JPH11176449A - Sealed lead-acid battery - Google Patents
Sealed lead-acid batteryInfo
- Publication number
- JPH11176449A JPH11176449A JP9346041A JP34604197A JPH11176449A JP H11176449 A JPH11176449 A JP H11176449A JP 9346041 A JP9346041 A JP 9346041A JP 34604197 A JP34604197 A JP 34604197A JP H11176449 A JPH11176449 A JP H11176449A
- Authority
- JP
- Japan
- Prior art keywords
- grid
- positive electrode
- lattice
- lead
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
(57)【要約】
【課題】 正極格子としてエキスパンド格子を用いた場
合に、格子表面より活物質が脱落,剥離するのを防止す
る。
【解決手段】 正極板の活物質を保持する正極格子とし
てエキスパンド格子を用い、この格子を鉛−カルシウム
−スズ合金に、Li,Na,Kのようなアルカリ金属を
0.001〜0.03重量%含有させた合金で形成する
ことにより、正極格子の表面に生成する酸化物層と正極
格子との密着性を向上させて活物質の脱落,剥離を阻止
し、電池の使用途中で電池容量が急激に劣化して電池の
寿命が短縮するのを抑制する。(57) [Summary] [PROBLEMS] To prevent an active material from falling off and separating from the surface of a grid when an expanded grid is used as a positive grid. SOLUTION: An expanded lattice is used as a positive electrode lattice for holding an active material of a positive electrode plate, and this lattice is made of a lead-calcium-tin alloy, and an alkali metal such as Li, Na, K is 0.001 to 0.03% by weight. %, The adhesion between the oxide layer formed on the surface of the positive electrode grid and the positive electrode grid is improved to prevent the active material from falling off or peeling off, and the battery capacity is reduced during use of the battery. Suppresses abrupt deterioration and shortening of battery life.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、密閉形鉛蓄電池に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead-acid battery.
【0002】[0002]
【従来の技術】従来、密閉形鉛蓄電池において、正極活
物質を保持する正極格子としては、鋳造格子が一般に用
いられてきている。このように正極格子として鋳造格子
を用いた密閉形鉛蓄電池にあっては、寿命期間、すなわ
ち電池容量が所定の放電容量以下に低下するまでの期間
を終了した後も継続して使用した場合、正極格子の酸化
腐食に基づいて正極板が伸びることがあり、この伸びに
より電槽が変形したり、破損したりするという問題点が
あった。この問題点を解決する対策として、耐腐食性に
優れた正極格子用の合金組成の検討がなされてきている
が、まだ画期的に耐腐食性の向上が図れる合金が開発さ
れていない。2. Description of the Related Art Conventionally, in a sealed lead-acid battery, a cast grid has been generally used as a positive grid for holding a positive electrode active material. As described above, in the sealed lead-acid battery using the cast grid as the positive grid, the life period, that is, when the battery capacity is continuously used after the period until the battery capacity decreases to a predetermined discharge capacity or less, The positive electrode plate may be elongated due to the oxidative corrosion of the positive electrode grid, and this expansion may cause a problem that the battery case is deformed or damaged. As a countermeasure to solve this problem, an alloy composition for a positive electrode grid having excellent corrosion resistance has been studied, but an alloy capable of significantly improving the corrosion resistance has not yet been developed.
【0003】そこで、正極における鋳造格子の酸化腐食
は、主に鋳造格子の粒界腐食によるものであることに注
目し、圧延により作製した鉛合金シートにスリットを入
れて展開することにより格子目とする、いわゆるエキス
パンド格子が提案されている。このエキスパンド格子は
ラメラ状の圧延組織を有し、腐食の原因となる結晶粒界
が分散されているために、鋳造格子と比較して耐腐食性
において優れている。また、エキスパンド格子は、その
格子目を展開する際に生じた応力が格子内に残存し、こ
の残存応力により腐食されることがあるが、その腐食に
よる伸びの力は鋳造格子の場合に比較して小さく、さら
に粒界腐食が減少することにより、エキスパンド格子の
伸びにより電槽が変形したり、破損したりすることは少
なく、鋳造格子の場合と比較して優れている。Attention has been paid to the fact that the oxidative corrosion of the casting grid in the positive electrode is mainly due to intergranular corrosion of the casting grid, and a slit is formed in a lead alloy sheet produced by rolling to develop a grid. A so-called expanded lattice has been proposed. The expanded lattice has a lamellar rolled structure, and is excellent in corrosion resistance as compared with the cast lattice because the crystal grain boundaries causing corrosion are dispersed. In addition, in the expanded grid, the stress generated when the grid is expanded remains in the grid and may be corroded by the residual stress.However, the elongation force due to the corrosion is larger than that of the cast grid. Since the battery case is small and the intergranular corrosion is reduced, the battery case is hardly deformed or broken due to the expansion of the expanded grid, and is superior to the case of the cast grid.
【0004】[0004]
【発明が解決しようとする課題】従来の正極格子として
エキスパンド格子を用いた密閉形鉛蓄電池にあっては、
酸化腐食によるエキスパンド格子の伸びは、鋳造格子の
場合と比較して小さいので格子の伸びによる電槽の変形
や破損は起こり難いという利点はあるが、鋳造格子の場
合に比較してエキスパンド格子の場合は、酸化腐食によ
り生成する酸化物と格子との間の密着性が低下し、活物
質の脱落,剥離等により電池の使用途中で急に容量が低
下して寿命に至るという課題があった。SUMMARY OF THE INVENTION In a conventional sealed lead-acid battery using an expanded grid as a positive grid,
Since the expansion of the expanded grid due to oxidative corrosion is smaller than that of the cast grid, there is an advantage that the battery case is less likely to be deformed or damaged by the grid expansion, but the expanded grid is larger than the cast grid. However, there is a problem in that the adhesion between the oxide and the lattice generated by oxidative corrosion is reduced, and the capacity is suddenly reduced during use of the battery due to dropping or peeling off of the active material, leading to a long life.
【0005】[0005]
【課題を解決するための手段】本発明は、上記の課題を
解決するために、正極板および負極板ならびにこれら極
板間に介在させて電解液を保持したセパレータからなる
極板群を備え、正極板の活物質を保持する正極格子は、
アルカリ金属を含有する鉛−カルシウム−スズ合金によ
りエキスパンド格子に形成したものを使用することとし
ている。In order to solve the above-mentioned problems, the present invention comprises a positive electrode plate, a negative electrode plate, and an electrode plate group comprising a separator interposed between these electrode plates and holding an electrolytic solution, The positive grid holding the active material of the positive plate,
An expanded lattice formed of a lead-calcium-tin alloy containing an alkali metal is used.
【0006】[0006]
【発明の実施の形態】鉛−カルシウム−スズ合金の圧延
シートにスリットを入れて展開したエキスパンド格子
は、密閉形鉛蓄電池の負極格子として一般的に使用され
てきている。このようなエキスパンド格子を正極板の格
子として用いた場合、格子中の結晶粒界が圧延により分
散しているため、粒界腐食は起こり難い性質がある。DESCRIPTION OF THE PREFERRED EMBODIMENTS Expanded grids obtained by slitting rolled sheets of lead-calcium-tin alloy have been generally used as negative grids of sealed lead-acid batteries. When such an expanded lattice is used as the lattice of the positive electrode plate, grain boundaries in the lattice are dispersed by rolling, so that there is a property that intergranular corrosion hardly occurs.
【0007】しかし、その反面、圧延方向に平行な圧延
組織に沿って格子の極く表面が酸化腐食され易く、その
結果、格子の表面にほぼ均一な厚みで酸化物層を生成
し、この酸化物層が格子の表面から容易に脱落し易く、
特に鉛−カルシウム系合金により形成した格子において
その傾向が顕著になっている。そして、正極格子の表面
とその表面上の酸化物層との界面に隙間が生ずると、格
子から活物質が脱落する原因となり、電池の使用途中で
急激に容量低下が発生し、寿命に至るものがあった。However, on the other hand, the very surface of the grid is easily oxidized and corroded along the rolling structure parallel to the rolling direction. As a result, an oxide layer having a substantially uniform thickness is formed on the surface of the grid. The material layer easily falls off the surface of the grid,
In particular, the tendency is remarkable in a lattice formed of a lead-calcium alloy. If a gap is formed at the interface between the surface of the positive electrode grid and the oxide layer on the surface, the active material may fall off from the grid, causing a sudden drop in capacity during the use of the battery, leading to a long service life. was there.
【0008】圧延した鉛−カルシウム系合金により形成
した正極格子の表面に生成した酸化物層と格子との界面
は平滑であり、容易に剥離し易いが、格子の圧延組織中
にわずかに存在する結晶粒界で酸化腐食を進行させるこ
とができれば、酸化物層は格子表面に楔状に食い込むよ
うに生成されるので、格子の表面と酸化物層との密着性
が良好になる。The interface between the oxide layer formed on the surface of the positive electrode lattice formed of the rolled lead-calcium alloy and the lattice is smooth and easily peeled off, but slightly exists in the rolled structure of the lattice. If oxidative corrosion can proceed at the crystal grain boundaries, the oxide layer is formed so as to bite into the lattice surface, so that the adhesion between the lattice surface and the oxide layer is improved.
【0009】正極格子を形成する鉛−カルシウム−スズ
合金中にアルカリ金属を微量含有させることにより、圧
延組織中に存在する結晶粒界に析出したアルカリ金属リ
ッチな相が優先的に酸化腐食を受けるため、生成した酸
化物層は格子の結晶粒界に楔状に食い込み、格子の表面
と酸化物層の密着性が向上し、活物質の脱落,剥離を阻
止して密閉形鉛蓄電池の寿命特性を向上させることがで
きる。[0009] By adding a small amount of alkali metal to the lead-calcium-tin alloy forming the positive electrode lattice, the alkali metal-rich phase precipitated at the grain boundaries existing in the rolled structure is preferentially subjected to oxidative corrosion. As a result, the generated oxide layer penetrates into the crystal grain boundaries of the lattice in a wedge shape, improving the adhesion between the lattice surface and the oxide layer, preventing the active material from dropping and peeling, and improving the life characteristics of the sealed lead-acid battery. Can be improved.
【0010】正極格子の表面上に酸化物層が形成される
メカニズムとして種々のものが考えられるが、そのメカ
ニズムは格子を形成する合金、格子の上に塗着された活
物質、および電解液中の水,硫酸等が関与する反応によ
るものであり、この反応はこれら反応種の活量によって
影響されるので、アルカリ金属の添加量,電解液の比重
および正極格子の重量と正極活物質の重量との比率を最
適な範囲で規定することが好ましい。[0010] There are various possible mechanisms for forming an oxide layer on the surface of the positive electrode grid. The mechanism is based on an alloy forming the grid, an active material coated on the grid, and an electrolyte. The reaction is affected by the activities of water, sulfuric acid, etc., and this reaction is affected by the activities of these reactive species. Therefore, the amount of alkali metal added, the specific gravity of the electrolyte, the weight of the positive electrode grid and the weight of the positive electrode active material Is preferably defined in an optimum range.
【0011】さらに、エキスパンド格子は格子中の残存
応力によって酸化腐食が促進される場合があるので、格
子が伸びても電槽への応力を最小限とする必要があり、
この点からも格子を形成する合金中へのアルカリ金属の
添加量,電解液の比重および正極格子の重量と正極活物
質の重量との比率を最適な範囲で規定する必要がある。Further, in the expanded grid, oxidation corrosion may be promoted by residual stress in the grid, so that even if the grid is elongated, it is necessary to minimize the stress on the battery case.
From this point as well, it is necessary to define the amount of the alkali metal added to the alloy forming the lattice, the specific gravity of the electrolytic solution, and the ratio of the weight of the positive electrode grid to the weight of the positive electrode active material in an optimum range.
【0012】以上の技術的背景より本発明の実施の形態
は次の通りとする。すなわち、正極板および負極板なら
びにこれら極板間に介在させて電解液を保持したセパレ
ータを少なくとも有し、前記正極板の活物質を保持する
正極格子はエキスパンド格子とし、アルカリ金属を含有
する鉛−カルシウム−スズ合金により形成したものであ
る。From the above technical background, embodiments of the present invention are as follows. That is, a positive electrode plate and a negative electrode plate and at least a separator interposed between these electrode plates and holding an electrolytic solution, the positive electrode lattice holding the active material of the positive electrode plate is an expanded lattice, It is formed of a calcium-tin alloy.
【0013】そして、圧延組織中に存在する結晶粒界
に、アルカリ金属がリッチな相を析出させ、この相に優
先的に酸化腐食を受けさせるので、正極格子の表面に生
成される酸化物層は格子の結晶粒界に楔状に食い込み、
格子の表面と酸化物層との密着性が良好となり、活物質
の脱落,剥離が阻止されて密閉形鉛蓄電池の寿命特性を
向上させることができる。The alkali metal precipitates a rich phase at the grain boundaries existing in the rolled structure, and the phase is preferentially subjected to oxidative corrosion, so that an oxide layer formed on the surface of the positive electrode lattice is formed. Bites into the lattice grain boundaries of the lattice,
The adhesion between the surface of the lattice and the oxide layer is improved, and the active material is prevented from falling off and peeling off, so that the life characteristics of the sealed lead-acid battery can be improved.
【0014】また、含有させるアルカリ金属としては、
リチウム,ナトリウムもしくはカリウムが密着性の点で
効率的であり、アルカリ金属の含有量は0.001〜
0.03重量%の場合が密着性が良く好ましいものとな
る。Further, as the alkali metal to be contained,
Lithium, sodium or potassium is efficient in terms of adhesion, and the content of alkali metal is 0.001 to
The case of 0.03% by weight is preferable because of good adhesion.
【0015】また、正極板が保持する活物質の重量に対
する正極格子の重量の比率を0.4〜0.6にするもの
であり、この範囲にある場合が、放電持続時間およびト
リクル寿命の点から好ましいものである。Further, the ratio of the weight of the positive electrode grid to the weight of the active material held by the positive electrode plate is set to 0.4 to 0.6. When the ratio is within this range, the discharge duration and trickle life are reduced. Is preferred.
【0016】さらに、電解液の比重を、充電状態で1.
29〜1.36(20℃)とするものであり、この範囲
にある場合が、放電持続時間およびトリクル寿命の点か
ら好ましいものである。Further, the specific gravity of the electrolyte is set to 1.
The temperature is in the range of 29 to 1.36 (20 ° C.), and the case within this range is preferable from the viewpoint of the discharge duration and the trickle life.
【0017】[0017]
【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.
【0018】まず、正極格子に用いるエキスパンド格子
を形成する合金について、以下の試験を行った。Pb−
0.075%Ca−0.60%Snの合金にアルカリ金
属としてLiを0.0005〜0.05%含有させた合
金、あるいはNaもしくはKのいずれか一方を0.03
%含有させた合金を用い、それぞれを板状に鋳造する。
次いで、これらを1/20の厚さに冷間圧延し、通常の
方法によりスリットを入れて展開し、エキスパンド格子
を作製した。なお、それぞれの合金における成分の含有
量は重量%で示している。First, the following test was performed on the alloy forming the expanded lattice used for the positive electrode lattice. Pb-
0.075% Ca-0.60% Sn alloy containing 0.0005 to 0.05% of Li as an alkali metal, or 0.03% of either Na or K
%, And each is cast into a plate shape.
Next, these were cold-rolled to a thickness of 1/20, slit and developed by an ordinary method to produce an expanded lattice. In addition, the content of the component in each alloy is shown by weight%.
【0019】これらのエキスパンド格子を作動極とし、
通常の密閉形鉛蓄電池の負極板に用いる負極格子を対極
として用い、25℃において、比重1.30の希硫酸電
解液中で定電位電解することにより、作動極としてのエ
キスパンド格子の表面を酸化させ、酸化物の生成量から
酸化物と格子との密着性を測定した。なお、酸化物の生
成量は、エキスパンド格子に付着した酸化物(以下、付
着酸化物という)と格子から脱落した酸化物(以下、脱
落酸化物という)とに区分してその量を測定し、脱落酸
化物量(B)に対する付着酸化物量(A)の比率(A/
B)が大きい場合が、酸化物と格子との密着性が良好で
あると判定することにした。その測定結果は、表1に示
す通りであり、付着酸化物量(A)および脱落酸化物量
(B)の値は、合金番号1の場合を100とした時の指
数として示している。With these expanded gratings as working poles,
The surface of the expanded grid as the working electrode is oxidized by performing a constant potential electrolysis in a dilute sulfuric acid electrolyte having a specific gravity of 1.30 at 25 ° C. using the negative grid used for the negative electrode plate of a normal sealed lead-acid battery as a counter electrode. Then, the adhesion between the oxide and the lattice was measured based on the amount of the generated oxide. In addition, the amount of the generated oxide is divided into an oxide attached to the expanded lattice (hereinafter, referred to as an attached oxide) and an oxide dropped from the lattice (hereinafter, referred to as a dropped oxide), and the amount is measured. The ratio of the attached oxide amount (A) to the dropped oxide amount (B) (A /
When B) was large, it was determined that the adhesion between the oxide and the lattice was good. The measurement results are as shown in Table 1, and the values of the attached oxide amount (A) and the dropped oxide amount (B) are shown as indices when the alloy No. 1 is set to 100.
【0020】[0020]
【表1】 [Table 1]
【0021】表1から、Li,NaあるいはKを含有さ
せた鉛−カルシウム−スズ合金(合金番号2〜9)によ
り形成したエキスパンド格子の場合は、付着酸化物量A
が増加し、脱落酸化物量Bが減少し、それに伴いA/B
が増加していることが解る。これは、格子の表面と格子
表面上に生成した酸化物層との密着性が向上しているこ
とを示し、Li,Na,Kの含有量が0.001〜0.
03%の範囲で、その効果が顕著になっていることが解
る。From Table 1, it can be seen that in the case of an expanded lattice formed of a lead-calcium-tin alloy containing Li, Na or K (alloy numbers 2 to 9), the amount of deposited oxide A
Increases, the amount of oxides dropped B decreases, and A / B
It can be seen that has increased. This indicates that the adhesion between the surface of the lattice and the oxide layer formed on the lattice surface is improved, and the content of Li, Na, and K is 0.001 to 0.
It can be seen that the effect is remarkable in the range of 03%.
【0022】次に、Pb−0.075%Ca−0.60
%Sn−0.01%Li合金(表1における合金番号
5)の圧延シートにスリットを入れて展開してエキスパ
ンド格子を作製し、このエキスパンド格子に正極活物質
ペーストを塗着して正極板とした。なお、正極活物質ペ
ーストの塗着量は、表2に示したような正極板の鉛量に
対する正極格子の重量の比率(正極格子重量/正極板鉛
量)になるように正極活物質ペーストを塗着している。
この正極板と、従来におけるエキスパンド格子を使用し
た負極板と、含液性のセパレータとにより形成した極板
群を用いて密閉形鉛蓄電池を作製し、電池A〜Jとし
た。なお、セパレータの厚みは極板群への群圧がほぼ3
0kg/dm2 になるように選定し、セパレータに含浸
させる電解液の比重については、化成後の比重が表2に
示した値となるように調整した。Next, Pb-0.075% Ca-0.60
% Sn-0.01% Li alloy (alloy No. 5 in Table 1) is rolled and slit to develop an expanded lattice, and apply a positive electrode active material paste to the expanded lattice to form a positive electrode plate. did. The amount of the positive electrode active material paste applied was such that the ratio of the weight of the positive electrode grid to the lead amount of the positive electrode plate as shown in Table 2 (positive electrode grid weight / positive electrode plate lead amount) was used. It is painted.
A sealed lead-acid battery was produced using the positive electrode plate, a negative electrode plate using a conventional expanded grid, and a group of electrodes formed of a liquid-containing separator, and was used as batteries A to J. The thickness of the separator is such that the group pressure on the electrode plate group is approximately 3
The electrolyte was selected so as to be 0 kg / dm 2, and the specific gravity of the electrolytic solution impregnated in the separator was adjusted so that the specific gravity after the chemical conversion had a value shown in Table 2.
【0023】また、比較例として、正極格子に表1の合
金番号1の合金による鋳造格子、負極格子に従来におけ
るエキスパンド格子を用いて作製した密閉形鉛蓄電池
K、正極格子に表1の合金番号5による鋳造格子、負極
格子に従来における鋳造格子を用いて作製した密閉形鉛
蓄電池L、正極格子に表1の合金番号1の合金によるエ
キスパンド格子を用い、負極格子に従来におけるエキス
パンド格子を用いて作製した密閉形鉛蓄電池を電池Mと
した。Also, as a comparative example, a sealed lead-acid battery K manufactured using an alloy of alloy number 1 in Table 1 as a positive electrode grid, a conventional expanded grid as a negative electrode grid, and an alloy number in Table 1 as a positive electrode grid. 5, a sealed lead-acid battery L manufactured using a conventional casting grid for the negative grid, an expanded grid of alloy No. 1 in Table 1 for the positive grid, and a conventional expanded grid for the negative grid. The manufactured sealed lead-acid battery was designated as Battery M.
【0024】[0024]
【表2】 [Table 2]
【0025】表2に示した電池A〜Mについて、3CA
放電時の放電持続時間を測定し、試験条件としては、放
電電流値を3CA、終止電圧を1.60V/セル、試験
温度を25℃とした。また、これらの電池A〜Mについ
てトリクル寿命試験を行い、試験条件としては、40℃
雰囲気中において2.28V/セルの定電圧充電を3ヶ
月間行い、次いで3CAの放電電流で終止電圧1.60
V/セルまで放電する充放電を1サイクルとし、3CA
による放電持続時間が5分に低下するまでのサイクル数
を測定した。これらの測定結果は表3に示す通りであ
る。For the batteries A to M shown in Table 2, 3CA
The discharge duration during discharge was measured, and the test conditions were a discharge current value of 3 CA, an end voltage of 1.60 V / cell, and a test temperature of 25 ° C. A trickle life test was performed on these batteries A to M. The test conditions were 40 ° C.
The battery was charged at a constant voltage of 2.28 V / cell for 3 months in an atmosphere, and then a final voltage of 1.60 with a discharge current of 3 CA.
1 cycle of charge / discharge to discharge to V / cell, 3CA
, The number of cycles until the discharge duration was reduced to 5 minutes. These measurement results are as shown in Table 3.
【0026】[0026]
【表3】 [Table 3]
【0027】表3から、放電持続時間は正極板の鉛量に
対する正極格子の重量の比率が0.6を越えると低くな
り、トリクル寿命はこの比率が0.4を下回ると低下す
ることが解る。すなわち、正極格子としてエキスパンド
格子を用いた密閉形鉛蓄電池において、放電持続時間と
トリクル寿命ともに従来の密閉形鉛蓄電池(電池K)と
同等以上になる条件は、正極板の鉛量に対する正極格子
の重量の比率が0.4〜0.6の範囲であることが解
る。From Table 3, it can be seen that the discharge duration decreases when the ratio of the weight of the positive electrode grid to the lead amount of the positive electrode plate exceeds 0.6, and the trickle life decreases when the ratio is less than 0.4. . That is, in a sealed lead-acid battery using an expanded grid as the positive grid, the condition that both the discharge duration and the trickle life are equal to or more than that of the conventional sealed lead-acid battery (battery K) is determined by the amount of the positive grid with respect to the lead amount of the positive plate. It can be seen that the weight ratio is in the range of 0.4 to 0.6.
【0028】放電持続時間について、正極板の鉛量に対
する正極格子の重量の比率が0.6を越えると低下する
のは、正極活物質が減少するためであり、0.6以下で
一定であるのは電解液量によって放電持続時間が制限さ
れるためである。The decrease in the discharge duration when the ratio of the weight of the positive electrode grid to the lead amount of the positive electrode plate exceeds 0.6 is due to the decrease in the amount of the positive electrode active material, and is constant at 0.6 or less. This is because the discharge duration is limited by the amount of the electrolyte.
【0029】トリクル寿命について、正極板の鉛量に対
する正極格子の重量の比率が0.4以下の場合に急激な
寿命低下が見られるのは、トリクル充電中に正極格子中
を流れるトリクル充電電流が正極活物質に比例して大き
くなるので、正極活物質量が正極格子の重量に対して多
くなるような構成の場合には、正極格子がトリクル充電
電流に起因する酸化腐食反応を激しく受けることによる
ものと考えられる。Regarding the trickle life, when the ratio of the weight of the positive electrode grid to the lead amount of the positive electrode plate is 0.4 or less, a sharp decrease in the life is observed because the trickle charging current flowing through the positive electrode grid during trickle charging. Since the positive electrode active material increases in proportion to the positive electrode active material, in the case of a configuration in which the amount of the positive electrode active material is increased with respect to the weight of the positive electrode grid, the positive electrode grid is strongly subjected to an oxidative corrosion reaction caused by trickle charging current. It is considered something.
【0030】次に、電解液比重と放電持続時間とトリク
ル寿命特性との関係について、電解液比重が1.29以
下の場合は、放電持続時間は硫酸量によって制限される
ために低下し、電解液比重が1.36を越える場合にお
いては、トリクル寿命が急激に低下する。これは硫酸自
体が酸化剤としての作用をするとともに電解質としての
濃度が上がるために、トリクル充電電流が増加して正極
格子が激しい酸化腐食を受けたことによるものと考えら
れる。よって放電持続時間とトリクル寿命とを両立させ
るには、電解液比重は、20℃で1.29〜1.36の
範囲とすることが望ましい。Next, regarding the relationship between the specific gravity of the electrolytic solution, the duration of discharge and the trickle life characteristic, when the specific gravity of the electrolytic solution is 1.29 or less, the duration of discharge is limited by the amount of sulfuric acid and decreases. When the liquid specific gravity exceeds 1.36, the trickle life is sharply reduced. This is considered to be because sulfuric acid itself acts as an oxidizing agent and the concentration as an electrolyte increases, so that the trickle charge current increases and the positive electrode grid undergoes severe oxidative corrosion. Therefore, in order to make the discharge duration time and the trickle life compatible, it is desirable that the specific gravity of the electrolytic solution be in the range of 1.29 to 1.36 at 20 ° C.
【0031】次に、これらの寿命に至ったそれぞれの電
池(A〜M)について、さらに寿命試験を継続して行っ
た。なお、試験条件は前記の場合と同様とし、試験期間
はその電池の寿命期間と同一とし、各電池には本来の寿
命期間の2倍の期間に相当する寿命試験を行った。そし
て、これらの電池(A〜M)の試験終了後における電槽
の幅寸法の膨張率および電槽の破損率を調査し、その結
果は表4に示す通りである。Next, a life test was further continued for each of the batteries (A to M) having reached the end of their life. The test conditions were the same as those described above, the test period was the same as the life period of the battery, and each battery was subjected to a life test corresponding to twice the original life period. After the test of these batteries (A to M), the expansion rate of the width of the battery case and the breakage rate of the battery case were examined. The results are as shown in Table 4.
【0032】[0032]
【表4】 [Table 4]
【0033】表4に示したように、本実施例の電池(A
〜J)は従来の鋳造格子を正極格子に用いた電池K,電
池Lに比較して電槽の幅寸法の膨張率、すなわち電槽の
変形が少なく、電槽の破損を抑制できることが確認され
た。As shown in Table 4, the battery (A
To J), it was confirmed that the expansion rate of the width of the battery case, that is, the deformation of the battery case was smaller than that of the batteries K and L using the conventional cast grid as the positive electrode grid, and the battery case could be prevented from being damaged. Was.
【0034】[0034]
【発明の効果】以上説明したように本発明による密閉形
鉛蓄電池にあっては、正極板にアルカリ金属を含有した
鉛−カルシウム−スズ合金により形成したエキスパンド
格子を用いることにより、正極格子の伸びの力による電
槽の変形および破損を防止できるとともに、活物質の脱
落,剥離により電池使用途中において急激に容量が低下
する寿命劣化を抑制することができるという効果を奏す
る。As described above, in the sealed lead-acid battery according to the present invention, the expansion of the positive electrode grid is achieved by using an expanded lattice formed of a lead-calcium-tin alloy containing an alkali metal for the positive electrode plate. In addition to preventing the battery case from being deformed and damaged by the force of the above, there is an effect that it is possible to suppress the deterioration of the service life in which the capacity is suddenly reduced during use of the battery due to the falling off or peeling of the active material.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 利弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshihiro Inoue 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.
Claims (5)
間に介在させて電解液を保持したセパレータを少なくと
も有し、前記正極板の活物質を保持する正極格子はエキ
スパンド格子とし、アルカリ金属を含有する鉛−カルシ
ウム−スズ合金により形成した密閉形鉛蓄電池。1. A positive electrode plate, a negative electrode plate, and at least a separator interposed between these electrode plates and holding an electrolytic solution, wherein a positive electrode lattice holding an active material of the positive electrode plate is an expanded lattice and contains an alkali metal. Sealed lead-acid battery formed of a lead-calcium-tin alloy.
ルカリ金属が、リチウム,ナトリウム,カリウムの群か
ら選ばれた少なくとも一種である請求項1に記載の密閉
形鉛蓄電池。2. The sealed lead-acid battery according to claim 1, wherein the alkali metal contained in the lead-calcium-tin alloy is at least one selected from the group consisting of lithium, sodium and potassium.
1〜0.03重量%のアルカリ金属を含有する請求項1
または2に記載の密閉形鉛蓄電池。3. A lead-calcium-tin alloy containing 0.005
2. The composition according to claim 1, which contains 1 to 0.03% by weight of an alkali metal.
Or a sealed lead-acid battery according to 2.
正極格子の重量の比率が、0.4〜0.6である請求項
1ないし3のいずれかに記載の密閉形鉛蓄電池。4. The sealed lead-acid battery according to claim 1, wherein the ratio of the weight of the positive electrode grid to the weight of the active material held by the positive electrode plate is 0.4 to 0.6.
1.36である請求項1ないし4のいずれかに記載の密
閉形鉛蓄電池。5. The electrolyte has a specific gravity of 1.29 to less in a charged state.
The sealed lead-acid battery according to any one of claims 1 to 4, which has a ratio of 1.36.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9346041A JPH11176449A (en) | 1997-12-16 | 1997-12-16 | Sealed lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9346041A JPH11176449A (en) | 1997-12-16 | 1997-12-16 | Sealed lead-acid battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11176449A true JPH11176449A (en) | 1999-07-02 |
Family
ID=18380742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9346041A Pending JPH11176449A (en) | 1997-12-16 | 1997-12-16 | Sealed lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11176449A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002246031A (en) * | 2001-02-19 | 2002-08-30 | Furukawa Battery Co Ltd:The | Lead storage battery |
JP2015187990A (en) * | 2010-09-29 | 2015-10-29 | 株式会社Gsユアサ | Lead storage battery |
US9548485B2 (en) | 2011-05-02 | 2017-01-17 | Gs Yuasa International Ltd. | Valve regulated lead-acid battery |
JP2019207786A (en) * | 2018-05-29 | 2019-12-05 | 古河電池株式会社 | Lead acid battery |
-
1997
- 1997-12-16 JP JP9346041A patent/JPH11176449A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002246031A (en) * | 2001-02-19 | 2002-08-30 | Furukawa Battery Co Ltd:The | Lead storage battery |
JP2015187990A (en) * | 2010-09-29 | 2015-10-29 | 株式会社Gsユアサ | Lead storage battery |
US9548485B2 (en) | 2011-05-02 | 2017-01-17 | Gs Yuasa International Ltd. | Valve regulated lead-acid battery |
JP2019207786A (en) * | 2018-05-29 | 2019-12-05 | 古河電池株式会社 | Lead acid battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11339811A (en) | Copper alloy foil current collector for secondary battery | |
JP3367157B2 (en) | Lead storage battery | |
JP7296016B2 (en) | Lead alloy foil, positive electrode for lead-acid battery, lead-acid battery, and power storage system | |
JP5656068B2 (en) | Liquid lead-acid battery | |
JP2002175798A (en) | Sealed lead-acid battery | |
JPH05290857A (en) | Manufacture of electrode plate for lead-acid battery | |
JPH11176449A (en) | Sealed lead-acid battery | |
JPH0817438A (en) | Lead acid battery | |
JP4292666B2 (en) | Sealed lead acid battery | |
JP3099328B2 (en) | Lead storage battery | |
JP4896392B2 (en) | Lead acid battery | |
JPS63148556A (en) | Paste type lead acid battery | |
JP3099329B2 (en) | Lead storage battery | |
JP2720689B2 (en) | Lead storage battery | |
JP4374626B2 (en) | Lead acid battery | |
JPH0770321B2 (en) | Sealed lead acid battery | |
JP3036235B2 (en) | Expanded grid of lead-acid battery | |
JP3102000B2 (en) | Lead storage battery | |
JP2917277B2 (en) | Lead storage battery | |
JP3858300B2 (en) | Lead acid battery | |
JPH0548586B2 (en) | ||
JP2002260671A (en) | Lead storage battery | |
JPS6048867B2 (en) | lead acid battery | |
JPH09231982A (en) | Lead acid battery | |
JPS63211567A (en) | Plate for lead-acid battery |