JP5776833B1 - 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子 - Google Patents

電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子 Download PDF

Info

Publication number
JP5776833B1
JP5776833B1 JP2014175147A JP2014175147A JP5776833B1 JP 5776833 B1 JP5776833 B1 JP 5776833B1 JP 2014175147 A JP2014175147 A JP 2014175147A JP 2014175147 A JP2014175147 A JP 2014175147A JP 5776833 B1 JP5776833 B1 JP 5776833B1
Authority
JP
Japan
Prior art keywords
mass
electronic
plane
less
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014175147A
Other languages
English (en)
Other versions
JP2016050326A (ja
Inventor
牧 一誠
一誠 牧
裕隆 松永
裕隆 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014175147A priority Critical patent/JP5776833B1/ja
Application granted granted Critical
Publication of JP5776833B1 publication Critical patent/JP5776833B1/ja
Publication of JP2016050326A publication Critical patent/JP2016050326A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】曲げ加工性、耐応力緩和特性、せん断加工性が確実かつ十分に優れ、かつ強度、導電率にも優れた電子・電気機器用銅合金を提供する。【解決手段】Niを1.0mass%以上5.0mass%以下、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、Ni/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有し、EBSD法により1000μm2以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15?を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上、60%未満であるとともに、表面のビッカース硬さが120以上であることを特徴とする。【選択図】なし

Description

本発明は、半導体装置のコネクタ等の端子、あるいは電磁リレーの可動導電片や、リードフレームなどの電子・電気機器用部品として使用される電子・電気機器用銅合金と、それを用いた電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子に関するものである。
従来、電子機器や電気機器等の小型化にともない、これら電子機器や電気機器等に使用されるコネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品の小型化および薄肉化が図られている。
このため、電子・電気機器用部品を構成する材料として、ばね性、強度、曲げ加工性、に優れた銅合金が要求されている。特に、非特許文献1に記載されているように、コネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品として使用される銅合金としては、耐力が高いものが望ましい。
ここで、端子、コネクタ、リレー、リードフレーム等の電子・電気機器用部品として使用される銅合金として、例えば特許文献1−2には、Cu−Ni−Si系合金(いわゆるコルソン系合金)が提供されている。このコルソン系合金は、NiSiからなる析出物を分散させる析出硬化型合金であり、比較的高い導電率と強度とを有するものである。このため、自動車用端子や信号系小型端子用途として多用されており、近年、活発に開発が進んでいる。
また、特許文献2に記載された電子・電気機器用銅合金においては、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した結晶粒界の全粒界長さに対する特殊粒界の全特殊粒界長さの比率を60〜70%に規定することによって、深絞り加工性及び耐疲労特性の向上を図っている。
特開平11−036055号公報 特開2012−122114号公報
野村幸矢、「コネクタ用高性能銅合金条の技術動向と当社の開発戦略」、神戸製鋼技報Vol.54No.1(2004)p.2−8
ところで、最近では、電子・電気機器のさらなる軽量化にともない、これら電子機器や電気機器等に使用されるコネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品のさらなる薄肉化が図られている。このため、コネクタ等の端子においては、接圧を確保するために、厳しい曲げ加工を行う必要があり、従来よりも優れた耐力−曲げバランスが要求されている。さらに、これらの電子・電気機器用部品は、自動車のエンジンルーム等の高温環境下で使用する用途にも適用されており、従来よりも優れた耐応力緩和特性が要求されている。
また、プレス成型の高精度化は重要な課題であり、加工技術の進歩に加え、せん断加工に適した材料の開発は強く求められている。また操業上ではプレス金型の摩耗や打ち抜き屑の発生による生産性の低下も問題となっており、せん断加工性に優れる材料の開発が強く求められている。
特許文献2に記載された電子・電気機器用銅合金においては、結晶粒界の全粒界長さに対する特殊粒界の全特殊粒界長さの比率を60〜70%に規定しているが、特殊粒界長さ比率が高くなると強度が低くなる傾向があり、十分な強度が得られない恐れがあった。
以上のように、従来から提案されている方法では、コルソン系合金の耐応力緩和特性、曲げ加工性、強度、及びせん断加工性を兼ね備えることができなかった。このため、上述した構造のコネクタ等においては、優れた曲げ加工性、強度、耐応力緩和特性、及びせん断加工性をバランス良く兼ね備えたコルソン系合金が強く望まれている。
本発明は、以上のような事情を背景としてなされたものであって、曲げ加工性、耐応力緩和特性、せん断加工性が確実かつ十分に優れていているとともに、従来よりも部品素材の薄肉化を図ることができ、強度、導電率などの諸特性にも優れた電子・電気機器用銅合金、それを用いた電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子を提供することを課題としている。
本発明者らは、鋭意実験・研究を重ね、電子・電気機器用銅合金において、各合金元素の個別の含有量と各元素相互の比率との両方を適切に調整し、銅の母相中に分散する微細なNi−Si系析出物または〔Ni,(Co,Mn,Fe)〕−Si系析出物を形成させるとともに、以下で定義される特殊粒界長さ比率(Lσ/L)を10%以上、60%未満とし、かつ表面のビッカース硬さを221以上あるいは218以上とすることにより、耐応力緩和特性を確実かつ十分に向上させると同時に強度、曲げ加工性、せん断加工性のすべてに優れた銅合金が得られることを見出して、本発明をなすに至った。
本発明に係る電子・電気機器用銅合金は、Niを1.0mass%以上5.0mass%以下、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、Ni/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有し、EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上、60%未満であるとともに、表面のビッカース硬さが221以上であり、さらに、材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{200}面からのX線回折強度の割合R{200}を、R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{200}が0.38以上であり、{220}面からのX線回折強度の割合R{220}をR{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{220}が0.32以上0.6以下であることを特徴としている。
上述の構成の電子・電気機器用銅合金においては、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上とされているので、曲げ加工時の破壊の起点となるランダム粒界の割合が相対的に少なくなるため、曲げ加工性が向上することになり、耐力−曲げバランスが飛躍的に向上することになる。また、特殊粒界はランダム粒界に比べて粒界の拡散が遅いことから、耐応力緩和特性を向上させることができる。
同時に、特殊粒界長さ比率(Lσ/L)が60%未満とされているので、特殊粒界長さ比率(Lσ/L)の増加に伴う強度の著しい低下を防止することができ、強度と曲げ加工性及び耐応力緩和特性とを兼ね備えることができる。
また、表面のビッカース硬さが221以上とされているので、母相中に転位密度の高い組織が形成され、せん断加工の際に容易に破断にいたるため、ダレやバリの大きさが抑制され、せん断加工性が向上する。
本発明の第二の態様に係る電子・電気機器用銅合金は、Niを1.0mass%以上含有するとともに、Co,Mn,Feのうちのいずれか1種または2種以上を含有し、Ni,Co,Mn,Feの含有量の合計が1.0mass%超え5.0mass%以下とされ、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、(Ni+Co+Mn+Fe)/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有し、EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上、60%未満であるとともに、表面のビッカース硬さが218以上であり、さらに、材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{200}面からのX線回折強度の割合R{200}を、R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{200}が0.38以上であり、{220}面からのX線回折強度の割合R{220}をR{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{220}が0.32以上0.6以下であるであることを特徴としている。
Co,Mn,Feといった元素は、Niと同様に、Siとともに金属間化合物からなる微細な析出物を形成するため、導電率を維持したまま強度を大幅に向上させることが可能となる。
なお、EBSD法とは、後方散乱電子回折像システム付の走査型電子顕微鏡による電子線反射回折法(Electron Backscatter Diffraction Patterns:EBSD)を意味し、またOIMは、EBSDによる測定データを用いて結晶方位を解析するためのデータ解析ソフト(Orientation Imaging Microscopy:OIM)である。さらにCI値とは、信頼性指数(Confidence Index)であって、EBSD装置の解析ソフトOIM Analysis(Ver.5.3)を用いて解析したときに、結晶方位決定の信頼性を表す数値として表示される数値である(例えば、「EBSD読本:OIMを使用するにあたって(改定第3版)」鈴木清一著、2009年9月、株式会社TSLソリューションズ発行)。
ここで、EBSDにより測定してOIMにより解析した測定点の組織が加工組織である場合、結晶パターンが明確ではないため結晶方位決定の信頼性が低くなり、CI値が低くなる。特にCI値が0.1以下の場合にその測定点の組織が加工組織であると判断される。
また、特殊粒界とは、結晶学的にCSL理論(Kronberg et al:Trans.Met.Soc.AIME,185,501(1949))に基づき定義されるΣ値で3≦Σ≦29に属する対応粒界であって、かつ、当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2(D.G.Brandon:Acta.Metallurgica.Vol.14,p.1479,(1966))を満たす結晶粒界であるとして定義される。
一方、ランダム粒界とは、Σ値が29以下の対応方位関係があってかつDq≦15°/Σ1/2を満たす特殊粒界以外、の粒界である。
本発明の電子・電気機器用銅合金においては、材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{200}面からのX線回折強度の割合R{200}を、R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{200}が0.38以上であり、{220}面からのX線回折強度の割合R{220}をR{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{220}が0.32以上0.6以下である。
{200}面は、曲げ加工の応力方向に対して、滑り系が活動し易い方位関係となるため、局所的な変形を抑制することができ、曲げ加工時のクラックの発生を抑制することが可能となる。このため、材料表面における{200}面からのX線回折強度の割合R{200}を0.38以上とすることにより、曲げ加工性を向上させることが可能となる。
また、{220}面は、圧延集合組織によるものであり、この{220}面の割合が高くなると、圧延方向に対して垂直方向に曲げ加工を行った場合に、曲げ加工の応力方向に対して滑り系が活動しにくい方位関係となる。これにより、曲げ加工時に変形が局所的に発生し、クラックの原因となる。このため、材料表面における{220}面からのX線回折強度の割合R{220}を0.32以上0.6以下に抑制することにより、曲げ加工時のクラックの発生を抑制でき、曲げ加工性を向上させることが可能となる。
本発明の電子・電気機器用銅合金においては、さらに、Ti,Cr,Zr,P,Bのうちのいずれか1種または2種以上を合計で0.01mass%以上0.2mass%以下の範囲内で含んでいてもよい。
Ti,Cr,Zr,P,Bといった元素は、析出物を形成することによって強度を向上させる作用を有する。よって、これらの元素を適宜添加することにより、さらに強度を向上させることが可能となる。
本発明の電子・電気機器用銅合金においては、さらに、Mg,Sn,Zn,Al,Agのうちのいずれか1種または2種以上を合計で0.01mass%以上1.1mass%以下の範囲内で含んでいてもよい。
Mg,Sn,Zn,Al,Agといった元素は、銅の母相中に固溶して強度を向上させる作用を有する。よって、これらの元素を適宜添加することにより、さらに強度を向上させることが可能となる。
本発明の電子・電気機器用銅合金においては、0.2%耐力が400MPa以上の機械特性を有することが好ましい。
0.2%耐力が400MPa以上である場合には、容易に塑性変形しなくなるため、コネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品に特に適している。
本発明の電子・電気機器用銅合金薄板は、上述の電子・電気機器用銅合金の圧延材からなり、厚みが0.05mm以上1.0mm以下の範囲内にあることを特徴とする。
このような構成の電子・電気機器用銅合金薄板は、コネクタ、その他の端子、電磁リレーの可動導電片、リードフレームなどに好適に使用することができる。
本発明の電子・電気機器用導電部品は、上述の電子・電気機器用銅合金からなることを特徴とする。
また、本発明の端子は、上述の電子・電気機器用銅合金からなることを特徴とする。
これらの構成の電子・電気機器用導電部品及び端子によれば、特に耐応力緩和特性に優れているので、経時的にもしくは高温環境で、残留応力が緩和されにくく、信頼性に優れている。また、電子・電気機器用導電部品及び端子の薄肉化を図ることができる。また、せん断加工性に優れた電子・電気機器用銅合金及び電子・電気機器用銅合金薄板で構成されているので、寸法精度に優れている。
本発明によれば、耐応力緩和特性が確実かつ十分に優れているとともに、強度、曲げ加工性、せん断加工性に優れた電子・電気機器用銅合金、それを用いた電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子を提供することができる。
本発明の電子・電気機器用銅合金の製造方法の工程例を示すフローチャートである。 実施例におけるせん断加工性を評価する破断面割合の説明図である。
以下に、本発明の一実施形態である電子・電気機器用銅合金について説明する。
本実施形態である電子・電気機器用銅合金は、Niを1.0mass%以上5.0mass%以下、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、Ni/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有する。
また、本実施形態である電子・電気機器用銅合金は、上記のNiの一部をCo,Mn,Feのうちのいずれか1種または2種以上で代替してもよい。具体的には、Niを1.0mass%以上含有するとともに、Co,Mn,Feのうちのいずれか1種または2種以上を含有し、Ni,Co,Mn,Feの含有量の合計が1.0mass%超え5.0mass%以下とされ、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、(Ni+Co+Mn+Fe)/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有してもよい。
さらに、本実施形態である電子・電気機器用銅合金は、Ti,Cr,Zr,P,Bのうちのいずれか1種または2種以上を合計で0.01mass%以上0.2mass%以下の範囲内で含んでいてもよい。
また、本実施形態である電子・電気機器用銅合金は、Mg,Sn,Zn,Al,Agのうちのいずれか1種または2種以上を合計で0.01mass%以上1.1mass%以下の範囲内で含んでいてもよい。
ここで、上述のように成分組成及び質量比を設定した理由について以下に説明する。
(Ni:1.0mass%以上5.0mass%以下)
Niは、Siと共添されることにより、銅の母相中に分散する微細な析出物を形成する元素であり、導電率を維持したまま強度を大幅に向上させる作用効果を有する。
ここで、Niの含有量が1.0mass%未満の場合には、析出物の個数が不足し、強度を十分に向上させることができないおそれがある。一方、Niの含有量が5.0mass%を超える場合には、熱間加工時に割れが発生するおそれがある。
以上のことから、本実施形態では、Niの含有量を1.0mass%以上5.0mass%以下の範囲内に設定している。なお、析出物の個数を確保して強度を確実に向上させるためには、Niの含有量を1.5mass%以上とすることが好ましい。また、熱間加工時の割れを確実に抑制するためには、Niの含有量を4.0mass%以下とすることが好ましい。
(Si:0.1mass%以上1.5mass%以下)
Siは、Niと共添されることにより、銅の母相中に分散する微細な析出物を形成する元素であり、導電率を維持したまま強度を大幅に向上させる作用効果を有する。
ここで、Siの含有量が0.1mass%未満の場合には、析出物の個数が不足し、強度を十分に向上させることができないおそれがある。一方、Siの含有量が1.5mass%を超える場合には、熱間加工時に割れが発生するおそれがある。
以上のことから、本実施形態では、Siの含有量を0.1mass%以上1.5mass%以下の範囲内に設定している。なお、析出物の個数を確保して強度を確実に向上させるためには、Siの含有量を0.3mass%以上とすることが好ましい。また、熱間加工時の割れを確実に抑制するためには、Siの含有量を1.3mass%以下とすることが好ましい。
(Ni/Si(質量比):2.0以上6.0以下)
NiとSiは、上述のように銅の母相中に分散する微細な析出物を形成する。この析出物は、NiSiを主とする金属間化合物からなる。
ここで、NiとSiの質量比Ni/Siが2.0未満の場合には、析出物の個数が不足し、強度を十分に向上させることができないおそれがある。また、過剰なSiによって導電率が低下してしまうおそれがある。一方、NiとSiの質量比Ni/Siが6.0を超える場合には、析出物の個数が不足して強度を十分に向上させることができないおそれがある。なお、上述の作用効果を確実に奏功せしめるためには、NiとSiの質量比:Ni/Siを3.0以上5.0以下の範囲内とすることが好ましい。
(Co,Mn,Fe)
Co,Mn,Feといった元素は、Niと同様に、Siとともに金属間化合物からなる微細な析出物を形成し、導電率を維持したまま強度を大幅に向上させる作用効果を有する。よって、Niの一部をCo,Mn,Feで代替することができる。
ここで、Niの含有量が1.0mass%未満、Ni,Co,Mn,Feの含有量の合計が1.0mass%以下である場合には、微細な析出物の個数が不足し、強度を十分に向上させることができないおそれがある。一方、Ni,Co,Mn,Feの含有量の合計が5.0mass%を超える場合には、熱間加工時に割れが発生するおそれがある。
以上のことから、本実施形態では、Niの含有量を1.0mass%以上、Ni,Co,Mn,Feの含有量の合計を1.0mass%超え5.0mass%以下の範囲内に設定している。なお、熱間加工時の割れを確実に抑制するためには、Ni,Co,Mn,Feの含有量の合計を4.0mass%以下とすることが好ましい。
((Ni+Co+Mn+Fe)/Si(質量比):2.0以上6.0以下)
Ni,Co,Mn,FeとSiは、上述のように銅の母相中に分散する微細な析出物を形成する。この析出物は、NiSiのNiの一部がCo,Mn,Feに置換した金属間化合物からなる。
ここで、Ni,Co,Mn,FeとSiの質量比:(Ni+Co+Mn+Fe)/Siが2.0未満の場合には、析出物の個数が不足し、強度を十分に向上させることができないおそれがある。また、過剰なSiによって導電率が低下してしまうおそれがある。一方、Ni,Co,Mn,FeとSiの質量比:(Ni+Co+Mn+Fe)/Siが6.0を超える場合には、析出物の個数が不足して強度を十分に向上させることができないおそれがある。なお、上述の作用効果を確実に奏功せしめるためには、Ni,Co,Mn,FeとSiの質量比:(Ni+Co+Mn+Fe)/Siを3.0以上5.0以下の範囲内とすることが好ましい。
(Ti,Cr,Zr,P,B)
Ti,Cr,Zr,P,Bといった元素は、Cu,Ni,Siとともに金属間化合物からなる析出物を形成し、導電率を維持したまま強度を大幅に向上させる作用効果を有する。よって、さらなる強度向上を図る場合には、適宜添加することが好ましい。
ここで、Ti,Cr,Zr,P,Bのうちのいずれか1種または2種以上の含有量の合計が0.01mass%未満の場合には、上述した作用効果を確実に奏功せしめることができないおそれがある。一方、Ti,Cr,Zr,P,Bのうちのいずれか1種または2種以上の含有量の合計が2.0mass%を超える場合には、導電率が大幅に低下するおそれがある。
以上のことから、Ti,Cr,Zr,P,Bといった元素を添加する場合には、Ti,Cr,Zr,P,Bのうちのいずれか1種または2種以上の含有量の合計を0.01mass%以上0.2mass%以下の範囲内とすることが好ましい。
(Mg,Sn,Zn,Al,Ag)
Mg,Sn,Zn,Al,Agといった元素は、銅の母相中に固溶し、強度を大幅に向上させる作用効果を有する。よって、さらなる強度向上を図る場合には、適宜添加することが好ましい。
ここで、Mg,Sn,Zn,Al,Agのうちのいずれか1種または2種以上の含有量の合計が0.01mass%未満の場合には、上述した作用効果を確実に奏功せしめることができないおそれがある。一方、Mg,Sn,Zn,Al,Agのうちのいずれか1種または2種以上の含有量の合計が2.0mass%を超える場合には、導電率が大幅に低下するおそれがある。
以上のことから、Mg,Sn,Zn,Al,Agといった元素を添加する場合には、Mg,Sn,Zn,Al,Agのうちのいずれか1種または2種以上の含有量の合計を0.01mass%以上1.1mass%以下の範囲内とすることが好ましい。
(不可避不純物)
なお、上述した元素以外の不可避不純物としては、Ca,Sr,Ba,Sc,Y,希土類元素,Hf,V,Nb,Ta,Mo,W,Re,Ru,Os,Se,Te,Rh,Ir,Pd,Pt,Au,Cd,Ga,In,Ge,As,Sb,Tl,Pb,Bi,Be,N,Hg等が挙げられる。これらの不可避不純物は、総量で0.3mass%以下であることが望ましい。
以上のように、各合金元素の個別の含有量と各元素相互の比率との両方を調整した電子・電気機器用銅合金において、銅の母相中に分散する微細なNi−Si系析出物または〔Ni,(Co,Mn,Fe)〕−Si系析出物が形成され、このような析出物の分散析出によって、導電率を維持したまま強度が大幅に向上するものと考えられる。
また、本実施形態の電子・電気機器用銅合金において、Ti,Cr,Zr,P,Bといった元素を添加することにより、これらの元素がCu,Ni,Siとともに金属間化合物からなる析出物を形成し、導電率を維持したまま強度が大幅に向上するものと考えられる。
さらに、本実施形態の電子・電気機器用銅合金において、Mg,Sn,Zn,Al,Agといった元素を添加することにより、これらの元素が銅の母相中に固溶し、導電率を維持したまま強度が大幅に向上するものと考えられる。
また、本実施形態である電子・電気機器用銅合金においては、その成分組成を上述のように調整するだけでなく、以下のように結晶組織が規定されている。
すなわち、EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上、60%未満であるとされている。
ここで、上述のように結晶組織を規定した理由について以下に説明する。
(特殊粒界長さ比率(Lσ/L):10%以上、60%未満)
特殊粒界は結晶性の高い粒界(原子配列の乱れが少ない粒界)であるため、加工時の破壊の起点となりにくくなる。よって、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)を高くすると、曲げ加工時の破壊の起点となる粒界の割合を少なくすることができ、曲げ加工性を向上させることができる。
さらに、特殊粒界はランダム粒界に比べて粒界の拡散が遅いことから、特殊粒界長さ比率(Lσ/L)を高くすることで耐応力緩和特性を向上させることが出来る。
そこで、本実施形態においては、特殊粒界長さ比率(Lσ/L)を10%以上に設定している。上述の作用効果を確実に奏功せしめるためには、特殊粒界長さ比率(Lσ/L)を15%以上とすることが好ましく、20%以上とすることがさらに好ましい。
一方、特殊粒界長さ比率(Lσ/L)が高くなると、強度が低くなる傾向があるため、強度と曲げ加工性、耐応力緩和特性を兼ね備えるためには特殊粒界長さ比率(Lσ/L)を一定以下の値に抑える必要がある。そのため、本実施形態では特殊粒界長さ比率(Lσ/L)を60%未満に設定している。
なお、EBSD装置の解析ソフトOIMにより解析したときのCI値(信頼性指数)は、測定点の結晶パターンが明確ではない場合にその値が小さくなり、CI値が0.1以下ではその解析結果を信頼することが難しい。よって、本実施形態では、CI値が0.1以下である信頼性の低い測定点を除いた。
さらに、本実施形態である電子・電気機器用銅合金においては、表面のビッカース硬さが221以上あるいは218以上であるとされている。
ここで、このように表面のビッカース硬さを規定した理由について以下に説明する。
(表面のビッカース硬さ:221以上あるいは218以上
表面のビッカース硬さが221以上あるいは218以上になると、母相中に転位密度の高い組織が形成され、せん断加工の際に容易に破断にいたるため、ダレやバリの大きさが抑制され、せん断加工性が向上する。
表面のビッカース硬さが221未満あるいは218未満の場合、転位密度が十分に高くないため、破断にいたるまで大きく変形することでダレやバリが大きくなり、せん断加工性が劣化する。また、表面のビッカース硬さが350以上になると、転位密度が高くなりすぎ、塑性変形が極めて困難になり、曲げ加工性が劣化する。よって、表面のビッカース硬さは、221以上あるいは218以上、350以下が望ましい。
また、表面のビッカース硬さは、さらに好ましくは325以下であり、より好ましくは300以下である。
さらに、本実施形態である電子・電気機器用銅合金においては、材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{200}面からのX線回折強度の割合R{200}を、R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{200}が0.38以上であり、{220}面からのX線回折強度の割合R{220}をR{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{220}が0.32以上0.6以下である。
ここで、上述のようにX線回折強度を規定した理由について以下に説明する。
(X線回折強度比R{200}:0.38以上
{200}面は、曲げ加工の応力方向に対して、滑り系が活動し易い方位関係となるため、局所的な変形を抑制することができ、曲げ加工時のクラックの発生を抑制することが可能となる。
このため、材料表面における{200}面からのX線回折強度の割合R{200}を0.38以上とすることにより、曲げ加工性を向上させることが可能となる
(X線回折強度比R{220}:0.32以上0.6以下
{220}面は、圧延集合組織によるものであり、この{220}面の割合が高くなると、圧延方向に対して垂直方向に曲げ加工を行った場合に、曲げ加工の応力方向に対して滑り系が活動しにくい方位関係となる。これにより、曲げ加工時に変形が局所的に発生し、クラックの原因となる。
このため、材料表面における{220}面からのX線回折強度の割合R{220}を0.6以下に抑制することにより、曲げ加工時のクラックの発生を抑制でき、曲げ加工性が向上するものと考えられる
なお、{220}面からのX線回折強度の割合R{220}の下限は、0.32以上とすることが好ましい。
さらに、本実施形態である電子・電気機器用銅合金においては、0.2%耐力が400MPa以上の機械特性を有することが好ましい。
ここで、このように耐力を規定した理由について以下に説明する。
(0.2%耐力:400MPa以上)
0.2%耐力が400MPa以上である場合には、容易に塑性変形しなくなるため、コネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品に特に適している。
次に、前述のような実施形態の電子・電気機器用銅合金の製造方法の好ましい例について、図1に示すフローチャートを参照して説明する。
〔溶解・鋳造工程:S01〕
まず、銅原料を溶解して得られた銅溶湯に、前述の元素を添加して成分調整を行い、銅合金溶湯を製出する。ここで、銅溶湯は、スクラップを原料として用いてもよいが、純度が99.99mass%以上とされたいわゆる4NCuとすることが好ましい。
原料の溶解には、大気雰囲気炉を用いてもよいが、添加元素の酸化を抑制するために、真空炉、不活性ガス雰囲気又は還元性雰囲気とされた雰囲気炉を用いてもよい。
次いで、成分調整された銅合金溶湯を、適宜の鋳造法、例えば金型鋳造などのバッチ式鋳造法、あるいは連続鋳造法、半連続鋳造法などによって鋳造して鋳塊を得る。
〔加熱工程:S02〕
その後、必要に応じて、鋳塊の偏析を解消して鋳塊組織を均一化するために均質化熱処理を行う。または晶出物、析出物を固溶させるために溶体化熱処理を行う。この熱処理の条件は特に限定しないが、通常は700〜1100℃において5分〜24時間加熱すればよい。熱処理温度が700℃未満、あるいは熱処理時間が5分未満では、十分な均質化効果または溶体化効果が得られないおそれがある。一方、熱処理温度が1100℃を超えれば、偏析部位が一部溶解してしまうおそれがあり、さらに熱処理時間が24時間を超えることはコスト上昇を招くだけである。熱処理後の冷却条件は、適宜定めればよいが、通常は水焼入れすればよい。なお、熱処理後には、必要に応じて面削を行う。
〔熱間加工工程:S03〕
次いで、粗加工の効率化と組織の均一化のために、鋳塊に対して熱間加工を行ってもよい。この熱間加工の条件は特に限定されないが、通常は、開始温度600〜1100℃、終了温度300〜850℃、加工率10〜99%程度とすることが好ましい。なお、熱間加工開始温度までの鋳塊加熱は、前述の加熱工程S02と兼ねてもよい。熱間加工後の冷却条件は、適宜定めればよいが、通常は水焼入れすればよい。なお、熱間加工後には、必要に応じて面削を行う。熱間加工の加工方法については、特に限定されないが、最終形状が板や条の場合は熱間圧延を適用すればよい。また最終形状が線や棒の場合には、押出や溝圧延を、また最終形状がバルク形状の場合には、鍛造やプレスを適用すればよい。
〔粗加工工程:S04〕
次に、加熱工程S02で均質化処理を施した鋳塊、あるいは熱間圧延などの熱間加工S03を施した熱間加工材に対して、粗加工を施す。この粗加工工程S04における温度条件は特に限定はないが、冷間又は温間加工となる−200℃から+200℃の範囲内とすることが好ましい。粗加工の加工率も特に限定されないが、通常は10〜99%程度とし、好ましくは50〜99%とする。加工方法は特に限定されないが、最終形状が板、条の場合は、圧延を適用すればよい。また最終形状が線や棒の場合には、押出や溝圧延、さらに最終形状がバルク形状の場合には、鍛造やプレスを適用する事ができる。なお、溶体化の徹底のために、S02〜S04を繰り返してもよい。
〔中間熱処理工程:S05〕
冷間もしくは温間での粗加工工程S04の後に、溶体化の徹底、再結晶処理のため中間熱処理を施す。中間熱処理の好ましい加熱温度、加熱時間は、次に説明するように、具体的な熱処理の手法によっても異なる。すなわち中間熱処理工程S05の具体的手法としては、バッチ式の加熱炉を用いても、あるいは連続焼鈍ラインを用いて連続的に加熱してもよい。バッチ式の加熱炉を使用する場合は、300〜800℃の温度で、5分〜24時間加熱することが望ましく、また連続焼鈍ラインを用いる場合は、加熱到達温度を500〜900℃とし、かつその範囲内の温度で、保持なし、もしくは1秒〜5分程度保持することが好ましい。また、中間熱処理の雰囲気は、非酸化性雰囲気(窒素ガス雰囲気、不活性ガス雰囲気、還元性雰囲気)とすることが好ましい。
中間熱処理後の冷却条件は、特に限定しないが、通常は水焼入れすればよい。
なお、必要に応じて、上記の粗加工工程S04と中間熱処理工程S05を、複数回繰り返してもよい。
〔中間加工工程:S06〕
次に、中間熱処理工程S05を施した中間熱処理材に対して、中間加工を施す。この中間加工工程S06は、後述する仕上熱処理工程S07で、ひずみ誘起粒界移動により特殊粒界を形成させるために実施される工程であり、結晶回転させない状態で結晶方位毎にひずみ差を生じさせることで駆動力を蓄えるため、加工率は40%未満とすることが好ましい。加工率が40%以上であると、次工程の仕上熱処理工程S07において、ひずみ誘起粒界移動が起こりにくく、一般的な(核生成・成長機構による)再結晶が生じ、ランダム粒界の割合が増加し、特殊粒界長さ比率(Lσ/L)を十分に向上させることができないおそれがある。より好ましい加工率は30%以下である。
一方、加工率が3%未満であると上記のひずみ誘起粒界移動が過剰に起こり、特殊粒界長さ比率(Lσ/L)が高くなりすぎるため、加工率は3%以上とすることが好ましく、5%以上がより好ましい。
ここで、加工方法は特に限定されないが、最終形態が板や条である場合、圧延を採用する。他には鍛造やプレス、溝圧延を採用しても良い。温度も特に限定されないが、析出が起こらないように、冷間または温間となる−200〜+200℃が好ましい。
〔仕上熱処理工程:S07〕
中間加工工程S06の後に、再結晶処理のための仕上熱処理を施す。この仕上熱処理を実施することで、ひずみ誘起粒界移動が起こり多数の特殊粒界が形成される。このとき、保持温度、到達温度は一般的な再結晶温度と比較して低温のときにひずみ誘起粒界移動が起こり易いが、低温すぎるとひずみ誘起粒界移動が生じないため好ましくない。
仕上熱処理工程S07の具体的手法としては、Ni及びSiを含有する金属間化合物を析出させるために、バッチ式の加熱炉を用いてもよい。あるいは連続焼鈍ラインを用いて連続的に加熱してもよい。バッチ式の加熱炉を使用する場合は、300〜800℃の温度で、5分〜24時間加熱することが好ましく、400〜700℃の温度で、5分〜24時間加熱することがさらに好ましい。また連続焼鈍ラインを用いる場合は、加熱到達温度500〜800℃とし、かつその範囲内の温度で、保持なし、もしくは1秒〜5分程度保持することがさらに好ましい。
また、仕上熱処理の雰囲気は、非酸化性雰囲気(窒素ガス雰囲気、不活性ガス雰囲気、還元性雰囲気)とすることが好ましい。
また、昇温速度が遅い場合には、ひずみの回復が活発に行われる低温域に長時間存在することになり、ひずみ誘起粒界移動の駆動力となるひずみが消費されてしまうことになるため、昇温過程でのひずみの解放を抑制してひずみ誘起粒界移動を生じ易くし、特殊粒界を十分に形成させるためには、200℃から400℃の間の昇温速度を、200℃/min.以上とすることが好ましく、600℃/min.以上とすることがさらに好ましい。
なお、中間加工工程S06と仕上熱処理工程S07を繰り返すことにより、ひずみ誘起粒界移動が促進され、特殊粒界長さ比率(Lσ/L)が増加するため、中間加工工程S06と仕上熱処理工程S07を2回以上繰り返すことが好ましく、3回以上繰り返すことがさらに好ましい。
一方、中間加工工程S06と仕上熱処理工程S07とを7回以上繰り返すと上記のひずみ誘起粒界移動が過剰に起こり、特殊粒界長さ比率(Lσ/L)が高くなりすぎる。また製造コストの増加につながるため、中間加工工程S06と仕上熱処理工程S07の繰り返し回数は6回以下とすることが好ましく、5回以下とすることが更に好ましい。
〔時効熱処理工程:S08〕
仕上熱処理工程S07においてNi、Siを含有する金属間化合物の析出物が十分に形成されなかった場合には、Ni、Siを含有する金属間化合物の更なる析出のため、時効熱処理を施してもよい。この時効熱処理の条件は特に限定されないが、通常は、熱処理温度200〜600℃の温度で、5分〜48時間加熱することが望ましい。
〔仕上加工工程:S09〕
次に、仕上熱処理工程S07を施した材料、あるいは時効熱処理S08を施した材料に対して、最終寸法、最終形状まで仕上加工を行う。仕上加工工程S09における加工方法は特に限定されないが、最終製品形態が板や条である場合には、圧延(冷間圧延)を適用すればよい。その他、最終製品形態に応じて、鍛造やプレス、溝圧延などを適用してもよい。なお、本実施形態では、仕上加工工程S09として冷間圧延を実施し、圧延材を製出している。
加工率は最終板厚や最終形状に応じて適宜選択すればよい。
ここで、加工率が5%未満では、特殊粒界長さ比率(Lσ/L)は高くなる一方、耐力を向上させる効果が十分に得られなくなるおそれがある。また十分なビッカース硬さが得られない。
一方、加工率が80%を超えれば、特殊粒界長さ比率(Lσ/L)が減少するため、曲げ加工性、耐応力緩和特性が低下してしまうおそれがある。以上のことから、耐力、ビッカース硬度、特殊粒界比率を十分にバランスさせるためには仕上加工工程S09における加工率は5〜80%とすることが好ましく、8〜60%とすることがさらに好ましく、10〜50%とすることが特に好ましい。仕上加工工程S09後は、これをそのまま製品として用いてもよいが、通常は、さらに低温焼鈍を施すことになる。
〔低温焼鈍工程:S10〕
仕上加工工程S09後には、必要に応じて、耐応力緩和特性の向上および低温焼鈍硬化のために、または残留ひずみの除去のために、低温焼鈍を行う。この低温焼鈍工程S10においては、150〜800℃の範囲内の温度で、0.1秒〜24時間行うことが望ましい。熱処理温度が低い場合は長時間、熱処理温度が高い場合は短時間の熱処理をすればよい。低温焼鈍工程S10の温度が150℃未満、または低温焼鈍工程S10の時間が0.1秒未満では、十分な歪み取りの効果が得られなくなるおそれがあり、一方、低温焼鈍工程S10の温度が800℃を超える場合は再結晶のおそれがあり、さらに低温焼鈍工程S10の時間が24時間を超えることは、コスト上昇を招くだけである。
〔形状修正圧延工程:S11〕
低温焼鈍工程S10後には、必要に応じて、内部応力均一化のために形状修正の圧延を行う。この圧延により表面のビッカース硬度が上昇し、せん断加工性も向上する。この形状修正圧延は、5%未満の加工率で行うことが望ましい。5%以上の加工率では、十分なひずみが導入され、低温焼鈍工程S10の効果が失われる。
以上のようにして、本実施形態である電子・電気機器用銅合金を得ることができる。この電子・電気機器用銅合金においては、特殊粒界長さ比率(Lσ/L)が10%以上60%未満であり、表面のビッカース硬さが120以上とされている。
また、中間加工工程S07または仕上加工工程S09における加工方法として圧延を適用した場合、板厚0.05〜1.0mm程度の電子・電気機器用銅合金薄板(条材)を得ることができる。このような薄板は、これをそのまま電子・電気機器用部品に使用してもよいが、板面の一方、もしくは両面に、膜厚0.1〜10μm程度のSnめっきを施し、Snめっき付き銅合金条として、コネクタその他の端子などの電子・電気機器用部品に使用するのが通常である。この場合のSnめっきの方法は特に限定されない。また、場合によっては電解めっき後にリフロー処理を施してもよい。
さらに、本実施形態である電子・電気機器用部品及び端子は、上述の電子・電気機器用銅合金の薄板等に対して、打ち抜き加工、曲げ加工等を施すことによって製造される。
以上のような構成とされた本実施形態である電子・電気機器用銅合金においては、銅の母相中に分散する微細なNi−Si系析出物または〔Ni,(Co,Mn,Fe)〕−Si系析出物を適切に形成させているので、導電率を維持したまま、強度を大幅に向上させることができる。
また、表面のビッカース硬さが221以上あるいは218以上であるので、せん断加工性を大幅に向上させることができる。
さらに、本実施形態である電子・電気機器用銅合金においては、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上とされているので、曲げ加工時の破壊の起点となる粒界の割合が少なく、曲げ加工性が向上することになり、耐力−曲げバランスが飛躍的に向上することになる。また、特殊粒界はランダム粒界に比べて粒界の拡散が遅いことから、耐応力緩和特性を向上させることができる。
同時に、特殊粒界長さ比率(Lσ/L)が60%未満とされているので、特殊粒界長さ比率(Lσ/L)の増加に伴う強度の著しい低下を防止することができ、強度と曲げ加工性及び耐応力緩和特性とを兼ね備えることができる。
本実施形態である電子・電気機器用銅合金において、さらにTi,Cr,Zr,P,Bのうちのいずれか1種または2種以上を合計で0.01mass%以上0.2mass%以下の範囲内で添加した場合には、銅の母相中に分散する析出物粒子の個数を確保することにより、強度をさらに向上させることが可能となる。
本実施形態である電子・電気機器用銅合金において、さらにMg,Sn,Zn,Al,Agのうちのいずれか1種または2種以上を合計で0.01mass%以上1.1mass%以下の範囲内で添加した場合には、銅の母相中にこれらの元素を固溶させることにより、強度をさらに向上させることが可能となる。
また、本実施形態である電子・電気機器用銅合金において、材料表面(板表面)における{200}面からのX線回折強度の割合R{200}を0.38以上とした場合には、材料表面において曲げ加工の応力方向に対して滑り系が活動し易い方位関係となる{200}面の存在比率が高くなり、曲げ加工性を向上させることができる。
さらに、材料表面(板表面)における{220}面からのX線回折強度の割合R{220}を0.32以上0.6以下とした場合には、圧延方向に対して垂直方向に曲げ加工を行ったときに曲げ加工の応力方向に対して滑り系が活動しにくい方位関係となる{220}面の存在比率が低減されるため、曲げ加工時のクラックの発生を抑制でき、曲げ加工性を向上させることができる。
さらに、本実施形態である電子・電気機器用銅合金において、0.2%耐力が400MPa以上である機械的特性を有する場合には、容易に塑性変形が起こらなくなり、コネクタ等の端子、リレー、リードフレーム等の電子機器用部品の素材として好適に用いることが可能となる。
本実施形態である電子・電気機器用銅合金薄板は、上述の電子・電気機器用銅合金の圧延材からなることから、耐応力緩和特性に優れており、コネクタ、その他の端子、電磁リレーの可動導電片、リードフレームなどに好適に使用することができる。
また、本実施形態である電子・電気機器用部品及び端子は、上述の電子・電気機器用銅合金を用いて製造されているので、高い耐力及び曲げ加工性を有し、複雑な形状であっても割れ等がなく、信頼性に優れている。さらに、耐応力緩和特性に優れており、経時的にもしくは高温環境で残留応力が緩和されにくい。また、電子・電気機器用導電部品及び端子の薄肉化を図ることができる。さらに、せん断加工性に優れた電子・電気機器用銅合金及び電子・電気機器用銅合金薄板で構成されているので、寸法精度に優れている。
以上、本発明の実施形態である電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、上述の実施形態では、電子・電気機器用銅合金の製造方法の一例について、図1のフロー図を参照して説明したが、製造方法は本実施形態に限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。なお、以下の実施例は、本発明の効果を説明するためのものであって、実施例に記載された構成、プロセス、条件が本発明の技術的範囲を限定するものでない。
純度99.99mass%以上の無酸素銅(ASTM B152 C10100)からなる銅原料を準備し、これを高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。得られた銅溶湯内に、各種添加元素を添加して表1〜3に示す成分組成に調整し、カーボン鋳型に注湯して鋳塊を製出した。ここで、鋳塊の大きさは、厚さ約25mm×幅約50mm×長さ約200mmとした。
続いて各鋳塊について、均質化処理(加熱工程S02)として、Arガス雰囲気中において、980℃で4時間保持後、水焼き入れを実施した。
次に、熱間加工工程S03として熱間圧延を実施した。熱間圧延開始温度が980℃となるように再加熱して、鋳塊の幅方向が圧延方向となるようにして、圧延率約50%の熱間圧延を行い、圧延終了温度300〜800℃から水焼入れを行った。その後、切断および表面研削を行い、厚さ約11mm×幅約160mm×長さ約100mmの熱間圧延材を製出した。この熱間加工工程S03において割れの有無を確認した。確認結果を表4〜6に示す。なお、熱間加工で割れが生じた場合には、その後の工程及び評価を中止した。
その後、粗加工工程S04および中間熱処理工程S05を、それぞれ1回行うか、又は2回繰り返して実施した。
具体的には、粗加工工程S04および中間熱処理工程S05をそれぞれ1回実施する場合には、圧延率約90%以上の冷間圧延(粗加工)を行った後、再結晶のための中間熱処理として、300〜800℃で5分〜24時間でのバッチ式、もしくは500〜900℃で1秒〜5分での連続式での熱処理を実施し、水焼入れした。その後、圧延材を切断し、酸化被膜を除去するために表面研削を実施した。
一方、粗加工工程S04および中間熱処理工程S05をそれぞれ2回実施する場合には、圧延率約50〜90%の一次冷間圧延(一次粗加工)を行った後、一次中間熱処理として、300〜800℃で5分〜24時間でのバッチ式、もしくは500〜900℃で1秒〜5分での連続式での熱処理を実施して水焼入れした後、圧延率約50〜90%の二次冷間圧延(二次粗加工)を施し、300〜800℃で5分〜24時間でのバッチ式、もしくは500〜900℃で1秒〜5分での連続式での二次中間熱処理を実施し、水焼入れした。その後、圧延材を切断し、酸化被膜を除去するために表面研削を実施した。
次に、中間加工工程S06として、表4〜6に記載された条件で冷間圧延を実施した。その後、仕上熱処理工程S07として、ソルトバス、または急速熱処理炉を用いて表4〜6に記載された条件で熱処理を行い、水焼入れを実施した。
なお、この中間加工工程S06と仕上熱処理工程S07とを繰り返し実施した。表4〜6に、中間加工工程S06と仕上熱処理工程S07との繰り返し回数を記載した。
次に、時効熱処理工程S08として、ソルトバスを用いて300〜600℃で8時間保持し、水焼入れを実施した。
その後、仕上圧延工程S09として、表4〜6に記載された圧延率で冷間圧延を実施した。
その後200〜500℃で1秒〜1時間の低温焼鈍を実施した後に水焼入れを行った。その後、形状修正のための圧延を実施した後、切断および表面研磨を実施した後、厚さ0.20mm×幅約160mmの特性評価用条材を製出した。
これらの特性評価用条材について、特殊粒界長さ比率(Lσ/L)、板表面における{220}面からのX線回折強度の割合R{220}、板表面における{200}面からのX線回折強度の割合R{200}、導電率、ビッカース硬さ、機械的特性(耐力)、曲げ加工性、耐応力緩和特性、せん断加工性を評価した。各評価項目についての試験方法、測定方法は次の通りである。また、これらの評価結果を表7〜9に示す。
〔特殊粒界長さ比率(Lσ/L)〕
圧延の幅方向に対して垂直な面、すなわちTD面(Transverse direction)を観察面として、EBSD測定装置及びOIM解析ソフトによって、次のように結晶粒界(特殊粒界とランダム粒界)および結晶方位差分布を測定した。
耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。そして、EBSD測定装置(FEI社製Quanta FEG 450,EDAX/TSL社製(現 AMETEK社) OIM Data Collection)と、解析ソフト(EDAX/TSL社製(現 AMETEK社)OIM Data Analysis ver.5.3)によって、電子線の加速電圧20kV、測定間隔0.1μmステップで1000μm以上の測定面積で、CI値が0.1以下である測定点を除いて、各結晶粒の方位差の解析を行い、隣接する測定点間の方位差が15°以上となる測定点間を結晶粒界とした。また、測定範囲における結晶粒界の全粒界長さLを測定し、隣接する結晶粒の界面が特殊粒界を構成する結晶粒界の位置を決定するとともに、特殊粒界のうちΣ3、Σ9、Σ27a、Σ27b粒界の各長さの和Lσと、上記測定した結晶粒界の全粒界長さLとの粒界長さ比率Lσ/Lを求め、特殊粒界長さ比率(Lσ/L)とした。
〔X線回折強度〕
板表面における{111}面からのX線回折強度I{111}、{200}面からのX線回折強度I{200}、{220}面からのX線回折強度I{220}、{311}面からのX線回折強度I{311}、{331}面からのX線回折強度I{331}、{420}面からのX線回折強度I{420}を、積分強度法を用いて、次のような手順で測定した。
特性評価用条材から測定試料を採取し、反射法で、測定試料に対して1つの回転軸の回りのX線回折強度を測定した。ターゲットにはCuを使用し、KαのX線を使用した。管電流40mA、管電圧40kV、測定角度40〜150°、測定ステップ0.02°の条件で測定し、回折角とX線回折強度のプロファイルにおいて、X線回折強度のバックグラウンドを除去後、各回折面からのピークのKα1とKα2を合わせた積分X線回折強度Iを求めた。
そして、R{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})から、板表面における{220}面からのX線回折強度の割合R{220}を算出した。
さらに、R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})から、板表面における{200}面からのX線回折強度の割合R{200}を算出した。
なお、X線回折強度の測定部位は試料板幅方向の中心部とした。
〔導電率〕
特性評価用条材から幅10mm×長さ150mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して垂直になるように採取した。
〔ビッカース硬さ〕
JIS−Z2248に規定されている微小硬さ試験方法に準拠し、特性評価用条材の表面すなわちND面(Normal Direction)で試験加重1.96N(=0.2kgf)でビッカース硬さを測定した。
〔機械的特性〕
特性評価用条材からJIS Z 2201に規定される13B号試験片を採取し、JIS Z 2241のオフセット法により、ヤング率E、0.2%耐力σ0.2を測定した。なお、試験片は、圧延方向に垂直な方向で採取した。
〔曲げ加工性〕
日本伸銅協会技術標準JCBA−T307:2007の4試験方法に準拠して曲げ加工を行った。
圧延方向と試験片の長手方向が垂直になるように、特性評価用条材から幅10mm×長さ30mmの試験片を複数採取し、曲げ角度が90度、曲げ半径0.4のW型の治具を用い、W曲げ試験を行った。
そして、曲げ部の外周部を目視で確認し割れが観察された場合は×、大きなしわが観察された場合は△、破断や微細な割れ、大きなしわを確認できない場合を○として判定を行った。なお、△までを許容できる曲げ加工性と判断した。
〔耐応力緩和特性〕
耐応力緩和特性試験は、日本伸銅協会技術標準JCBA−T309:2004の片持はりねじ式に準じた方法によって応力を負荷し、下記に示す条件(温度、時間)で保持した後の残留応力率を測定した。
試験方法としては、各特性評価用条材から圧延方向に対して平行な方向に試験片(幅10mm)を採取し、試験片の表面最大応力が耐力の80%となるよう、初期たわみ変位を2mmと設定し、スパン長さを調整した。上記表面最大応力は次式で定められる。
表面最大応力(MPa)=1.5Etδ/L 2
ただし、
E:ヤング率(MPa)
t:試料の厚み(t=0.20mm)
δ:初期たわみ変位(2mm)
:スパン長さ(mm)
である。耐応力緩和特性の評価は、150℃の温度で、1000h保持後の曲げ癖から、残留応力率を測定し、耐応力緩和特性を評価した。
なお、残留応力率は次式を用いて算出した。
残留応力率(%)=(1−δ/δ)×100
ただし、
δ:150℃で1000h保持後の永久たわみ変位(mm)−常温で24h保持後の永久たわみ変位(mm)
δ:初期たわみ変位(mm)
である。
残留応力率が、70%以上のものを○、70%未満のものを×と評価した。
〔せん断加工性〕
特性評価用条材から金型で角孔(8mm×8mm)を多数打ち抜いて、図2に示される破断面割合(打ち抜きされた部分の板厚に対する破断面の割合)及びかえり高さの測定により評価を行った。打ち抜きの切口面においては、破断面とせん断面とが存在しており、せん断面の割合が少なく破断面の割合が多いほど、せん断加工性に優れることになる。
金型のクリアランスは0.02mmとし、50spm(stroke per minute)の打ち抜き速度により打ち抜きを行った。破断面割合、かえり高さの測定は穴抜き側の切口面を観察し、各測定箇所10点の平均を評価した。
なお、破断面の割合が40%以上のものを「○」と評価し、40%未満のものを「×」と評価した。また、かえり高さが6μm以下のものを「○」と評価し、6μmを超えるものを「×」と評価した。
上記の各組織観察結果、各評価結果について、表7〜9に示す。
比較例101においては、Niの含有量が本発明の範囲よりも少なく、0.2%耐力が400MPaを下回った。
比較例102においては、Niの含有量が本発明の範囲よりも多く、熱間圧延時に大きな耳割れが発生したため、その後の工程及び評価を中止した。
比較例103においては、Ni、Co、Mn、Feの含有量の合計が本発明の範囲よりも多く、熱間圧延時に大きな耳割れが発生したため、その後の工程及び評価を中止した。
比較例104においては、Siの含有量が本発明の範囲よりも少なく、またNiとSiの質量比Ni/Siが本発明の範囲よりも大きく、0.2%耐力が400MPaを下回った。
比較例105においては、Siの含有量が本発明の範囲よりも多く、またNiとSiの質量比Ni/Siが本発明の範囲よりも小さく、熱間圧延時に大きな耳割れが発生したため、その後の工程及び評価を中止した。
比較例106においては、ビッカース硬さが本発明の範囲よりも小さく、破断面の評価及びかえり高さの評価が「×」評価となった。
比較例107においては、特殊粒界長さ比率(Lσ/L)が本発明の範囲よりも小さく、曲げ加工性が「×」評価となった。
比較例108においては、特殊粒界長さ比率(Lσ/L)が本発明の範囲よりも大きく、0.2%耐力が400MPaを下回った。
これに対して、表7,8に示しているように、各合金元素の個別の含有量及び各合金成分の相互間の比率がいずれも本発明で規定する範囲内であり、特殊粒界長さ比率(Lσ/L)が本発明で規定する範囲内であり、さらにビッカース硬さが本発明で規定する範囲内とされた本発明例は、いずれも耐応力緩和特性が優れており、さらに耐力、曲げ加工性にも優れており、コネクタやその他の端子に十分に適用可能であることが確認された。また、せん断加工性に特に優れており、プレス成型(打ち抜き加工)を高精度に実施することが可能であることが確認された。

Claims (8)

  1. Niを1.0mass%以上5.0mass%以下、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、Ni/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有し、
    EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上、60%未満であるとともに、表面のビッカース硬さが221以上であり、
    さらに、材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{200}面からのX線回折強度の割合R{200}を、R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{200}が0.38以上であり、{220}面からのX線回折強度の割合R{220}をR{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{220}が0.32以上0.6以下であることを特徴とする電子・電気機器用銅合金。
  2. Niを1.0mass%以上含有するとともに、Co,Mn,Feのうちのいずれか1種または2種以上を含有し、Ni,Co,Mn,Feの含有量の合計が1.0mass%超え5.0mass%以下とされ、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、(Ni+Co+Mn+Fe)/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有し、
    EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上、60%未満であるとともに、表面のビッカース硬さが218以上であり、
    さらに、材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{200}面からのX線回折強度の割合R{200}を、R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{200}が0.38以上であり、{220}面からのX線回折強度の割合R{220}をR{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{220}が0.32以上0.6以下であることを特徴とする電子・電気機器用銅合金。
  3. さらに、Ti,Cr,Zr,P,Bのうちのいずれか1種または2種以上を合計で0.01mass%以上0.2mass%以下の範囲内で含んでいることを特徴とする請求項1又は請求項2に記載の電子・電気機器用銅合金。
  4. さらに、Mg,Sn,Zn,Al,Agのうちのいずれか1種または2種以上を合計で0.01mass%以上1.1mass%以下の範囲内で含んでいることを特徴とする請求項1から請求項3のいずれか一項に記載の電子・電気機器用銅合金。
  5. 0.2%耐力が400MPa以上の機械特性を有することを特徴とする請求項1から請求項4のいずれか一項に記載の電子・電気機器用銅合金。
  6. 請求項1から請求項5のいずれか一項に記載の電子・電気機器用銅合金の圧延材からなり、厚みが0.01mm以上2.0mm以下の範囲内にあることを特徴とする電子・電気機器用銅合金薄板。
  7. 請求項1から請求項5のいずれか一項に記載の電子・電気機器用銅合金からなることを特徴とする電子・電気機器用部品。
  8. 請求項1から請求項5のいずれか一項に記載の電子・電気機器用銅合金からなることを特徴とする端子。
JP2014175147A 2014-08-29 2014-08-29 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子 Active JP5776833B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014175147A JP5776833B1 (ja) 2014-08-29 2014-08-29 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014175147A JP5776833B1 (ja) 2014-08-29 2014-08-29 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子

Publications (2)

Publication Number Publication Date
JP5776833B1 true JP5776833B1 (ja) 2015-09-09
JP2016050326A JP2016050326A (ja) 2016-04-11

Family

ID=54192588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014175147A Active JP5776833B1 (ja) 2014-08-29 2014-08-29 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子

Country Status (1)

Country Link
JP (1) JP5776833B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868276A (zh) * 2018-03-09 2020-10-30 同和金属技术有限公司 铜合金板材及其制造方法
CN114381631A (zh) * 2022-01-12 2022-04-22 深圳市众诚达应用材料科技有限公司 一种镀膜用靶材及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102499442B1 (ko) * 2017-04-26 2023-02-13 후루카와 덴키 고교 가부시키가이샤 구리 합금 판재 및 그 제조 방법
JP7172583B2 (ja) * 2018-12-26 2022-11-16 三菱マテリアル株式会社 コネクタ用端子材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868276A (zh) * 2018-03-09 2020-10-30 同和金属技术有限公司 铜合金板材及其制造方法
CN111868276B (zh) * 2018-03-09 2021-10-26 同和金属技术有限公司 铜合金板材及其制造方法
CN114381631A (zh) * 2022-01-12 2022-04-22 深圳市众诚达应用材料科技有限公司 一种镀膜用靶材及其制备方法

Also Published As

Publication number Publication date
JP2016050326A (ja) 2016-04-11

Similar Documents

Publication Publication Date Title
JP5903838B2 (ja) 電子機器用銅合金、電子機器用銅素材、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材及び電子機器用部品
JP5565506B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子
JP5776832B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子
JP6758746B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバー
US11203806B2 (en) Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
JP5903832B2 (ja) 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金圧延材及び電子機器用部品
JP5690979B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
WO2012169405A1 (ja) 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材、及び電子機器用部品
US11655523B2 (en) Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
JP6187629B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
JP2017186664A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、バスバー、及び、リレー用可動片
JP2019178399A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバー
JP2017179493A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
JP5776833B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子
JP2014129569A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP5703975B2 (ja) 電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材
JP6221471B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用銅合金塑性加工材の製造方法、電子・電気機器用部品及び端子
JP5957083B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
TW201428113A (zh) 電子/電氣機器用銅合金、電子/電氣機器用銅合金薄板、電子/電氣機器用銅合金之製造方法、電子/電氣機器用導電零件及端子
JP6155407B1 (ja) 電子・電気機器用銅合金、電子・電気機器用部品、端子、及びバスバー
JP2021055128A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバー
JP6264887B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP5776831B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子
JP7187989B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP7172090B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250