攪拌する、
    ことを特徴とする、ケミカルヒートポンプ。
  10. 前記放熱器の上部には、前記粉粒状固気反応材が通過できない粗さを有する第三のメッシュが設置され、
    前記再生器の下部には、前記粉粒状固気反応材が通過できない粗さを有する第四のメッシュが設置され、
    前記放熱器に第三の開閉弁を介して接続され、前記主蒸発器よりも前記反応媒体の圧力が高い補助蒸発器と、
    前記再生器に第四の開閉弁を介して接続され、前記主凝縮器よりも前記反応媒体の圧力が低い補助凝縮器と、
    をさらに有し、
    前記放熱器内では、前記第一のメッシュの上部と前記第三のメッシュの下部に形成される空間に前記粉粒状固気反応材が収納され、
    前記再生器内では、前記第二のメッシュの下部と前記第四のメッシュの上部に形成される空間に前記粉粒状固気反応材が収納され、
    前記補助蒸発器は前記第一のメッシュの下部から接続され、
    前記補助凝縮器は前記第二のメッシュの上部から接続され、
    前記主蒸発器は前記第三のメッシュの上部から接続され、
    前記主凝縮器は前記第四のメッシュの下部から接続される、請求項9に記載のケミカルヒートポンプ。
  11. 前記放熱器及び/又は前記再生器は、鉛直方向に対して前記粉粒状固気反応材の搬送方向に、所定の角度を有する傾斜フィンを有する、請求項9及び10のいずれか一項に記載のケミカルヒートポンプ。
  12. 前記放熱器及び/又は前記再生器は、上部に前記粉粒状固気反応材の搬入口が形成され、下部に前記粉粒状固気反応材の搬出口が形成され、
    前記放熱器及び/又は前記再生器の内部には、水平方向から鉛直方向下向きに傾斜を有する複数の傾斜板が設置され、前記傾斜板の各々は、鉛直方向上方向から、傾斜方向が互い違いとなっており、
    前記傾斜板の各々の下端は、前記放熱器及び/又は前記再生器と接続されておらず、最上段の前記傾斜板の上端は前記搬入口が接続され、最下段の傾斜板の下端は、前記搬出口が接続され、
    前記傾斜板は、メッシュ又は複数の金属板が所定の間隔を有して配置されている構造である、請求項9乃至11のいずれか一項に記載のケミカルヒートポンプ。
  13. 前記放熱器と、前記第一の開閉弁との間には、粉体トラップが設置される、請求項9乃至12のいずれか一項に記載のケミカルヒートポンプ。
  14. 粉粒状固気反応材と熱交換器を有し、前記粉粒状固気反応材と気体状の反応媒体とを反応させて、反応物を生成すると共に放熱する生成反応と、前記反応物を加熱して、粉粒状固気反応材と気体状の反応媒体とに分解する分解反応とを、可逆的に行う反応器と、
    前記反応器と第一の開閉弁を介して接続される主蒸発器と、
    前記反応器と第二の開閉弁を介して接続される主凝縮器と、
    を有し、
    前記主蒸発器は、前記反応器の下部から接続され、前記主凝縮器は、前記反応器の上部から接続されており、
    前記反応器の上部及び下部には、それぞれ、前記粉粒状固気反応材が通過できない粗さを有する第一のメッシュ及び第二のメッシュが設置され、前記第一のメッシュ、前記第二のメッシュ及び前記反応器の壁部とで形成される空間内に、前記粉粒状固気反応材が収納されてなるケミカルヒートポンプを利用する熱回収方法であって、
    前記第一の開閉弁及び前記第二の開閉弁を閉じ、前記反応器内の気体状の前記反応媒体と前記粉粒状固気反応材とを反応させて、前記反応物を生成すると共に放熱する工程と、
    前記第一の開閉弁を開き、前記第二の開閉弁を閉じ、前記生成反応により生じた前記反応器と前記蒸発器との差圧により、前記主蒸発器から気体状の反応媒体を前記反応器に導入して、前記導入により発生する気流により前記反応器内の前記反応物及び未反応の前記粉粒状固気反応材を攪拌する工程と、
    前記第一の開閉弁及び前記第二の開閉弁を閉じ、廃熱源からの熱により前記反応器を加熱して、粉粒状固気反応材と気体状の反応媒体とに分解させることで、前記廃熱源からの熱を蓄熱する工程と、
    前記第一の開閉弁を閉じ、前記第二の開閉弁を開き、前記分解反応により生じた前記反応器と前記主凝縮器との差圧により、前記主凝縮器に前記分解反応により脱離した気体状の反応媒体を排出し、前記排出により発生する気流により前記反応器内の前記分解反応で得られた粉粒状固気反応材及び未分解の前記反応物を攪拌する工程と、
    を含む、熱回収方法。
  15. 粉粒状固気反応材と熱交換器を有し、前記粉粒状固気反応材と気体状の反応媒体とを反応させて、反応物を生成すると共に放熱する生成反応を行う放熱器と、
    前記放熱器と第一の開閉弁を介して接続される主蒸発器と、
    前記反応物を加熱して、粉粒状固気反応材と気体状の反応媒体とに分解する分解反応を行う再生器と、
    前記再生器と第二の開閉弁を介して接続される主凝縮器と、
    を有し、
    前記放熱器の下部には、前記粉粒状固気反応材が通過できない粗さを有する第一のメッシュが設置され、
    前記再生器の上部には、前記粉粒状固気反応材が通過できない粗さを有する第二のメッシュが設置され、
    前記放熱器内では、前記第一のメッシュの上部に前記粉粒状固気反応材が収納され、かつ、
    前記再生器内では、前記第二のメッシュの下部に前記粉粒状固気反応材が収納され、
    前記主蒸発器は、前記第一のメッシュの下部から接続され、前記主凝縮器は、前記第二のメッシュの上部から接続される、前記粉粒状固気反応材及び前記反応物が循環するケミカルヒートポンプを利用する熱回収方法であって、
    前記第一の開閉弁を閉じ、前記放熱器内の気体状の前記反応媒体と前記粉粒状固気反応材とを反応させて、前記反応物を生成すると共に放熱する工程と、
    前記第一の開閉弁を開き、前記生成反応により生じた前記放熱器と前記蒸発器との差圧により、前記主蒸発器から気体状の反応媒体を前記放熱器に導入して、前記導入により発生する気流により前記放熱器内の前記反応物及び未反応の前記粉粒状固気反応材を攪拌かつ搬送する工程と、
    前記第一の開閉弁及び前記第二の開閉弁を閉じ、廃熱源からの熱により前記再生器を加熱して、粉粒状固気反応材と気体状の反応媒体とに分解させることで、前記廃熱源からの熱を蓄熱する工程と、
    前記第一の開閉弁を閉じ、前記第二の開閉弁を開き、前記分解反応により生じた前記再生器と前記主凝縮器との差圧により、前記主凝縮器に前記分解反応により脱離した気体状の反応媒体を排出し、前記排出により発生する気流により前記再生器内の前記分解反応で得られた粉粒状固気反応材及び未分解の前記反応物を攪拌かつ搬送する工程と、
    を含む、熱回収方法。
JP2011121711A 2011-05-31 2011-05-31 ケミカルヒートポンプ及び熱回収方法 Active JP5783525B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011121711A JP5783525B2 (ja) 2011-05-31 2011-05-31 ケミカルヒートポンプ及び熱回収方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011121711A JP5783525B2 (ja) 2011-05-31 2011-05-31 ケミカルヒートポンプ及び熱回収方法

Publications (2)

Publication Number Publication Date
JP2012247171A JP2012247171A (ja) 2012-12-13
JP5783525B2 true JP5783525B2 (ja) 2015-09-24

Family

ID=47467771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011121711A Active JP5783525B2 (ja) 2011-05-31 2011-05-31 ケミカルヒートポンプ及び熱回収方法

Country Status (1)

Country Link
JP (1) JP5783525B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200078787A (ko) * 2018-12-21 2020-07-02 한국가스공사 압력 순환식 흡착용 열교환 로터리 밸브 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488070A (en) * 1987-09-28 1989-04-03 Mitsubishi Electric Corp Reactor
JPH035678A (ja) * 1989-06-01 1991-01-11 Matsushita Electric Ind Co Ltd 熱駆動型ヒートポンプ装置
JPH0765819B2 (ja) * 1989-12-28 1995-07-19 西淀空調機株式会社 吸着剤循環による吸着式冷凍機
JPH0658643A (ja) * 1992-08-06 1994-03-04 Daikin Ind Ltd 吸着式冷凍装置
JPH06117724A (ja) * 1992-10-05 1994-04-28 Hitachi Ltd 化学蓄熱型ヒートポンプ
JP2003225653A (ja) * 2002-02-06 2003-08-12 Mayekawa Mfg Co Ltd 水溶液の低温濃縮法とこれを利用した海水淡水化法及び吸着式海水淡水化法
JP4200214B2 (ja) * 2004-02-04 2008-12-24 独立行政法人産業技術総合研究所 粒子循環型吸着式ヒートポンプ
JP5412775B2 (ja) * 2008-09-10 2014-02-12 富士通株式会社 吸着式冷凍機とその制御方法、及び冷却システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200078787A (ko) * 2018-12-21 2020-07-02 한국가스공사 압력 순환식 흡착용 열교환 로터리 밸브 장치
KR102181191B1 (ko) * 2018-12-21 2020-11-23 한국가스공사 압력 순환식 흡착용 열교환 로터리 밸브 장치

Also Published As

Publication number Publication date
JP2012247171A (ja) 2012-12-13

Similar Documents

Publication Publication Date Title
AU2007268277B2 (en) Chemical heat pump working with a hybrid substance
KR101883815B1 (ko) 소버 내에서의 가스 분배를 위한 시스템, 장치 및 방법
US9714793B2 (en) Chemical heat storage device including rotatable heat storage material accommodation unit
JP2017218492A (ja) 化学蓄熱材及び化学蓄熱材を使用した蓄熱容器
JP5783525B2 (ja) ケミカルヒートポンプ及び熱回収方法
JP2016008744A (ja) 可逆的反応により蓄熱と放熱を繰り返す化学蓄熱体を用いる熱輸送システム
JP6637438B2 (ja) ケミカルヒートポンプ
JP6422283B2 (ja) 蓄熱容器及び蓄熱容器を備えた蓄熱装置
JP6372126B2 (ja) 熱輸送装置
JP2023026674A (ja) 吸着ベースヒートポンプおよび水の脱塩方法
JP2007321996A (ja) 蓄熱システム
WO2022185680A1 (ja) 化学蓄熱反応器
JP2017219234A (ja) 蓄熱容器及び蓄熱容器を備えた蓄熱装置
JP2011052911A (ja) 蓄熱システムおよびその運転方法
WO2023171447A1 (ja) カートリッジ式化学蓄熱反応器、カートリッジ式化学蓄熱反応器連結体、断熱材、熱交換配管連結具及び化学蓄熱方法
JPH05248728A (ja) 化学蓄熱型ヒートポンプ
JP2022109819A (ja) 化学蓄熱装置及び化学蓄熱材の蓄熱方法
JP2011052912A (ja) 蓄熱システム
CN115031559A (zh) 化学蓄热装置、化学蓄热材料的容纳容器及配置方法
JP2012229859A (ja) ケミカルヒートポンプ
JPS5858594B2 (ja) 蓄熱装置
JP2012063036A (ja) 蓄熱方法および蓄熱システム
KR20030063892A (ko) 수소저장합금 반응기

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140327

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20140328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150714

R150 Certificate of patent or registration of utility model

Ref document number: 5783525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250