JP5722787B2 - 走査型顕微鏡 - Google Patents

走査型顕微鏡 Download PDF

Info

Publication number
JP5722787B2
JP5722787B2 JP2011540316A JP2011540316A JP5722787B2 JP 5722787 B2 JP5722787 B2 JP 5722787B2 JP 2011540316 A JP2011540316 A JP 2011540316A JP 2011540316 A JP2011540316 A JP 2011540316A JP 5722787 B2 JP5722787 B2 JP 5722787B2
Authority
JP
Japan
Prior art keywords
scanning microscope
stage
controller
sample
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011540316A
Other languages
English (en)
Other versions
JP2012512426A5 (ja
JP2012512426A (ja
Inventor
ダイク,エリク ヴァン
ダイク,エリク ヴァン
ヒュルスケン,バス
ヘゼマンス,コーネリアス
フェルベルネ,ヘンリッカス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2012512426A publication Critical patent/JP2012512426A/ja
Publication of JP2012512426A5 publication Critical patent/JP2012512426A5/ja
Application granted granted Critical
Publication of JP5722787B2 publication Critical patent/JP5722787B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34746Linear encoders
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/245Devices for focusing using auxiliary sources, detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/90Two-dimensional encoders, i.e. having one or two codes extending in two directions

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

当該発明は、試料を保持するためのステージ、少なくとも二つの軸上の位置の間でステージを並進させるための走査機構であって、予め定義された横向きの位置に対するステージの横向きの位置は変動することがあり、予め定義された配向に対するステージの配向は変動することがあり、ステージの少なくとも二つの軸上の位置の各々は試料のプローブされる対応する予め定義された領域と関連、走査機構、試料の領域をプローブするためのプロービングシステムであって、プロービングシステムが光学的な素子及び読み出しの領域を有するフォトセンサーを具備、読み出しの領域が予め定義された配向に対して横向きの方向に延びる、プロービングシステム、を具備する走査型顕微鏡を参照する。
ディジタル顕微鏡は、試料のディジタルイメージを作る。しばしば、これは、繰り返して上及び下に走査すること並びに一緒に異なるバンドをステッチすることによって、及び/又は、異なる波長で測定されたイメージをオーバーレイすることによって、なされる。正確なアーチファクトの無いイメージのために、様々なイメージのピースが正確に並ぶこと要である。ライン走査型のシステムにおいては、試料が、一つの方向に一定の速度で走査されるが、ラインセンサーが、垂直な方向で情報を測定する一方で、二つの軸、即ち走査の方向及び横の方向定義されることができる。誤差の二つの主要な源は、第一に、走査の速度における変動、及び、第二に、試料の進行の非真直度、である。走査の速度における変動は、走査の方向における誤差に帰着する。このタイプの誤差は、走査の方向におけるステージの位置を測定すること及び良好に定義された且つ等距離の位置でラインカメラの獲得をトリガーすることによって、修正されることができる。試料の進行の非真直度は、ラインセンサーの方向における誤差に帰着する。ステージのタイプに依存するが、非真直度は、ナノメートル及び多数のミクロンの間にあるものである。非真直度の程度は、主として、使用されたベアリングに依存する。大部分の顕微鏡の用途にとって、絶対的な真直度は、再現性と比べてあまり問題点にならない。アーチファクトの無いステッチング/オーバーレイのためには、連続的な走査の間におけるシフトが、イメージにおけるピクセルのピッチ(ピクセルのスペーシング)の半分より少ないこ要である。当該発明の目的は、ステージの進行の非真直度における変動によって引き起こされたラインセンサーの方向における誤差を補償するために使用されることができるデバイス及び方法を提供することである。さらに、ステージの進行の確度に対する要件緩和されたデバイスを提供すること当該発明の目的である。原則として、これらの誤差の多数のものは、イメージプロセシングの後のステップにおいて修正されることができるであろう。しかし、高いデーター転送率が必要とされると共に大きいファイルが生成される用途にとっては、プロセッシングの後の手段は、非常に計算集約型且つ時間集約型である。このように、オンラインで直接的にこれらの問題を解決することが好ましい。リソグラフィーのシステムにおいて、及び、光学的記憶システムにおいて、同様の問題起こる。USRE38,113Eにおいては、走査の移動に垂直な走査する基体のズレを干渉法で測定するシステム記載されている。この信号は、走査の移動の方向に垂直な軸においてアクチュエーターで試料を移動させるために使用される。ズレを測定するための別の手段は、非接触の高さのプロファイラーとして機能するシステムを記載するUS7,079,256B2に開示されている。情報担体におけるマークが、二次元において試料を正しく位置決めする為に読み出しデバイスによって識別されることができる光学的な記憶デバイス、WO2005/106857A1及びWO2007/054884A2に開示されている。これらの従来のシステムにおいて、修正又は位置決めは、ステージを移動させることによってなされる。そのような従来の走査型顕微鏡は、複雑な構造、適度なスピード、及び低い費用効率を有する。
米国特許第7,079,256号 国際公開第2005/106857号 国際公開第2007/054884号
従来の走査型顕微鏡と比べてより高いスピード及びより高い費用効率を有するより単純な走査型顕微鏡を提供すること本発明の目的である。この目的は、独立な請求項に従った走査型顕微鏡を提供することによって解決される。
従って、当該発明の走査型顕微鏡は、ステージの横向きの位置及び/又はステージの配向を測定するための位置センサー及び測定された横向きの位置及び/又は測定された配向の関数としてプロービングシステムを適合させるためのコントローラーを具備する。先行技術とは反対に、誤差の回避及び/又は補償は、試料(それぞれ、ステージ)を物理的に移動させることによってなされるものではない。当該発明の概念は、より速い、より単純な、及びより安いシステムを可能にする。
走査型顕微鏡は、予め定義された配向に横向き及び読み出しの領域が延びる方向にもまた横向きの、鉛直方向にステージを並進させるためのフォーカシング機構をさらに具備することがある。
ステージのあらゆる軸上の位置について、プローブされる試料の領域は、ステージの初期の横向きの位置及び初期の配向によって予め定義されることができる。
コントローラーは、フォトセンサーの読み出しの領域が、プローブされる試料の領域に対応するように、測定された横向きの位置及び/又は測定された配向の関数としてプロービングシステムを適合させることが可能であることがある。
好ましくは、コントローラーは、フォトセンサーの読み出しの領域を適合させることが可能である、及び/又は、コントローラーは、フォトセンサーによって収集されている、特に、コントローラーへ伝達されている、データーの選択を適合させることが可能である。
ントローラーが、予め定義された配向に横向きの方向にフォトセンサーの読み出しの領域を並進させることができる場合、及び/又は、コントローラーが、フォトセンサーによって収集されている、特にコントローラーへ伝達されているデーターの選択のため選択エリアを並進させることができる場合、好都合であり得る
ントローラーが、フォトセンサーの読み出しの領域を回転させることができる場合、及び/又は、コントローラーが、フォトセンサーによって収集されている、特にコントローラーへ伝達されているデーターの選択のための選択エリアを回転させることができる場合、また有益であり得る
コントローラーは、読み出しの領域の中心を通る鉛直な軸のまわりにフォトセンサーの読み出しの領域を回転させることが可能であることがある。
予め定義された配向に横向きの方向にフォトセンサーを移動させることができるコントローラーを提供することも可能である
コントローラーは、鉛直軸のまわりにフォトセンサーを旋回させることが可能であることがある。
好ましくは、鉛直軸は、読み出しの領域の中心を通る。
コントローラーは、光学的な素子を移動させることが可能であることがある。
光学的な素子は、レンズ及び/又はレンズのアレイ及び/又は旋回可能なミラーであることがある。
フォトセンサーは、フォトセンサーのアレイ(22、23)であることがある。
位置センサーは、ステージにおける第一のパターン及び顕微鏡の不動の部分における第二のパターンを具備することがあり、第一のパターン及び第二のパターンは、モアレパターンを生じさせる。
図1は、当該発明の基本的な構成要素の配置についての第一の概略的な上面図を示す。 図2は、概略的に光学的なライン顕微鏡の単純化された側面図を示す。 図3は、ステージの進行中の異なる時間に取られた試料のイメージの変位の概略的な上面図を示す。 図4は、走査するプロセス内における異なる瞬間について概略的にラインセンサーにおける試料のラインのイメージを示す。 図5は、概略的にアレイに基づいた走査型顕微鏡のセンサーのアレイを示す。 図6は、当該発明の基本的な構成要素の配置についての第二の詳細な概略的な概観を示す。 図7は、概略的に第一の実施形態を示す。 図8は、概略的に第二の実施形態を示す。 図9は、概略的に第三の実施形態を示す。 図10は、概略的に関係する位置の配置についての概観を示す。 図11は、概略的に第四の実施形態を示す。 図12は、概略的に第五の実施形態を示す。 図13は、概略的に第六の実施形態を示す。 図14は、概略的に第七の実施形態を示す。 図15aから15cまでは、概略的にステージの三つの異なる位置についてのセグメント化された感光性のダイオードにおける反射されたレーザースポットのフットプリントを示す。 図15aから15cまでは、概略的にステージの三つの異なる位置についてのセグメント化された感光性のダイオードにおける反射されたレーザースポットのフットプリントを示す。 図15aから15cまでは、概略的にステージの三つの異なる位置についてのセグメント化された感光性のダイオードにおける反射されたレーザースポットのフットプリントを示す。 図16a及び16bは、概略的に第八の実施形態を示す。 図16a及び16bは、概略的に第八の実施形態を示す。 図17は、走査の方向に沿ったステージの進行中のステージの横方向のシフト及び/又は回転を補償するための当該発明の概念に従った方法の概略的なフロー線図を示す。
図1は、当該発明の基本的な構成要素の配置についての第一の概略的な上面図を示す。ステージ18は、望まれた走査の方向72において上及び下へ試料20を移動させるために使用される。実際には、試料20は、実際の走査の方向12において移動させられる。データーは、望まれた走査の方向72に垂直なライン22に沿って収集される。これは、好ましくは望まれた走査の方向72に平行なその最も長い寸法を備えた矩形のエリア24であるデーターの測定に帰着する。限定無しに、下記において、センサーの方向14、望まれた走査の方向72に垂直でり、逆もまた同じであること仮定される。実際の走査の方向12及び望まれた走査の方向72の間に小さい角度74あるとき、イメージは、移動の間にシフトすることになる(図3を参照のこと)。千鳥状の様式に配置された少なくとも二つのセンサー22、23ある場合、これは、試料20の部分の二重のイメージングに帰着することがある。従って、測定するデバイス26は、固定された世界28に関するセンサーの方向14におけるいずれの移動をも測定するが、センサーの方向14は、望まれた走査の方向72に横向きであり、好ましくは垂直である。コントローラー30は、ステージ18の進行の非真直度を修正するために、及び、好適なエリア24が実際に検出されることを保証するために、使用される。角度74がゼロからはずれる場合、試料の向首方向77は、望まれた走査の方向72に対して平行に保たれない。加えて、試料20の向首方向及びその進行する方向12の間における回転の角度75である偏揺れが生じ得る。ライン79は、実際の進行の方向に平行なものを表す。偏揺れの角度75がゼロである場合、試料20の回転、即ち、その向首方向は、角度74に等しい。このズレは、検出されたイメージ内における予想外の変動に帰着することがある。同時に検出されるはずの、場合により回避される及び/又は補償される及び/又は修正されるはずの二つの種類のズレがあり、第一に、間違いの方向12へと移動することによって達したセンサーの方向14における並進、及び、第二に、間違いの方向12への試料20の向首方向である。一つより多いセンサー22、23を有するスキャナーの特定の性質のために実際の走査の方向12の角度74及びセンサーの方向14の間における絶対的な尺度を有すること特に重要である。90°の最適な角度から離れたいかなる変動74をも誤差をもたらす下記において、多くの位置の検出の実施形態記載され、どのように検出された位置の情報が、センサー22、23から正しいピクセル及び/又はエリア24を選択することによってリアルタイムにイメージを修正するために使用されることができるかということ記載される
図2は、概略的に光学的なライン顕微鏡10の単純化された側面図を示す。
図3は、概略的にステージ18の進行中の二つの異なる時間に取られた試料20のイメージの変位の上面図を示す。試料20は、x軸2の方向と同一線上にある実際の走査の方向に沿って走査されるべきである。しかしながら、ステージ18は、完全に真っ直ぐに進行ない。従って、第一の時間において、試料20は、第一の位置34に、及び、第二の時間において、第二の位置36にある。試料20の第一の位置34に関係して、試料20の第二の位置36は、実際の走査の方向12においてシフトしているだけではなく、望まれた走査の方向72に対して垂直にもまたシフトしている。
図4は、二つの異なる位置34、36について概略的ラインセンサー22における試料20のラインのイメージを示す。試料20は、図面の平面において走査される。それによって、試料20は、ラインセンサー22へとレンズ32、40でイメージングされる。ラインセンサー22におけるイメージは、時間における異なる瞬間に描かれる。試料20が、第一の位置34にあるとき、センサー22におけるイメージは、図の上側の部分における斜線ピクセル38によって示された位置にある。試料20が、第二の位置36にあるとき、センサー22におけるイメージ36は、図の下側の部分における斜線ピクセル38によって図された位置にある。試料20の完全なイメージを作るために、ライン22における斜線ピクセル38使用される。試料20が、位置36に到達するとき、センサー22におけるイメージは、図の下側の部分に示されたように、(図された例においては左へ二つのピクセルだけ)シフトさせられる。そして、ピクセル38の異なる部分集合試料20の完全なイメージを作るために要求される。正しいピクセル38のこの選択は、データーが収集された後で、ソフトウェアによってなされることができる。しかしながら、高いデーターのスループットのために、専用のハードウェアのプラットフォームにおいて選択を行うことが好ましい。選択ために、フィールドプログラマブルゲートアレイ(FPGA)用いられることができる。選択する機能は、記憶デバイスへの選択されたデーターのルーティングと組み合わせられることができ、ルーティングは、検出された位置のオフセットに基づ。この方法は、ピクセル精度で関心領域(ROI)の不連続な選択を可能にする。ピクセルのピッチの半分の残余誤差は、排除されることができない。大部分のイメージングシステムにおいて、この残余誤、最終的な結果として生じるイメージにおいて容易に検出可能なものではないと予想される
図5は、概略的にアレイに基づいたディジタル走査型顕微鏡10のセンサー22及びレンズ32又は小レンズ32のアレイ66を示す。これは、US7,814,610B2から知られたような顕微鏡であることがある。バンド24、25は、最終的なイメージにおいて相互に隣接することになるが、しかし異なる時間及び所で測定されるイメージの二つの部分を示す。アレイに基づいたシステムの場合、要件は、イメージの形成がしばしば千鳥状の様式でなされるという事実のせいで、より厳格である。これは、完全な試料20が、大きい範囲にわたって並進させられる一方で、ダイの最終的なイメージにおいて接位になるデーターのいくらかが、時間における非常に異なる瞬間に測定されることを意味する。これは、試料20が、最初の及び最後の測定の位置の間における完全な距離にわたるピクセルのピッチの半分の最大限の横方向のシフトに対応するものよりも多く実際の走査の方向12において並進させられるべきではないので、試料20の進行の真直度に対する余分な厳密な要件を付ける。大きいアレイ66を用いる高い分解能の用途にとって、これらの要件は、非常に厳格なものになり得る。10mmのアレイ66を使用する250nmのピクセルのサイズを備えたシステムの場合、これは、10mmの進行にわたって125nmより良好な進行の真直度を備えたステージ18を要求すると思われる。これらの要件を満たすことができるシステムを製作することは費用がかかる。従って、ズレを回避する、補償する、及び/又は修正することができるシステム必要とされる。アレイに基づいたシステムの場合二つの誤差、第一に予め定義されたラインから離れた並進、第二に試料20の回転、が役割を果たすという理由のために、データーが収集されるエリア24の位置の付近の単一の位置でステージ18の位置を測定することは、アレイに基づいた顕微鏡にとって十分なものではない。両方の自由度補償される及び/又は修正されるべきである。
図6は、当該発明の基本的な構成要素の配置について第二の概略的な概観を示す。ステージ18は、実際の走査の方向12における上及び下へ試料20を移動させるために使用される。試料20が、実際の走査の方向12において移動させられる一方で、データーは、US7,184,610B2に記載されたような、二次元のセンサーアレイ66においてアレイ状にされたセンサー22、23によって収集される。センサーアレイ66は、様々な配置を有することができる。典型的なセンサーアレイ66は、望まれた走査の方向72に垂直なラインのアレイを有する。これは、好ましくは、望まれた走査の方向72に平行なその最も長い寸法を備えた矩形のエリア24であるデーターの測定に帰着する。二つの測定するデバイス26は、二つの異なる位置で固定された世界28に関する試料20のズレを測定する。これらの二つの測定で二つの異なる変動、第一に望まれた走査の方向72に垂直なセンサーの方向14における並進、及び、第二にステージ18の鉛直軸のまわりの回転検出されることができる。これらの誤差は、好適なエリア24が実際に検出されることを保証するためにいくつかの手段30を介して修正されることができる。位置を検出するための様々な手段26が想定されることができる。主要な難題は、実際の走査の方向12における進行が、センサーの方向14において測定される変動(<100nm)と比較して非常に大きい(数cm)可能性があるという事実に関する。位置の測定が、検出の領域24に平行なラインに沿ったものであることが好ましい最も好適な配置は、横方向の位置を検出するための第一のセンシング手段80が、センサーアレイ66の第一の行22と同一線上にあ、検出するための第二のセンシング手段88が、センサーアレイ66の最後の行23と同一線上にあるようなものである。
図7及び図8は、概略的に、イメージセンサー22におけるイメージの位置54を修正するための第一、第二の、実施形態をそれぞれ示す。典型的な走査型顕微鏡10では、イメージングシステムにおいて少なくとも二つのレンズ32、40ある。好ましくは、第一のレンズ32及び第二のレンズ40は、テレセントリックに相互に対して面されたものである。この事例においては、修正は、試料20の横方向の移動を補償するために試料20の横方向のシフトのセンサーの方向14に平行な方向42、44にレンズ32、40の一方又は両方を移動させることによって行われることができる。それによって、レンズ32、40の主軸46、48は、相互に平行な配向に保たれる。実線は、試料20における点50を備えた元来の状況を示す。長い破線は、試料20がシフトさせられた光線追跡である。これは、センサー22におけるイメージのシフトに帰着する。それによって、試料20における点50は、横方向のシフトで空間において移動し、空間に関して、今点56として表記される。イメージセンサー20における対応する点52は、位置54へ移動する。短い破線は、レンズ32、40の一方が試料20のシフトを補償するために移動させられる状況について結果として生じる光線追跡である。それによって、イメージセンサー20における点52は、その元来の位置52に留まる。
図9は、概略的にイメージセンサー20におけるイメージの位置54を修正するための第三の実施形態を示す。この実施形態においては、折りたたみミラー58、レンズ32及びレンズ40の間に置かれる。初期に、実線の光線追跡は、試料20からセンサー22までの経路を示す。試料20が、センサーの方向14において移動させられるとき、ズレは、補償される(短い破線を参照のこと)。
図10は、概略的に、関係する位置の配置についての概観を示す。センサーアレイ66の固定された基準のフレームは、多くの実質的にライン状の検出領域68、70を備えた検出エリアを含有する。望まれた走査の方向72は、検出領域68、70に対して垂直である。理想的には、試料20は、望まれた走査の方向72に対して平行に走査される。実際には、運動の方向12及び望まれた走査の方向72の間に小さい角度74あることがある。この角度74は、試料20のシフトに帰着することになるが、検出領域68、70に対して平行なシフトが起こる。アレイ66の末端70におけるもののみならずアレイ66の第一の部分68におけるものの両方で予め定義された位置から離れドリフトを、これが、走査の方向12の角度74及び/又は偏揺れの角度75が変動するときでさえも補償されることができるように、測定すること要である。従って、ステージ18における基準76は、好ましくは、ステージ18の実際の進行の方向12に対して平行にとられる。しかしながら、小さい残余の角度78残ることがある。第一のセンシング手段80は、第一のセンサーアレイ68と同一線上における、ステージ18における基準及び固定された世界28における対応する位置の間における距離84(横向きの位置)を決定する。第二のセンシング手段82は、第二のセンサーアレイ70と同一線上における、ステージ18における基準及び固定された世界28における対応する位置の間における距離86を決定する。距離88及び90の較正は、センサーアレイ66の基準のフレームにおける試料20の実際の偏向を決定するために要求される。較正は、走査の方向12とある角度をなす直線を含有する試料20を測定、これらのラインをイメージングすると共に測定する手段80及び82によって同時に基準の位置76の位置を検出することによって実行され得る。このデーターは、基準のライン76のオフセットの角度78又はステージ18における基準の位置76のみならず、ステージ18の実際の走査の方向12及び検出ライン68、70に対して垂直な予め定義された基準のラインの間における公称の角度を決定するために、並びに距離88及び90を較正するために使用されることができる。この情報は、記憶されると共に、アーチファクトの無いイメージに要求された修正の因子を提供するために次の走査において使用されることができる。
図11は、概略的に、イメージングセンサーシステム94、96によステージ18の位置の検出についての第四の実施形態の配置を示す。イメージングセンサーシステム94、96は、ステージ18の位置及びドリフトを決定するための検出システム80、82へ堅く付けられるべきである。イメージングセンサーシステム94、96は、別個のセンサー94、96であるか、又はデーターを取得するためにもまた使用されるセンサーアレイ66の一部であることができる。イメージングシステム94、96がデーター収集する一方で、ステージ18は、試料20を移動させる。ステージ18において、同じセンサーアレイ66と同一線上にある又はそれを使用するものでさえある二つの検出手段94、96によってイメージングされることができる基準のライン92置かれる。特に、同じセンサーアレイ66が使用される場合予め定義されたライン並びに位置88及び90が決定される所の間における距離を決定することは、容易である(図10を参照のこと)。従って、システムのさらなる較正は必要ないと思われる。これは、検出センサーアレイ66のためのより大きいダイを要求するものではない場合、好適な実施形態になり得る。試料のドリフトの決定の確度を増加させる為には、ステージ18におけるライン92及びイメージングの経路における何らかのグレーティングの間におけるモアレの効果、空間的な分解能を増加させるために使用されることがある。
図12は、概略的に、ステージ18の位置のモアレに基づいた検出についての第五の実施形態の配置を示す。ステージ18の位置を測定するための適切な手段は、精密なライン状の光学的なエンコーダーの使用である。光学的なエンコーダーは、容易に入手可能な高い精度のルーラーであるが、それは、わずかに異なる周期性二つのグレーティングを重なり合わせることによって生じるモアレパターンを測定することによって動作する。数ナノメートルの確度得られることができる。図は、予め定義された路に関するステージの進行のオフセット及び角度の両方を決定するために光学的なエンコーダーを使用するための可能性のある配置を示す。試料20は、ステージ18に固定される。光学的なエンコーダーの一方のグレーティング64は、ステージ18に固定されるが、他方のグレーティング62は、基準の世界のフレーム28に関して固定される。基準の重要なフレームは、センサーによって定義される。センサーが、基準の世界のフレーム28に関して固定されること想定される。光学的なエンコーダー、ラインが測定される位置付近の位置における相対的なシフトを読み出すことができる。光学的なエンコーダーの整列が、必ずしも正確に試料20の望まれた走査の方向72に沿ったものではないという理由で、較正は、センサーの基準のフレームに関して光学的なエンコーダーの整列を推定するために行われる必要がある。センサーが、基準の世界のフレーム28に関して固定されるという理由で、一回の工場の較正十分なはずであると予想される。ステージ18が、鉛直に沿って進行する一方で、光学的なエンコーダーは、この図における水平に沿った並進を読み取る。これは、(グレーティング64の高さによって決定され)光学的なエンコーダーの作動するエリアが、それにわたって試料20が並進させられる最大の距離と同程度に大きいものである必要があることを意味する。
図13は、概略的に、ステージ18の位置のモアレに基づいた検出についての第六の実施形態の配置を示す。配置は、予め定義された路に関するステージの進行のオフセット及び角度74の両方を決定するために少なくとも二つの光学的なエンコーダーを具備する。試料20は、ステージ18に固定される。各々の光学的なエンコーダーの一方のグレーティング64、65は、ステージ18に固定され、他方のグレーティング62、63は、それぞれ、基準の世界のフレーム28に関して固定されるが、センサー、基準の世界のフレーム28に関して固定されること仮定される。基準の重要なフレームは、センサーである。一緒に、二つの光学的なエンコーダーは、ステージにおける基準の点の相対的なシフトを読み出す。これは、ステージ18の上部における点及び/又はステージ18の下部における点であることができる。光学的なエンコーダーの整列が、必ずしも正確に試料20の望まれた走査の方向72に沿ったものではないという理由で、及び、光学的なエンコーダーが、相互に関して必ずしも完璧に整列させられるものではないという理由で、較正は、基準のセンサーのフレーム28に関して光学的なエンコーダーの整列を推定するために、行われる必要がある。センサーが、基準の世界のフレームに関して固定されるという理由で、一回の工場の較正十分なはずであると予想される。ステージ18が、鉛直に沿って進行する一方で、光学的なエンコーダーは、この図における水平に沿った並進を読み取る。これは、(グレーティング64、65の高さによって決定され)光学的なエンコーダーの作動するエリアが、それにわたって試料20が並進させられる最大の距離と同程度に大きいものである必要があることを意味する。一度較正されると、光学的なエンコーダーは、角度74及び(センサーに関して定義されたような)予め定義された進行の経路に関する試料20のオフセットを決定するために使用されることができる。
図14は、概略的にステージ20の位置を検出するための第七の実施形態の配置を示す。そこで、ステージ20の横向きの位置84、86、各々が非点収差を補正するレンズ112を有する二つのイメージングシステム100によって検出される。
図15aから15cまでは、概略的にステージ18の三つの異なる位置についてのセグメント化された感光性のダイオード110におけるレーザー102からの反射された光114のフットプリントを示す。試料20は、ステージ18に置かれると共に、実際の走査の方向12において移動させられる。固定された世界28までの距離は、実際の走査の方向12に対して平行な平坦な反射面98をステージ18に置くことによって測定される。距離の決定のためにレーザー102用いられるが、レーザービーム114は、四分の一波長板106を通る前に、偏光ビームスプリッター104によって反射させられる。レーザーからの光は、レンズ108を介して反射面98に向かって集束させられる。反射光114は、同じレンズ108によって収集され、それが、偏光ビームスプリッター104を透過させられスプリットダイオード110(検出器)へと集束させられるように、再度四分の一波長板106を通る。それによって、ビームは、非点収差を補正する構成部品112を通る。非点収差を補正する構成部品の強さは、試料20及び固定された世界28の間における距離が、中立の位置にあるとき、光114が、検出器110の全ての四つの象限A、B、C、Dに等しく届くようなものである(図15bを参照のこと)。距離が増加するとき、スポットの形状は、非対称的なものになり、主として象限A及びDに届くことになる(図15aを参照のこと)。距離が減少するとき、スポットの形状は、非対称的なものになり、主として象限B及びCに届くことになる(図15cを参照のこと)。((A+D)−(B+C))/((A+D)+(B+C))を決定することよって、最適な位置からの距離でスケーリングする信号を獲得することができる。この信号検出器110に届く絶対的なパワーに依存するものではない。応答は、距離の限定された範囲にわたってのみ線形であり、絶対的な位置の尺度を獲得するためにこのように較正されるべきである。非点収差を補正するレンズ112又は検出器110の位置をシフトさせることによって、レンズ108の焦点が直接的に反射面98上にないとき、中立の(ゼロの)信号を有することができる。これは、より大きい表面にわたる平均の位置が決定され、射面98における可能性のあるキズにあまり依存しない信号をもたらすという利点を有する
図16a及び16bは、概略的に、関心領域24、25を調節するための第八の実施形態を示す。(回転及予め定義された進行の経路に関するオフセットの点で)試料20の精確な配向がわかるとき、個々のセンサーの素子22、23から獲得されたデーターは、試料20の予め定義されたものではない進行に起因するアーチファクトを有することなく、試料20の一つの連続的なイメージを形成するために調節されることができる。図は、誤差の二つの源について、個々のセンサー素子22、23によってイメージングされた試料20におけるラインのオフセット及び個々のセンサー22、23によってイメージングされた試料20におけるラインの予め定義された進行の経路に関する回転における変動を示す。図の上部は、二つの隣接のセンサー素子22、23によってイメージングされた試料20のエリアを示すが、試料20の進行の方向12は、水平に沿ったものである。センサー素子22、23の各々によってイメージングされたエリア24、25は、正方形として示される。センサー素子22、23それぞれの実際の走査の方向12に対して垂直なセンサーの方向14における個々の位置y1、y2がわかるとすぐに、二つのセンサー22、23の間における重なり合い126がわかるそして、センサー素子22、23の関心領域24、25は、重なり合い27が、捨てられるように、調節されることができる。従って、連続的なイメージ結果として生じる。それぞれセンサー素子22、23の個々の横方向の位置y1及びy2は、試料20の回転のために及び/又は予め定義された進行の経路に関する変化するオフセットのために、時間にわたって連続的に変化することがある。従って、捨てられる必要があるデーター27のエリアは、走査に連続的に決定される必要がある。図の下部の部分は、予め定義された進行の経路に関する試料20の回転から結果として生じる誤差を示すが、予め定義された進行の経路は、典型的には、センサー素子22、23の行に垂直である。回転は、望まれた走査の方向72に関する個々のセンサー22、23によってイメージングされた試料20のラインの回転に帰着する。試料の回転は、走査に連続的に決定される必要がある。回転の結果は、望まれた走査の方向72に対して垂直なセンサーの方向14における結果として生じるイメージにおける分解能の避けられない損失である。オフセットについての及び角度74についての修正の両方のために、異なるセンサー素子22、23によってイメージングされた試料20のエリア24、25における重なり合い27ある必要がある。センサー素子22、23によってイメージングされた試料20のエリア24、25の間における重なり合い27は、変化する。重なり合い27のデーターは、捨てられる必要がある。図された例において、センサー素子22の残留する部分128のデーターのみ、記憶又はさらなる処理のために保持される。重なり合い27のサイズは、角度74における最大の誤差及び/又は誤差の修正の方法が作動するためのオフセットによって決定されるべきである。
図17は、概略的に、走査の方向12に沿ったステージ18の進行中のステージ18の横方向のシフト及び/又は回転を補償するための当該発明の概念に従った方法を示す。第一のステップにおいて、ステージ18の位置及び/又は配向検出される。第二のステップにおいて、試料20をイメージングするためのイメージングシステムは、ステージ18の検出された位置84、86に依存して及び/又はステージ18の検出された配向に依存して調節される。好ましくは、第一の及び第二のステップは、走査の方向12におけるステージ18の並進中に交互に繰り返される。
試料のステージ18を有する走査型ディジタル顕微鏡10は、一つの方向12(走査の方向)において試料20を移動させることができる。望まれた走査の方向72からのいずれのズレをも測定するためのいくつかの手段及び
ステージの位置において測定されたズレを補償するために、イメージの正しい部分24、25を選択するためにセンサー22における関心領域24、25、27の異なる部分24、25を選択すること、
第一の及び/又は第二のレンズ32、40及び/又はミラー60のような、第一の及び/又は第二の光学的な構成部品をシフトさせること42、44及び/又は回転させること、又は、
センサー22におけるピクセル38に関するイメージ24、25のそれぞれ相対的なシフト、回転が無いように、ステージ18のそれぞれいずれの横方向のシフト、回転をも打ち消すためにセンサー22をシフトさせること及び/又は回転させること
のいずれかによってイメージを修正するためにズレの測定の結果を使用するための手段30。
このシステムは、例えばディジタル病理学又は微生物学用の(蛍光)細胞イメージングにおける使用のための、いずれの走査型ディジタル顕微鏡10においても適用されることができる。
[付記]
付記(1):
走査型顕微鏡であって、
試料を保持するためのステージ、
少なくとも二つの軸上の位置の間で前記ステージを並進させるための走査機構であって
予め定義された横向きの位置に対する前記ステージの横向きの位置は変動することがあ
予め定義された配向に対する前記ステージの配向は変動することがあり、
前記ステージの前記少なくとも二つの軸上の位置の各々は前記試料のプローブされる対応する予め定義された領域と関連する走査機構、
前記試料の領域をプローブするためのプロービングシステムであって
前記プロービングシステムが光学的な素子及び読み出しの領域を有するフォトセンサーを具備
前記読み出しの領域が前記予め定義された配向に対して横向きの方向に延びる、プロービングシステム、
前記ステージの横向きの位置及び/又は前記ステージの配向を測定するための位置センサー、並びに、
測定された横向きの位置及び/又は測定された配向の関数として前記プロービングシステムを適合させるためのコントローラー
を具備する、走査型顕微鏡。
付記(2):
付記(1)に記載の走査型顕微鏡であって、
前記予め定義された配向に対して横向きの、及び前記読み出しの領域延びる延びの方向に対してもまた横向きの、鉛直な方向に前記ステージを並進させるためのフォーカシング機構をさらに具備する、走査型顕微鏡。
付記(3):
付記(1)又は(2)に記載の走査型顕微鏡において、
前記ステージのあらゆる軸上の位置についてプローブされる前記試料の領域は、前記ステージの初期の横向きの位置及び初期の配向によって予め定義される、走査型顕微鏡。
付記(4):
付記(1)から(3)までのいずれかに記載の走査型顕微鏡において、
前記コントローラーは、前記フォトセンサーの読み出しの領域が、プローブされる前記試料の領域に対応するように、前記測定された横向きの位置及び/又は前記測定された配向の関数として前記プロービングシステムを適合させることが可能である、走査型顕微鏡。
付記(5):
付記(1)から(4)までのいずれかに記載の走査型顕微鏡において、
前記コントローラーは、前記フォトセンサーの読み出しの領域を適合させることが可能である、及び/又は、前記コントローラーは、特に前記コントローラーへ伝達された、前記フォトセンサーによって収集されデーターの選択を適合させることが可能である、走査型顕微鏡。
付記(6):
付記(1)から(5)までのいずれかに記載の走査型顕微鏡において、
前記コントローラーは、前記予め定義された配向に横向きの方向に前記フォトセンサーの読み出しの領域を並進させることが可能である、及び/又は、前記コントローラーは、特に前記コントローラーへ伝達された、前記フォトセンサーによって収集されデーターの選択のための選択エリアを並進させることが可能である、走査型顕微鏡。
付記(7):
付記(1)から(6)までのいずれかに記載の走査型顕微鏡において、
前記コントローラーは、前記フォトセンサーの読み出しの領域を回転させることが可能である、及び/又は、前記コントローラーは、特に前記コントローラーへ伝達された、前記フォトセンサーによって収集されデーターの選択のための選択エリアを回転させることが可能である、走査型顕微鏡。
付記(8):
付記(7)に記載の走査型顕微鏡において、
前記コントローラーは、前記読み出しの領域の中心を通る鉛直な軸のまわりに前記フォトセンサーの読み出しの領域を回転させることが可能である、走査型顕微鏡。
付記(9):
付記(1)から(8)までのいずれかに記載の走査型顕微鏡において、
前記コントローラーは、前記予め定義された配向に横向きの方向に前記フォトセンサーを移動させることが可能である、走査型顕微鏡。
付記(10):
付記(1)から(9)までのいずれかに記載の走査型顕微鏡において、
前記コントローラーは、鉛直な軸のまわりに前記フォトセンサーを旋回させることが可能である、走査型顕微鏡。
付記(11):
付記(10)に記載の走査型顕微鏡において、
前記鉛直な軸は、前記読み出しの領域の中心を通る、走査型顕微鏡。
付記(12):
付記(1)から(11)までのいずれかに記載の走査型顕微鏡において、
前記コントローラーは、前記光学的な素子を移動させることが可能である、走査型顕微鏡。
付記(13):
付記(1)から(12)までのいずれかに記載の走査型顕微鏡において、
前記光学的な素子は、レンズである、及び/又は、前記光学的な素子は、レンズのアレイである、及び/又は、前記光学的な素子は、旋回可能なミラーである、走査型顕微鏡。
付記(14):
付記(1)から(13)までのいずれかに記載の走査型顕微鏡において、
前記フォトセンサーは、フォトセンサーのアレイである、走査型顕微鏡。
付記(15):
付記(1)から(14)までのいずれかに記載の走査型顕微鏡において、
前記位置センサーは、前記ステージにおける第一のパターン及び前記走査型顕微鏡の不動の部分における第二のパターンを具備
前記第一のパターン及び前記第二のパターンがモアレパターンを生じさせる、
走査型顕微鏡。

Claims (12)

  1. 走査型顕微鏡であって、
    前記走査型顕微鏡は、
    試料を保持するためのステージ、
    少なくとも二つの軸上の位置の間で前記ステージを並進させるための走査機構であって、
    予め定義された横向きの位置に対する前記ステージの横向きの位置は、前記並進させることによって変動することがあ
    予め定義された配向に対する記ステージの配向は、変動することがあ
    前記ステージの前記少なくとも二つの軸上の位置の各々は、前記試料のプローブされる予め定義された領域と関連、走査機構、
    記試料の領域をプローブするためのプロービングシステムであって、
    前記プロービングシステムが光学的な素子及び読み出しの領域を有するフォトセンサーを具備
    前記読み出しの領域が前記予め定義された配向に対して横向きの方向に延びる、プロービングシステム、
    記ステージの横向きの位置及び/又は前記ステージの配向を測定するための位置センサー、及び、
    測定された横向きの位置及び/又は測定された配向の関数として前記プロービングシステムを適合させることの可能なコントローラー
    を具備
    前記コントローラーは、前記ステージの並進の非真直度を修正するために使用され、
    前記コントローラーは、前記フォトセンサーの読み出しの領域を回転させること能で、及び/又は、
    前記コントローラーは、前記フォトセンサーによって収集されデーターの選択のための選択エリアを回転させること可能であり
    前記コントローラーは、前記予め定義された配向に対して横向きの方向に前記フォトセンサーを移動させること可能であり
    前記コントローラーは、鉛直な軸のまわりに前記フォトセンサーを旋回させること能である、
    走査型顕微鏡。
  2. 請求項1に記載の走査型顕微鏡であって、
    さらに、前記予め定義された配向に対して横向きの、及び前記読み出しの領域が延びる延びの方向に対してもまた横向きの鉛直な方向に前記ステージを並進させるためのフォーカシング機構を具備する、走査型顕微鏡。
  3. 請求項1又は2に記載の走査型顕微鏡において、
    前記ステージのあらゆる軸上の位置についてプローブされる前記試料の領域は、前記ステージの初期の横向きの位置及び初期の配向によって予め定義される、走査型顕微鏡。
  4. 請求項1から3までのいずれかに記載の走査型顕微鏡において、
    前記コントローラーは、前記フォトセンサーの読み出しの領域が、プローブされる前記試料の領域に対応するように、前記測定された横向きの位置及び/又は前記測定された配向の関数として前記プロービングシステムを適合させること能である、走査型顕微鏡。
  5. 請求項1から4までのいずれかに記載の走査型顕微鏡において、
    前記コントローラーは、前記フォトセンサーの読み出しの領域を適合させることの可能である、及び/又は、
    前記コントローラーは、前記フォトセンサーによって収集されデーターの選択を適合させること能である、
    走査型顕微鏡。
  6. 請求項1から5までのいずれかに記載の走査型顕微鏡において、
    前記コントローラーは、前記予め定義された配向に横向きの方向に前記フォトセンサーの読み出しの領域を並進させること能である、及び/又は、
    前記コントローラーは、前記フォトセンサーによって収集されデーターの選択のための選択エリアを並進させること能である、
    走査型顕微鏡。
  7. 請求項1から6までのいずれかに記載の走査型顕微鏡において、
    前記コントローラーは、前記読み出しの領域の中心を通る鉛直な軸のまわりに前記フォトセンサーの読み出しの領域を回転させること能である、走査型顕微鏡。
  8. 請求項1から7までのいずれかに記載の走査型顕微鏡において、
    前記鉛直な軸は、前記読み出しの領域の中心を通る、走査型顕微鏡。
  9. 請求項1から8までのいずれかに記載の走査型顕微鏡において、
    前記コントローラーは、前記光学的な素子を移動させること能である、走査型顕微鏡。
  10. 請求項1から9までのいずれかに記載の走査型顕微鏡において、
    前記光学的な素子は、レンズである、及び/又は、
    前記光学的な素子は、レンズのアレイである、及び/又は、
    前記光学的な素子は、旋回可能なミラーである、
    走査型顕微鏡。
  11. 請求項1から10までのいずれかに記載の走査型顕微鏡において、
    前記フォトセンサーは、フォトセンサーのアレイである、走査型顕微鏡。
  12. 請求項1から11までのいずれかに記載の走査型顕微鏡において、
    前記位置センサーは、前記ステージにおける第一のパターン及び前記顕微鏡の不動の部分における第二のパターンを具備
    前記第一のパターン及び前記第二のパターンがモアレパターンを生じさせる、
    走査型顕微鏡。
JP2011540316A 2008-12-15 2009-12-10 走査型顕微鏡 Active JP5722787B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08305943 2008-12-15
EP08305943.6 2008-12-15
PCT/IB2009/055659 WO2010070553A1 (en) 2008-12-15 2009-12-10 Scanning microscope.

Publications (3)

Publication Number Publication Date
JP2012512426A JP2012512426A (ja) 2012-05-31
JP2012512426A5 JP2012512426A5 (ja) 2015-01-29
JP5722787B2 true JP5722787B2 (ja) 2015-05-27

Family

ID=41615824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011540316A Active JP5722787B2 (ja) 2008-12-15 2009-12-10 走査型顕微鏡

Country Status (6)

Country Link
US (1) US9684159B2 (ja)
EP (1) EP2376965B1 (ja)
JP (1) JP5722787B2 (ja)
CN (1) CN102246081B (ja)
BR (1) BRPI0917740A2 (ja)
WO (1) WO2010070553A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027720A1 (de) * 2010-04-14 2011-10-20 Carl Zeiss Microlmaging Gmbh Verfahren und Vorrichtungen zur Positions- und Kraftdetektion
US9628676B2 (en) 2012-06-07 2017-04-18 Complete Genomics, Inc. Imaging systems with movable scan mirrors
US9488823B2 (en) * 2012-06-07 2016-11-08 Complete Genomics, Inc. Techniques for scanned illumination
CN106770690B (zh) * 2016-12-16 2023-05-16 贵州航天计量测试技术研究所 一种超声扫描显微镜成像分辨力特性校准装置及校准方法
EP4296654A3 (en) * 2017-03-03 2024-02-28 Pacific Biosciences of California, Inc. High speed scanning system with acceleration tracking
US11943537B2 (en) * 2017-11-30 2024-03-26 Leica Biosystems Imaging, Inc. Impulse rescan system
US20200311886A1 (en) * 2019-03-28 2020-10-01 Carl Zeiss Microscopy Gmbh Method for determining an image recording aberration

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030409A (ja) 1983-07-28 1985-02-16 Honda Motor Co Ltd 内燃機関の速度制限機構
US4577940A (en) * 1984-12-19 1986-03-25 Allied Corporation Moire microscope
US4948971A (en) 1988-11-14 1990-08-14 Amray Inc. Vibration cancellation system for scanning electron microscopes
US5075562A (en) * 1990-09-20 1991-12-24 Eastman Kodak Company Method and apparatus for absolute Moire distance measurements using a grating printed on or attached to a surface
US5075560A (en) * 1990-09-20 1991-12-24 Eastman Kodak Company Moire distance measurements using a grating printed on or attached to a surface
US5307203A (en) 1990-12-06 1994-04-26 Tandem Scanning Corporation Confocal tandem scanning reflected light microscope
US5677903A (en) 1991-03-25 1997-10-14 U.S. Phillips Corporation Multi-layer information storage system with improved aberration correction
JP3053449B2 (ja) * 1991-03-28 2000-06-19 株式会社ニデック 表面検査装置
US5448399A (en) * 1992-03-13 1995-09-05 Park Scientific Instruments Optical system for scanning microscope
US5636025A (en) * 1992-04-23 1997-06-03 Medar, Inc. System for optically measuring the surface contour of a part using more fringe techniques
USRE38113E1 (en) 1993-04-02 2003-05-06 Nikon Corporation Method of driving mask stage and method of mask alignment
US6272235B1 (en) * 1997-03-03 2001-08-07 Bacus Research Laboratories, Inc. Method and apparatus for creating a virtual microscope slide
DE19653413C2 (de) * 1996-12-22 2002-02-07 Stefan Hell Rastermikroskop, bei dem eine Probe in mehreren Probenpunkten gleichzeitig optisch angeregt wird
DE19702752C2 (de) 1997-01-27 2001-12-13 Zeiss Carl Jena Gmbh Ansteuersystem für einen Scannerantrieb
US6072625A (en) 1997-02-03 2000-06-06 Olympus Optical Co., Ltd. Optical microscope apparatus
JPH11211732A (ja) * 1998-01-27 1999-08-06 Hitachi Constr Mach Co Ltd 走査型プローブ顕微鏡
US6185030B1 (en) 1998-03-20 2001-02-06 James W. Overbeck Wide field of view and high speed scanning microscopy
US6426501B1 (en) * 1998-05-27 2002-07-30 Jeol Ltd. Defect-review SEM, reference sample for adjustment thereof, method for adjustment thereof, and method of inspecting contact holes
JP3946899B2 (ja) * 1999-03-26 2007-07-18 株式会社東芝 エネルギービーム装置における光学系の調整方法
US6320174B1 (en) * 1999-11-16 2001-11-20 Ikonisys Inc. Composing microscope
US6711283B1 (en) 2000-05-03 2004-03-23 Aperio Technologies, Inc. Fully automatic rapid microscope slide scanner
GB2365994B (en) * 2000-08-18 2002-10-30 Marconi Comm Ltd Tunable optical filter
TW498152B (en) 2000-09-11 2002-08-11 Olympus Optical Co Confocal microscope
US7864369B2 (en) * 2001-03-19 2011-01-04 Dmetrix, Inc. Large-area imaging by concatenation with array microscope
WO2002075370A2 (en) 2001-03-19 2002-09-26 Weinstein Ronald S Miniaturized microscope array digital slide scanner
US6535280B1 (en) * 2001-08-31 2003-03-18 Advanced Micro Devices, Inc. Phase-shift-moiré focus monitor
US6639201B2 (en) * 2001-11-07 2003-10-28 Applied Materials, Inc. Spot grid array imaging system
DE10156235A1 (de) * 2001-11-15 2003-06-05 Leica Microsystems Verfahren zum Betreiben einer Stellvorrichtung und Scanmikroskop
US6958819B1 (en) * 2002-04-04 2005-10-25 Nanometrics Incorporated Encoder with an alignment target
JP2004343222A (ja) * 2003-05-13 2004-12-02 Olympus Corp 画像処理装置
US7079256B2 (en) 2003-08-09 2006-07-18 Chian Chiu Li Interferometric optical apparatus and method for measurements
JP4551071B2 (ja) * 2003-09-19 2010-09-22 オリンパス株式会社 顕微鏡用電動ステージ制御システム、該制御装置、及び該制御方法
US7193774B2 (en) * 2003-12-02 2007-03-20 The Arizona Board Of Regents On Behalf Of The University Of Arizona Sub-diffraction limit resolution in microscopy
US7433256B2 (en) 2004-04-28 2008-10-07 Koninklijke Philips Electronics N.V. Information carrier, and system for positioning such an information carrier in a reading and/or writing apparatus
US20060133657A1 (en) 2004-08-18 2006-06-22 Tripath Imaging, Inc. Microscopy system having automatic and interactive modes for forming a magnified mosaic image and associated method
DE102004042913A1 (de) * 2004-09-02 2006-03-30 Westfälische-Wilhelms Universität Münster Scanneranordnung und Verfahren zum optischen Abtasten eines Objektes
JP2006126145A (ja) * 2004-11-01 2006-05-18 Olympus Corp 走査型プローブ顕微鏡用走査機構および走査型プローブ顕微鏡
KR100628321B1 (ko) * 2004-12-16 2006-09-27 한국전자통신연구원 마이크로 칼럼 전자빔 장치
US20080279441A1 (en) * 2005-03-29 2008-11-13 Yuichiro Matsuo Cell-Image Analysis Method, Cell-Image Analysis Program, Cell-Image Analysis Apparatus, Screening Method, and Screening Apparatus
DE102005018896A1 (de) * 2005-04-22 2006-10-26 Leica Microsystems Cms Gmbh Verfahren zur Bestimmung des Lateralversatzes eines XYZ-Tisches
US7298495B2 (en) * 2005-06-23 2007-11-20 Lewis George C System and method for positioning an object through use of a rotating laser metrology system
EP1949372A2 (en) 2005-11-11 2008-07-30 Koninklijke Philips Electronics N.V. System and method for positioning an information carrier in a scanning apparatus
WO2009068763A2 (fr) * 2007-09-25 2009-06-04 Centre National De La Recherche Scientifique Procede, dispositif et systeme de mesure de deformations a l'echelle nanometrique
JP5188846B2 (ja) * 2008-03-10 2013-04-24 日本電子株式会社 走査型透過電子顕微鏡の収差補正装置及び収差補正方法
WO2010033100A1 (en) * 2008-09-18 2010-03-25 Afshari Ali R Probe alignment tool for the scanning probe microscope
US8749882B2 (en) * 2009-03-26 2014-06-10 University Of Vermont And State Agriculture College Low numerical aperture exclusion imaging

Also Published As

Publication number Publication date
US9684159B2 (en) 2017-06-20
BRPI0917740A2 (pt) 2016-02-16
WO2010070553A1 (en) 2010-06-24
JP2012512426A (ja) 2012-05-31
US20110292200A1 (en) 2011-12-01
CN102246081A (zh) 2011-11-16
EP2376965B1 (en) 2020-11-11
CN102246081B (zh) 2015-06-03
EP2376965A1 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP5722787B2 (ja) 走査型顕微鏡
CN112987288B (zh) 具有弯曲焦面或目标基准元件和场补偿器的共焦成像设备
JP2012512426A5 (ja)
CN102384721B (zh) 用于同时测量两个表面区域的双光束彩色点传感器系统的操作方法
CN107238919B (zh) 用于图像扫描的方法和装置
US20090091723A1 (en) Measuring apparatus, exposure apparatus, and device fabrication method
JPS5999304A (ja) 顕微鏡系のレーザ光による比較測長装置
JP2009300426A (ja) レチクル欠陥検査装置およびレチクル欠陥検査方法
JP5798810B2 (ja) 画像相関変位センサ
KR102658509B1 (ko) 이동체의 제어 방법, 노광 방법, 디바이스 제조 방법, 이동체 장치, 및 노광 장치
JP3790961B2 (ja) 表面形状測定装置
US20130208104A1 (en) Custom color or polarization sensitive CCD for separating multiple signals in Autofocus projection system
JP6293528B2 (ja) 干渉計における参照ミラー表面形状の校正方法
JP2009293925A (ja) 光学検査装置の誤差補正装置
JP2010085395A (ja) 光学式位置角度検出装置
JP2005090962A (ja) 光学素子の測定方法および測定装置
JP2010210571A (ja) 画像相関変位計、及び変位測定方法
JP4826326B2 (ja) 照明光学系の評価方法および調整方法
JP4568212B2 (ja) 形状測定装置
KR20190044107A (ko) 하전 입자빔 장치 및 광학식 검사 장치
CN110940280B (zh) 对焦传感器的校准方法
TWI542957B (zh) 曝光裝置之對準裝置
WO2023182095A1 (ja) 表面形状測定装置及び表面形状測定方法
JP5950760B2 (ja) 干渉形状測定機構の校正方法
JP4488710B2 (ja) レンズ特性検査方法と装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140307

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20141204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150326

R150 Certificate of patent or registration of utility model

Ref document number: 5722787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250