JP5768980B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP5768980B2
JP5768980B2 JP2012024359A JP2012024359A JP5768980B2 JP 5768980 B2 JP5768980 B2 JP 5768980B2 JP 2012024359 A JP2012024359 A JP 2012024359A JP 2012024359 A JP2012024359 A JP 2012024359A JP 5768980 B2 JP5768980 B2 JP 5768980B2
Authority
JP
Japan
Prior art keywords
cooling water
conductivity
fuel cell
cooling
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012024359A
Other languages
English (en)
Other versions
JP2013161721A (ja
Inventor
末松 啓吾
啓吾 末松
木川 俊二郎
木川  俊二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012024359A priority Critical patent/JP5768980B2/ja
Publication of JP2013161721A publication Critical patent/JP2013161721A/ja
Application granted granted Critical
Publication of JP5768980B2 publication Critical patent/JP5768980B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池を冷却するための冷媒配管系を備えた燃料電池システムに関する。
燃料電池の冷却水制御装置として、冷却水ポンプと、ラジエータと、イオン交換樹脂フィルタと、冷却水流路切替手段とを備えたものが知られている。この冷却水流路切替手段は、燃料電池の起動時に、冷却水をラジエータを迂回して循環させ、冷却水温度が所定温度より高くなったとき、ラジエータを経由するように循環させるものである。
また、例えば特許文献1には、燃料電池の起動時に冷却水の温度が所定温度まで達するのに要する暖機終了時間を推定し、燃料電池の起動時に冷却水中のイオンが捕捉されることにより冷却水の導電率が所定の導電率まで低下するのに要する導電率低下時間を推定し、導電率低下時間が暖機終了時間より長いときに、導電率低下時間が暖機終了時間以下となるように燃料電池の発電量を抑制する技術が開示されている。
特開2007−299574号公報
ところで、冷却水にはラジエータその他の部品からイオンが溶出することがあり、燃料電池の運転停止後、所定時間放置された状態、すなわち、冷却水ポンプの運転停止後、所定時間放置された状態では、例えばラジエータ等のイオン溶出箇所における冷却水の導電率が、それ以外の箇所における冷却水の導電率よりも極端に高くなる場合がある。
かかる場合においても、燃料電池の周辺、例えば燃料電池と冷却水系に設けられたアースまでの間の絶縁抵抗を一定値以上に確保しておく必要から、少なくとも燃料電池の発電中は、当該部分の冷却水の導電率を一定値以下にしておく必要がある。
そこで、燃料電池の始動時には、始動に先立って冷却水を予め循環させることにより、局所的に高くなっている冷却水の導電率を所定値以下に下げておき、その後に燃料電池を起動(つまり、酸化ガス及び燃料ガスの供給を開始)することが望まれる。
しかしながら、冷却水を循環させると冷媒配管内で冷却水が混合される(掻き回される)ため、そのような状態下で冷却水の導電率をより高精度に測定するためには、導電率が安定するまで待つ必要が生じる。つまり、冷却水の導電率が安定する前に、導電率が所定値以下になるまでの時間を正確に検出することは難しい。
また、冷却水の導電率を測定するための導電率計が別途必要であり、それがコストアップの要因になっていた。
そこで、本発明は、導電率計を用いずとも冷却水の導電率をより迅速かつより高精度に推定できるようにした燃料電池システムを提供することを目的とする。
本発明は、燃料電池の始動時に、冷媒配管系内の冷却水の導電率が所定の上限導電率よりも高い場合には、前記冷媒配管系に設けられた冷却ポンプを起動して冷却水を循環させることで前記冷却水の導電率を前記上限導電率以下にしてから、前記燃料電池を始動することを要旨とするものである。
より具体的には、燃料電池と、冷却ポンプとラジエータとイオン交換器とを有して前記燃料電池に冷却水を循環供給する冷媒配管系と、を備え、前記冷媒配管系が前記冷却水をその温度に応じてラジエータを迂回又は経由するように循環させることが可能な燃料電池システムであって、前記冷却水の導電率を推定する第1の推定手段と、前記第1の推定手段によって推定された導電率が所定の上限導電率よりも高い場合に、前記冷却ポンプを起動してから前記推定された導電率が前記上限導電率以下になるまでの時間を推定する第2の推定手段と、を備え、前記燃料電池の始動時に前記冷却水の導電率が前記上限導電率よりも高い場合には、前記冷却ポンプを起動してから前記第2の推定手段によって推定された時間を経過した後に前記燃料電池を始動する制御を実施するものである。
この構成によれば、冷却水の導電率が所定値以下に収束する時間を高精度に予測することが可能になり、応答性良く燃料電池を始動することができる。また、冷却水の導電率推定に導電率計を用いる必要がないので、コスト削減にも資する。
前記制御の実施要否は、当該制御を実施した積算回数に応じて判断されるようにしてもよい。
前記冷却ポンプを起動してから前記第2の推定手段によって推定された時間を経過した後に前記燃料電池を始動するという制御を実施した積算回数が所定値よりも大である場合には、冷却水の導電率が十分に低下していることになるので、当該制御の実施は不要となる。
よって、この構成によれば、不要な制御の実施を未然に回避することが可能になり、応答性をより一層高めることができる。
前記制御の実施要否は、前記第1の推定手段によって推定された前記ラジエータ内の導電率に応じて判断されるようにしてもよい。
ラジエータ内における冷却水の導電率(この段落では、以下、「第1の導電率」という。)は、それ以外の箇所における冷却水の導電率(この段落では、以下、「第2の導電率」という。)よりも著しく高い場合があり、かかる場合において、第1の導電率が前記上限導電率以下であるときには、冷却水の導電率が十分に低下していることになるので、前記冷却ポンプを起動してから前記第2の推定手段によって推定された時間を経過した後に前記燃料電池を始動するという制御の実施は不要となる。
よって、この構成によれば、不要な制御の実施を未然に回避することが可能になり、応答性をより一層高めることができる。
本発明によれば、冷却水の導電率が所定値以下に収束する時間を高精度に予測することが可能になり、応答性良く燃料電池を始動することができる。
本発明の一実施形態にかかる燃料電池システムの構成例を示す図である。 冷却水循環停止から所定時間放置後のラジエータ内とそれ以外の部分の冷却水の導電率の相違を説明する図である。 冷却水循環後にラジエータ内とそれ以外の部分の冷却水の導電率が平均化されたことを説明する図である。 冷却水循環停止から規定時間Tthが経過してもラジエータ内の冷却水の導電率が所定の閾値σth以下となるように、冷却水へのイオン溶出量が調整されていることを説明する図である。 本発明の一実施形態を示すフローチャートである。 図5のステップS2を補足説明する図である。 冷却水循環停止からの経過時間とラジエータ内の導電率との関係を示す図である。 冷却ポンプを所定の回転数で運転させている場合の冷却水温度と冷却水流量との関係を示す図である。 冷却水がイオン交換器を通過した積算流量と冷却水導電率との関係を示す図である。 冷却ポンプ起動後の経過時間と冷却水導電率との関係を示す図である。
以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。以下では、一例として、燃料電池車に搭載されることが予定された燃料電池またはこれを含む燃料電池システムに本発明を適用した場合を例示して説明するが、適用範囲がこのような例に限られることはない。
図1に本実施形態における燃料電池システム1の概略構成を示す。図示するように、燃料電池システム1は、燃料電池10と、酸化ガスとしての空気(酸素)を燃料電池10に供給し、燃料電池10から酸化オフガスを排出する酸化ガス配管系(図示略)と、燃料ガスとしての水素を燃料電池10に供給し、燃料電池10から燃料オフガスを排出する燃料ガス配管系(図示略)と、燃料電池10に冷媒としての冷却水を供給して燃料電池10を冷却する冷媒配管系20と、システムの電力を充放電する電力系(図示略)と、システム全体を統括制御する制御装置30と、を備えている。
燃料電池10は、例えば固体高分子電解質型で構成され、多数のセル(単セル)を積層したスタック構造となっている。各セルは、イオン交換膜からなる電解質の一方の面に空気極を有し、他方の面に燃料極を有し、さらに空気極および燃料極を両側から挟みこむように一対のセパレータを有している。一方のセパレータの燃料ガス流路に燃料ガスが供給され、他方のセパレータの酸化ガス流路に酸化ガスが供給され、このガス供給により燃料電池10は電力を発生する。
酸化ガス配管系は、燃料電池10に供給される酸化ガスが流れる酸化ガス供給路と、燃料電池10から排出された酸化オフガスが流れる酸化オフガス排出路と、を有している。酸化ガス供給路には、フィルタを介して酸化ガスを取り込むコンプレッサと、コンプレッサにより圧送される酸化ガスを加湿する加湿器と、が設けられている。酸化ガス排出路を流れる酸化オフガスは、背圧調整弁を通って加湿器で水分交換に供された後、最終的に排ガスとしてシステム外の大気中に排気される。コンプレッサは、モータの駆動により大気中の酸化ガスを取り込む。
燃料ガス配管系は、水素供給源と、水素供給源から燃料電池10に供給される水素ガスが流れる水素ガス供給路と、燃料電池10から排出された水素オフガス(燃料オフガス)を水素ガス供給路の合流点に戻すための循環路と、循環路内の水素オフガスを水素ガス供給路に圧送するポンプと、循環路に分岐接続された排出路と、を有している。
水素供給源は、例えば高圧タンクや水素吸蔵合金などで構成され、例えば35MPa又は70MPaの水素ガスを貯留可能に構成されている。水素供給源の元弁を開くと、水素ガス供給路に水素ガスが流出する。水素ガスは、調圧弁その他の減圧弁により、最終的に例えば200kPa程度まで減圧されて、燃料電池10に供給される。
水素ガスの循環系は、水素ガス供給路との合流点の下流側流路と、燃料電池10のセパレータに形成される燃料ガス流路と、循環路とを順番に連通することで構成されている。水素ポンプは、モータの駆動により、循環系内の水素ガスを燃料電池10に循環供給する。
水素ガス排出路には、遮断弁であるパージ弁が設けられている。パージ弁が燃料電池システム1の稼動時に適宜開弁することで、水素オフガス中の不純物が水素オフガスと共に水素希釈器に排出される。パージ弁の開弁により、循環路内の水素オフガス中の不純物の濃度が下がり、循環供給される水素オフガス中の水素濃度が上がる。
冷媒配管系20は、燃料電池10内の冷却流路に連通する冷媒循環流路21と、冷媒循環流路21に設けられた冷却ポンプ22と、燃料電池10から排出される冷媒を冷却するラジエータ23と、ラジエータ23をバイパスするバイパス流路24と、ラジエータ23及びバイパス流路24への冷却水の通流を設定する三方弁(切替え弁)25と、バイパス流路24に設けられたイオン交換器26と、燃料電池10の冷却水出口寄りに設けられた温度センサT1と、ラジエータ23と三方弁25との間に設けられた温度センサT2と、を有している。冷却ポンプ22は、モータの駆動により、冷媒循環流路21内の冷媒を燃料電池10に循環供給する。
制御装置30は、内部にCPU,ROM,RAMを備えたマイクロコンピュータとして構成される。CPUは、制御プラグラムに従って所望の演算を実行し、例えば冷媒配管系における冷却ポンプ22や三方弁25の制御など、種々の処理や制御を行う。ROMは、CPUで処理する制御プログラムや制御データを記憶する。RAMは、主として制御処理のための各種作業領域として使用される。
制御装置30は、ガス系統や冷媒配管系20に用いられる各種の圧力センサや温度センサ(例えば、冷媒配管系20における温度センサT1,T2)、外気温センサなどの検出信号を入力し、各構成要素に制御信号を出力する。また、制御装置30は、本発明に係る第1の推定手段及び第2の推定手段としての機能も兼ね備えている。
続いて、燃料電池システム1の始動時に行なわれる制御やその動作等について説明する。
本実施形態の燃料電池システム1においては、燃料電池10の始動時に冷媒配管系20内の冷却水の導電率が所定の閾値よりも高い場合には、冷却ポンプ22を起動させることにより、冷却水の導電率を所定の閾値以下に下げ、その後に燃料電池10を始動(燃料電池10への酸化ガス及び水素ガスの供給を開始)することにより、燃料電池10とアースとの間の絶縁抵抗の悪化を抑止する。
なお、本制御を実施する前提として、本実施形態の燃料電池システム1では、最初の運転開始時までに、冷却水循環後の冷却水の初期導電率σ0が所定の上限導電率σUL以下となるように、冷却水中のイオン溶出量が予め調整されているものとする。
例えば、ラジエータ23がフラックスを使用したものである場合、燃料電池システム1の運転停止後(放置後)は、図2に示すように、ラジエータ23内における冷却水の初期導電率σ0が上限導電率σULを上回り、ラジエータ23以外の部分における冷却水の初期導電率σ1が上限導電率σULを下回る場合がある。
冷却水循環後(冷却水混合後)は、ラジエータ23内とそれ以外の部分に存在する冷却水が混合されるので、この混合後の導電率σが、図3に示す上限導電率σUL以下となるように、イオン溶出量が調整される。つまり、本実施形態では、図4に示すように、冷却水循環停止から規定時間Tthが経過しても、ラジエータ23内の冷却水の導電率が所定の閾値σth以下となるように、冷却水へのイオン溶出量が調整されている。
なお、上限導電率σULは、燃料電池10から冷媒循環流路21上の第1のアースまでの配管の長さ及び径をそれぞれL1及びA(図1参照)、燃料電池10から冷媒循環流路21上の第2のアースまでの配管の長さ及び径をL2及びA(図1参照)としたときに、法定の絶縁抵抗目標値を用いて、式1によって算出される。
Figure 0005768980
以下、フローチャート等を用いて具体的な制御例について説明する(図2〜図10参照)。
まず、図5に示すフローチャートのステップS1では、本制御を実施した回数、すなわち、本制御の積算回数が、制御装置30内のメモリから読み出される。続くステップS2では、ステップS1で読み込んだ積算制御回数が所定値nよりも大であるか否かが判定される。
そして、その判定結果が「YES」の場合、すなわち、本制御の積算回数が所定値nよりも大である場合には、後述するように、冷却ポンプ22の運転を停止させてからの経過時間Tが所定の規定時間Tthを経過しても、ラジエータ23内の冷却水の導電率σが上限導電率σULに到達することがないので、以降のステップが全てスキップされ、本制御は終了する。これにより、燃料電池10の始動性向上が図られる。
ここで、所定値nについて、図6を参照しながら説明する。図6は、冷却ポンプ22の運転停止後の経過時間Tと、ラジエータ23内における冷却水の導電率σとの関係を示すものであり、実験やシミュレーションの結果等から事前に測定しておいたものである。
図6(a)は、本制御を1回も実施していないとき、つまり、本制御の積算回数がゼロのとき、図6(b)は、本制御を1回実施したとき、つまり、本制御の積算回数が1回のときの経過時間Tと導電率σとの関係の一例を示している。これらの図は、本制御の積算回数がゼロ又は1回のように少ない場合には、経過時間Tが所定の規定時間Tthに到達する前に、ラジエータ23内の冷却水の導電率σが上限導電率σULに到達してしまうことを示している。
これに対し、図6(c)は、冷却ポンプ22の運転停止後の経過時間Tが規定時間Tthを経過しても、ラジエータ23内の冷却水の導電率σが上限導電率σULに到達しない場合であり、かかる場合に対応する最小の制御積算回数が所定値nに該当する。つまり、本制御の積算回数が所定値nよりも大である場合には、イオン溶出量の最も多いラジエータ23内の冷却水の導電率σですら上限導電率σULを下回るので、燃料電池10の始動時における本制御の実施は不要ということになる。
一方、ステップS2の判定結果が「NO」の場合、すなわち、本制御の積算回数が所定値n以下である場合には、冷却水の循環が必要な場合である。そこで、続くステップS3において、冷却ポンプ22の連続停止時間が検出され、更にステップS4において、ステップS3で検出された冷却ポンプ22の連続停止時間と、図7に示すマップとから、ラジエータ23内の冷却水の導電率σが算出される。なお、図7のマップは、例えば実験やシミュレーションの結果に基づき作成されるものであり、冷却ポンプ22の連続停止時間と、ラジエータ23内の冷却水の導電率σとの関係を示している。
続くステップS5では、ステップS4で算出されたラジエータ23内の冷却水の導電率σが上限導電率σULよりも大であるか否かが判定される。そして、その判定結果が「NO」の場合、すなわち、ラジエータ23内の冷却水の導電率σが上限導電率σUL以下である場合には、冷却水を循環させずに燃料電池10を始動しても良い状態であるから、以降のステップを全てスキップし、本制御を終了する。これにより、燃料電池10の始動性向上が図られる。
これに対し、ステップS5の判定結果が「YES」の場合、すなわち、ラジエータ23内の冷却水の導電率σが上限導電率σULよりも大である場合には、冷却水の循環が必要な場合である。そこで、続くステップS6において、冷却水温度αが検出される。なお、冷却水温度αは、温度センサT1の検出温度、温度センサT2の検出温度、あるいは温度センサT1,T2の各検出温度の平均値のいずれかが用いられる。
続くステップS7では、図8のマップを参照することにより、ステップS6で検出された冷却水温度α下において冷却ポンプ22を所定の回転数(以下、「所定のW/P回転数」と称する場合がある。)で運転させて冷却水を循環させた時の冷却水流量が算出される。図8は、冷却水を所定のW/P回転数で循環させた場合の冷却水温度と冷却水流量との関係を示している。
冷却水はその温度によって粘度が変化するため、冷却ポンプ22を同じ回転数で運転させていても、当該冷却水の温度によって流量も変化する。そこで、本実施形態では、この図8に示すようなマップを参照することにより、より正確な冷却水流量を求めることが可能になっている。
続くステップS8では、前回運転時(前回運転終了時まで)にイオン交換器26を通過した冷却水流量の積算値が算出される。制御装置30は、三方弁25の開度と冷却ポンプ22の回転数とからイオン交換器26を通過した冷却水流量を算出するためのマップと、前回運転時の三方弁25の開度及び冷却ポンプ22の回転数と、前々回運転時までの冷却水流量の積算値がメモリに記憶されている。
したがって、ステップS8においては、このマップと前回運転時の三方弁25の開度及び冷却ポンプ22の回転数とから算出された前回運転時の冷却水流量に、前々回運転終了時までの冷却水流量の積算値が積算されることにより、前回運転終了時までの冷却水流量の積算値が算出される。
続くステップS9では、ステップS8で算出された冷却水流量の積算値が所定値Vよりも大であるか否かが判定される。この所定値Vは、制御装置30のメモリに記憶された例えば図9に示すようなマップ、すなわち、イオン交換器通過積算流量(横軸)と冷却水導電率(縦軸)との関係を示すマップが参照されることにより、設定される。
具体的には、冷却水循環後の冷却水の導電率がラジエータ23以外の部分における初期導電率σ1(ただし、初期導電率σ1<上限導電率σUL)となるような冷却水量積算値に設定される。
ステップS9の判定結果が「YES」の場合、すなわち、ステップS8で算出された冷却水流量の積算値が所定値Vよりも大である場合とは、冷却水循環後の冷却水の導電率が上限導電率σUL以下になる場合であるから、続くステップS10において、冷却ポンプ22を起動してから燃料電池10を始動させても良い状態になるまでの時間を意味するFC始動可能時間βが算出される。
FC始動可能時間βは、例えば式2で定義される冷却水導電率の推定式を用いて算出される。具体的には、縦軸に冷却水導電率、横軸に冷却ポンプ起動後の経過時間をとった場合に、式2の推定式は図10に示すような振幅が次第に小さくなる減衰曲線で表されるので、この曲線の山側のピーク値が上限導電率σULとなるまでの時間がFC始動可能時間βとなる。
Figure 0005768980
式2は、本実施形態のようにラジエータ23などの一部品からのイオン溶出量が高い場合において、冷却ポンプ22で冷却水を循環させたときの冷媒配管系20の任意の箇所における導電率変化を推定する式であり、実験やシミュレーションの結果等から導出することが可能である。例えば、ラジエータ23内とそれ以外の箇所(例えば、図1の配管長さL1,L2の範囲)における冷却水の導電率は、係数Aを適宜の値に設定することによってそれぞれ推定することが可能である。
ステップS9の判定結果が「NO」の場合、すなわち、ステップS8で算出された冷却水流量の積算値が所定値V以下である場合には、冷却水循環後であっても冷却水の導電率が上限導電率σUL以下にならない可能性があり、冷却水をイオン交換器26に通す必要が生じる。そこで、ステップS21において、イオン交換器26に通すべき冷却水量(不足の冷却水量)が算出される。この冷却水量は、例えば制御装置30のメモリに記憶されているマップ等を参照することにより算出される。
続くステップS22では、三方弁25がイオン交換器26側へ全開となるように駆動され、ステップS21で算出された不足分の冷却水がイオン交換器26を流通する。これにより、冷却ポンプ22を始動させて冷却水を循環させたときに、冷却水の導電率が上限導電率σUL以下になることが保証されるので、既述したステップS10に進み、FC始動可能時間βが算出される。
ステップS11では、三方弁25がラジエータ23側へ全開となるように駆動されるか、あるいは既にラジエータ23側へ全開となっている場合にはその状態が維持されたまま、冷却ポンプ22が所定の回転数で起動される。
そして、冷却ポンプ22の運転がFC始動可能時間βだけ持続されると(ステップS12)、本制御は終了する。
本発明は、燃料電池車等の燃料電池システムに適用して好適である。
1…燃料電池システム、10…燃料電池、22…冷却ポンプ、23…ラジエータ、25…三方弁、26…イオン交換器、30…制御装置(第1の推定手段、第2の推定手段)

Claims (3)

  1. 燃料電池と、冷却ポンプとラジエータとイオン交換器とを有して前記燃料電池に冷却水を循環供給する冷媒配管系と、を備え、前記冷媒配管系が前記冷却水をその温度に応じてラジエータを迂回又は経由するように循環させることが可能な燃料電池システムであって、
    前記冷却水の導電率を推定する第1の推定手段と、
    前記冷却水の温度と前記冷却ポンプの回転数とに基づき冷却水流量を算出する冷却水流量算出手段と、
    前記イオン交換器を通過した前記冷却水流量の積算値が所定値以下である場合に、前記冷却水流量算出手段により算出される不足分の冷却水流量を前記イオン交換器に流通させる冷却水供給手段と、
    前記第1の推定手段によって推定された導電率が所定の上限導電率よりも高い場合に、前記冷却ポンプを起動してから前記推定された導電率が前記上限導電率以下になるまでの時間を推定する第2の推定手段と、を備え、
    前記燃料電池の始動時に前記冷却水の導電率が前記上限導電率よりも高い場合であって、前記イオン交換器を通過した前記冷却水流量の積算値が所定値以下である場合に、前記冷却水流量算出手段により算出される不足分の冷却水流量を前記冷却水供給手段により前記イオン交換器に流通させ、その後、前記冷却ポンプを起動してから前記第2の推定手段によって推定された時間を経過した後に前記燃料電池を始動する制御を実施する、燃料電池システム。
  2. 前記制御の実施要否は、当該制御を実施した積算回数に応じて判断される、請求項1に記載の燃料電池システム。
  3. 前記制御の実施要否は、前記第1の推定手段によって推定された前記ラジエータ内の導電率に応じて判断される、請求項1又は2に記載の燃料電池システム。
JP2012024359A 2012-02-07 2012-02-07 燃料電池システム Active JP5768980B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012024359A JP5768980B2 (ja) 2012-02-07 2012-02-07 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012024359A JP5768980B2 (ja) 2012-02-07 2012-02-07 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2013161721A JP2013161721A (ja) 2013-08-19
JP5768980B2 true JP5768980B2 (ja) 2015-08-26

Family

ID=49173803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012024359A Active JP5768980B2 (ja) 2012-02-07 2012-02-07 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5768980B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750205B (zh) * 2016-08-24 2021-12-21 美商維蘇威美國公司 具有包覆的金屬層的冶金容器內襯及將熔融金屬之氧化縮減到最小的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695309B2 (ja) * 2000-11-02 2005-09-14 松下電器産業株式会社 固体高分子形燃料電池システムおよびその運転方法
JP4066361B2 (ja) * 2003-07-30 2008-03-26 トヨタ自動車株式会社 燃料電池の冷却システム
JP2005209435A (ja) * 2004-01-21 2005-08-04 Nissan Motor Co Ltd 燃料電池システム
JP2005259528A (ja) * 2004-03-11 2005-09-22 Nissan Motor Co Ltd 燃料電池システム
JP2009151992A (ja) * 2007-12-19 2009-07-09 Toyota Motor Corp 燃料電池システム
JP2010186647A (ja) * 2009-02-12 2010-08-26 Toyota Motor Corp 燃料電池の調温システム

Also Published As

Publication number Publication date
JP2013161721A (ja) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5309603B2 (ja) 燃料電池システム及びその運転方法
JP5056239B2 (ja) 燃料電池システム
US10283791B2 (en) Fuel cell system
WO2010150337A1 (ja) 燃料電池システム及び燃料電池システムにおける始動時制御方法
CA2911579C (en) A cooling system for a fuel cell system
JP2011014429A (ja) 燃料電池システム
JP5061526B2 (ja) 燃料電池システムおよびこの制御方法
JP5123568B2 (ja) 燃料電池システムおよびその空気流量制御方法
JP6172115B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP5023684B2 (ja) 燃料電池システム及び燃料電池の起動方法
JP5092335B2 (ja) 燃料電池システム及び燃料電池システム制御方法
CA2926746A1 (en) Fuel cell system and method for controlling fuel cell system
JP5168719B2 (ja) 燃料電池システム
EP2012385A1 (en) Fuel cell system and vehicle mounted with fuel cell system
JP5610029B2 (ja) 燃料電池システム
JP5083603B2 (ja) 燃料電池システム
JP2010129353A (ja) 燃料電池システムの起動制御装置
JP5768980B2 (ja) 燃料電池システム
JP5140958B2 (ja) 燃料電池システムおよびこの制御方法
KR101350184B1 (ko) 연료전지 스택의 작동온도 제어방법
JP5065655B2 (ja) 燃料電池システム
JP2010198786A (ja) 燃料電池システム
JP5060105B2 (ja) 燃料電池システム
KR101350187B1 (ko) 연료전지 시스템의 냉시동 프리컨디셔닝 제어방법
JP2009016282A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150609

R151 Written notification of patent or utility model registration

Ref document number: 5768980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151