JP5748181B2 - Lead-acid battery and idling stop vehicle equipped with this lead-acid battery - Google Patents

Lead-acid battery and idling stop vehicle equipped with this lead-acid battery Download PDF

Info

Publication number
JP5748181B2
JP5748181B2 JP2012536365A JP2012536365A JP5748181B2 JP 5748181 B2 JP5748181 B2 JP 5748181B2 JP 2012536365 A JP2012536365 A JP 2012536365A JP 2012536365 A JP2012536365 A JP 2012536365A JP 5748181 B2 JP5748181 B2 JP 5748181B2
Authority
JP
Japan
Prior art keywords
negative electrode
lead
ions
idling stop
ear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012536365A
Other languages
Japanese (ja)
Other versions
JPWO2012043331A1 (en
Inventor
賢 稲垣
賢 稲垣
裕一 坪井
裕一 坪井
和馬 齋藤
和馬 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2012536365A priority Critical patent/JP5748181B2/en
Publication of JPWO2012043331A1 publication Critical patent/JPWO2012043331A1/en
Application granted granted Critical
Publication of JP5748181B2 publication Critical patent/JP5748181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/571Methods or arrangements for affording protection against corrosion; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

この発明は鉛蓄電池に関し、特に負極の耳痩せの防止に関する。   The present invention relates to a lead-acid battery, and more particularly to prevention of a negative electrode from being burnt.

アイドリングストップ車へ鉛蓄電池を使用すると、鉛蓄電池への充電不足のため、負極に耳痩せが生じることが知られている。ここに耳痩せは、負極の耳部や上部縁部のPbが硫酸鉛に変質して肉痩せが生じ、耳部あるいは上部縁部の切断に至る現象である。出願人は、特許文献1(WO2010/032782)において、鉛蓄電池の負極ストラップをPb-Sb系合金で構成し、負極耳部にPb-Sn合金層を設け、負極活物質に0.25〜0.75mass%のカーボンを含有させることを開示した。この鉛蓄電池では、SBA S 0101:2006に規定される25℃のアイドリングストップ寿命試験で、耳痩せを顕著に抑制することができた。例えば、負極耳部にPb-Sn合金層を設けないものと比較すると、アイドリングストップ寿命を約2.3倍に長寿命化できた。   It is known that when a lead-acid battery is used in an idling stop vehicle, the lead-acid battery is insufficiently charged, and thus the negative electrode is burnt. Here, the ear wrinkle is a phenomenon in which Pb at the ear or upper edge of the negative electrode is transformed into lead sulfate, leading to thinning, leading to cutting of the ear or upper edge. In the patent document 1 (WO2010 / 032782), the applicant made a negative electrode strap of a lead storage battery with a Pb-Sb alloy, provided a Pb-Sn alloy layer at the negative electrode ear, and 0.25 to 0.75 mass% as the negative electrode active material. It has been disclosed that carbon is contained. In this lead storage battery, it was possible to remarkably suppress the earburning in the idling stop life test at 25 ° C. stipulated in SBA S 0101: 2006. For example, the idling stop life can be extended by about 2.3 times compared to the case where the Pb—Sn alloy layer is not provided in the negative electrode ear.

発明者は、鉛蓄電池の正極板と負極板間の短絡を防止するため、負極耳部と上部縁部とにPb-Snの表面層を設け、電解液に0.03〜0.3mol/LのAlイオンを添加した鉛蓄電池を提案した(特許文献2(WO2009/142220A)。Pb-Sn表面層でのSn濃度は5〜50mass%で、残部はPbと不純物である。Pb-Sn表面層を設け、電解液にAlイオンを添加した特許文献2の電池をアイドリングストップ車用に用いた場合、Pb-Snの表面層を備えず電解液にAlイオンを添加していない鉛蓄電池に比べ、25℃のアイドリングストップ寿命試験で約2.6倍の長寿命化ができた。   In order to prevent short circuit between the positive electrode plate and the negative electrode plate of the lead storage battery, the inventor provided a Pb-Sn surface layer on the negative electrode ear and the upper edge, and 0.03 to 0.3 mol / L Al ions in the electrolyte. (Patent Document 2 (WO2009 / 142220A). The Sn concentration in the Pb-Sn surface layer is 5 to 50 mass% and the balance is Pb and impurities. The Pb-Sn surface layer is provided, When the battery of Patent Document 2 in which Al ions are added to the electrolyte is used for an idling stop vehicle, it is 25 ° C compared to a lead-acid battery that does not have a Pb-Sn surface layer and does not add Al ions to the electrolyte. In the idling stop life test, the life was increased by about 2.6 times.

しかしながら、アイドリングストップ車の実使用では、地域あるいは季節によっては、走行中にエンジンルーム内の温度が60℃以上になる場合がある。そして、高温でのアイドリングストップ寿命試験では、特許文献1,2の鉛蓄電池は負極の耳痩せを抑制する効果が不十分で、耳痩せにより寿命に達することが判明した。そこで発明者は、高温環境下においてアイドリングストップを繰り返しても、負極の耳痩せが生じない鉛蓄電池を探索し、本発明に到った。   However, in actual use of an idling stop vehicle, the temperature in the engine room may become 60 ° C. or higher during traveling depending on the region or season. And in the idling stop life test at a high temperature, it was found that the lead storage batteries of Patent Documents 1 and 2 are insufficient in the effect of suppressing the ear burn of the negative electrode and reach the life due to the ear burn. Therefore, the inventor searched for a lead-acid battery in which the negative electrode does not become harsh even when idling stop is repeated in a high temperature environment, and has reached the present invention.

ここで関連する先行技術を示す。特許文献3(JP2008-243487A)は、鉛蓄電池の電解液にLiイオンを添加すると正極利用率が増して重負荷寿命が向上し、Alイオンを添加するとアイドリングストップ寿命が向上することを開示している。しかし特許文献3は負極の耳痩せについても、高温の影響についても、検討していない。   Here is related prior art. Patent Document 3 (JP2008-243487A) discloses that the addition of Li ions to the electrolyte of a lead storage battery increases the utilization rate of the positive electrode and improves the heavy load life, and the addition of Al ions improves the idling stop life. Yes. However, Patent Document 3 does not examine the thinning of the negative electrode or the influence of high temperature.

WO2010/032782AWO2010 / 032782A WO2009/142220AWO2009 / 142220A JP2008-243487AJP2008-243487A JPS52-136332AJPS52-136332A

この発明の課題は、鉛蓄電池をPSOC(Partial State of Charge)で用いた際の負極の耳痩せを抑制すること、特にPSOCでかつ高温で使用した際の耳痩せを抑制することにある。   An object of the present invention is to suppress the burning of a negative electrode when a lead-acid battery is used in PSOC (Partial State of Charge), and in particular, to suppress the burning of a PSOC when used at a high temperature.

この発明は、正極板と、負極活物質を備えた負極格子本体の上部に上部縁部を備えかつ上部縁部の上部に耳部を備える負極板と、電解液とを備え、負極板の上部縁部及び耳部の少なくとも一方がPb-Sn系合金の表面層を備えている鉛蓄電池において、前記電解液が、0.02mol/L以上で0.2mol/L以下の濃度のLiイオンと、0.02mol/L以上で0.2mol/L以下の濃度のAlイオン、とを含んでいることを特徴とする。
また好ましくは、前記負極板の上部縁部及び耳部の双方がPb-Sn系合金の表面層を備えている。
The present invention comprises a positive electrode plate, a negative electrode plate having an upper edge portion on an upper portion of a negative electrode lattice body provided with a negative electrode active material, and having an ear portion on an upper portion of the upper edge portion, and an electrolyte. In a lead storage battery in which at least one of the edge and the ear is provided with a surface layer of a Pb-Sn alloy, the electrolyte solution has a concentration of 0.02 mol / L or more and 0.2 mol / L or less of Li ions, and 0.02 mol Al ions having a concentration of not less than / L and not more than 0.2 mol / L.
Preferably, both the upper edge portion and the ear portion of the negative electrode plate are provided with a surface layer of a Pb—Sn alloy.

好ましくは、前記Pb-Sn系合金は5mass%以上40mass%以下のSnを含有し、また好ましくは鉛蓄電池はアイドリングストップ車用である。なおPb-Sn系合金は、Pb、Snの他にAg、As、Ba、Sb、Se等の第3元素を含む場合があり、これらの元素の合計含有量が0.1mass%以下であれば、本発明の効果が損なわれることはない。またこれらの元素の他に不可避の不純物、例えば100massppm以下のBi、Ni、Cu、Fe等を含んでいても良い。   Preferably, the Pb-Sn alloy contains 5 mass% or more and 40 mass% or less of Sn, and preferably the lead acid battery is for an idling stop vehicle. The Pb-Sn alloy may contain a third element such as Ag, As, Ba, Sb, and Se in addition to Pb and Sn.If the total content of these elements is 0.1 mass% or less, The effect of the present invention is not impaired. In addition to these elements, inevitable impurities such as Bi, Ni, Cu, Fe, etc. of 100 mass ppm or less may be included.

表面層は負極の耳部と上部縁部の少なくとも一方に設け、Pb-Sn系の合金箔を負極格子合金のスラブの所要箇所に積層圧延して、エキスパンド法により、負極の耳部と上部縁部とにPb-Sn系表面層を設けた格子としても良い。あるいはまた鋳造法による格子の耳部と上部縁部とにPb-Sn系合金の溶融メッキを施しても良い。   The surface layer is provided on at least one of the negative electrode ear and the upper edge, and a Pb-Sn alloy foil is laminated and rolled on a required portion of the negative electrode grid alloy slab, and the negative electrode ear and upper edge are formed by an expanding method. Alternatively, a lattice in which a Pb—Sn surface layer is provided on the part may be used. Alternatively, Pb—Sn alloy hot-dip plating may be applied to the ears and upper edge of the lattice by a casting method.

この明細書で、合金組成を例えばPb-20mass%Snのように表す場合、Snを20mass%と、不可避の不純物(一般に100massppm以下)を含み、残部がPbである合金を意味する。Alイオン,Liイオンの濃度は電解液1L当たりのAlイオンとLiイオンの濃度(mol/L)で表す。なおAlイオンの1モルは、硫酸アルミニウム(Al2(SO4)3)の171.05gに相当する。In this specification, when the alloy composition is expressed as, for example, Pb-20 mass% Sn, it means an alloy containing 20 mass% of Sn, inevitable impurities (generally 100 mass ppm or less), and the balance being Pb. The concentration of Al ion and Li ion is expressed as the concentration (mol / L) of Al ion and Li ion per liter of electrolyte. One mole of Al ions corresponds to 171.05 g of aluminum sulfate (Al 2 (SO 4 ) 3 ).

負極耳部と上部縁部の少なくとも一方にPb-Sn系表面層を備え、電解液にLiイオンとAlイオンの双方を含む場合、高温でのアイドリングストップ寿命試験で、高い寿命性能が得られる(図4〜図6)。そして負極のPb-Sn系表面層、電解液のLiイオン、電解液のAlイオンの何れかを欠く場合、高い寿命性能は得られない。   When a Pb-Sn surface layer is provided on at least one of the negative electrode ear and the upper edge, and the electrolyte contains both Li ions and Al ions, high life performance is obtained in an idling stop life test at high temperatures ( 4 to 6). If any of the Pb—Sn-based surface layer of the negative electrode, the Li ion of the electrolytic solution, and the Al ion of the electrolytic solution is lacking, high life performance cannot be obtained.

この発明はまた、上記の鉛蓄電池を備えているアイドリングストップ車にある。アイドリングストップ車は、鉛蓄電池を用いてエンジンの始動と点火を行い、鉛蓄電池を照明等の電源とする。そしてアイドリングストップ車の停止時にエンジンを停止し、鉛蓄電池の電力で発進時にエンジンを再起動する。   The present invention also resides in an idling stop vehicle equipped with the above lead storage battery. The idling stop vehicle uses a lead storage battery to start and ignite the engine, and uses the lead storage battery as a power source for lighting and the like. Then, the engine is stopped when the idling stop vehicle is stopped, and the engine is restarted when starting with the power of the lead-acid battery.

負極格子を模式的に示す正面図Front view schematically showing the negative grid Liイオンを0.2mol/L、Alイオンを0.02mol/L含む電解液と、Pb-40mass%Sn合金から成る表面層を設けた負極格子を用いた実施例での、高温アイドリングストップ寿命試験後の耳部の表面の硫酸鉛の状態を示す電子顕微鏡写真After the high-temperature idling stop life test in an example using an electrolyte containing 0.2 mol / L of Li ions and 0.02 mol / L of Al ions and a negative electrode grid provided with a surface layer made of a Pb-40 mass% Sn alloy Electron micrograph showing the state of lead sulfate on the surface of the ear Liイオン無添加で、Alイオンを0.02mol/L含む電解液と、Pb-40mass%Sn合金から成る表面層を設けた負極格子を用いた比較例での、高温アイドリングストップ寿命試験後の耳部の表面の硫酸鉛の状態を示す電子顕微鏡写真Ear part after high-temperature idling stop life test in a comparative example using an electrolyte containing 0.02 mol / L of Al ions with no Li ion and a negative electrode grid with a surface layer made of Pb-40 mass% Sn alloy Electron micrograph showing the state of lead sulfate on the surface Alイオンを0.2mol/L含む電解液で、Liイオン濃度を変化させた際の、高温アイドリングストップ寿命試験での寿命性能を示す特性図Characteristic diagram showing life performance in high temperature idling stop life test when Li ion concentration is changed in electrolyte containing 0.2 mol / L of Al ion Liイオンを0.2mol/L含む電解液で、Alイオン濃度を変化させた際の、高温アイドリングストップ寿命試験での寿命性能を示す特性図Characteristic diagram showing life performance in high temperature idling stop life test when Al ion concentration is changed in electrolyte containing 0.2 mol / L Li ion 負極耳部と上部縁部の表面層中のSn濃度を変化させた際の、高温アイドリングストップ寿命試験での寿命性能を示す特性図Characteristic diagram showing the life performance in the high temperature idling stop life test when the Sn concentration in the surface layer of the negative electrode ear and upper edge is changed

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.

鉛蓄電池の製造
Pb-0.05mass%Ca-1.0mass%SnのPb-Ca-Sn合金シートから、エキスパンド法により正極格子(厚さが1mm、高さが115mm、幅が100mm)を作成した。Pb-0.05mass%Ca-0.5mass%SnのPb-Ca-Sn合金スラブ(10mm厚)の、耳部及び上部縁部となる部分の両面にSn含有量を5〜50mass%の範囲で変化させたPb-Sn系合金箔(厚さ0.5mm)を重ね、圧延して一体化した。なおPb-Sn系合金箔は、Ag、As、Ba、Sb、Se等の第3元素の含有量が各100massppm以下とした。次いで表面層を備えたシートからエキスパンド法により、負極格子を作成した。負極格子の構造を図1に示し、負極格子1は、格子本体3の上部に上部縁部2を備え、上部縁部2の上部に耳部4を、格子本体3の下部に下部縁部5を備えている。Pb-Sn系の表面層は上部縁部2と耳部4の表裏両面に設けられ、負極格子1のサイズは、例えば厚さが1mm、高さが115mm、幅が100mmである。また負極格子1では、耳部と上部縁部の表裏各10〜100μm、実施例では各45μmがPb-Sn系表面層である。この厚さの範囲で特性はほぼ一定である。
Manufacture of lead-acid batteries
A positive electrode grid (thickness: 1 mm, height: 115 mm, width: 100 mm) was prepared from a Pb-Ca-Sn alloy sheet of Pb-0.05 mass% Ca-1.0 mass% Sn by the expanding method. The Sn content of Pb-0.05mass% Ca-0.5mass% Sn Pb-Ca-Sn alloy slab (10mm thickness) on both sides of the ear and upper edge is varied in the range of 5-50mass%. The Pb—Sn alloy foil (thickness 0.5 mm) was stacked, rolled and integrated. In the Pb—Sn alloy foil, the content of the third element such as Ag, As, Ba, Sb, and Se was 100 massppm or less. Next, a negative electrode grid was formed from the sheet provided with the surface layer by an expanding method. The structure of the negative electrode lattice is shown in FIG. 1, and the negative electrode lattice 1 includes an upper edge 2 on the upper portion of the lattice body 3, an ear 4 on the upper portion of the upper edge 2, and a lower edge 5 on the lower portion of the lattice body 3. It has. The Pb—Sn surface layer is provided on both the front and back surfaces of the upper edge portion 2 and the ear portion 4, and the size of the negative electrode lattice 1 is, for example, 1 mm thick, 115 mm high, and 100 mm wide. Further, in the negative electrode grid 1, 10 to 100 μm each of the front and back surfaces of the ear part and the upper edge part, and 45 μm each in the example is a Pb—Sn surface layer. The characteristics are almost constant in this thickness range.

負極と正極の格子に活物質ペーストを充填した。負極活物質ペーストは、ボールミル法の鉛粉100mass%に、0.15mass%のリグニンと、0.5mass%の硫酸バリウム、0.2mass%のカーボン、及び0.1mass%のバインダー樹脂を添加したものを、11mass%の水と20℃で比重が1.40の希硫酸7mass%で混練しペースト化したものである。正極活物質ペーストは、ボールミル法の鉛粉100mass%に対して、0.1mass%のバインダー樹脂を添加し、13mass%の水と20℃で比重が1.40の希硫酸6mass%で混練しペースト化したものである。正または負の活物質ペーストを充填した格子を極板と呼ぶ。正極板と負極板を35℃で3日間熟成し、負極板を微孔性のポリエチレン袋からなるセパレータに収容した。正極板7枚と負極板8枚を交互に積層し、同極性の耳部を互いに溶接して極板群とし、電槽内に収容した。そして20℃で比重が1.23の希硫酸に硫酸アルミニウムと硫酸リチウムとを溶解した溶液を注入し、25℃の水槽内で、正極活物質の理論容量の280%の電気量を18時間で加える電槽化成を行って、55B24形の鉛蓄電池とした。Alイオン,Liイオンの添加形態は任意で、例えばアルミン酸リチウム、水酸化アルミニウムと水酸化リチウム、金属アルミニウムとリチウムの希硫酸に可溶の塩等、の形態で添加しても良い。鉛粉の製造方法は任意で、活物質への添加物も任意である。   An active material paste was filled in the grid of the negative electrode and the positive electrode. The negative electrode active material paste is 11 mass% of 100 mass% lead powder of the ball mill method, 0.15 mass% lignin, 0.5 mass% barium sulfate, 0.2 mass% carbon, and 0.1 mass% binder resin added. And kneaded with 7 mass% of dilute sulfuric acid having a specific gravity of 1.40 at 20 ° C. The positive electrode active material paste is a paste made by adding 0.1mass% binder resin to 100mass% of ball milled lead powder and kneading with 13mass% water and 6mass% dilute sulfuric acid with a specific gravity of 1.40 at 20 ℃. It is. A grid filled with positive or negative active material paste is called an electrode plate. The positive electrode plate and the negative electrode plate were aged at 35 ° C. for 3 days, and the negative electrode plate was accommodated in a separator made of a microporous polyethylene bag. Seven positive electrode plates and eight negative electrode plates were alternately laminated, and the ears of the same polarity were welded together to form an electrode plate group, which was accommodated in a battery case. Then, a solution in which aluminum sulfate and lithium sulfate are dissolved in dilute sulfuric acid having a specific gravity of 1.23 at 20 ° C. is injected, and in a 25 ° C. water tank, an electric amount of 280% of the theoretical capacity of the positive electrode active material is applied for 18 hours. The tank was formed into a 55B24 lead acid battery. Al ions and Li ions may be added in any form, for example, lithium aluminate, aluminum hydroxide and lithium hydroxide, metal aluminum and lithium soluble salt in dilute sulfuric acid, or the like. The manufacturing method of lead powder is arbitrary, and the additive to an active material is also arbitrary.

試験と結果
鉛蓄電池の各試料(試料No.1-43)に対し、
・ 軽負荷寿命試験(JIS D 5301:2006の9.5.5a))、
・ 電池工業会規格SBA S 0101:2006のアイドリングストップ寿命試験、及び
・ 高温アイドリングストップ寿命試験(60℃)、の3種類の試験を施した。他に高率放電試験等を行った。結果は各3個の電池の平均値で示す。SBA S 0101のアイドリングストップ寿命試験では、25℃で試験を行い、45Aで59秒間の放電と300Aで1秒間の放電後に、14V(最大電流100A)で充電を60秒間行うサイクルを繰り返し、途中3600サイクル毎に40〜48時間放置し、放電時電圧が7.2V未満になるまでのサイクル数を寿命とする。高温アイドリングストップ寿命試験では、前記のアイドリングストップ寿命試験を60℃で実施した。
Test and Results For each lead storage battery sample (sample No. 1-43),
・ Light load life test (JIS D 5301: 2006 9.5.5a)),
・ The battery industry association standard SBA S 0101: 2006 idling stop life test and high temperature idling stop life test (60 ° C) were performed. In addition, a high rate discharge test was conducted. The results are shown as an average value of three batteries each. In the idling stop life test of SBA S 0101, the test was conducted at 25 ° C, followed by a cycle of 59 seconds of discharge at 45A and 1 second of discharge at 300A followed by 60 seconds of charge at 14V (maximum current 100A). Leave for 40 to 48 hours per cycle, and let the number of cycles until the voltage at discharge is less than 7.2V be the life. In the high temperature idling stop life test, the idling stop life test was performed at 60 ° C.

高温アイドリングストップ寿命試験での、寿命性能、寿命時の負極の耳厚さ、減液速度を表1,2に示す。また表1の代表的な試料に対し、軽負荷寿命試験での寿命までのサイクル数を示す。更に代表的な試料での、高温アイドリングストップ寿命試験での寿命性能を図4〜図6に示す。高温アイドリングストップ寿命試験後の負極耳部表面の硫酸鉛の状態を、実施例の電池27に対し図2に、比較例の電池30に対し図3に示す。表1,表2,及び図4〜図6において、高温アイドリングストップ寿命試験での寿命性能は、比較例の電池1を100%とする相対値で表示し、負極の耳厚さは各電池の初期値を100%とする相対値で表示し、減液速度は比較例の電池1を100%とする相対値で示す。また軽負荷寿命試験及びSBA S 0101のアイドリングストップ寿命試験での寿命性能は、比較例の電池1を100%とする相対値で示す。   Tables 1 and 2 show the life performance, the ear thickness of the negative electrode during the life, and the liquid reduction rate in the high temperature idling stop life test. For the representative samples in Table 1, the number of cycles until the life in the light load life test is shown. Furthermore, the life performance in a high temperature idling stop life test with a representative sample is shown in FIGS. The state of lead sulfate on the surface of the negative electrode ear after the high temperature idling stop life test is shown in FIG. 2 for the battery 27 of the example and in FIG. 3 for the battery 30 of the comparative example. In Table 1, Table 2, and FIGS. 4 to 6, the life performance in the high temperature idling stop life test is expressed as a relative value with the battery 1 of the comparative example as 100%, and the ear thickness of the negative electrode is the thickness of each battery. The initial value is displayed as a relative value with 100%, and the liquid reduction rate is expressed as a relative value with the battery 1 of the comparative example as 100%. Further, the life performance in the light load life test and the idling stop life test of SBA S 0101 is shown as a relative value with the battery 1 of the comparative example as 100%.

図4に示すように、Liイオンを欠くと、高温アイドリングストップ寿命試験の寿命性能は得られない。図5に示すように、Alイオンを欠いても、高温でのアイドリングストップ寿命性能は得られない。さらに図6に示すように、Pb-Sn系の表面層を設けないと、高温でのアイドリングストップ寿命性能は得られない。即ち、高温アイドリングストップ寿命試験の長い寿命は、LiイオンとAlイオン、及びPb-Sn系の合金からなる表面層の3者が揃って初めて得られる。更に表1から明らかなように、高温アイドリングストップ寿命試験の寿命は、定性的に耳痩せが少ない程、長くなる。   As shown in FIG. 4, if Li ions are absent, the life performance of the high temperature idling stop life test cannot be obtained. As shown in FIG. 5, even when Al ions are absent, the idling stop life performance at high temperature cannot be obtained. Furthermore, as shown in FIG. 6, idling stop life performance at high temperatures cannot be obtained unless a Pb—Sn-based surface layer is provided. That is, the long life of the high temperature idling stop life test can be obtained only when the three surface layers made of Li ions, Al ions, and Pb—Sn alloys are prepared. Further, as apparent from Table 1, the lifetime of the high-temperature idling stop lifetime test becomes longer as the qualitatively less earburning occurs.

電解液中のAlイオンが負極のサルフェーションを防止することは古くから知られ(特許文献4:JPS52-136332)、負極の耳痩せの防止にも同様に寄与しているものと考えられる。発明者は、Liイオンを含まない系では、高温アイドリングストップ寿命試験における充電中に負極の耳部や上部縁部のPb-Sn系表面層で水素が生成し、硫酸鉛の還元と競合していることを見出した。水素の生成は水素過電圧が低下する高温でのアイドリングストップ寿命試験で特に顕著であり、25℃では見出せなかった。これに対してLiイオンとAlイオンとPb-Sn系の表面層とを含む系では、充電中の水素の発生は見られたものの、Liイオンによって硫酸鉛粒子の凝集が抑えられ、図2に示すように硫酸鉛は多孔質で、サブミクロンオーダーの多数の微細なポアが観察された。Alイオンを含むが、Liイオンを含まない図3では、硫酸鉛は緻密で、少数の比較的大きなポアと長い溝とが観察された。図2の組織では、硫酸鉛の内部に電解液が拡散しやすく、また、Alイオンの効果によって硫酸鉛の還元性が高まることから、水素発生と硫酸鉛の還元が競合した場合でも、硫酸鉛は可逆的にPbに還元されると考えられる。一方図3の組織では、硫酸鉛は組織の表面からしか還元されないため、Alイオンの効果によって硫酸鉛の還元性が高まったとしても、耳痩せが進行すると推定できる。   It has been known for a long time that Al ions in the electrolytic solution prevent the sulfation of the negative electrode (Patent Document 4: JPS52-136332), and it is considered that this also contributes to the prevention of the negative electrode from being burnt. In the system that does not contain Li ions, the inventor generated hydrogen in the Pb-Sn system surface layer of the negative electrode ear and upper edge during charging in the high temperature idling stop life test, competing with the reduction of lead sulfate. I found out. Hydrogen generation was particularly remarkable in the idling stop life test at high temperatures where the hydrogen overvoltage decreased, and was not found at 25 ° C. On the other hand, in the system containing Li ions, Al ions, and Pb—Sn surface layer, although hydrogen was generated during charging, the aggregation of lead sulfate particles was suppressed by Li ions. As shown, lead sulfate was porous and a large number of fine pores on the order of submicrons were observed. In FIG. 3, which contains Al ions but no Li ions, lead sulfate is dense, with a few relatively large pores and long grooves observed. In the structure shown in FIG. 2, the electrolyte easily diffuses inside the lead sulfate, and the reducing effect of lead sulfate is enhanced by the effect of Al ions. Therefore, even when hydrogen generation and lead sulfate reduction compete, lead sulfate is used. Is reversibly reduced to Pb. On the other hand, in the structure of FIG. 3, since lead sulfate is reduced only from the surface of the structure, even if the reducibility of lead sulfate is increased by the effect of Al ions, it can be estimated that the ear burn progresses.

図2,図3は寿命試験後の耳の状態を示し、AlイオンとLiイオンとを含む系の図2では、硫酸鉛は多孔質で、サブミクロンオーダーの多数の微細なポアが観察される。これに対して、Alイオンを含むが、Liイオンを含まない図3では、硫酸鉛は緻密で、少数の比較的大きなポアと長い溝とが観察される。図2の組織では、硫酸鉛の内部に電解液が拡散し、硫酸鉛は可逆的にPbに還元される。一方図3の組織では、硫酸鉛は組織の表面からしか還元されないため、生成した硫酸鉛は安定で、耳痩せが生じると推定できる。以上のように、Liイオンの効果は、負極耳部等に生成する硫酸鉛を多孔質にすることにより、容易に分解されるようにする点にある。   2 and 3 show the state of the ear after the life test. In FIG. 2 of the system containing Al ions and Li ions, lead sulfate is porous and a large number of fine pores on the order of submicrons are observed. . On the other hand, in FIG. 3, which contains Al ions but does not contain Li ions, lead sulfate is dense, and a few relatively large pores and long grooves are observed. In the structure of FIG. 2, the electrolytic solution diffuses inside the lead sulfate, and the lead sulfate is reversibly reduced to Pb. On the other hand, in the structure of FIG. 3, since lead sulfate is reduced only from the surface of the structure, it can be presumed that the produced lead sulfate is stable and the ear burnt occurs. As described above, the effect of Li ions is that the lead sulfate produced in the negative electrode ear or the like is made porous so as to be easily decomposed.

発明者はLiイオン以外の候補として、Naイオン、Kイオン、Mgイオンを検討したが、0.2mol/LのAlイオンと負極耳部等のPb-20mass%Sn表面層と組み合わせても、高温でのアイドリングストップでの寿命対策には有効でなかった(表2)。以上のように、高温でのアイドリングストップ寿命試験で性能を向上させるには、Pb-Sn系の合金から成る表面層、Alイオン,Liイオンの3者が必要不可欠である。   The inventor examined Na ions, K ions, and Mg ions as candidates other than Li ions, but even when combined with 0.2 mol / L Al ions and a Pb-20 mass% Sn surface layer such as a negative electrode ear, the temperature is high. It was not effective as a life measure at idling stop (Table 2). As described above, in order to improve the performance in the idling stop life test at a high temperature, the surface layer made of a Pb—Sn alloy, Al ions, and Li ions are indispensable.

表1、図2〜図4に戻り、Liイオン,Alイオン等の添加量について検討する。Liイオン,Alイオン共に0.02mol/Lで充分な効果があり、0.2mol/Lを超えて添加しても効果は増さず、逆に高率放電試験(JIS D 5301:2006の 9.5.3b))性能の低下が始まった。またPb-Sn系表面層では、Sn5mass%で既に充分な効果が得られており、40mass%を超えると減液速度が増すので、Sn含有量は5-40mass%とすることが望ましい。   Returning to Table 1 and FIGS. 2 to 4, the amount of addition of Li ions, Al ions, etc. will be examined. Both Li ion and Al ion have a sufficient effect at 0.02 mol / L, and even if added over 0.2 mol / L, the effect does not increase, and conversely a high rate discharge test (JIS D 5301: 2006, 9.5.3b )) Performance has begun to decline. Further, in the Pb—Sn surface layer, a sufficient effect has already been obtained with Sn 5 mass%, and since the liquid reduction rate increases when it exceeds 40 mass%, the Sn content is desirably 5 to 40 mass%.

電解液は硫酸イオン、Alイオン,Liイオン以外に、不純物等として0.01mol/L以下のKイオン、0.015mol/L以下のNaイオン、0.01mol/L以下のMgイオン等を含んでいても良い。実施例では負極耳部及び上部縁部の双方にPb-Sn合金層を設けたが、乗用車のように、停車時間が信号待ちや右左折時の歩行者待ちにほぼ限定される使用条件では負極耳部が腐食しやすく、配送車のように、停車時間が信号待ちや右左折時に加えて荷物の積み下ろしのための停車が頻繁に繰り返される使用条件では上部縁部が腐食しやすい。そこで使用条件に合わせて、負極耳部のみにあるいは上部縁部のみにPb-Sn合金層を設けても良い。実施例では、負極耳部及び上部縁部の表裏両面にPb-Sn合金層を設けたが、これらの部分の片面のみに設けても良い。   The electrolyte solution may contain 0.01 mol / L or less K ion, 0.015 mol / L or less Na ion, 0.01 mol / L or less Mg ion, etc. as impurities in addition to sulfate ion, Al ion, and Li ion. . In the example, the Pb-Sn alloy layer was provided on both the negative electrode ear and the upper edge. However, as in passenger cars, the negative electrode is not used under conditions of use where the stop time is almost limited to waiting for a signal or waiting for a pedestrian when turning right or left. The ears are easily corroded, and the upper edge is easily corroded under the use condition where the stop time is frequently repeated for loading and unloading of the load in addition to the stop time when waiting for a signal or turning left and right like a delivery vehicle. Therefore, a Pb—Sn alloy layer may be provided only on the negative electrode ear or only on the upper edge in accordance with the use conditions. In the example, the Pb—Sn alloy layers are provided on both the front and back surfaces of the negative electrode ear and the upper edge, but may be provided only on one side of these portions.

実施例には以下の特徴がある。
1) LiイオンとAlイオンとPb-Sn系の表面層とを含む系では、Liイオンにより、負極耳部等に発生する硫酸鉛を多孔質にできる。この結果、充電時の硫酸鉛の還元を促進し、耳痩せを防止できる。
2) LiイオンとAlイオンとPb-Sn系の表面層とを含む系では、Liイオンにより、水素の発生が競合した場合にも硫酸鉛が還元されるようにできるので、高温でも耳部等に生成した硫酸鉛を金属鉛に還元できる。
3) Pb-Sn系の合金から成る表面層と電解液中のAlイオン及びLiイオンとの3者の組合せにより、高温アイドリングストップでの負極の耳痩せを抑制し、電池寿命を向上させる。
4) エンジンルーム内が高温になるという、アイドリングストップ車の実使用条件に適した鉛蓄電池が得られる。
The embodiment has the following characteristics.
1) In a system including Li ions, Al ions, and a Pb-Sn surface layer, lead ions generated in the negative electrode ears or the like can be made porous by Li ions. As a result, the reduction of lead sulfate at the time of charging can be promoted, and ear burn can be prevented.
2) In a system containing Li ions, Al ions, and a Pb-Sn surface layer, Li ions can reduce lead sulfate even when hydrogen generation competes. Can be reduced to lead metal.
3) The combination of the surface layer made of Pb-Sn alloy and Al ions and Li ions in the electrolyte suppresses the negative electrode from being burnt at the high temperature idling stop and improves the battery life.
4) Lead-acid batteries suitable for the actual use conditions of idling stop vehicles, where the engine compartment becomes hot, can be obtained.

1 負極格子 2 上部縁部 3 格子本体 4 耳部
5 下部縁部
DESCRIPTION OF SYMBOLS 1 Negative electrode grid 2 Upper edge part 3 Grid main body 4 Ear | edge part 5 Lower edge part

Claims (4)

正極板と、負極活物質を備えた負極格子本体の上部に上部縁部を備えかつ上部縁部の上部に耳部を備える負極板と、電解液とを備え、負極板の上部縁部及び耳部の少なくとも一方がPb-Sn系合金の表面層を備えている鉛蓄電池において、
前記電解液が、0.02mol/L以上で0.2mol/L以下の濃度のLiイオンと、0.02mol/L以上で0.2mol/L以下の濃度のAlイオン、とを含んでいることを特徴とする、鉛蓄電池。
A negative electrode plate having a positive electrode plate, a negative electrode plate having an upper edge on the upper part of the negative electrode lattice body including the negative electrode active material and having an ear on the upper edge, and an electrolyte, and an upper edge and an ear of the negative electrode plate In a lead storage battery in which at least one of the parts has a surface layer of a Pb-Sn alloy,
The electrolytic solution contains Li ions having a concentration of 0.02 mol / L or more and 0.2 mol / L or less and Al ions having a concentration of 0.02 mol / L or more and 0.2 mol / L or less. Lead acid battery.
前記負極板の上部縁部及び耳部の双方がPb-Sn系合金の表面層を備えていることを特徴とする、請求項1の鉛蓄電池。 The lead-acid battery according to claim 1 , wherein both the upper edge portion and the ear portion of the negative electrode plate are provided with a surface layer of a Pb-Sn alloy. 前記Pb-Sn系合金は5mass%以上40mass%以下のSnを含有することを特徴とする、請求項1または2の鉛蓄電池。 The lead storage battery according to claim 1 or 2 , wherein the Pb-Sn alloy contains 5 mass% or more and 40 mass% or less of Sn. 請求項1〜3のいずれかの鉛蓄電池を備えているアイドリングストップ車。 An idling stop vehicle comprising the lead storage battery according to claim 1 .
JP2012536365A 2010-09-29 2011-09-21 Lead-acid battery and idling stop vehicle equipped with this lead-acid battery Active JP5748181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012536365A JP5748181B2 (en) 2010-09-29 2011-09-21 Lead-acid battery and idling stop vehicle equipped with this lead-acid battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010218629 2010-09-29
JP2010218629 2010-09-29
PCT/JP2011/071464 WO2012043331A1 (en) 2010-09-29 2011-09-21 Lead-acid storage battery and idling-stop vehicle whereupon said lead-acid storage battery is mounted
JP2012536365A JP5748181B2 (en) 2010-09-29 2011-09-21 Lead-acid battery and idling stop vehicle equipped with this lead-acid battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015101531A Division JP6099001B2 (en) 2010-09-29 2015-05-19 Lead acid battery

Publications (2)

Publication Number Publication Date
JPWO2012043331A1 JPWO2012043331A1 (en) 2014-02-06
JP5748181B2 true JP5748181B2 (en) 2015-07-15

Family

ID=45892789

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012536365A Active JP5748181B2 (en) 2010-09-29 2011-09-21 Lead-acid battery and idling stop vehicle equipped with this lead-acid battery
JP2015101531A Active JP6099001B2 (en) 2010-09-29 2015-05-19 Lead acid battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015101531A Active JP6099001B2 (en) 2010-09-29 2015-05-19 Lead acid battery

Country Status (3)

Country Link
JP (2) JP5748181B2 (en)
CN (1) CN103109412B (en)
WO (1) WO2012043331A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043331A1 (en) * 2010-09-29 2012-04-05 株式会社Gsユアサ Lead-acid storage battery and idling-stop vehicle whereupon said lead-acid storage battery is mounted
JP6032498B2 (en) * 2011-05-02 2016-11-30 株式会社Gsユアサ Control valve type lead acid battery
WO2015145800A1 (en) * 2014-03-28 2015-10-01 新神戸電機株式会社 Lead storage cell and electrode collector for lead storage cell
DE112015006162T5 (en) 2015-02-12 2017-11-02 Gs Yuasa International Ltd. lead-acid battery
WO2017098665A1 (en) * 2015-12-11 2017-06-15 日立化成株式会社 Lead acid storage battery
WO2017098666A1 (en) * 2015-12-11 2017-06-15 日立化成株式会社 Lead storage battery
WO2018105067A1 (en) * 2016-12-07 2018-06-14 日立化成株式会社 Lead acid storage battery
WO2018105066A1 (en) * 2016-12-07 2018-06-14 日立化成株式会社 Liquid type lead storage battery and production method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115670A (en) * 2005-09-22 2007-05-10 Gs Yuasa Corporation:Kk Negative electrode current collector for lead-acid storage battery, and manufacturing method of the lead-acid storage battery using the electrode current collector
JP2008243487A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136332A (en) * 1976-05-08 1977-11-15 Kouhei Mogi Lead battery and method of regenerating lead battery
JP3509294B2 (en) * 1995-06-09 2004-03-22 松下電器産業株式会社 Lead storage battery
JP3728682B2 (en) * 1996-12-19 2005-12-21 日本電池株式会社 Sealed lead acid battery
JPH11176449A (en) * 1997-12-16 1999-07-02 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JP4538864B2 (en) * 1999-05-31 2010-09-08 新神戸電機株式会社 Lead acid battery and manufacturing method thereof
JP2001313064A (en) * 2000-04-28 2001-11-09 Mase Shunzo Lead storage battery and its additive agent
JP2006164598A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Lead acid battery
CN201134463Y (en) * 2007-12-01 2008-10-15 杨勇智 Accumulator with combined grid
CN102160231B (en) * 2008-09-22 2014-06-18 株式会社杰士汤浅国际 Lead acid storage battery
WO2012043331A1 (en) * 2010-09-29 2012-04-05 株式会社Gsユアサ Lead-acid storage battery and idling-stop vehicle whereupon said lead-acid storage battery is mounted

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115670A (en) * 2005-09-22 2007-05-10 Gs Yuasa Corporation:Kk Negative electrode current collector for lead-acid storage battery, and manufacturing method of the lead-acid storage battery using the electrode current collector
JP2008243487A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid battery

Also Published As

Publication number Publication date
CN103109412B (en) 2016-06-08
JP6099001B2 (en) 2017-03-22
WO2012043331A1 (en) 2012-04-05
CN103109412A (en) 2013-05-15
JP2015187990A (en) 2015-10-29
JPWO2012043331A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP6099001B2 (en) Lead acid battery
JP5477288B2 (en) Lead-acid battery and method for manufacturing the same
JP4799560B2 (en) Lead-acid battery and method for producing lead-acid battery
JP6331161B2 (en) Control valve type lead acid battery
JP6241685B2 (en) Lead acid battery and idling stop vehicle using the same
JP5858048B2 (en) Lead acid battery
JP2010170939A (en) Lead storage battery
JP2012142185A (en) Lead acid battery and idling stop vehicle
WO2014087565A1 (en) Lead-acid storage battery grid and lead-acid storage battery
JP5531746B2 (en) Lead acid battery
JP4509660B2 (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP2006210059A (en) Lead acid storage battery
JP6455105B2 (en) Lead acid battery
JP6921037B2 (en) Lead-acid battery
JP4364054B2 (en) Lead acid battery
JP6164502B2 (en) Lead acid battery
JP5909974B2 (en) Lead acid battery
JP5088679B2 (en) Lead acid battery
JP2012138331A (en) Lead storage battery and idling stop vehicle
JP4503358B2 (en) Lead acid battery
JP2004273305A (en) Lead-acid battery
JP4610294B2 (en) Lead acid battery
JP2007213897A (en) Lead-acid storage battery
JP2007305369A (en) Lead-acid storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5748181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150503