JPH09231982A - Lead acid battery - Google Patents
Lead acid batteryInfo
- Publication number
- JPH09231982A JPH09231982A JP8056667A JP5666796A JPH09231982A JP H09231982 A JPH09231982 A JP H09231982A JP 8056667 A JP8056667 A JP 8056667A JP 5666796 A JP5666796 A JP 5666796A JP H09231982 A JPH09231982 A JP H09231982A
- Authority
- JP
- Japan
- Prior art keywords
- lead
- positive electrode
- battery
- grid
- acid battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は鉛蓄電池の改良に関
するものであり、とくに使用済み鉛蓄電池や鉛蓄電池製
造工程から発生する鉛合金格子・廃ペースト等から回収
・再生した鉛を正極格子材料に用いる鉛蓄電池の性能を
改善するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a lead storage battery, and in particular, lead recovered or regenerated from a lead alloy grid or a waste paste generated from a used lead storage battery or a lead storage battery manufacturing process is used as a positive grid material. It improves the performance of lead acid batteries used.
【0002】[0002]
【従来の技術とその課題】従来、鉛蓄電池用正極格子合
金には鉛−アンチモン系合金を使用することが多かっ
た。これは、機械的強度が優れており、鋳造法で格子を
製造する際にも鋳造が容易で、その後の工程での取り扱
いも容易なことや深い放電を含むサイクル用途での使用
時に優れた寿命性能を有することなどによるものであ
る。しかし、鉛−アンチモン系合金を正極に用いると、
電池使用中に正極格子が腐食され、正極格子中に含まれ
ていたアンチモンが溶出して負極板上に析出し、負極板
の水素過電圧を下げる。その結果、自己放電が増加した
り、電池使用中の減液量が増加することがあった。2. Description of the Related Art Conventionally, lead-antimony alloys have often been used as positive electrode grid alloys for lead-acid batteries. It has excellent mechanical strength, is easy to cast when manufacturing the grid by the casting method, is easy to handle in the subsequent steps, and has an excellent lifespan when used in cycle applications including deep discharge. This is because it has performance. However, when a lead-antimony alloy is used for the positive electrode,
The positive electrode grid is corroded during use of the battery, and antimony contained in the positive electrode grid is eluted and deposited on the negative electrode plate, which lowers the hydrogen overvoltage of the negative electrode plate. As a result, self-discharge may increase or the amount of reduced liquid during use of the battery may increase.
【0003】一方、最近のメンテナンスフリー化の要求
から、アンチモンを含まない合金を正極格子に用いるこ
とが増加しており、そのような合金としては鉛−カルシ
ウム系合金が多く用いられている。On the other hand, due to the recent demand for maintenance-free use, an alloy containing no antimony has been increasingly used for the positive electrode grid, and a lead-calcium alloy is often used as such an alloy.
【0004】この鉛−カルシウム系合金には従来、鉱石
から製練・精製した純度の高い鉛、いわゆる新鉛が使用
されている。これは、電池使用中に正極から溶出して負
極板上に析出し、水素過電圧を下げる不純物の混入を避
けるためである。このため、使用済み鉛蓄電池や鉛蓄電
池製造工程から発生する鉛合金格子・廃ペースト等から
回収・再生した鉛、いわゆる再生鉛は鉛−カルシウム系
合金には使用されてこなかった。For this lead-calcium alloy, lead having a high purity, which has been kneaded and refined from ore, so-called new lead, has been used. This is to avoid mixing of impurities that elute from the positive electrode and deposit on the negative electrode plate during use of the battery, which lowers the hydrogen overvoltage. For this reason, lead that has been recovered and regenerated from used lead-acid batteries and lead alloy grids, waste paste, etc. generated in the lead-acid battery manufacturing process, so-called regenerated lead, has not been used for lead-calcium alloys.
【0005】ところで、近年、地球環境保全の観点から
使用済み鉛蓄電池の回収・再利用が重要になっている。
元来、鉛蓄電池の回収率は80〜90%程度と、比較的
高い値を示していたが、メンテナンスフリー化の進展に
よって各種不純物の混入が予想される再生鉛の需要が少
なくなったことや鉛価格が下落したことなどによって、
その回収率がやや低下している。しかし、今後もメンテ
ナンスフリ−化の要求は強くなると考えられ、鉛−カル
シウム系合金にも再生鉛を使用する必要が生じてきた。By the way, in recent years, it has become important to collect and reuse used lead-acid batteries from the viewpoint of global environmental protection.
Originally, the recovery rate of lead-acid batteries was a relatively high value of about 80 to 90%, but the demand for recycled lead, which is expected to be contaminated with various impurities due to the progress of maintenance-free operations, Due to a drop in lead prices,
The recovery rate is slightly lower. However, it is considered that the requirement for maintenance-free will continue to increase, and it has become necessary to use recycled lead for lead-calcium alloys.
【0006】再生鉛を鉛−カルシウム系合金に使用する
ための一つの方法は、乾式法で再生した後、電解精製す
ることである。この方法であれば、従来の新鉛と同程度
の高純度の鉛が得られ、鉛−カルシウム系合金に使用し
てもなんら問題はないが、電解法のため、コストが高く
なるという問題があった。One method for using regenerated lead in lead-calcium alloys is to regenerate it by a dry process followed by electrolytic refining. With this method, high-purity lead as high as conventional new lead can be obtained, and there is no problem even if it is used for a lead-calcium alloy, but there is a problem that the cost is high due to the electrolytic method. there were.
【0007】一方、本発明者らも当初、乾式法を用い安
いコストで再生鉛を鉛−カルシウム系合金に適用するた
め種々検討を重ねてきたが、JIS H 2105(鉛
地金)の特種に規定されている不純物のみを特種に近い
レベルまで削減してもメンテナンスフリ−特性が充分満
足できる鉛−カルシウム系合金が得られない場合があっ
た。On the other hand, the inventors of the present invention initially conducted various studies to apply the regenerated lead to the lead-calcium alloy at a low cost by using the dry method, but as a special kind of JIS H 2105 (lead metal). In some cases, even if the specified impurities are reduced to a level close to that of a special type, a lead-calcium alloy having a sufficient maintenance free property cannot be obtained.
【0008】鉛蓄電池のメンテナンスフリ−特性は上述
のごとく、負極の水素過電圧によって影響されるが、負
極には正極から溶出した各種元素が析出するため、正極
格子合金の影響も非常に大きい。従来、水素過電圧の低
下に大きな影響を及ぼす再生鉛中の元素としてはアンチ
モンと銅がよく知られている。しかし、アンチモンおよ
び銅の含有量をJIS H 2105の特種とほぼ同じ
レベルである0.002重量%としても充分満足できる
メンテナンスフリ−特性が得られない場合があった。そ
こで再生鉛中の不純物を徹底的に調査し、種々検討を重
ねた結果、ごく微量のニッケルが影響していることが明
らかになった。As described above, the maintenance free characteristic of the lead storage battery is affected by the hydrogen overvoltage of the negative electrode, but various elements eluted from the positive electrode are deposited on the negative electrode, so that the positive electrode lattice alloy has a great influence. Heretofore, antimony and copper have been well known as elements in recycled lead that have a large effect on the reduction of hydrogen overvoltage. However, even if the content of antimony and copper is set to 0.002% by weight, which is almost the same level as that of JIS H 2105, the maintenance-free characteristics may not be sufficiently satisfactory in some cases. Therefore, as a result of thorough investigation of impurities in recycled lead and various investigations, it was revealed that a very small amount of nickel had an effect.
【0009】[0009]
【課題を解決するための手段】本発明は上記問題点を解
決するもので、使用済み鉛蓄電池や鉛蓄電池製造工程か
ら発生する鉛合金格子・廃ペースト等から回収・再生し
た鉛を正極の鉛−カルシウム系合金に用いる際に、ニッ
ケル含有量を0.0002重量%以上、0.002重量
%以下とすることによってメンテナンスフリ−特性を損
なわずに、安価に鉛蓄電池を提供するものである。The present invention is to solve the above-mentioned problems. Lead recovered and regenerated from a used lead-acid battery or a lead alloy grid, waste paste, etc. generated in the lead-acid battery manufacturing process is used as a positive electrode lead. -When used in a calcium-based alloy, the nickel content is set to 0.0002% by weight or more and 0.002% by weight or less to provide a lead storage battery at low cost without impairing maintenance-free characteristics.
【0010】[0010]
【発明の実施の形態】本発明による鉛蓄電池は、正極格
子として、乾式法によって再生した鉛を用い、かつ格子
中のニッケル含有量が0.0002重量%以上、0.0
02重量%以下である鉛−カルシウム系合金からなる格
子を使用する。このようにすることにより、安価でメン
テナンスフリー特性の優れた鉛蓄電池を可能にする。BEST MODE FOR CARRYING OUT THE INVENTION The lead-acid battery according to the present invention uses lead regenerated by a dry method as the positive electrode grid, and the nickel content in the grid is 0.0002% by weight or more and 0.0
A grid made of lead-calcium based alloy of not more than 02% by weight is used. By doing so, it is possible to provide a lead-acid battery that is inexpensive and has excellent maintenance-free characteristics.
【0011】[0011]
【実施例】以下、本発明を実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
【0012】まず、使用済み鉛蓄電池や鉛蓄電池製造工
程から発生する鉛合金格子・廃ペースト等から乾式法に
よって鉛を再生した。次にこれらの再生した鉛にカルシ
ウム、錫を添加して所定の組成の合金を調合し、通常の
重力鋳造法によって厚さ約2mmの鉛蓄電池用格子を得
た。これらの格子中の合金組成および不純物は表1のと
おりであった。なお、カルシウムの添加には鉛−3重量
%カルシウム−0.1重量%アルミニウム合金を使用し
たため、合金中にアルミニウムが検出されている。ま
た、ニッケル含有量の多い再生鉛と少ない再生鉛とを適
宜混合することによって、ニッケル含有量を調整した。
No.6は比較のため乾式法で再生した後、電解精製し
た鉛にカルシウム、錫を添加したものである。First, lead was regenerated by a dry method from a used lead-acid battery or a lead alloy grid, waste paste, etc. generated from the lead-acid battery manufacturing process. Next, calcium and tin were added to the regenerated lead to prepare an alloy having a predetermined composition, and a lead storage battery grid having a thickness of about 2 mm was obtained by an ordinary gravity casting method. The alloy composition and impurities in these lattices are shown in Table 1. In addition, since lead-3 wt% calcium-0.1 wt% aluminum alloy was used for the addition of calcium, aluminum was detected in the alloy. Further, the nickel content was adjusted by appropriately mixing recycled lead having a high nickel content and recycled lead having a low nickel content.
No. For comparison, 6 is lead obtained by electrolytically refining after regenerating by a dry method and adding calcium and tin.
【0013】[0013]
【表1】 その後、常法にしたがって酸化度75%、残部金属鉛よ
りなる鉛粉を希硫酸と混練した正極ペーストを調製し、
このペーストを上述の鉛合金格子に充填し、熟成を施し
た。また、正極ペーストに用いたものと同じ鉛粉に少量
のリグニン、カーボン、硫酸バリウム等を混合した後、
希硫酸と混練した負極ペーストを調製し、このペースト
を鉛−0.06重量%カルシウム−0.5重量%錫合金
からなる圧延シートをエキスパンド加工した格子に充填
し、熟成を施した。これらの正および負極板をそれぞれ
5および6枚使用し公称容量50Ah(5時間率)の電
池を作製した。なお、隔離板としてガラスマット付のセ
パレータを用い、ガラスマットを正極板に当接した。作
製した電池は電槽化成をほどこして、電解液比重1.2
80の鉛蓄電池とした。[Table 1] Then, according to a conventional method, a positive electrode paste was prepared by kneading lead powder consisting of a 75% oxidation degree and the balance metallic lead with diluted sulfuric acid
This paste was filled in the above-mentioned lead alloy grid and aged. In addition, after mixing a small amount of lignin, carbon, barium sulfate, etc. with the same lead powder used for the positive electrode paste,
A negative electrode paste kneaded with dilute sulfuric acid was prepared, and this paste was aged by filling a rolled sheet made of a lead-0.06 wt% calcium-0.5 wt% tin alloy in an expanded grid. A battery having a nominal capacity of 50 Ah (5 hour rate) was prepared by using 5 and 6 of these positive and negative plates, respectively. A separator with a glass mat was used as a separator, and the glass mat was brought into contact with the positive electrode plate. The prepared battery was subjected to battery case formation and the specific gravity of the electrolyte was 1.2.
80 lead acid batteries were used.
【0014】これらの電池をJIS D 5301(自
動車用鉛蓄電池)の軽負荷寿命試験に3,000サイク
ル供したのち、25℃、完全充電時に0.1CA(5
A)充電時の電池電圧を測定した。なお、軽負荷寿命試
験は75℃水槽中で行った。軽負荷寿命試験時の水槽温
度をJISの規定温度である40〜45℃より高くし、
かつ、3,000サイクル行ってから充電時の電池電圧
を測定したのは、充放電サイクル中に正極格子から溶出
した元素が負極に析出し、水素過電圧を低下させる程度
をより明瞭に調べるためである。さらに、JIS D
5301の「解説」に記載されている減液特性試験にも
供し、40℃、14.4Vで28日間定電圧充電した場
合の減液量も測定した。These batteries were subjected to a light load life test of JIS D 5301 (lead acid battery for automobile) for 3,000 cycles, and then 0.1 CA (5
A) The battery voltage during charging was measured. The light load life test was conducted in a 75 ° C. water tank. The temperature of the water tank during the light load life test is set higher than the JIS specified temperature of 40 to 45 ° C,
Also, the battery voltage during charging was measured after 3,000 cycles, in order to more clearly examine the extent to which the element eluted from the positive electrode grid during the charge / discharge cycle was deposited on the negative electrode and lowered the hydrogen overvoltage. is there. Furthermore, JIS D
The liquid reduction property test described in "Explanation" of 5301 was also used, and the liquid reduction amount when constant voltage charging was performed at 40 ° C and 14.4 V for 28 days was also measured.
【0015】結果を表2に示す。The results are shown in Table 2.
【0016】[0016]
【表2】 JIS軽負荷寿命試験後の0.1CA充電時の電池電圧
は、正極格子中のニッケル含有量が0.002重量%以
下(電池No.1、2、3、4)であれば電解精製した
鉛を使用した電池(電池No.6)と同程度の電池電圧
を示した。ニッケル含有量が0.003重量%になると
(電池No.5)、電池電圧が他の電池のそれらより
0.5〜0.7Vも低下した。これは、正極から溶出し
たニッケルが負極板上に析出し、負極板の水素過電圧を
低下させたためである。一方、減液特性試験でも正極格
子中のニッケル含有量が0.002重量%以下(電池N
o.1、2、3、4、6)であれば減液量は2g/Ah
以下で問題なかったが、ニッケル含有量が0.003重
量%になると(電池No.5)、減液量が12g/Ah
と急激に増加した。[Table 2] If the nickel content in the positive electrode grid is 0.002 wt% or less (Battery Nos. 1, 2, 3, 4), the battery voltage during 0.1CA charging after the JIS light load life test is electrolytically refined lead. The same battery voltage as that of the battery (Battery No. 6) used was shown. When the nickel content was 0.003 wt% (Battery No. 5), the battery voltage was lower by 0.5 to 0.7 V than those of the other batteries. This is because the nickel eluted from the positive electrode was deposited on the negative electrode plate and lowered the hydrogen overvoltage of the negative electrode plate. On the other hand, in the liquid reduction property test, the nickel content in the positive electrode grid was 0.002% by weight or less (battery N
o. If it is 1, 2, 3, 4, 6), the liquid reduction amount is 2 g / Ah
Although there was no problem below, when the nickel content was 0.003 wt% (Battery No. 5), the liquid reduction amount was 12 g / Ah.
And increased sharply.
【0017】以上の結果から、正極に鉛−カルシウム系
合金格子を使用する際にはニッケル含有量を0.002
重量%以下にする必要があることがわかった。From the above results, when the lead-calcium alloy lattice is used for the positive electrode, the nickel content is 0.002.
It has been found that the amount needs to be less than or equal to weight%.
【0018】ニッケル含有量を0.002重量%以下に
するには、コストのかかる電解精製法を採用しなくて
も、乾式法で得られるため、コストも安い。なお、ニッ
ケル含有量を0.0002重量%より少なくしても電池
のメンテナンスフリー特性にはなんら問題ないが、ニッ
ケル含有量をこのレベルより下げるためにはコストアッ
プとなるため、これより少なくする必要はない。To reduce the nickel content to 0.002% by weight or less, the cost is low because it can be obtained by a dry method without using a costly electrolytic refining method. It should be noted that even if the nickel content is less than 0.0002% by weight, there is no problem in the maintenance-free characteristics of the battery, but in order to reduce the nickel content below this level, the cost will increase, so it is necessary to make it less than this. There is no.
【0019】上記実施例では、流動液がある従来の開放
型(液式)電池での結果を示したが、負極吸収式密閉電
池においても開放型電池の場合と同様な効果が認められ
た。In the above-mentioned examples, the results were shown for the conventional open type (liquid type) battery having a flowing liquid. However, the same effect as in the open type battery was observed for the negative electrode absorption type sealed battery.
【0020】[0020]
【発明の効果】以上、実施例で述べたように、本発明に
よる鉛蓄電池は安価でメンテナンスフリー特性に優れて
おり、その工業的価値は甚だ大なるものである。As described above, the lead-acid battery according to the present invention is inexpensive and excellent in maintenance-free characteristics, and its industrial value is enormous.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 水田 治彦 京都市南区吉祥院西ノ庄猪之馬場町1番地 日本電池株式会社内 (72)発明者 安川 祥二 京都市南区吉祥院西ノ庄猪之馬場町1番地 日本電池株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Haruhiko Mizuta, Inventor Haruhiko Mizuta, No. 1, Nishinosho-Inaba, Babacho, Minami-ku, Kyoto City, Japan Battery Co., Ltd. Babacho No. 1 Japan Battery Co., Ltd.
Claims (1)
を用いた鉛蓄電池であって、前記正極格子には乾式法に
よって再生した鉛を用い、かつ正極格子中のニッケル含
有量が0.0002重量%以上、0.002重量%以下
であることを特徴とする鉛蓄電池。1. A lead storage battery using a positive electrode grid made of a lead-calcium alloy, wherein lead regenerated by a dry method is used for the positive electrode grid, and the nickel content in the positive electrode grid is 0.0002 weight. % Or more and 0.002% by weight or less, a lead acid battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8056667A JPH09231982A (en) | 1996-02-19 | 1996-02-19 | Lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8056667A JPH09231982A (en) | 1996-02-19 | 1996-02-19 | Lead acid battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09231982A true JPH09231982A (en) | 1997-09-05 |
Family
ID=13033771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8056667A Pending JPH09231982A (en) | 1996-02-19 | 1996-02-19 | Lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09231982A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018037563A1 (en) * | 2016-08-26 | 2018-03-01 | 日立化成株式会社 | Lead acid storage battery, forged grid and method for producing same |
WO2018037564A1 (en) * | 2016-08-26 | 2018-03-01 | 日立化成株式会社 | Lead acid storage battery, forged grid and method for producing same |
WO2022113731A1 (en) * | 2020-11-30 | 2022-06-02 | 古河電気工業株式会社 | Lead alloy, electrode for lead storage batteries, lead storage battery, and power storage system |
-
1996
- 1996-02-19 JP JP8056667A patent/JPH09231982A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018037563A1 (en) * | 2016-08-26 | 2018-03-01 | 日立化成株式会社 | Lead acid storage battery, forged grid and method for producing same |
WO2018037564A1 (en) * | 2016-08-26 | 2018-03-01 | 日立化成株式会社 | Lead acid storage battery, forged grid and method for producing same |
JPWO2018037563A1 (en) * | 2016-08-26 | 2018-08-23 | 日立化成株式会社 | Lead-acid battery, cast grid, and manufacturing method thereof |
JPWO2018037564A1 (en) * | 2016-08-26 | 2018-08-23 | 日立化成株式会社 | Lead-acid battery, cast grid, and manufacturing method thereof |
CN109643804A (en) * | 2016-08-26 | 2019-04-16 | 日立化成株式会社 | Lead storage battery and casting grid and its manufacturing method |
EP3435457A4 (en) * | 2016-08-26 | 2019-06-12 | Hitachi Chemical Company, Ltd. | Lead acid storage battery, forged grid and method for producing same |
TWI763700B (en) * | 2016-08-26 | 2022-05-11 | 日商日立化成股份有限公司 | Lead-acid battery, cast lattice body, and manufacturing method thereof |
CN109643804B (en) * | 2016-08-26 | 2023-02-28 | 日立化成株式会社 | Lead storage battery, cast grid and manufacturing method thereof |
WO2022113731A1 (en) * | 2020-11-30 | 2022-06-02 | 古河電気工業株式会社 | Lead alloy, electrode for lead storage batteries, lead storage battery, and power storage system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3876931B2 (en) | Lead acid battery | |
CN102660697A (en) | Lead-acid battery grid alloy for power | |
JP2003142085A (en) | Lead-acid battery | |
JPH09231982A (en) | Lead acid battery | |
JP3858300B2 (en) | Lead acid battery | |
JPH10188963A (en) | Sealed lead-acid battery | |
WO2004105161A2 (en) | Lead-acid battery having an organic polymer additive and process of charging thereof | |
JP4356321B2 (en) | Lead acid battery | |
JP4081698B2 (en) | Lead-acid battery charging method | |
JP3094423B2 (en) | Lead storage battery | |
JPH10294113A (en) | Positive electrode plate for sealed lead-acid battery | |
US4006035A (en) | Maintenance-free battery and method for reducing the current draw of such batteries | |
JPH0770321B2 (en) | Sealed lead acid battery | |
JPS61198574A (en) | Lead storage battery | |
JPS61118969A (en) | Substrate for lead storage battery | |
JP3582068B2 (en) | How to charge lead storage batteries | |
JP2006294576A (en) | Method for forming lead-acid battery electrode | |
JPS6322428B2 (en) | ||
JPH07147160A (en) | Lead-acid battery | |
JPH09231981A (en) | Lead acid battery | |
JPH06283191A (en) | Sealed lead-acid battery | |
JPS6129100B2 (en) | ||
JP3496241B2 (en) | How to charge lead storage batteries | |
JP2995780B2 (en) | Sealed lead-acid battery | |
JPH01117279A (en) | Lead-acid battery |