JP5749809B2 - 磁性体評価装置およびその方法 - Google Patents

磁性体評価装置およびその方法 Download PDF

Info

Publication number
JP5749809B2
JP5749809B2 JP2013542920A JP2013542920A JP5749809B2 JP 5749809 B2 JP5749809 B2 JP 5749809B2 JP 2013542920 A JP2013542920 A JP 2013542920A JP 2013542920 A JP2013542920 A JP 2013542920A JP 5749809 B2 JP5749809 B2 JP 5749809B2
Authority
JP
Japan
Prior art keywords
magnet
eddy current
coil
detection coil
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013542920A
Other languages
English (en)
Other versions
JPWO2013069467A1 (ja
Inventor
駒井 正
正 駒井
鈴木 裕
裕 鈴木
清 吉田
清 吉田
浩平 室田
浩平 室田
国朋 石黒
国朋 石黒
泰久 小池
泰久 小池
秀夫 茂木
秀夫 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Denshijiki Industry Co Ltd
Original Assignee
Nissan Motor Co Ltd
Denshijiki Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Denshijiki Industry Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013542920A priority Critical patent/JP5749809B2/ja
Publication of JPWO2013069467A1 publication Critical patent/JPWO2013069467A1/ja
Application granted granted Critical
Publication of JP5749809B2 publication Critical patent/JP5749809B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/9026Arrangements for scanning by moving the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は永久磁石を評価するための磁性体評価装置およびその方法に関し、詳しくは、磁石に発生する渦電流を検出して永久磁石の良不良を評価する磁性体評価装置およびその方法に関する。
従来、磁石の渦電流損を評価する装置として、断熱された試料室の中に被評価磁石を入れて、この被評価磁石に磁場をかけて被評価磁石に取り付けた熱電対により温度を測定する装置がある(たとえば、特許文献1)。この従来装置は、渦電流損を、その損出により発生した熱として捕らえることで磁石を評価している。
特開平2003−234225号公報
従来の技術では、渦電流損を、それにより発生した熱として捕らえるために周囲の温度変化を遮断するために十分に断熱された試料室を設ける必要がある。また、試料室を介して磁場を試料室内に置かれた磁石に届かせるために大型の磁場発生装置が必要となる。
このため従来の装置は、装置全体の大型化が避けられず、装置コストが高くなる一因となっていた。
そこで本発明の目的は、より簡易な構成で磁石に発生する渦電流を検出して、磁石を評価することのできる磁性体評価装置と、この装置を用いた磁性体評価方法を提供することである。
上記目的を達成するための本発明による磁性体評価装置は、複数の磁石片を絶縁物をはさんで接合した磁石(被評価磁石)を評価する装置である。この装置は、磁界を発生させる励磁コイルと、磁界によって被評価磁石の磁石片に発生する渦電流を検出するための検出コイルを備える。励磁コイルは、被評価磁石の少なくとも一つの磁石片と当該一つの磁石片に隣接する他の磁石片との間の絶縁物を含む領域に相当する範囲の大きさの磁界を発生させる。検出コイルは、そのコイル径が、複数の磁石片が並ぶ方向における一つの磁石片の長さよりも小さい。
また、上記目的を達成するための本発明による磁性体評価方法は、複数の磁石片を絶縁物をはさんで接合してなる磁石(被評価磁石)を評価する方法である。この方法は、被評価磁石の少なくとも一つの磁石片と当該一つの磁石片に隣接する他の磁石片との間の絶縁物を含む領域に相当する範囲の大きさの磁界を発生させる励磁コイルと、磁石片が並ぶ方向における一つの磁石片の長さよりも小さなコイル径の検出コイルとを有する磁性体評価装置を用いる。この方法においては、被評価磁石に発生する渦電流と発熱量の関係から渦電流量のしきい値をあらかじめ求めておき、励磁コイルにより発生させた磁界を被評価磁石に印加して、検出コイルが検出した渦電流量がしきい値を超える場合に不良であると判定する。
また、上記目的を達成するための本発明による磁性体評価方法は、複数の磁石片を絶縁物をはさんで接合してなる磁石(被評価磁石)を評価する方法である。この方法は、被評価磁石の少なくとも一つの磁石片と当該一つの磁石片に隣接する磁石片との間の絶縁物を含む領域に相当する範囲の大きさの磁界を発生させる励磁コイルと、磁石片が並ぶ方向における一つの磁石片の長さよりも小さなコイル径の検出コイルと、磁石を磁石片が並ぶ方向に磁界の中を連続的に移動させる移動部とを有する磁性体評価装置を用いる。そしてこの方法は、励磁コイルにより発生させた磁界の中を移動部により被評価磁石を移動させて、検出コイルが検出した渦電流量の変化に特異点がある場合に不良であると判定する。
励磁コイルは、複数の磁石片を絶縁物をはさんで接合してなる磁石(被評価磁石)の少なくとも一つの磁石片と当該一つの磁石片に隣接する他の磁石片との間の絶縁物を含む領域に相当する範囲の大きさの磁界を発生させるものとし、検出コイルのコイル径を複数の磁石片が並ぶ方向における一つの磁石片の長さよりも小さなものとした。これにより、被評価磁石の中の一つの磁石片で発生する渦電流のみを、直接かつ確実に検出することができる。このように渦電流を直接検出しているため、従来のような断熱材に覆われた試料室が不要となり装置を小型化することができる。
本発明を適用した磁性体評価装置の構成を説明するための図であり、(a)は正面図、(b)は(a)図中の矢印B方向から見た側面図であり、(c)は検出コイル系統のブロック図である。 被評価磁石を説明するため概略図である。 励磁コイルと検出コイルの関係について説明するための平面図である。 評価方法の手順を示すフローチャートである。 実施例1で評価のために用いたサンプル磁石を説明するための説明図である。 大きさの異なる検出コイルで渦電流を計測した値と、温度変化の相関をとったグラフである。 断熱材により囲われた容器内で交番磁界をかけて計測した飽和温度と、検出コイルで検出した電圧との関係を示すグラフである。 実施例3で評価のために用いたサンプル磁石を説明する説明図である。 実施例3における渦電流の測定結果を示すグラフである。 コイル径の異なる複数の検出コイルを設けた場合の検出コイル系統のブロック図である。
以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面における各部材の大きさや比率は説明の都合上誇張されており、実際の大きさや比率とは異なる。
図1は、本発明を適用した磁性体評価装置の構成を説明するための図であり、(a)は正面図、(b)は(a)図中の矢印B方向から見た側面図であり、(c)は検出コイル系統のブロック図である。
この磁性体評価装置1は、C字形のヨーク11、励磁コイル12、検出コイル13を有する。また、ヨーク11のC字形の分割部分に被評価磁石を連続的に移動させるコンベア14を有する。また、検出コイル13のコイル線両端には電圧計31(図1(c)参照)が接続されている。電圧計31の計測値は、磁石の良不良を判定するためコンピュータ32(図1(c)参照)に入力されている。コンピュータ32は判定部である。
ヨーク11は磁路を形成するためのものである。ヨーク11は鉄心であり、フェライト板などを積層したものなど磁路を形成する材料として一般的に用いられているものでよい。
励磁コイル12は、ヨーク11に巻かれている。この励磁コイル12に高周波電流(交番電流)を流すことで、ヨーク11を通してC字形の分割部分(評価位置15)にも交番磁界が発生する。励磁コイル12は評価位置15にできるだけ効率よく強力な磁界を発生させるために、ヨーク11のC字形の分割部分の近傍(ヨーク11の分割部分)からはみ出さないように巻かれている。
このC字形の分割部分に被評価磁石を通すことで、励磁コイル12によって発生している交番磁界による磁束が被評価磁石を通過する。このとき被評価磁石には、交番磁界を打ち消す方向の渦電流が発生する。
励磁コイル12に印加する高周波電流は、評価する磁石の用途に応じて適宜設定すればよい。たとえば、電気自動車やハイブリット自動車などの駆動用モータに用いられる磁石を評価する場合、モータの最大回転数相当の周波数およびその高調波に相当する周波数となる高周波電流を印加することで、モータに実装された状態に近い状態で磁石の渦電流損を評価することができる。
一方、励磁コイル12に印加する高周波電流の電圧、すなわち発生させる交番磁界の強度は、検出コイル13にて渦電流を検出できる程度であればどのような値でもよい(詳細後述)。
高周波電流は、被評価磁石が評価位置15を通過する間は継続して励磁コイル12に印加する。
検出コイル13は、被評価磁石に発生した渦電流を検出するための少なくとも一つのコイルを備える。被評価磁石に渦電流が発生すると、その渦電流によって検出コイル13に誘導電流が発生する。この検出コイル13のコイル線両端に電圧計31を取り付けておけば検出コイル13に発生した電圧を計ることができ、その値が渦電流量となる。渦電流によって生じる損出(渦電流損)は発熱現象となる。そこで検出コイル13に流れた渦電流量(電圧値)と発熱量との関係を、あらかじめ検量線を作成しておいて換算することで、渦電流量から渦電流損による発熱量を推定することができる(詳細後述)。なお、検出コイル13に発生した電流は、電圧計以外にも、たとえば電流計を取り付けて検出コイルに流れる電流値として検出してもよい。また、シンクロスコープを検出コイル13に接続して、電圧変動波形を直接見られるようにしてもよい。
この検出コイル13は、被評価磁石の連続的な移動を妨げないクリアランスを保って、励磁コイル12と同軸となるように配置する。
コンベア14(移動部)は、ベルトコンベアなどであり、被評価磁石を載せて、被評価磁石が評価位置15を通過するように連続的に一定の速度で移動する。このベルトコンベアは、少なくとも磁場内に入る部分は、非磁性体かつ非導電体によって形成しておく。これは、磁場内に磁性体や導電体が入ってしまうと、それらにより磁界が乱れたり、それらにから発生した渦電流により計測誤差が起こるためである。このため、コンベアの材質としては、たとえばゴムや樹脂素材などが好ましい。
コンピュータ32(渦電流量判定部および渦電流変化判定部)は、検出コイル13に発生した電流による電圧を検出し、被評価磁石の良不良を判定する。この判定方法の詳細については後述するが2つの判定方法を用いている。第1の判定方法は、あらかじめ発熱量と検出コイル13により検出される電圧値との相関関係を示す検量線を作成しておいて、検量線のなかの電圧値にしきい値を設定し、しきい値を超えた場合に不良と判定する。この場合コンピュータ32は渦電流量判定部となる。第2の判定方法は渦電流の変化の仕方から得意な変動がないか否かにより被評価磁石の良不良を判定する。この場合コンピュータ32は渦電流変化判定部となる。
コンピュータ32は、一般的なコンピュータ同様に、ディスプレイを備え判定結果を表示させることができるようになっている。また、通信手段を備えて、工程管理用のホストコンピュータや判定結果を蓄積するためのサーバなどと接続されていてもよい。
ここで、本実施形態において評価対象としている被評価磁石について説明する。
図2は、被評価磁石を説明するため概略図である。
被評価磁石は、図2(a)に示したように、元は一体的な一つの永久磁石100を、図2(b)に示すように、複数の磁石片101に分割した後、図2(c)に示すように、再び分割面において再結合した磁石102である。接合には、分割面に接着剤を塗布して接着して一体化する。そのほか、分割面を酸化して絶縁膜を形成したり、絶縁材をはさんだりした上で、樹脂モールドにより一体化する形態もある。したがって、被評価磁石は、接着の場合も樹脂モールドの場合も接合面において磁石片同士が絶縁物103をはさんで接合されたものとなっている。なお、当然のことではあるが接合後の磁石102も永久磁石である。
このような一つの永久磁石100を分割後に再接合した磁石102は、たとえば特開2009−33958号公報や特開2009−142081号公報に開示されているものである。なお、本実施形態においては、これら公報に記載されたような、元々一つの磁石を分割した後、接合した磁石以外にも、個別に形成された磁石片を絶縁物を介して一体化した永久磁石でも評価することができる。
上述した被評価磁石の形態を踏まえて、本実施形態の磁性体評価装置1における励磁コイル12と検出コイル13の関係について説明する。
図3は、励磁コイルと検出コイルの関係について説明するための平面図である。
被評価磁石は、上述したように複数の磁石片101が接続されて一体化した形態である。そして本実施形態では、一体となった複数の磁石片101の一つひとつについての渦電流を検出する。
励磁コイル12は、少なくとも一つの磁石片とその一つの磁石片に隣接する磁石片との間の絶縁物103を含む領域に相当する範囲の大きさの交番磁界を発生させることができればよい。このような励磁コイル12の大きさとすることで、図3に示すように、励磁コイル12によって生じる交番磁界は、評価する磁石片101とそれに隣接する磁石片101の一部の領域を覆うようになる。このため、ヨーク11もその断面(C字形の分割部分の端面)は、隣接する2つの磁石片101を含む範囲より大きくする。これにより少なくとも評価する一つの磁石片101とそれに隣接する磁石片101の一部が交番磁界の中に入り、評価対象の磁石片101とともにそれに隣接して、評価対象の磁石片101に影響を及ぼす隣接する磁石片101の一部にも渦電流を発生させることができる。
なお、交番磁界の大きさの上限は特にないが、あまり大きいと励磁コイル12が大きくなって装置の小型化の妨げとなる。そこで、たとえば、隣接する2つの磁石片101を含む領域に相当する範囲の大きさの交番磁界を発生させる程度とすれば、確実に一つの磁石片101とそれに隣接する磁石片101の一部に交番磁界をかけることができるので好ましい。隣接する2つの磁石片101を含む領域に相当する範囲の大きさの交番磁界を発生させるために必要な、より具体的な励磁コイルの大きさとしては、磁石片が並ぶ方向における一つの磁石片101の長さの2/3〜2倍の範囲であることが好ましい(図5を参照すれば、励磁コイルの大きさは、図5(b)の磁石片101の長さx1×2/3〜x1×2の範囲となる)。これは、励磁コイル12の大きさが一つの磁石片101の長さの2/3未満であると、磁界の大きさが十分ではなく、2倍を超えてしまうと装置が大型化して好ましくないためである。
一方、検出コイル13は、評価する磁石片101とそれに隣接する磁石片101が正常な状態において発生した渦電流のうち、評価する磁石片101の渦電流のみを検出する大きさにする。具体的には、図3に示すように、検出コイル13のコイル径を、磁石片が並ぶ方向における、評価する一つの磁石片101の長さ以下の大きさとする(図5を参照すれば、検出コイル13のコイル径は図5(b)の磁石片101の長さx1以下となる)。
検出コイル13は、ヨーク11のC字形の分割部分の端面に、励磁コイル12と同一軸上となるように設けられている。同一軸上とは、励磁コイル12の磁石片101が並んでいる方向のコイル径の中心と検出コイル13の磁石片101が並んでいる方向のコイル径の中心とが同じ位置であるということである。検出コイル13を励磁コイル12と同一軸上に配置することで、磁石片101に発生した渦電流を確実に検出することができる。ただし、同一軸上といっても機械的な配置誤差として、たとえばコイル線の太さ程度であれば許容範囲である。また、実際の装置製作に当たっては、たとえば励磁コイル12の位置に対して検出コイル13の位置を移動させて、最も渦電流が検知できる位置に配置するようにしてもよい。
これにより、評価する磁石片101が正常で、隣接する磁石片101も正常な場合は評価する磁石片101のみの渦電流を検出することができる。一方、評価する磁石片101または隣接する磁石片101のいずれかに異常がある場合は、渦電流が正常時と異なるため、複数の磁石片101を一体化した被評価磁石に異常があることがわかる。評価する磁石片101または隣接する磁石片101のいずれかに異常がある場合とは、評価する磁石片101が正常で隣接する磁石片101が異常な場合、評価する磁石片101が異常で隣接する磁石片101が異常な場合などである。また、磁石片101の異常とは、たとえば、一つの磁石片101内部のクラックや磁石片外周の欠け、また、隣接している磁石片同士の接合面での絶縁不良などである。このような異常があると、一つの磁石片101内で発生する渦電流が他の磁石片101と異なったり、複数の磁石片101をまたいで大きな渦電流が発生したりして、それが原因で大きな発熱などが起こる。
この検出コイル13は、一つのヨーク端面内にコイル径(磁石片101が隣接する方向の大きさ)の異なるものを複数設けるようにしてもよい。これにより被評価磁石の磁石片101の大きさが変わっても、磁石片101の大きさに合わせて、使用する検出コイル13を切り替えるだけで即座に対応することができる。
図10は、このコイル径の異なる複数の検出コイルを設けた場合の検出コイル系統のブロック図である。使用する検出コイル13を切り替えるためには、たとえば図10に示すように、複数の検出コイル131,132,133と電圧計31との間に、接続を切り替えるスイッチ135を取り付けておけばよい。
次に、この磁性体評価装置1を用いた磁石102の評価方法を説明する。図4は、評価方法の手順を示すフローチャートである。
まず、オペレーターは、励磁コイル12に高周波を流して交番磁界を形成する。そして、その状態でコンベア14を動作させて、交番磁界の中、すなわち評価位置15に被評価磁石を通過させる(S1)。
オペレーターは、被評価磁石を通過させながら検出コイル13に発生した誘導電流を電圧計31により計測する。電圧計31の値は、コンピュータ32に入力される(S2)。コンピュータ32は、入力された電圧計31の値から、被評価磁石の良否を判定する(S3)。この判定は、検出コイルの電圧としきい値との比較、電圧変動波形による評価である(詳細後述)。ここで異常がなければその被評価磁石は良品とする(S4)。一方、異常があれば、その被評価磁石全体を不良品とする(S5)。
このような評価の流れは、たとえばコンピュータ32によって制御することができる。すなわち、コンピュータ32が、まず、励磁コイル12およびコンベア14を起動させる。そしてコンピュータ32は、検出コイル13に発生した誘導電流を電圧計31により計測した値を取り込んで、良否判定を実行するのである。なお、コンピュータ32以外のコンピュータが励磁コイル12およびコンベア14の起動、停止などを制御して、コンピュータ32は電圧計31の値を取り込んで判定のみするようにしてもよい。
このようにして本実施形態の磁性体評価装置1は、連続的に被評価磁石の評価を行うことが可能となっている。
[実施例]
実際に実施形態の渦電流評価装置を試作して、分割後に接合した磁石の評価を行った。
(実施例1)
実施例1は、磁石片101の大きさと検出コイル13のコイル径の関係を評価した。
図5は、実施例1で評価のために用いたサンプル磁石を説明するための説明図である。
サンプル1(非分割磁石)は、図5(a)に示すように、分割していない1つの永久磁石100である。大きさは、図示するように、長さ(図中x)12.4mm、幅(図中y)21.4mm、厚さ2.35mmである。同じ大きさ、同じ特性の永久磁石100をサンプル1として複数個用意した。
サンプル2(分割再結合磁石)は、図5(b)に示すように、サンプル1と同じ特性、同じ大きさの磁石を2分割し、分割面全面に接着剤を塗布して接着して再結合した永久磁石102である。接着剤が絶縁物103となっている。これを複数用意した。複数のサンプル2の磁石102は、再接合後の全体長さ(図中x)が12.35〜12.5mmである。幅(図中y)および厚さはサンプル1と同じである。分割後の磁石片101の長さ(図中x1)は6.15〜6.20mmである。再接合後の長さxがサンプル1と比べて変化しているのは、サンプル1と同形状の磁石を分割した後に接着剤により接着したため、接着剤の塗布分だけわずかに長くなったためである。
なお、サンプル1および2は、それぞれの複数の磁石にいずれも異常のないことを目視により確認した。
そして渦電流の計測は、検出コイル13の大きさを変えて行った。
第1検出コイルは、分割した磁石片101を接合したことにより複数の磁石片101が並ぶ方向(図5中のxと同じ方向)のコイル径が、ひとつの磁石片101の長さよりも大きな検出コイル13である。幅方向(図5中のyと同じ方向)は磁石102の幅より小さい。具体的には、コイル内径の長さ6mm、同幅18mm、コイル外径の長さ6.3mm、同幅18.3mm、コイル線直径0.08mm、コイル線巻数2巻きである。
第2検出コイルは、分割した磁石片101を接合したことにより複数の磁石片101が並ぶ方向(図5中のxと同じ方向)の一つの磁石片101の長さx1よりも小さな検出コイル13である。幅方向(図5中のyと同じ方向)は磁石102の幅より小さい。具体的には、コイル内径の長さ1mm、同幅6mm、コイル外径の長さ2.13mm、同幅7.13mm、コイル線直径0.08mm、コイル線巻数8巻きである。
励磁コイル12およびヨーク11は、サンプル1および2の磁石全体が励磁コイル12によって発生する交番磁界の中に入る大きさとした。
図6は、大きさの異なる検出コイル13で渦電流を計測した値と、昇温速度の相関をとったグラフである。縦軸は検出コイル13で渦電流計測値(電圧値)であり、横軸は昇温速度である。昇温速度の計測は、渦電流を計測したサンプルを、別途、従来技術(特許文献1)同様に断熱材により囲われた容器内に入れて磁界をかけ、磁石102に取り付けた熱電対により温度を計測することにより行った。磁石102は磁界をかけることで渦電流が発生し、ある程度温度が上昇すると飽和温度に達しそれ以上上昇しなくなる。昇温速度は、はじめの温度(室温)から飽和温度までの温度差を、磁界をかけてから飽和温度に到達した時点までの時間で割った値である。
図6において、三角印は第1検出コイルによる結果であり、丸印は第2検出コイルによる結果である。
昇温速度は、発生する渦電流が大きいほど速くなり、渦電流は特性が同じ磁石102であれば大きさの大きい方が多く発生する。したがって、図6において、サンプル1群として丸で囲んだ方の昇温速度が、サンプル2群として丸で囲んだ方より速くなっている。
図6の結果から、第1検出コイルを使用した場合には、渦電流計測値と昇温速度との相関が求められない。一方、第2検出コイルを使用した場合には、渦電流計測値と昇温速度との相関があり、検出された渦電流計測値に対応して昇温速度が異なっている。つまり、サンプル1に対しては、渦電流の電圧が正側で昇温速度が速い部分に集まっている。一方、サンプル2は、渦電流の電圧が負側で昇温速度が遅い部分に集まっている。
これらの結果から、第1検出コイルでは、コイル径の大きさが磁石片101の隣接方向について一つの磁石片101より大きさため、サンプル2のように分割再結合した磁石102の場合、それぞれの磁石片101ごとの渦電流を分離して計測できていない。このためサンプル1もサンプル2も同じような傾向の渦電流として計測された結果になっている。
一方、第2検出コイルは、コイル径の大きさが磁石片101の隣接方向について一つの磁石片101より小さいため、分割した磁石片101ごとに渦電流を分離して計測できている。したがって、サンプル1とサンプル2で、異なる渦電流の傾向をはっきりと計測している。
さらに検出コイル13の大きさを変えて測定した。検出コイル内径の長さ(分割磁石片の隣接する方向)1mm、幅12mm(第3検出コイルとする)。検出コイル内径の長さ(分割磁石片の隣接する方向)1mm、幅18mm(第4検出コイルとする)。コイル線の直径および巻き数は、第3および第4検出コイル共に第2検出コイルと同様、コイル線直径0.08mm、コイル線巻数8巻きである。これらの第3および第4検出コイルを用いた場合も、第2検出コイルと同様の渦電流計測値と昇温速度との相関があった。この結果から、検出コイル13のコイル径は、分割した磁石片101が並ぶ方向において一つの磁石片101より小さければ、幅方向(磁石片101が隣接していない方向)の大きさは、いかような大きさであってもよいことがわかった。
(実施例2)
上記サンプル2と同様に、分割再結合した形態のサンプルを、大きさを違えて複数個用意した。つまり元々一つの磁石を2分割して、これを再び接着剤で接合した分割接合磁石102を、大きさだけ違えて複数個用意した。これをサンプル3とする。なお、サンプル3の複数の磁石102はいずれも異常のないことを目視により確認した。
この複数個のサンプル3を、別途、従来技術(特許文献1)同様に断熱材により囲われた容器内に入れて交番磁界をかけ、磁石102に取り付けた熱電対により温度を計測した。このときの交番磁界の強さは、被評価磁石が車両のモータに使用されるときと同じ強さおよび周波数となるようにした。
そして、温度測定を行ったものと同じサンプル3を実施例1の第2検出コイル、すなわち、サンプル3の各磁石片101よりも小さな検出コイル13を用いて、渦電流によって検出コイル13に発生した電圧を検出した。なお、励磁コイル12およびヨーク11は一つの磁石片101よりも大きくした。これにより励磁コイル12によって発生する交番磁界の中に評価対象の磁石片101が全て入り、それに隣接する両側の磁石片101の一部も入る大きさとした。このときの交番磁界の強さは、あくまでも評価のためのものであるため、被評価磁石が車両のモータに使用されるときよりも弱く、検出コイル13が検出可能な程度の大きさの渦電流が磁石片101に発生する程度としている。
図7は、断熱材により囲われた容器内で交番磁界をかけて計測した飽和温度と、検出コイルで検出した電圧との関係を示すグラフである。縦軸は飽和温度であり上に行くほど温度が高い。横軸は磁石片一つの渦電流計測値(電圧の絶対値)であり、右に行くほど電圧の絶対値が高い。
既に説明したように、磁石片101の大きさと渦電流の発生量は、磁石片101が大きくなるほど大きくなり、それに伴って発熱量も多くなる。したがって、検出される飽和温度も磁石片101の大きさが大きいほど大きくなる。
図7に示すように、渦電流量(電圧)が大きいほど飽和温度が高くなっている。このことから、図7を検量線として用いて、渦電流の計測値(検出コイルの電圧)から、渦電流損に起因する発熱量(温度)を推定することができる。
この検量線を用いて、磁石102を実際に使用したときに許容できる温度(T)のときの渦電流検出値(電圧)にしきい値(th)を設ければ、そのしきい値を超える渦電流を検出したときには不良と判断することができる。
このように検出コイル13により計測した渦電流量と発熱量との相関関係をあらかじめとっておいて検量線作成しておけば、実際に評価する際に発生させる交番磁界は、検出コイル13で磁石片101に生じた渦電流を検出できる程度のものでよくなる。このため、実際の使用条件と同程度の大きな磁界をかける必要がなくなるのである。
(実施例3)
実施例3は故意に異常を作った磁石を製作して渦電流を計測した。図8は、実施例3で評価のために用いたサンプル磁石を説明する説明図である。
サンプル4は、図8(a)に示すように、元々一つの永久磁石を複数の磁石片101に分割し、分割面を接着剤により接着した磁石102である。接着剤が絶縁物103となっている。そして、複数の磁石片101を接続している接着剤を部分的に塗布しないことで、絶縁破壊された部分1か所を作り出した(絶縁破壊部分113)。
サンプル5は、図8(b)に示すように、元々一つの永久磁石を複数の磁石片101に分割し、そのうちの一つの磁石片121について外周の一部を欠いて欠損部分122を作った。その後、他の磁石片101と接着した。接着部に絶縁破壊はない。
評価は、実施例1の第2検出コイル同様、各サンプル内の一つの磁石片101よりも小さな検出コイル13を用いて、渦電流により検出コイル13に発生した電圧を計測した。なお、励磁コイル12およびヨーク11は一つの磁石片101よりも大きくした。これにより励磁コイル12によって発生する交番磁界の中に評価対象の磁石片101が全て入り、それに隣接する両側の磁石片101の一部も入る大きさとした。
そして、磁性体評価装置1の評価位置15に対して、各サンプルを、複数の磁石片101が接合されている方向に連続的に移動させて検出コイル13の電圧値を測定した。
図9は実施例3における渦電流の測定結果を示すグラフである。
サンプル4の評価結果を図9(a)に示す。サンプル4を連続的に移動させているため、検出コイル13の電圧を連続的に計測すると、計測された電圧値は変動したグラフとなる。これはサンプル4を連続的に移動させているために、検出される渦電流が強くなったり弱くなったりするためである。そして各波の振幅は、ほとんど同じであるが、一部で振幅が大きくなると共に電圧が大きくなった部分がある。この振幅および電圧値が大きくなった部分は、サンプル4の絶縁破壊部分113の位置と一致する。
サンプル5の評価結果を図9(b)に示す。サンプル5でも、検出コイル13の電圧が変動したグラフになる。これはサンプル4と同じで、サンプル5を連続的に移動させているために、検出される渦電流が強くなったり弱くなったりするためである。そして各波の振幅は、ほとんど同じであるが、一部で電圧が小さくなった部分がある。この電圧が小さくなった部分は、サンプル5の欠損部分122を作った磁石片121の位置と一致する。
なお、サンプル4も5も、サンプルの移動速度は同じであり、図9(a)および(b)のグラフの周期(単位時間当たりの山(または谷)の数)は移動速度によって異なる。移動速度が速ければ図9(a)および(b)の周期は短くなる(単位時間当たりの山(または谷)の数が多くなる)。一方、移動速度が遅ければ図9(a)および(b)の周期は長くなる(単位時間当たりの山(または谷)の数が少なくなる)。
実際の判定評価はコンピュータ32が行う。このため、被評価磁石を移動させる移動速度は、磁石片101に生じた渦電流により検出コイル13に誘導電流が流れて、その電圧の変動をコンピュータ32が認識できる速さにまで速くすることが可能である。もちろん、この電圧変動の波形を人が見て判断することも可能である。その場合に被評価磁石を移動させる移動速度は、検出される電圧変動を人が波形として認識できる程度の速さにする必要がある。
この実施例3の結果から、被評価磁石を連続的に移動させながら渦電流を検出し、そのときの電圧変化の波に特異点、すなわち振幅が大きく変動したり、検出された電圧値が他の山や谷の電圧値と比べて大きく変動したりした場合には異常のあることがわかる。
以上説明した実施例1〜3の結果から以下のようにして分割接合磁石の評価を行うことができる。
第1に、検出コイル13のコイル径は、被評価磁石である分割接合磁石の各磁石片101を接合した方向については、磁石片101よりも小さくする。つまり、検出コイル13の大きさを一つの磁石片101からの渦電流のみを検出し、それに隣接する磁石片101からの渦電流は検出しない大きさとするのである(実施例1参照)。
第2に、検出コイル13によって検出される渦電流量(電圧値)と発熱量(飽和温度)の関係から検量線を求めておく。そして検出コイル13によって検出される渦電流量に検量線から求めたしきい値を設定して、当該しきい値を超えた場合は不良とする(実施例2参照)。これを第1の判定方法という。
第3に、被評価磁石を連続的に移動させながら検出コイル13によって検出される渦電流量(電圧値)の変化の波形に特異点がある場合不良とする(実施例3参照)。これを第2の判定方法という。なお、評価の際の特異点は、たとえば多くのサンプルによる評価結果を集積して、統計的に振幅や電圧値が他の波形と比較して何パーセント変化した場合に異常とするかを決めておくとよい。
以上説明した実施形態および実施例によれば以下の効果を奏する。
(1)複数の磁石片101を絶縁物103をはさんで接合してなる磁石102を評価する際に、励磁コイル12により、少なくとも一つの磁石片101とこの一つの磁石片101に隣接する磁石片101との間の絶縁物を含む領域に相当する範囲の大きさの交番磁界を発生させる。そして、この交番磁界により磁石片101に発生する渦電流を検出するための検出コイル13としては、コイル径が複数の磁石片101が並ぶ方向の一つの磁石片101の長さよりも小さなものとした。これにより、複数の磁石片101を絶縁物103をはさんで接合してなる磁石102の中の一つの磁石片101で発生する渦電流のみを、直接かつ確実に検出することができる。したがって、渦電流を直接検出しているため、従来のような断熱材に覆われた試料室が不要となり、装置を小型化することができる。このため装置コストを低減することができるようになる。
また、検出コイル13を一つの磁石片101より小さくして、複数の磁石片101が絶縁物103を介して接合されていても、確実に一つひとつの磁石片に発生する渦電流を検出することができる。したがって、磁石片同士の間の絶縁物の欠損による絶縁破壊による不良、一つひとつの磁石片101に存在する欠損やクラック(内部損傷)などによる不良を検出することができる。
(2)検出コイル13で検出する渦電流量(電圧)と、発熱量(飽和温度)との相関関係を示す検量線をあらかじめ作成しておいて、飽和温度が不良となる渦電流量のしきい値を求めておく。そして検出された渦電流量がこのしきい値を超える場合に不良と判定することとした。このため、発生させる渦電流自体は小さくてもそれによる発熱量は推定できるようになる。したがって、被評価磁石に対して実際に用いられる状態と同じような強い交番磁界をかける必要がなくなるので、励磁コイル12を小さくすることができ、装置の小型化に寄与する。また、交番磁界を弱くすることができるということは、励磁コイル12により発生させる磁界が弱いということである。したがって周辺装置を磁界からシールドするのも容易になり、周辺装置を含めた評価工程に用いる全体の装置コストを低減することもできるようになる。
(3)被評価磁石を連続的に移動させながら交番磁界をかけて、そのとき発生する渦電流を検出コイル13により検出する。そして、検出した渦電流量(電圧)の波形から特異点がある場合にその磁石102を不良と判定することとした。これにより被評価磁石を連続的に移動させながら評価を行うことができる。このため従来技術のように、断熱された試料室内に一つずつ被評価磁石を入れて評価する場合と比較して、試料室内に被評価磁石を出し入れする時間が不要となるので、格段に評価に係る時間を短縮することができる。また、検出した渦電流量(電圧)の波形から特異点を見つけて不良を判定するため、被評価磁石に対して実際に用いられる状態と同じような強い交番磁界をかける必要がなくなり、励磁コイルを小型化できるので、装置を小型化することができる。また、交番磁界を弱くすることができるということは、励磁コイル12により発生させる磁界が弱いとゆうことである。したがって周辺装置を磁界からシールドするのも容易になり、周辺装置を含めた評価工程に用いる全体の装置コストを低減することもできるようになる。
(4)検出コイル13として、複数の磁石片101が並ぶ方向のコイル径が異なる複数のコイルを有するようにして、評価対象となる磁石片101の複数の磁石片101が並ぶ方向の長さに応じて、この複数のコイルのいずれかを選択して切り替えることとした。このため評価対象となる磁石片101における複数の磁石片101が並ぶ方向の長さが違っても、簡単な切り替え操作で最適なコイル径の検出コイル13により渦電流を検出することが可能となる。
(5)検出コイル13で検出する渦電流量(電圧)と、発熱量(飽和温度)との相関関係を示す検量線をあらかじめ作成しておいて、飽和温度が不良となる渦電流量のしきい値を求めておく。そして検出された渦電流量がこのしきい値を超える場合に不良と判定することとした。このため、発生させる渦電流自体は小さくてもそれによる発熱量は推定できるようになる。したがって、被評価磁石に対して実際に用いられる状態と同じような強い交番磁界をかける必要がなくなり、装置を小型化することができる。また、交番磁界を弱くすることができるということは、励磁コイル12により発生させる磁界が弱いとゆうことである。したがって周辺装置を磁界からシールドするのも容易になり、周辺装置を含めた評価工程に用いる全体の装置コストを低減することもできるようになる。
(6)励磁コイル12により発生させた交番磁界の中を連続的に被評価磁石を移動させて、検出コイル13が検出した渦電流量の変化に特異点がある場合に不良と判定することとした。このため、磁石102を評価する際に磁石102を留め置く必要がなくなり、評価時間を短くすることができる。また、検出した渦電流量(電圧)の波形から特異点を見つけて不良を判定するため、被評価磁石に対して実際に用いられる状態と同じような強い交番磁界をかける必要がなくなり、装置を小型化することができる。また、交番磁界を弱くすることができるということは、励磁コイル12により発生させる磁界が弱いとゆうことである。したがって周辺装置を磁界からシールドするのも容易になり、周辺装置を含めた評価工程に用いる全体の装置コストを低減することもできるようになる。
本発明は上述した実施形態に限定されない。
たとえばコンベア14の終端、すなわち、評価位置15を被評価磁石が通過した後に、良品と不良品を分けて搬送する経路を設けてもよい。そして、コンピュータ32の指示によって、被評価磁石が良品と判定されれば良品経路へ、不良品と判定されれば不良品経路へ向かうようにコンベア14の搬送先を変更する。このようにすることで被評価磁石の評価位置15への投入から良不良の判定、そしてその結果による選別までをインラインで自動化することができる。
また、実施形態では、渦電流量をしきい値から判定する第1の判定方法と、磁石を連続的に移動して渦電流量の変化から判定する第2の判定方法を説明した。これらの判定方法は、被評価磁石を連続的に移動させて両方の判定方法を用いて判定してもよいし、いずれか一方の判定方法だけで判定してもよい。たとえば、両方の判定方法を用いて判定すれば、より判定精度が向上する。また、第1の方法だけでも、渦電流損による異常発熱現象が起こる可能性を判定することができる。また、第2の判定方法だけでも、磁石片一つひとつの欠損や内部損傷の判定とともに、絶縁破壊の判定も行うことができる。
なお、第1の判定方法のみを行う場合、被評価磁石を連続的に移動させて判定してもよいし、磁石片が評価位置15に来るたびにいったん停止させて評価してもよい。移動させながら判定する場合は、変動する波形の絶対値があらかじめ決めたしきい値を超える場合に不良と判定する。いったん停止させて判定する場合は、そのとき検出された渦電流量がしきい値を超える場合は不良と判定すればよい。
そのほか、本発明は特許請求の範囲に記載された構成に基づきさまざまな改変が可能であり、それらについても本発明の範疇である。
さらに、本出願は、2011年11月7日に出願された日本特許出願番号2011−243611号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。
1 磁性体評価装置、
11 ヨーク、
12 励磁コイル、
13 検出コイル、
14 コンベア、
15 評価位置、
31 電圧計、
32 コンピュータ、
100 永久磁石、
101 磁石片、
102 磁石。

Claims (6)

  1. 複数の磁石片を絶縁物をはさんで接合してなる磁石の少なくとも一つの磁石片と当該一つの磁石片に隣接する他の磁石片との間の絶縁物を含む領域に相当する範囲の大きさの磁界を発生させる励磁コイルと、
    前記磁石片が並ぶ方向における一つの前記磁石片の長さよりも小さなコイル径の検出コイルと、
    を有することを特徴とする磁石評価装置。
  2. 前記検出コイルが検出した渦電流量が、前記磁石に発生する渦電流と発熱量の関係からあらかじめ求められた渦電流量のしきい値を超える場合に不良であると判定する渦電流量判定部を有することを特徴とする請求項1に記載の磁石評価装置。
  3. 前記磁石を前記磁石片が並ぶ方向に前記磁界の中を連続的に移動させる移動部と、
    前記移動部により前記磁石を移動させながら、前記検出コイルが検出した渦電流量の変化に特異点がある場合に不良であると判定する渦電流変化判定部と、
    を有することを特徴とする請求項1または2記載の磁石評価装置。
  4. 前記検出コイルは、前記複数の前記磁石片が並ぶ方向のコイル径が異なる前記複数のコイルを有し、評価対象となる前記磁石片の前記複数の前記磁石片が並ぶ方向の長さに応じて、前記複数のコイルを切り替えて使用するものであることを特徴とする請求項1〜3のいずれか一つに記載の磁石評価装置。
  5. 複数の磁石片を絶縁物をはさんで接合してなる磁石の少なくとも一つの磁石片と当該一つの磁石片に隣接する他の磁石片との間の絶縁物を含む領域に相当する範囲の大きさの磁界を発生させる励磁コイルと、前記磁石片が並ぶ方向における一つの前記磁石片の長さよりも小さなコイル径の検出コイルと、を有する磁石評価装置を用いて、前記磁石を評価する磁石評価方法であって、
    前記磁石に発生する渦電流と発熱量の関係から渦電流量のしきい値をあらかじめ求めておき、
    前記励磁コイルにより発生させた磁界を前記磁石にかけて、前記検出コイルが検出した渦電流量が、前記しきい値を超える場合に不良であると判定することを特徴とする磁石評価方法。
  6. 複数の磁石片を絶縁物をはさんで接合してなる磁石の少なくとも一つの磁石片と当該一つの磁石片に隣接する他の磁石片との間の絶縁物を含む領域に相当する範囲の大きさの磁界を発生させる励磁コイルと、前記磁石片が並ぶ方向における一つの前記磁石片の長さよりも小さなコイル径の検出コイルと、前記磁石を前記磁石片が並ぶ方向に前記磁界の中を連続的に移動させる移動部と、を有する磁石評価装置を用いて、前記磁石を評価する磁石評価方法であって、
    前記励磁コイルにより発生させた磁界の中を前記移動部により前記磁石を移動させて、前記検出コイルが検出した渦電流量の変化に特異点がある場合に不良であると判定することを特徴とする磁石評価方法。
JP2013542920A 2011-11-07 2012-10-25 磁性体評価装置およびその方法 Active JP5749809B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013542920A JP5749809B2 (ja) 2011-11-07 2012-10-25 磁性体評価装置およびその方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011243611 2011-11-07
JP2011243611 2011-11-07
PCT/JP2012/077594 WO2013069467A1 (ja) 2011-11-07 2012-10-25 磁性体評価装置およびその方法
JP2013542920A JP5749809B2 (ja) 2011-11-07 2012-10-25 磁性体評価装置およびその方法

Publications (2)

Publication Number Publication Date
JPWO2013069467A1 JPWO2013069467A1 (ja) 2015-04-02
JP5749809B2 true JP5749809B2 (ja) 2015-07-15

Family

ID=48289849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013542920A Active JP5749809B2 (ja) 2011-11-07 2012-10-25 磁性体評価装置およびその方法

Country Status (5)

Country Link
US (1) US10241080B2 (ja)
EP (1) EP2778670B1 (ja)
JP (1) JP5749809B2 (ja)
CN (1) CN103930775B (ja)
WO (1) WO2013069467A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2960669B1 (en) * 2013-02-25 2022-04-06 Nissan Motor Co., Ltd. Magnet evaluating device and method
JP6446304B2 (ja) * 2015-03-23 2018-12-26 大同特殊鋼株式会社 磁気特性評価方法および磁気特性評価装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041791A (en) * 1989-08-07 1991-08-20 Washington University Magnetic resonance RF probe with electromagnetically isolated transmitter and receiver coils
US5389876A (en) * 1991-05-06 1995-02-14 General Electric Company Flexible eddy current surface measurement array for detecting near surface flaws in a conductive part
US5343146A (en) * 1992-10-05 1994-08-30 De Felsko Corporation Combination coating thickness gauge using a magnetic flux density sensor and an eddy current search coil
JPH06207972A (ja) 1993-01-11 1994-07-26 Nippon Steel Corp アウターコアの回転磁界鉄損測定方法
FR2758393B1 (fr) * 1997-01-10 1999-10-15 Commissariat Energie Atomique Sonde a courants de foucault
US5990688A (en) * 1998-01-09 1999-11-23 Hydro-Quebec Apparatus and method for evaluation a condition of a magnetic circuit of an electric machine
EP1022563B1 (en) * 1998-08-06 2010-03-24 Mitsubishi Heavy Industries, Ltd. Eddy-current flaw detector probe
JP5295471B2 (ja) * 2000-11-13 2013-09-18 Dic株式会社 重合性液晶化合物、該化合物を含有する重合性液晶組成物及びその重合体
US6677756B2 (en) * 2001-08-03 2004-01-13 Baker Hughes Incorporated Multi-component induction instrument
DE10297359B4 (de) * 2001-09-25 2009-11-26 Daihatsu Motor Co., Ltd., Ikeda Zerstörungsfreies Prüfverfahren
JP2003234225A (ja) 2002-02-08 2003-08-22 Nissan Motor Co Ltd 渦電流損の評価方法およびその装置
FR2904694B1 (fr) * 2006-08-03 2008-11-07 Commissariat Energie Atomique Procede et dispositif de controle par courants de foucault a fonctions emission/reception separees d'une piece electriquement conductrice
JP4962870B2 (ja) 2007-06-29 2012-06-27 日産自動車株式会社 界磁極用磁石体の製造方法、永久磁石型回転電動機の製造方法及び界磁極用磁石体
US7994780B2 (en) 2007-09-14 2011-08-09 General Electric Company System and method for inspection of parts with an eddy current probe
JP4497198B2 (ja) 2007-12-06 2010-07-07 トヨタ自動車株式会社 永久磁石とその製造方法、およびロータとipmモータ
JP5429515B2 (ja) 2008-06-25 2014-02-26 日産自動車株式会社 永久磁石型回転電機のロータ又はステータに配設する界磁極用磁石体、及び永久磁石型回転電機
JP2010183692A (ja) 2009-02-04 2010-08-19 Toyota Motor Corp モータ用磁石とipmモータ用ロータ、およびipmモータ
CN102369600B (zh) * 2009-04-02 2014-09-10 株式会社村田制作所 电路基板
JP2010271178A (ja) 2009-05-21 2010-12-02 Toyota Motor Corp 磁石の磁化特定方法および保磁力特定方法
JP5562629B2 (ja) * 2009-12-22 2014-07-30 三菱重工業株式会社 探傷装置及び探傷方法
US8928316B2 (en) * 2010-11-16 2015-01-06 Jentek Sensors, Inc. Method and apparatus for non-destructive evaluation of materials
US8564284B2 (en) * 2011-02-11 2013-10-22 Siemens Energy, Inc. Fault detection for laminated core

Also Published As

Publication number Publication date
JPWO2013069467A1 (ja) 2015-04-02
CN103930775A (zh) 2014-07-16
CN103930775B (zh) 2016-10-12
EP2778670B1 (en) 2019-12-18
EP2778670A1 (en) 2014-09-17
US20140312889A1 (en) 2014-10-23
WO2013069467A1 (ja) 2013-05-16
EP2778670A4 (en) 2015-04-01
US10241080B2 (en) 2019-03-26

Similar Documents

Publication Publication Date Title
JP5943140B2 (ja) 磁石評価装置およびその方法
JP5315814B2 (ja) 絶縁被覆導体検査方法及び装置
KR101532560B1 (ko) 라미네이트 코어를 위한 결함 검출
JP2014507659A (ja) 積層鉄芯における故障検出
JP5749809B2 (ja) 磁性体評価装置およびその方法
JP2009204342A (ja) 渦電流式試料測定方法と渦電流センサ
CN109324086A (zh) 一种焊接绕组的焊点无损检测方法
JP2012122897A (ja) 電流センサ
JP5555506B2 (ja) 接合判定装置、電磁圧接装置、及び、接合判定方法
KR101584464B1 (ko) 차륜의 자분탐상용 자화 장치
JP5281941B2 (ja) シールド部材の異常検出方法及びシールド部材の異常検出装置
JP2008026234A (ja) 絶縁不良検出方法および装置
JP4482309B2 (ja) 搬送波注入装置及び分割鉄心型トランスの異常検出方法
KR102330768B1 (ko) 무전원 용접 품질 측정 장치
JP2006343235A (ja) 回転電機の電機子検査方法及びその検査装置
KR101597028B1 (ko) 초전도 선재의 평가 방법 및 평가 장치
JP2005214715A (ja) 回転電機の検査装置および検査方法
JP7061791B2 (ja) ワイヤロープの探傷検査方法
JP6612692B2 (ja) 渦電流探傷検査用プローブ
JP6160948B2 (ja) 焼入深さ測定用プローブ及びその焼入深さ測定用プローブを用いた焼入深さ測定方法
CN104865510A (zh) 空心电抗器内部导体绝缘异常和质量缺陷的检验方法
US9618480B2 (en) Method and apparatus for inspecting weld quality
JP2010166060A (ja) 分割鉄心型トランス

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5749809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150